Spherical shell model

Σχετικά έγγραφα
Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α

Degenerate Perturbation Theory

SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6

Bessel function for complex variable

Α Ρ Ι Θ Μ Ο Σ : 6.913

Solutions to Exercise Sheet 5

HIGH-ACCURACY AB-INITIO ROVIBRATIONAL SPECTROSCOPY

Derivation of Optical-Bloch Equations

상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님

Statistical Inference I Locally most powerful tests

4.6 Autoregressive Moving Average Model ARMA(1,1)

Homework for 1/27 Due 2/5

Outline. M/M/1 Queue (infinite buffer) M/M/1/N (finite buffer) Networks of M/M/1 Queues M/G/1 Priority Queue

2. Α ν ά λ υ σ η Π ε ρ ι ο χ ή ς. 3. Α π α ι τ ή σ ε ι ς Ε ρ γ ο δ ό τ η. 4. Τ υ π ο λ ο γ ί α κ τ ι ρ ί ω ν. 5. Π ρ ό τ α σ η. 6.

FREE VIBRATION OF A SINGLE-DEGREE-OF-FREEDOM SYSTEM Revision B

Diane Hu LDA for Audio Music April 12, 2010

ECE Notes 21 Bessel Function Examples. Fall 2017 David R. Jackson. Notes are from D. R. Wilton, Dept. of ECE

1. For each of the following power series, find the interval of convergence and the radius of convergence:

Other Test Constructions: Likelihood Ratio & Bayes Tests

Space-Time Symmetries

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Finite Field Problems: Solutions

Ψηφιακή Επεξεργασία Εικόνας

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Part 4 RAYLEIGH AND LAMB WAVES

Hartree-Fock Theory. Solving electronic structure problem on computers

Introduction of Numerical Analysis #03 TAGAMI, Daisuke (IMI, Kyushu University)

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

Electronic structure and spectroscopy of HBr and HBr +

Partial Differential Equations in Biology The boundary element method. March 26, 2013

General 2 2 PT -Symmetric Matrices and Jordan Blocks 1

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Fourier Series. Fourier Series

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Notes on the Open Economy

α & β spatial orbitals in

Numerical Analysis FMN011

Review: Molecules = + + = + + Start with the full Hamiltonian. Use the Born-Oppenheimer approximation

Shenzhen Lys Technology Co., Ltd

CONSULTING Engineering Calculation Sheet

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

One and two particle density matrices for single determinant HF wavefunctions. (1) = φ 2. )β(1) ( ) ) + β(1)β * β. (1)ρ RHF

Parametrized Surfaces

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O

LAD Estimation for Time Series Models With Finite and Infinite Variance

ΑΝΙΧΝΕΥΣΗ ΓΕΓΟΝΟΤΩΝ ΒΗΜΑΤΙΣΜΟΥ ΜΕ ΧΡΗΣΗ ΕΠΙΤΑΧΥΝΣΙΟΜΕΤΡΩΝ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Nonlinear Motion. x M x. x x. cos. 2sin. tan. x x. Sextupoles cause nonlinear dynamics, which can be chaotic and unstable. CHESS & LEPP CHESS & LEPP

Durbin-Levinson recursive method



Tridiagonal matrices. Gérard MEURANT. October, 2008

Math 6 SL Probability Distributions Practice Test Mark Scheme

Spherical Coordinates

w o = R 1 p. (1) R = p =. = 1

derivation of the Laplacian from rectangular to spherical coordinates

Homework 8 Model Solution Section

Fermion anticommutation relations

1 String with massive end-points

Lifting Entry (continued)

Lecture 34 Bootstrap confidence intervals

Variational Wavefunction for the Helium Atom

The Heisenberg Uncertainty Principle

Matrices and Determinants

Congruence Classes of Invertible Matrices of Order 3 over F 2

Inertial Navigation Mechanization and Error Equations

DIPLOMA PROGRAMME MATHEMATICS SL INFORMATION BOOKLET

Lecture 17: Minimum Variance Unbiased (MVUB) Estimators

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

Cite as: Pol Antras, course materials for International Economics I, Spring MIT OpenCourseWare ( Massachusetts

Fused Bis-Benzothiadiazoles as Electron Acceptors

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

Ν Κ Π 6Μ Θ 5 ϑ Μ % # =8 Α Α Φ ; ; 7 9 ; ; Ρ5 > ; Σ 1Τ Ιϑ. Υ Ι ς Ω Ι ϑτ 5 ϑ :Β > 0 1Φ ς1 : : Ξ Ρ ; 5 1 ΤΙ ϑ ΒΦΓ 0 1Φ ς1 : ΒΓ Υ Ι : Δ Φ Θ 5 ϑ Μ & Δ 6 6

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is

Thin Film Chip Resistors

p n r

UDZ Swirl diffuser. Product facts. Quick-selection. Swirl diffuser UDZ. Product code example:

IIT JEE (2013) (Trigonomtery 1) Solutions

Three Classical Tests; Wald, LM(Score), and LR tests

Every set of first-order formulas is equivalent to an independent set

Supplementary Materials: A Preliminary Link between Hydroxylated Metabolites of Polychlorinated Biphenyls and Free Thyroxin in Humans

Στα επόμενα θεωρούμε ότι όλα συμβαίνουν σε ένα χώρο πιθανότητας ( Ω,,P) Modes of convergence: Οι τρόποι σύγκλισης μιας ακολουθίας τ.μ.

T : g r i l l b a r t a s o s Α Γ Ί Α Σ Σ Ο Φ Ί Α Σ 3, Δ Ρ Α Μ Α. Δ ι α ν ο μ έ ς κ α τ ο ί κ ο ν : 1 2 : 0 0 έ ω ς 0 1 : 0 0 π μ

SPECIAL FUNCTIONS and POLYNOMIALS

.. ntsets ofa.. d ffeom.. orp ism.. na s.. m ooth.. man iod period I n open square. n t s e t s ofa \quad d ffeom \quad orp ism \quad na s \quad m o

Lecture 22: Coherent States

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

Integrals in cylindrical, spherical coordinates (Sect. 15.7)

Inverse trigonometric functions & General Solution of Trigonometric Equations

( ) 2 and compare to M.

Cross sectional area, square inches or square millimeters

MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutions to Problems on Matrix Algebra

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Η ΕΠΙΔΡΑΣΗ ΤΗΣ ΑΙΘΑΝΟΛΗΣ,ΤΗΣ ΜΕΘΑΝΟΛΗΣ ΚΑΙ ΤΟΥ ΑΙΘΥΛΟΤΡΙΤΟΤΑΓΗ ΒΟΥΤΥΛΑΙΘΕΡΑ ΣΤΙΣ ΙΔΙΟΤΗΤΕΣ ΤΗΣ ΒΕΝΖΙΝΗΣ

ST5224: Advanced Statistical Theory II

Conductivity Logging for Thermal Spring Well

Figure 1 - Plan of the Location of the Piles and in Situ Tests

Capacitors - Capacitance, Charge and Potential Difference

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

ΕΦΑΡΜΟΓΗ ΕΥΤΕΡΟΒΑΘΜΙΑ ΕΠΕΞΕΡΓΑΣΜΕΝΩΝ ΥΓΡΩΝ ΑΠΟΒΛΗΤΩΝ ΣΕ ΦΥΣΙΚΑ ΣΥΣΤΗΜΑΤΑ ΚΛΙΝΗΣ ΚΑΛΑΜΙΩΝ

Transcript:

Nilsso Model Spherical Shell Model Deformed Shell Model Aisotropic Harmoic Oscillator Nilsso Model o Nilsso Hamiltoia o Choice of Basis o Matrix Elemets ad Diagoaliatio o Examples. Nilsso diagrams

Spherical shell model Nuclear properties described i terms of ucleos cosidered as idepedet particles movig i a average potetial create by all ucleos. Experimetal evidece for shell effects: Existece of magic umbers:,8,,8,5,8,6 Large sigle particle separatio eergies Nuclei are strogly boud at shell closures Derivatio of the average field from microscopic two-body forces (selfcosistet Hartree-Fock method). Assume the existece of such a potetial ad costruct it pheomeologically Characteristics of the potetial: ( ) V V r = r r= r r< R > ( ), > V r r R

Spherical potetials Ifiite square well Harmoic oscillator Woods-Saxo potetial ( ) for V r = V r R = for r > R V r M r ( ) = ω ( ) V r V = ( ) exp r R / a Eige-fuctios ψ ( ) ( Ω) j kr Y m ψ R ( r) Y ( Ω) m r / ( ) = ( ) R r r e L r umerically E(, ) = ξ MR ξ : root of j = ( ξ) Eige-eergies (, ) = ω ( /) = ω ( N /) E itermediate

Spherical potetials Woods-Saxo potetial ( ) V r V = ( ) exp r R / a Harmoic oscillator V r M r ( ) = ω Ifiite square well ( ) for V r = V r R = for r > R

Spherical potetials H.O. W.S. Square

Spherical potetials & spi-orbit V ( r) = Mω r C s D ( ) s = j s ( ) ω ( ) ( ) E D Cε, = / SO ε ε SO SO = for j = = for j = Δ = ε SO

Deformed shell model Spherical potetial well valid for closed shells Far from closed shells: deformed sigle particle potetial Experimetal evidece: Existece of rotatioal bads: I(I) spectra Large quadrupole momets ad quadrupole trasitio probabilities Sigle particle structure AisotropicHarmoicOscillator Geeralied Woods-Saxo V ( r θϕ) LS r,, = V exp a V = λ V r p s ( (, θ, ϕ) ) R( θϕ, ) ( θϕ, )

Aisotropic Harmoic Oscillator Ellipsoidal distributio: Aisotropic Harmoic Oscillator as average field m H = Δ x y m ( ω ) x ωy ω Frequecies are proportioal to the iverse of the ellipsoid axes For axially symmetric shapes, we itroduce the parameter δ ω ω δ = ω ω = ωx = ωy = ω δ 4 ω = ω δ i ω = ω R a i From volume coservatio ωxωω y = ( ) ω /6 4 6,.95 ω( δ) = ω δ δ δ β 7

Aisotropic Harmoic Oscillator Itroducig dimesioless coordiates through the oscillator legth we get b( δ ) = r' r/ b mω = ( δ ) ( δ) ( δ) H mω m x y 4 ω( δ) ω( δ ) 4 = Δ x y δ ( x y ) δ ( δ) = Δ ω ( δ) δ ( ) ω ( δ) δ m mω mω ω 4 π r δ ω Δ 5 = = H H δ Axial symmetry: cylidrical basis ( δ) r Y ( Ω) { N,, ρ, m, ms} ε ω ω ω i= x, y, N = = m x y (, ρ, m ) = ii = ( ρ m ) N = ω N δ ρ

Aisotropic Harmoic Oscillator Eige-states characteried by φ ψ ψ mm Ωπ Ω= ± = [ N m ] m π ( ) ( ) m R, σ = ( ρ ) ( ) χm ( σ) m ( ρ ) L ( ρ ) ρ ( ) H ( ) π ρ s ρ s ψ m ψ ρ e im ϕ N

Aisotropic Harmoic Oscillator Eergy level structure: N= ε ω ω ω i= x, y, (, ρ, m ) = i = ( ρ m ) N = ω N δ 9 ( m ρ ) = ( ) N = ε ω ω δ N = ρ m m l ρ Ω deg 5/, 7/ 4 /, / eergy = = = = /, 5/ / /, / deformatio /

The Nilsso model: Hamiltoia Axially symmetric harmoic oscillator potetial spi-orbit term l term H H C s D = N = ω δ Δ β ( ) r r Y κ ω s μ N C = κω D = κμω N ( ) = N N

The Nilsso model: Hamiltoia H F F E = H κω F δ = κ ηu s μ = N = N ω ( δ) κω f /6 4 6 4 π δ δ r Y s μ 7 5 N N,Z<5 5<Z<8 8<N<6 8<Z 6<N κ.8.67.67.577.65 μ.6.4.65.5

s The Nilsso model: Basis odiagoal i basis ad { N,, ρ, m, ms} For large deformatios s, ca be eglected: Asymptotic quatum umbers { N,, ρ, m, ms} : [ Nm ] Ωπ For small deformatios δ-terms ca be eglected: Spherical basis Nilsso used basis { N m m } Diagoal terms { N,, j, Ω},,, s H N,, m, ms = N ω N,, m, m N,, m, m = N,, m, m s ( ) s s

The Nilsso model:matrix elemets Matrix elemets ' m' m' s s mm s = ' m = m', m' ± m = m' ±, m' s s s m m = m' m' s s, m ±, s, m, ± = m ± m, m, ± s, m, ± =± m ( )( ) ' 5 ' m' Y m = i m ' m' ' 4π ' m = m' m = m' = ', ' ± N = N' ± s s

The Nilsso model: Matrix elemets Radial matrix elemets ( )! ( /) r N = e L r b b Γ b r b / ( / ) ( ' )!( )! ' ( ) μ ν ( ' ' /) ( /) Γ ( p σ )!( ' ) ( ) ( ) ( σ ν ) N r N = b Γ Γ ' '!! σ σ σ! σ! σ μ '!! p = ( ' ) μ = p ' / ν = p / N = ( ) / N, N ± admixtures ( /) ( /) = = N r N N ( ) N r N = / ( )( ) N r N = / ( )( ) N r N = / / ( )( ) N r N =

The Nilsso model α Nilsso states: i C α ; α { } { Nm m } = Ω π i α s N Ω Nmm s Ωπ N N N N = Ω = / = Ω = / / / Ω= / = Ω = 5/ / / 5/ Ω= / / / Ω= / = Ω = 7/ 5/ 5/ 5/ 7/ Ω= 5 / Ω= / 5/ 5/ / / / Ω= / / / / /

The Nilsso model: N= Diagoaliatio i blocks Ω,π (with or without ΔN= admixtures) H = H κω F = H κω ηu s μ { } δ 4 6 η = δ δ κ 7 /6 U = 4 π r 5 Y N = Ω= / =, = Nm m s N = μ= s = Y = ηu s μ =

The Nilsso model: N= N = Ω= / =, = Nm m s N = Ω= / =, = Nm m s, - N = μ= s = 4 π 4 π η ry = η r Y = η 5 5 r = 5 5 Y = = 4π 4π 5 ηu s μ = η N = μ= s = 4 π 4 π η ry = η r Y = η 5 5 r = 5 5 Y = = 4π 4π 5 ηu s μ = η ηu s μ - = η ηu s μ - = - η η± η η λ = η 9 λ η

The Nilsso model: N= { }{ } N = Ω= 5/ =, = =, = Nmms ηu s μ = η N = Ω= / Nmms, - ηu s μ = η ηu s μ - = η ηu s μ = - η η N = Ω= / Nmms,, - ηu s μ = η ηu s μ = ηu s μ = η ηu s μ = η ηu s μ - = 6 ηu s μ - = - η η 6 η

The Nilsso model: N= N = Ω= 7 / ( ημ) N = Ω= 5/ μ 6 η μ N = Ω= / 4 ημ η 5 5 ημ 5 μ N = Ω=/ 4 6 ημ η 5 5 6 ημ 5 4 η μ η 5 5 η μ 5

The Nilsso model: ΔN= Ω=/ with ΔN= admixtures 44 4 4 44 4 η 6 η η 6 η η η 5 7 5 7η 6 η η η 7 7 44 η μ η 5 4 4 η 6μ 5 5η 6 4 44 7 4 η μ 7 η 4 6

A Z Nucleus N K π Al Na F 7 4 5/ / 9 9 / Si 7 4 5/ 5 Mg 5/ O 9 8 / Ne 9 9 / 9 4 5 / 7 Be Li 4 /

Spherical levels split ito (j)/ levels Levels (Ωπ) are twofold degeerate Asymptotic q-umbers ot coserved for small deformatios but useful to classify levels For positive deformatios (PROLATE SHAPES), levels with lower Ω are shifted dowwards For egative deformatios (OBLATE SHAPES), levels with lower Ω are shifted upwards

N m = ρ Nm = Ω = = N =/ m / N = Ω =/ = m = / = m = / N = Ω =/ = m = / N = Ω =/ = m = / N = Ω =/ = m = = m = / = m = / / = m = / N = Ω =5/ = m = 5/ N = Ω =/ = m = / = m = / = m = / = m = / N = Ω =/ = m = / N = Ω=5/ = m = / = m = / = m = 5/ = m = 5/ N = Ω =7/ = m = 7 / Ω π

Laboratory frame ( ) Wave fuctios i the uified model Ψ φ r Φ( θ ) I Ψ = 6π { } I* ( ) ( ) ( ) I J I* IKM D ( ) ( ) ( ) MK θk φk r DM K θk φk r k Itrisic wave fuctios (Nilsso) Rotatio matrices Z lab. M I R J Z itr. Ω K

-j abγ a b c abαβ c γ = ( ) c α β γ