Computing the Macdonald function for complex orders

Σχετικά έγγραφα
The Spiral of Theodorus, Numerical Analysis, and Special Functions

The circle theorem and related theorems for Gauss-type quadrature rules

Bessel functions. ν + 1 ; 1 = 0 for k = 0, 1, 2,..., n 1. Γ( n + k + 1) = ( 1) n J n (z). Γ(n + k + 1) k!

A summation formula ramified with hypergeometric function and involving recurrence relation

Parametrized Surfaces

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

SPECIAL FUNCTIONS and POLYNOMIALS

Laplace Expansion. Peter McCullagh. WHOA-PSI, St Louis August, Department of Statistics University of Chicago

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Example Sheet 3 Solutions

Math221: HW# 1 solutions

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

Outline Analog Communications. Lecture 05 Angle Modulation. Instantaneous Frequency and Frequency Deviation. Angle Modulation. Pierluigi SALVO ROSSI

Solutions to Exercise Sheet 5

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

P m (x)p n (x)dx = 2 2n + 1 δn m. P 1 (x) = x. P 2 (x) = 1 2 (3x2 1) P 3 (x) = 1 2 (5x3 3x) P 4 (x) = 1 8 (35x4 30x 2 + 3)

Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation. Mathematica StandardForm notation

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Differentiation exercise show differential equation

D Alembert s Solution to the Wave Equation

ExpIntegralE. Notations. Primary definition. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Second Order RLC Filters

Srednicki Chapter 55

Solution Series 9. i=1 x i and i=1 x i.

2 Composition. Invertible Mappings

Exercises to Statistics of Material Fatigue No. 5

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Review Exercises for Chapter 7

Evaluation of some non-elementary integrals of sine, cosine and exponential integrals type

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. Απειροστικός Λογισµός Ι. ιδάσκων : Α. Μουχτάρης. Απειροστικός Λογισµός Ι - 3η Σειρά Ασκήσεων

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

Section 8.3 Trigonometric Equations

Review-2 and Practice problems. sin 2 (x) cos 2 (x)(sin(x)dx) (1 cos 2 (x)) cos 2 (x)(sin(x)dx) let u = cos(x), du = sin(x)dx. = (1 u 2 )u 2 ( du)

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

g-selberg integrals MV Conjecture An A 2 Selberg integral Summary Long Live the King Ole Warnaar Department of Mathematics Long Live the King

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

M a t h e m a t i c a B a l k a n i c a. On Some Generalizations of Classical Integral Transforms. Nina Virchenko

Matrices and Determinants

Differential equations

Variational Wavefunction for the Helium Atom

Homework 3 Solutions

Numerical Analysis FMN011

Second Order Partial Differential Equations

Probability and Random Processes (Part II)

P AND P. P : actual probability. P : risk neutral probability. Realtionship: mutual absolute continuity P P. For example:

Example 1: THE ELECTRIC DIPOLE

Areas and Lengths in Polar Coordinates

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

Lifting Entry (continued)

Διαφορικές εξισώσεις 302.

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Problem 1.1 For y = a + bx, y = 4 when x = 0, hence a = 4. When x increases by 4, y increases by 4b, hence b = 5 and y = 4 + 5x.

EE512: Error Control Coding

Τύπος TAYLOR. f : [a, b] R f (n 1) (x) συνεχής x [a, b] f (n) (x) x (a, b) ξ μεταξύ x και x 0. (x x 0 ) k k! f(x) = f (k) (x 0 ) + R n (x)

High order interpolation function for surface contact problem

Local Approximation with Kernels

Matrices and vectors. Matrix and vector. a 11 a 12 a 1n a 21 a 22 a 2n A = b 1 b 2. b m. R m n, b = = ( a ij. a m1 a m2 a mn. def

Lecture 26: Circular domains

Homework 8 Model Solution Section

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

Part III - Pricing A Down-And-Out Call Option

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C

MathCity.org Merging man and maths

A Two-Sided Laplace Inversion Algorithm with Computable Error Bounds and Its Applications in Financial Engineering

Areas and Lengths in Polar Coordinates

Technical Information T-9100 SI. Suva. refrigerants. Thermodynamic Properties of. Suva Refrigerant [R-410A (50/50)]

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

x j (t) = e λ jt v j, 1 j n

Durbin-Levinson recursive method

1 String with massive end-points

The Negative Neumann Eigenvalues of Second Order Differential Equation with Two Turning Points

Geodesic Equations for the Wormhole Metric

( y) Partial Differential Equations

lim f n(x) = f(x) 1 ǫ < n ln ǫ N (ǫ, x) = ln ( )

DuPont Suva 95 Refrigerant

6.3 Forecasting ARMA processes

Additional Results for the Pareto/NBD Model

DuPont Suva 95 Refrigerant

Lifting Entry 2. Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion MARYLAND U N I V E R S I T Y O F

CRASH COURSE IN PRECALCULUS

6.4 Superposition of Linear Plane Progressive Waves

DuPont Suva. DuPont. Thermodynamic Properties of. Refrigerant (R-410A) Technical Information. refrigerants T-410A ENG

6.003: Signals and Systems. Modulation

Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3

ECE 468: Digital Image Processing. Lecture 8

LTI Systems (1A) Young Won Lim 3/21/15

10.7 Performance of Second-Order System (Unit Step Response)

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

Vol. 37 ( 2017 ) No. 3. J. of Math. (PRC) : A : (2017) k=1. ,, f. f + u = f φ, x 1. x n : ( ).

Finite Field Problems: Solutions

On the summability of divergent power series solutions for certain first-order linear PDEs Masaki HIBINO (Meijo University)

1. [Carrier, Krook and Pearson, Section 3-1 problem 1] Using the contour

C.S. 430 Assignment 6, Sample Solutions

An Inventory of Continuous Distributions

Transcript:

Macdonald p. 1/1 Computing the Macdonald function for complex orders Walter Gautschi wxg@cs.purdue.edu Purdue University

Macdonald p. 2/1 Integral representation K ν (x) = complex order ν = α + iβ e x cosh t cosh νt dt, x > Re K α+iβ (x) = Im K α+iβ (x) = e x cosh t cosh αt cos βt dt, e x cosh t sinh αt sin βt dt. it suffices to consider α 1; assume β 1

Macdonald p. 2/1 Integral representation K ν (x) = complex order ν = α + iβ e x cosh t cosh νt dt, x > Re K α+iβ (x) = Im K α+iβ (x) = e x cosh t cosh αt cos βt dt, e x cosh t sinh αt sin βt dt. it suffices to consider α 1; assume β 1 K iβ and K 1/2+iβ are the kernels in the ordinary and modified Kontorovich Lebedev integral transform

Macdonald p. 3/1 Gauss quadrature weight function w(u) = exp( e u ), u < recurrence coefficients for orthogonal polynomials computed by a multiple-component discretization method based on [, ] = [,.75] [.75, 1.5] [1.5, 3] [3, ] global mc mp iq idelta irout DM uv AB N=1; eps=.5e-12; mc=4; mp=; iq=; idelta=2; Mmax=9; AB=[[.75];[.75 1.5];[1.5 3];[3 Inf]]; [ab,mcap,kount]=mcdis(n,eps,@quadgp,mmax);

Macdonald p. 3/1 Gauss quadrature weight function w(u) = exp( e u ), u < recurrence coefficients for orthogonal polynomials computed by a multiple-component discretization method based on [, ] = [,.75] [.75, 1.5] [1.5, 3] [3, ] global mc mp iq idelta irout DM uv AB N=1; eps=.5e-12; mc=4; mp=; iq=; idelta=2; Mmax=9; AB=[[.75];[.75 1.5];[1.5 3];[3 Inf]]; [ab,mcap,kount]=mcdis(n,eps,@quadgp,mmax); n-point Gauss formula for n N load -ascii ab; xw=gauss(n,ab);

Macdonald p. 4/1 The function K ν (x) for x 1 change of variables e x cosh t = e 1 2 xet e 1 2 xe t = e 1 2 x e 1 2 x(et 1) e 1 2 xe t new variable 1 2 x(et 1) = e u 1, u < transformed formulae Re K α+iβ (x) = 1 2 (2/x)α e 1 1 2 x Im K α+iβ (x) = 1 2 (2/x)α e 1 1 2 x e eu f(u; α, β, x)du, e eu g(u; α, β, x)du,

Macdonald p. 4/1 The function K ν (x) for x 1 change of variables e x cosh t = e 1 2 xet e 1 2 xe t = e 1 2 x e 1 2 x(et 1) e 1 2 xe t new variable 1 2 x(et 1) = e u 1, u < transformed formulae Re K α+iβ (x) = 1 2 (2/x)α e 1 1 2 x Im K α+iβ (x) = 1 2 (2/x)α e 1 1 2 x e eu f(u; α, β, x)du, e eu g(u; α, β, x)du, for 9-digit accuracy, Gauss quadrature with n = 3 suffices difficulty: for much smaller x, steep boundary layer phenomena develop in f(u; α, β, x), g(u; α, β, x)

Macdonald p. 5/1 The function K ν (x) for x < 1 K ν (x) = ( c + c ) e x cosh t cosh νt dt c >

Macdonald p. 5/1 The function K ν (x) for x < 1 K ν (x) = ( c + c ) e x cosh t cosh νt dt c > second integral c e x cosh t cosh νt = e x cosh(τ+c) cosh ν(τ + c)dτ change of variables with ξ := xe c e x cosh(τ+c) = e 1 2 ξ e 1 2 ξ(eτ 1) e 1 2 ξe 2c e τ

Macdonald p. 5/1 The function K ν (x) for x < 1 K ν (x) = ( c + c ) e x cosh t cosh νt dt c > second integral c e x cosh t cosh νt = e x cosh(τ+c) cosh ν(τ + c)dτ change of variables with ξ := xe c e x cosh(τ+c) = e 1 2 ξ e 1 2 ξ(eτ 1) e 1 2 ξe 2c e τ looks very much like before with ξ replacing x. Since x = 1 was OK before, ξ = 1 should be OK now. This determines c = ln(1/x).

Macdonald p. 6/1 transformed formulae Re K α+iβ (x) = c Im K α+iβ (x) = c 1 + 1 2 (2/x)α e 1 2 1 + 1 2 (2/x)α e 1 2 e x cosh(τc) cosh(αcτ) cos(βcτ)dτ e eu ϕ(u; α, β, x)du, e x cosh(τc) sinh(αcτ) sin(βcτ)dτ e eu ψ(u; α, β, x)du, n 1 -point Gauss-Legendre resp. n 2 -point Gauss for.1 x 1 and 9-digit accuracy, n 1 = 3 and n 2 = 3 suffice

Macdonald p. 7/1 The function K ν (x) for x.1 K ν (x) = π/2 sin νπ (I ν(x) I ν (x)), ν N

Macdonald p. 7/1 The function K ν (x) for x.1 K ν (x) = π/2 sin νπ (I ν(x) I ν (x)), ν N combine power series expansions for I ±ν with reflection formula for the gamma function Γ(ν)Γ(1 ν) = three-term approximation π sin νπ ( K ν (x) 1 x ν 2 2) Γ(ν) [1 + x2 4(1 ν) + x 4 ( ] + 1 x ν 2 2) Γ( ν) [1 + x2 4(1+ν) + x 4 32(1+ν)(2+ν) 32(1 ν)(2 ν) ]

Macdonald p. 8/1 The function K α+iβ for β > 1 computationally difficult and complex alternative symbolic computation

Macdonald p. 8/1 The function K α+iβ for β > 1 computationally difficult and complex alternative symbolic computation Matlab K=mfun( BesselK,a+b*i,x) Example >> K=mfun( BesselK,15*i,2) K = 3.6974975761981e-11

Macdonald p. 9/1 Plots of K iβ β = 1/2 β = 1 2.6 1.5.4 1.2.5.2.4.5.6 1.2.4.6.8.1.12.14.16.18.2.8.5 1 1.5 β = 2 β = 5.1 6 x 1 4.8.6 4.4 2.2.2 2.4.6 4.8.5 1 1.5 2 2.5 3 3.5 4 4.5 5 6 1 2 3 4 5 6 7 8 9 1

Macdonald p. 1/1 Plots of K 1/2+iβ Re K 1/2+iβ β = 1/2 Im K 1/2+iβ 5 9 8 7 5 6 5 1 4 15 3 2 2 1 25.2.4.6.8.1.12.14.16.18.2.2.4.6.8.1.12.14.16.18.2 Re K 1/2+iβ β = 1 Im K 1/2+iβ.5 1.5 1.5.5.5 1 1 1.5 1.5 2 2 2.5 3 2.5.5 1 1.5 3.5.5 1 1.5

Macdonald p. 11/1 Plots of K 1/2+iβ (cont ) Re K 1/2+iβ β = 2 Im K 1/2+iβ.6.5.4.4.3.2.2.1.2.1.4.2.3.6.4.8.5 1 1.5 2 2.5 3 3.5 4 4.5 5.5.5 1 1.5 2 2.5 3 3.5 4 4.5 5 Re K 1/2+iβ β = 5 Im K 1/2+iβ 3 x 1 3 4 x 1 3 2 2 1 2 1 4 2 6 3 1 2 3 4 5 6 7 8 9 1 8 1 2 3 4 5 6 7 8 9 1

Macdonald p. 12/1 Behavior at infinity and zero of K iβ K iβ (x) π 2x e x, x

Macdonald p. 12/1 Behavior at infinity and zero of K iβ π K iβ (x) 2x e x, x K iβ (x) where π β sinh βπ k(x, β), x k(x, β) = sin(β ln(2/x) + arg Γ(1 + iβ))

Macdonald p. 12/1 Behavior at infinity and zero of K iβ π K iβ (x) 2x e x, x note K iβ (x) where π β sinh βπ k(x, β), x k(x, β) = sin(β ln(2/x) + arg Γ(1 + iβ)) γ := arg Γ(1 + iβ) = Im [ln Γ(1 + iβ)]

Macdonald p. 13/1 Computing the Kontorovich-Lebedev transform F (β) = K iβ (x)f(x)dx, β >

Macdonald p. 13/1 Computing the Kontorovich-Lebedev transform F (β) = for evaluation F (β) = ( 2 K iβ (x)f(x)dx, β > + 2 ) K iβ (x)f(x)dx

Macdonald p. 13/1 Computing the Kontorovich-Lebedev transform F (β) = for evaluation F (β) = ( 2 Gauss Laguerre on K iβ (x)f(x)dx, β > + 2 ) K iβ (x)f(x)dx 2 K iβ (x)f(x)dx = [e t K iβ (2 + t)f(2 + t)]e t dt

Macdonald p. 14/1 computing the KL transform (cont ) special treatment of 2 K iβ(x)f(x)dx = 2 f(x)dx + π β sinh βπ [K iβ(x) 2 π β sinh βπ k(x, β)] f(x) sin(β ln(2/x) + γ)dx

Macdonald p. 14/1 computing the KL transform (cont ) special treatment of 2 K iβ(x)f(x)dx = 2 f(x)dx + π β sinh βπ [K iβ(x) 2 π β sinh βπ k(x, β)] f(x) sin(β ln(2/x) + γ)dx Gauss Legendre on first, and Gauss Laguerre on second integral, 2 f(x) sin(β ln(2/x) + γ)dx = 2 f(2e t ) sin(βt + γ)e t dt

Macdonald p. 15/1 Special Gaussian quadrature where 1 f(2t) sin(β ln(1/t) + γ)dt = 1 f(2t)w β(t)dt 1 f(2t)dt w β (t) = 1 + sin(β ln(1/t) + γ) on [, 1]

Macdonald p. 15/1 Special Gaussian quadrature where 1 f(2t) sin(β ln(1/t) + γ)dt = 1 f(2t)w β(t)dt 1 f(2t)dt w β (t) = 1 + sin(β ln(1/t) + γ) on [, 1] moments of w β m k = 1 tk w β (t)dt = 1 k+1 + 1 (k+1) 2 +β ((k + 1) sin γ + β cos γ), 2 k =, 1, 2,...

Macdonald p. 15/1 Special Gaussian quadrature where 1 f(2t) sin(β ln(1/t) + γ)dt = 1 f(2t)w β(t)dt 1 f(2t)dt w β (t) = 1 + sin(β ln(1/t) + γ) on [, 1] moments of w β m k = 1 tk w β (t)dt = 1 k+1 + 1 (k+1) 2 +β ((k + 1) sin γ + β cos γ), 2 k =, 1, 2,... symb/vpa-chebyshev algorithm = orthogonal polynomials = Gauss formula