INDEX. Introduction (ch 1) Theoretical strength (ch 2) Ductile/brittle (ch 2) Energy balance (ch 4) Stress concentrations (ch 6)

Σχετικά έγγραφα
MECHANICAL PROPERTIES OF MATERIALS

FRACTURE MECHANICS. Piet Schreurs. Eindhoven University of Technology Department of Mechanical Engineering Materials Technology September 5, 2013

CONTINUUM MECHANICS. e 3. x e 2 O e 1. - volume / area V 0, V / A 0,A - base vectors { e 1, e 2, e 3 } - position vector x 0, x

Chapter 10: Failure. Titanic on April 15, 1912 ISSUES TO ADDRESS. Failure Modes:

Mechanical Behaviour of Materials Chapter 5 Plasticity Theory

(Mechanical Properties)

Dr. D. Dinev, Department of Structural Mechanics, UACEG

ADVANCED STRUCTURAL MECHANICS

Introduction to Theory of. Elasticity. Kengo Nakajima Summer

Homework 8 Model Solution Section

Chapter 7 Transformations of Stress and Strain

EXPERIMENTAL AND NUMERICAL STUDY OF A STEEL-TO-COMPOSITE ADHESIVE JOINT UNDER BENDING MOMENTS

CH-4 Plane problems in linear isotropic elasticity

Strain gauge and rosettes

θ p = deg ε n = με ε t = με γ nt = μrad

Constitutive Equation for Plastic Behavior of Hydrostatic Pressure Dependent Polymers

DETERMINATION OF DYNAMIC CHARACTERISTICS OF A 2DOF SYSTEM. by Zoran VARGA, Ms.C.E.

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint

Discontinuous Hermite Collocation and Diagonally Implicit RK3 for a Brain Tumour Invasion Model

Spherical Coordinates

Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3

Chapter 2. Stress, Principal Stresses, Strain Energy


C4C-C4H-C4G-C4M MKP Series AXIAL CAPACITORS PCB APPLICATIONS


Το σχέδιο της μέσης τομής πλοίου

University of Waterloo. ME Mechanical Design 1. Partial notes Part 1

E T E L. E e E s G LT. M x, M y, M xy M H N H N x, N y, N xy. S ijkl. V v V crit

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

Macromechanics of a Laminate. Textbook: Mechanics of Composite Materials Author: Autar Kaw

NTC Thermistor:TSM type

Μηχανουργική Τεχνολογία & Εργαστήριο Ι

3.5 - Boundary Conditions for Potential Flow

The kinetic and potential energies as T = 1 2. (m i η2 i k(η i+1 η i ) 2 ). (3) The Hooke s law F = Y ξ, (6) with a discrete analog

Areas and Lengths in Polar Coordinates

Surface Mount Multilayer Chip Capacitors for Commodity Solutions

ΚΕΦΑΛΑΙΟ 1 Ο 1.1. ΕΛΑΣΤΙΚΟ ΣΤΕΡΕΟ

A Summary Of Linear Continuum Mechanics 1. a b = a i b i = a b cos θ. det A = ɛ ijk A 1i A 2j A 3k. e 1 e 2 e 3 a b = ɛ ijk a j b k e i =

Multilayer Ceramic Chip Capacitors

NTC Thermistor:SCK Series

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

Using the Jacobian- free Newton- Krylov method to solve the sea- ice momentum equa<on

Numerical Analysis FMN011

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

1. Sketch the ground reactions on the diagram and write the following equations (in units of kips and feet). (8 points) ΣF x = 0 = ΣF y = 0 =

Eigenfunction expansion for penny-shaped and circumferential cracks

+85 C Snap-Mount Aluminum Electrolytic Capacitors. High Voltage Lead free Leads Rugged Design. -40 C to +85 C

Grey Cast Irons. Technical Data

Graded Refractive-Index

Multilayer Ceramic Chip Capacitors

Constitutive Relations in Chiral Media

Lecture 26: Circular domains

Contents. Preface... xv Acknowledgments... xix About the Authors... xxi Nomenclature... xxiii

Stresses in a Plane. Mohr s Circle. Cross Section thru Body. MET 210W Mohr s Circle 1. Some parts experience normal stresses in

1. In calculating the shear flow associated with the nail shown, which areas should be included in the calculation of Q? (3 points) Areas (1) and (5)

1 String with massive end-points

Lifting Entry (continued)

Applications. 100GΩ or 1000MΩ μf whichever is less. Rated Voltage Rated Voltage Rated Voltage

Forced Pendulum Numerical approach

Mechanics of Materials Lab

NTC Thermistor:TTC3 Series

5.0 DESIGN CALCULATIONS

ME340B Elasticity of Microscopic Structures Wei Cai Stanford University Winter Midterm Exam. Chris Weinberger and Wei Cai

NTC Thermistor:SCK Series

Ingenieurbüro Frank Blasek - Beratender Ingenieur Am Kohlhof 10, Osterholz-Scharmbeck Tel: 04791/ Fax: 04791/

Ingenieurbüro Frank Blasek - Beratender Ingenieur Am Kohlhof 10, Osterholz-Scharmbeck Tel: 04791/ Fax: 04791/

11.4 Graphing in Polar Coordinates Polar Symmetries

CONSULTING Engineering Calculation Sheet

Written Examination. Antennas and Propagation (AA ) April 26, 2017.

D Alembert s Solution to the Wave Equation

April MD simulation of interaction between radiation damages and microstructure: voids, helium bubbles and grain boundaries

Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web: Ph:

Aluminum Electrolytic Capacitors (Large Can Type)

Answer sheet: Third Midterm for Math 2339

Section 8.3 Trigonometric Equations

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Topic 4. Linear Wire and Small Circular Loop Antennas. Tamer Abuelfadl

Matrices and Determinants

Figure 1 - Plan of the Location of the Piles and in Situ Tests

E62 AC Series Features

The logic of the Mechanics of Materials

Major Concepts. Multiphase Equilibrium Stability Applications to Phase Equilibrium. Two-Phase Coexistence

2.019 Design of Ocean Systems. Lecture 6. Seakeeping (II) February 21, 2011

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Wavelet based matrix compression for boundary integral equations on complex geometries

NTC thermistors for temperature measurement

Problem 3.1 Vector A starts at point (1, 1, 3) and ends at point (2, 1,0). Find a unit vector in the direction of A. Solution: A = 1+9 = 3.

Section 8.2 Graphs of Polar Equations

CEMENT FIXED RESISTORS

Lecture 21: Scattering and FGR

Technical Report. General Design Data of a Three Phase Induction Machine 90kW Squirrel Cage Rotor

YJM-L Series Chip Varistor

Ceramic PTC Thermistor Overload Protection

6.4 Superposition of Linear Plane Progressive Waves

Areas and Lengths in Polar Coordinates

Chapter 5 Stress Strain Relation

Μονοβάθμια Συστήματα: Εξίσωση Κίνησης, Διατύπωση του Προβλήματος και Μέθοδοι Επίλυσης. Απόστολος Σ. Παπαγεωργίου

CorV CVAC. CorV TU317. 1

CURVILINEAR COORDINATES

EXPERIMENT RESEARCH OF INFLUENCE OF DYNAMIC LOADING ON PROCESS OF CRACK FORMATION AT BOOTY OF LITHOIDAL BLOCKS T.

Transcript:

INDEX Introduction (ch 1) Theoretical strength (ch 2) Ductile/brittle (ch 2) Energy balance (ch 4) Stress concentrations (ch 6) () April 30, 2018 1 / 52

back to index INTRODUCTION

Introduction () 3 / 52

Continuum mechanics V 0 A 0 u V A x 0 e 3 x e 1 O e 2 () 4 / 52

Continuum mechanics - volume / area V 0, V / A 0, A - base vectors { e 1, e 2, e 3 } - position vector x 0, x - displacement vector u - strains ε kl = 1 2 (u k,l + u l,k ) - compatibility relations 2ε 12,12 ε 11,22 ε 22,11 = 0 ; - equilibrium equations σ ij,j + ρq i = 0 ; σ ij = σ ji - density ρ - load/mass q i - boundary conditions p i = σ ij n j - material model σ ij = N ij (ε kl ) () 5 / 52

Material behavior σ ε σ ε t 1 t 2 t t 1 t 2 t t 1 t 2 t t 1 t 2 t σ ε ε e ε p σ ε t 1 t 2 t t 1 t 2 t t 1 t 2 t t 1 t 2 t () 6 / 52

Stress-strain curves σ σ ε ε σ σ ε ε () 7 / 52

Fracture () 8 / 52

back to index THEORETICAL STRENGTH

Theoretical strength f f r f x σ a 0 1 2 λ x r S ( ) 2πx f (x) = f max sin ; x = r a 0 λ σ(x) = 1 ( ) 2πx f (x) = σmax sin S λ () 10 / 52

Energy balance available elastic energy per surface-unity [N m 1 ] required surface energy U i = 1 S = x=λ/2 x=0 x=λ/2 x=0 = σ max λ π f (x) dx σ max sin ( ) 2πx dx λ [Nm 1 ] energy balance at fracture U a = 2γ [Nm 1 ] U i = U a λ = 2πγ σ = σ max sin ( ) x γ σ max σ max () 11 / 52

Approximations linearization linear strain of atomic bond elastic modulus ( ) x σ = σ max sin γ σ max x γ σ2 max ε = x a 0 x = εa 0 σ = εa 0 γ σ2 max ( ) ( dσ dσ E = = 0) dε x=0 dx x=0 a = σ 2 max Eγ σ max = a 0 a 0 γ theoretical strength σ th = Eγ a 0 () 12 / 52

Discrepancy with experimental observations a 0 [m] E [GPa] σ th [GPa] σ b [MPa] σ th /σ b glass 3 10 10 60 14 170 82 steel 10 10 210 45 250 180 silica fibers 10 10 100 31 25000 1.3 iron whiskers 10 10 295 54 13000 4.2 silicon whiskers 10 10 165 41 6500 6.3 alumina whiskers 10 10 495 70 15000 4.7 ausformed steel 10 10 200 45 3000 15 piano wire 10 10 200 45 2750 16.4 σ th σ b () 13 / 52

Griffith s experiments 11000 σ b [MPa] 170 10 20 d [µ] DEFECTS FRACTURE MECHANICS () 14 / 52

Crack loading modes Mode I Mode II Mode III Mode I = opening mode Mode II = sliding mode Mode III = tearing mode () 15 / 52

Fracture mechanics questions : when crack growth? ( crack growth criteria) crack growth rate? residual strength? life time? inspection frequency? repair required? fields of science : material science and chemistry theoretical and numerical mathematics experimental and theoretical mechanics () 16 / 52

Overview of fracture mechanics LEFM (Linear Elastic Fracture Mechanics) energy balance crack tip stresses SSY (Small Scale Yielding) DFM (Dynamic Fracture Mechanics) NLFM (Non-Linear Fracture Mechanics) EPFM (Elasto-Plastic Fracture Mechanics) Numerical methods : EEM / BEM Fatigue (HCF / LCF) CDM (Continuum Damage Mechanics) Micro mechanics micro-cracks (intra grain) voids (intra grain) cavities at grain boundaries rupture & disentangling of molecules rupture of atomic bonds dislocation slip () 17 / 52

ENERGY!! DUCTILE/BRITTLE FRACTURE back to index

Ductile - brittle behavior σ ABS, nylon, PC PE, PTFE 0 10 100 ε (%) surface energy : γ [Jm 2 ] solids : γ 1 [Jm 2 ] ex.: alloyed steels; rubber () 19 / 52

Charpy v-notch test () 20 / 52

Charpy Cv-value C v fcc (hcp) metals low strength bcc metals Be, Zn, ceramics C v high strength metals Al, Ti alloys T NDT FATT FTP T t T - Impact Toughness C v - Nil Ductility Temperature NDT - Nil Fracture Appearance Transition Temperature FATT(T t ) - Nil Fracture Transition Plastic FTP () 21 / 52

Fracture mechanisms shear fracture cleavage fracture () 22 / 52

Shearing dislocations voids crack dimples load direction () 23 / 52

Dimples () 24 / 52

Cleavage intra-granulair inter-granulair intra-granular HCP-, BCC-crystal T low ε high 3D-stress state inter-granular weak grain boundary environment (H2) T high () 25 / 52

back to index ENERGY BALANCE

Energy balance a B = thickness A = Ba Ḃ = 0 U e = U i + U a + U d + U k [Js 1 ] d dt ( ) = da d dt da ( ) = Ȧ d da ( ) = ȧ d da ( ) du e da = du i da + du a da + du d da + du k da [Jm 1 ] du e da du i da = du a da + du d da + du k da [Jm 1 ] () 27 / 52

Griffith s energy balance no dissipation no kinetic energy energy balance energy release rate crack resistance force du e da du i da = du a da G = 1 ( due B da du ) i [Jm 2 ] da R = 1 ( ) dua = 2γ [Jm 2 ] B da Griffith s crack criterion G = R = 2γ [Jm 2 ] () 28 / 52

Griffith stress σ y 2a a thickness B x σ U i = 2πa 2 B 1 σ 2 2 E G = 1 ( ) dui B da = 1 B ; U a = 4aB γ [Nm = J] ( ) dua = R 2πa σ2 da E = 4γ [Jm 2 ] Griffith stress σ gr = 2γE πa ; critical crack length a c = 2γE πσ 2 () 29 / 52

Discrepancy with experimental observations σ gr σ c reason remedy neglection of dissipation measure critical energy release rate G c glass G c = 6 [Jm 2 ] wood G c = 10 4 [Jm 2 ] steel G c = 10 5 [Jm 2 ] composite design problem / high alloyed steel / bone energy balance G = 1 ( due B da du ) i = R = G c da critical crack length a c = G ce πσ 2 ; Griffith s crack criterion G = G c () 30 / 52

Compliance change compliance : C = u/f F u a P F u P a + da F F a a + da a a + da du i du i du e fixed grips u constant load u () 31 / 52

Compliance change : Fixed grips fixed grips : du e = 0 Griffith s energy balance du i = U i (a + da) U i (a) (< 0) = 1 2 (F + df)u 1 2 Fu = 1 2 udf G = 1 2B udf da = 1 2B = 1 2B F 2 dc da u 2 dc C 2 da () 32 / 52

Compliance change : Constant load constant load du e = U e (a + da) U e (a) = Fdu Griffith s energy balance du i = U i (a + da) U i (a) (> 0) = 1 2 F(u + du) 1 2 Fu = 1 2 Fdu G = 1 2B F du da = 1 2B F 2 dc da () 33 / 52

Compliance change : Experiment F a 1 a 2 ap a 3 a 4 F u u G = shaded area a 4 a 3 1 B no fixed grips AND no constant load BUT small deviation!! () 34 / 52

Example B 2h F u a u F u = Fa3 3EI = 4Fa3 EBh 3 C = u F = 2u F = 8a3 EBh 3 G = 1 [ 1 B 2 F 2 dc ] = 12F 2 a 2 da EB 2 h 3 [J m 2 ] G c = 2γ F c = B 1 a 6 γeh3 dc da = 24a2 EBh 3 () 35 / 52

back to index STRESS CONCENTRATIONS

Governing equations - displacements u i - strains ε kl = 1 2 (u k,l + u l,k ) - compatibility relations 2ε 12,12 ε 11,22 ε 22,11 = 0 - equilibrium equations σ ij,j + ρq i = 0 ; σ ij = σ ji - material model σ ij = C ijkl ε lk () 37 / 52

Displacement method σ ij,j = 0 σ ij = E 1 + ν E 1 + ν ( ε ij,j + ( ε ij + ν ) 1 2ν δ ijε kk ν 1 2ν δ ijε kk,j ) = 0 ε ij = 1 2 (u i,j + u j,i ) E 1 1 + ν 2 (u Eν i,jj + u j,ij ) + (1 + ν)(1 2ν) δ iju k,kj = 0 BC s u i ε ij σ ij () 38 / 52

Stress function method ψ(x 1, x 2 ) σ ij = ψ,ij + δ ij ψ,kk σ ij,j = 0 ε ij = 1 + ν (σ ij νδ ij σ kk ) E ε ij = 1 + ν } { ψ,ij + (1 ν)δ ij ψ,kk } E 2ε 12,12 ε 11,22 ε 22,11 = 0 } 2ψ,1122 + ψ,2222 + ψ,1111 = 0 (ψ,11 + ψ,22 ),11 + (ψ,11 + ψ,22 ),22 = 0 Laplace operator : 2 = 2 x 2 1 + 2 x 2 2 = ( ) 11 + ( ) 22 bi-harmonic equation 2 ( 2 ψ) = 4 ψ = 0 BC s } ψ σ ij ε ij u i () 39 / 52

Cylindrical coordinates z e z e t e r x e 3 e 2 e 1 θ r y vector bases { e 1, e 2, e 3 } { e r, e t, e z } e r = e r (θ) = e 1 cosθ + e 2 sinθ e t = e t (θ) = e 1 sinθ + e 2 cosθ θ { e r(θ)} = e t (θ) ; θ { e t(θ)} = e r (θ) () 40 / 52

Laplace operator z e z e t e r x e 3 e 2 e 1 θ r y gradient operator Laplace operator two-dimensional = er r + e 1 t r 2 = = 2 2 = 2 r 2 + 1 r θ + e z z r 2 + 1 r r + 1 2 r 2 θ 2 r + 1 r 2 2 θ 2 + 2 z 2 () 41 / 52

Bi-harmonic equation bi-harmonic equation ( 2 r 2 + 1 r r + 1 2 ) ( 2 ψ r 2 θ 2 r 2 + 1 ψ r r + 1 2 ) ψ r 2 θ 2 = 0 stress components σ rr = 1 ψ r r + 1 2 ψ r 2 θ 2 σ tt = 2 ψ r 2 σ rt = 1 ψ r 2 θ 1 r ψ r θ = r ( 1 r ) ψ θ () 42 / 52

Circular hole in infinite plate σ y σ θ r x 2a σ rr = 1 r ( 2 r 2 + 1 r ψ r + 1 r 2 2 ψ θ 2 ; r + 1 2 ) ( 2 ψ r 2 θ 2 r 2 + 1 ψ r r + 1 2 ) ψ r 2 θ 2 = 0 σ tt = 2 ψ r 2 ; σ rt = 1 r 2 ψ θ 1 r ψ r θ = r ( 1 r ) ψ θ () 43 / 52

Load transformation σ σ θ σ rr σ rt σ rr σ rt 2a 2b equilibrium two load cases σ rr (r = b, θ) = 1 2 σ + 1 2 σcos(2θ) σ rt (r = b, θ) = 1 2 σsin(2θ) I. σ rr (r = a) = σ rt (r = a) = 0 σ rr (r = b) = 1 2 σ ; σ rt(r = b) = 0 II. σ rr (r = a) = σ rt (r = a) = 0 σ rr (r = b) = 1 2 σcos(2θ) ; σ rt(r = b) = 1 2 σsin(2θ) () 44 / 52

Load case I σ rr (r = a) = σ rt (r = a) = 0 σ rr (r = b) = 1 2 σ ; σ rt(r = b) = 0 Airy function ψ = f (r) stress components σ rr = 1 r ψ r + 1 2 ψ r 2 θ 2 = 1 df r dr ; σ tt = 2 ψ r 2 = d2 f dr 2 ; σ rt = r ( 1 r ) ψ = 0 θ bi-harmonic equation ( d 2 dr 2 + 1 r ) ( d d 2 f dr dr 2 + 1 ) df = 0 r dr () 45 / 52

Solution general solution stresses ψ(r) = Aln r + Br 2 ln r + Cr 2 + D σ rr = A + B(1 + 2 lnr) + 2C r2 σ tt = A + B(3 + 2 lnr) + 2C r2 strains (from Hooke s law for plane stress) ε rr = 1 [ ] A (1 + ν) + B{(1 3ν) + 2(1 ν)ln r} + 2C(1 ν) E r2 ε tt = 1 1 [ Ar ] E r (1 + ν) + B{(3 ν)r + 2(1 ν)r lnr} + 2C(1 ν)r compatibility ε rr = du dr = d(r ε tt) dr 2 BC s and b a A and C B = 0 σ rr = 1 a2 2σ(1 r 2 ) ; σ tt = 1 a2 2σ(1 + r 2 ) ; σ rt = 0 () 46 / 52

Load case II σ rr (r = a) = σ rt (r = a) = 0 σ rr (r = b) = 1 2 σcos(2θ) ; σ rt(r = b) = 1 2 σsin(2θ) Airy function ψ(r, θ) = g(r)cos(2θ) stress components σ rr = 1 r ψ r + 1 2 ψ r 2 θ 2 ; σ tt = 2 ψ r 2 σ rt = 1 r 2 ψ θ 1 r ψ r θ = r bi-harmonic equation ( 2 r 2 + 1 r r + 1 2 ) {( d 2 g r 2 θ 2 dr 2 + 1 dg r dr 4 ( d 2 dr 2 + 1 d r dr 4 ) ( d 2 g r 2 dr 2 + 1 dg r dr 4 r 2 g ( 1 r ψ θ ) r 2 g ) ) cos(2θ) = 0 } cos(2θ) = 0 () 47 / 52

Solution general solution g = Ar 2 + Br 4 + C 1 r 2 + D ( ψ = Ar 2 + Br 4 + C 1 ) r 2 + D cos(2θ) ( stresses σ rr = 2A + 6C r 4 + 4D ) r 2 cos(2θ) ( σ tt = 2A + 12Br 2 + 6C ) r 4 cos(2θ) ( σ rt = 2A + 6Br 2 6C r 4 2D ) r 2 sin(2θ) 4 BC s and b a A,B,C and D ( σ rr = 1 2 σ 1 + 3a4 r 4 4a2 r 2 σ tt = 1 2 σ ( 1 + 3a4 r 4 ) cos(2θ) ) cos(2θ) ( σ rt = 1 2 σ 1 3a4 r 4 + 2a2 r 2 ) sin(2θ) () 48 / 52

Stresses for total load σ rr = σ 2 [(1 a2 r 2 ) ) ] + (1 + 3a4 r 4 4a2 r 2 cos(2θ) σ tt = σ 2 [(1 + a2 r 2 ) ) ] (1 + 3a4 r 4 cos(2θ) σ rt = σ 2 ] [1 3a4 r 4 + 2a2 r 2 sin(2θ) () 49 / 52

Special points σ rr (r = a, θ) = σ rt (r = a, θ) = σ rt (r, θ = 0) = 0 σ tt (r = a, θ = π 2 ) = 3σ σ tt (r = a, θ = 0) = σ stress concentration factor K t = σ max σ = 3 [-] K t is independent of hole diameter! () 50 / 52

Stress gradients large hole : smaller stress gradient larger area with higher stress higher chance for critical defect in high stress area () 51 / 52

Elliptical hole y σ σ yy σ a b radius ρ x ( σ yy (x = a, y = 0) = σ 1 + 2 a ) ( = σ 1 + 2 ) a/ρ b 2σ a/ρ stress concentration factor K t = 2 a/ρ [-] () 52 / 52