Riemann problems for hyperbolic systems

Σχετικά έγγραφα
( ) ρ ρ + + = + d dt. ME 309 Formula Sheet. dp g dz = ρ. = f +ΣΚ and HS. +α + z = +α + z. δ =δ = δ =θ= τ =ρ =ρ. Page 1 of 7. Basic Equations.

Appendix. The solution begins with Eq. (2.15) from the text, which we repeat here for 1, (A.1)

SOLUTION OF EQUATIONS OF MOTION FOR THE START OF AN ELECTRIC HOIST

( ) ( t) ( 0) ( ) dw w. = = β. Then the solution of (1.1) is easily found to. wt = t+ t. We generalize this to the following nonlinear differential

) 2. δ δ. β β. β β β β. r k k. tll. m n Λ + +

Analytical Expression for Hessian

Analysis of optimal harvesting of a prey-predator fishery model with the limited sources of prey and presence of toxicity

Electronic Companion to Supply Chain Dynamics and Channel Efficiency in Durable Product Pricing and Distribution

Laplace s Equation in Spherical Polar Coördinates

= e 6t. = t 1 = t. 5 t 8L 1[ 1 = 3L 1 [ 1. L 1 [ π. = 3 π. = L 1 3s = L. = 3L 1 s t. = 3 cos(5t) sin(5t).

Example 1: THE ELECTRIC DIPOLE

Uniform Convergence of Fourier Series Michael Taylor

Homomorphism of Intuitionistic Fuzzy Groups

Example Sheet 3 Solutions

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

( y) Partial Differential Equations

The choice of an optimal LCSCR contract involves the choice of an x L. such that the supplier chooses the LCS option when x xl

On Quasi - f -Power Increasing Sequences

Chapter 1 Fundamentals in Elasticity

Second Order Partial Differential Equations

APPENDIX A DERIVATION OF JOINT FAILURE DENSITIES

The Euler Equations! λ 1. λ 2. λ 3. ρ ρu. E = e + u 2 /2. E + p ρ. = de /dt. = dh / dt; h = h( T ); c p. / c v. ; γ = c p. p = ( γ 1)ρe. c v.

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Fractional Calculus. Student: Manal AL-Ali Dr. Abdalla Obeidat

Finite Field Problems: Solutions

webpage :

George S. A. Shaker ECE477 Understanding Reflections in Media. Reflection in Media

Lecture 12 Modulation and Sampling

CRASH COURSE IN PRECALCULUS

Commutative Monoids in Intuitionistic Fuzzy Sets

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

4.6 Autoregressive Moving Average Model ARMA(1,1)

(a,b) Let s review the general definitions of trig functions first. (See back cover of your book) sin θ = b/r cos θ = a/r tan θ = b/a, a 0

Tutorial Note - Week 09 - Solution

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

F19MC2 Solutions 9 Complex Analysis

( ) ( ) ( ) Fourier series. ; m is an integer. r(t) is periodic (T>0), r(t+t) = r(t), t Fundamental period T 0 = smallest T. Fundamental frequency ω

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Bounding Nonsplitting Enumeration Degrees

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α

! " # " $ #% $ "! #&'() '" ( * / ) ",. #

!"#$ %"&'$!&!"(!)%*+, -$!!.!$"("-#$&"%-

Statistical Inference I Locally most powerful tests

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutions to Problems on Matrix Algebra

Section 8.3 Trigonometric Equations

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Η ΑΝΘΥΦΑΙΡΕΤΙΚΗ ΕΡΜΗΝΕΙΑ ΤΗΣ ΕΞΩΣΗΣ ΤΗΣ ΠΟΙΗΣΗΣ ΣΤΟ ΔΕΚΑΤΟ ΒΙΒΛΙΟ ΤΗΣ ΠΟΛΙΤΕΙΑΣ ΤΟΥ ΠΛΑΤΩΝΟΣ

Every set of first-order formulas is equivalent to an independent set

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Homework 3 Solutions

Lecture 6. Goals: Determine the optimal threshold, filter, signals for a binary communications problem VI-1

ST5224: Advanced Statistical Theory II

Errata (Includes critical corrections only for the 1 st & 2 nd reprint)

4.2 Differential Equations in Polar Coordinates

On a four-dimensional hyperbolic manifold with finite volume

Areas and Lengths in Polar Coordinates

A Two-Sided Laplace Inversion Algorithm with Computable Error Bounds and Its Applications in Financial Engineering

Homework 8 Model Solution Section

ω = radians per sec, t = 3 sec

Inverse trigonometric functions & General Solution of Trigonometric Equations

Matrices and Determinants

Fundamental Equations of Fluid Mechanics

Reminders: linear functions

Matrix Hartree-Fock Equations for a Closed Shell System

Đường tròn : cung dây tiếp tuyến (V1) Đường tròn cung dây tiếp tuyến. Giải.

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

5. Choice under Uncertainty

5 Ι ^ο 3 X X X. go > 'α. ο. o f Ο > = S 3. > 3 w»a. *= < ^> ^ o,2 l g f ^ 2-3 ο. χ χ. > ω. m > ο ο ο - * * ^r 2 =>^ 3^ =5 b Ο? UJ. > ο ο.

Areas and Lengths in Polar Coordinates

Approximation of the Lerch zeta-function

Similarly, we may define hyperbolic functions cosh α and sinh α from the unit hyperbola

Space-Time Symmetries

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Parts Manual. Trio Mobile Surgery Platform. Model 1033

derivation of the Laplacian from rectangular to spherical coordinates

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

EE101: Resonance in RLC circuits

7 Present PERFECT Simple. 8 Present PERFECT Continuous. 9 Past PERFECT Simple. 10 Past PERFECT Continuous. 11 Future PERFECT Simple

Chapter 6 ( )( ) 8 ( ) ( )( ) Exercise Solutions. Microelectronics: Circuit Analysis and Design, 4 th edition Chapter 6. EX6.

2 Composition. Invertible Mappings

The one-dimensional periodic Schrödinger equation

Almost all short intervals containing prime numbers

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Other Test Constructions: Likelihood Ratio & Bayes Tests

Congruence Classes of Invertible Matrices of Order 3 over F 2

The Neutrix Product of the Distributions r. x λ

University of Washington Department of Chemistry Chemistry 553 Spring Quarter 2010 Homework Assignment 3 Due 04/26/10

21. Stresses Around a Hole (I) 21. Stresses Around a Hole (I) I Main Topics

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

The Laplacian in Spherical Polar Coordinates

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

Some new generalized topologies via hereditary classes. Key Words:hereditary generalized topological space, A κ(h,µ)-sets, κµ -topology.

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions

ƒšˆœˆ Ÿ Œˆ ˆ ˆ ˆ Šˆ ƒˆÿ.. Ê μ Î ±μ

A Note on Intuitionistic Fuzzy. Equivalence Relation

EE512: Error Control Coding

Probabilistic Image Processing by Extended Gauss-Markov Random Fields

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

Transcript:

Riemann obems o heboic ssems A Disseaion Sbmie in aia imen FOR THE DEGREE OF MASTER OF SCIENCE IN MATHEMATICS UNDER THE ACADEMIC AUTONOMY NATIONAL INSTITUTE OF TECHNOLOGY ROURKELA TSWATI Une he Giance o DR RAJA SEKHAR TUNGALA DEPARTMENT OF MATHEMATICS NATIONAL INSTITUTE OF TECHNOLOGY ROURKELA 7698 ODISHA

CERTIFICATE D RAJA SEKHAR TUNGALA Assisan Poesso Deamen o Mahemaics NIT Roea-ODISHA This is o cei ha he isseaion enie Riemann obems o heboic ssems bein sbmie b TSai o he Deamen o mahemaics Naiona Insie o Technoo Roea Oisha o he aa o he eee o Mase o Science in mahemaics is a eco o bonaie eseach o caie o b hem ne m sevision an iance I am saisie ha he isseaion eo has eache he sana iin he eqiemens o he eaions eain o he nae o he eee Roea-769 8 Dae: D Raja SehaTnaa Seviso

DECLARATION I heeb cei ha he o hich is bein esene in hesis enie RiemannPobems o heboic ssems in aia imen o he eqiemen o he aa o he Deee o Mase o Science sbmie in he Deamen o Mahemaics Naiona Insie o Technoo Roea is an ahenic eco o m o caie o ne he sevision o D Raja SehaTnaa The mae emboie in his has no been sbmie b me o he aa o an ohe eee (TSai This is o cei ha he above saemen mae b he caniae is caie o he bes o he Knoee DR RAJA SEKHAR TUNGALA Assisan Poesso Deamen o mahemaics Naiona Insie o Technoo Roea Oisha

4 Acnoeemens I eem i a iviee an hono o have oe in associaion ne D Raja seha Tnaa Assisan Poesso Deamen o mahemaics Naiona Insie o Technoo Roea I eess m ee sense o aie an inebeness o him o sesin me he obem an iin me hoho he isseaion Wos an inaeqae o eess m eeins o hanness o a he aena cae an aecion he has shon hie m o as in oess I han a ac membes o he Deamen o mahemaics ho have aas insie me o o ha an hee me ean ne conces in o sa a NIT Roea I o ie o hans o aens o hei nconiiona ove an so The have hee me in eve siaion hoho o ie I am ae o hei so I o ie o acco o sincee aie o M ibeanana bia o his vaabe sesions iance in cain o m ojec an his sincee he I aso han o C aa an Abhiman mahaana he eamen assisan an eon esecive o hei cooeaion an he Fina I o ie o han a o iens o hei so an he ea amih o shoe his bessin on s an main eams an asiaions TSai

5 Absac In his eo e eine heboic ssem an iven some eames We s he behavio o heboic ssem Lae e evise he eac soion o he Riemann Pobem o he non- inea PDE hich in heboic ssem o he enea om o consevaion as hich ovens oneimensiona isenoic maneoasnamics Las e in he soion sin hase ane anasis an ineacions o eemena aves beeen he same amiies as e as ieen amiies

6 INTRODUCTION The Riemann obem is eine as he iniia vae obem o he ssem ih o vae ieceise consan iniia aa The Riemann obem is a namena oo o sin he ineacion beeen aves I has ae a cena oe boh in he heoeica anasis o ssems o heboic consevaion as an in he eveomen an imemenaion o acica nmeica soions o sch ssems asica he Riemann obem ives he mico-ave sca o he o One can hin o he oaaion o he o as a se o sma scae Riemann obem beeen he ave aisin om hese Riemann obems

7 TALE OF CONTENTS CHAPTER : Inocion o heboic ssem Deiniion an Eames 8 4 5 Heboic ssem o consevaion as Cach obem Riemann obem Wea soion 9 5 CHAPTER : Riemann Pobem o isenoic maneoasnamics Shoc an Raeacion aves Shocs Raeacion aves Riemann obem Ineacion o eemena aves 9 9 9 4 Ineacion o aves om ieen amiies 44 Ineacion o aves om same ami 48 REFERENCES

8 Deiniions an Eames: Chae- Inocion o Heboic Ssems The enea om o ssem o consevaion as in sevea sace vaiabes j j j Hee be an oen sbse o R : R ; : R X R j hee The se is cae he se o saes an he ncions j j j ae cae ncions he ssem ( is ien in consevaion om he consevaion o he ea qaniies We have a simes ieenia eqaion moe o a i o: This eqaion is cae invisci e s eqaion hich is aso non as one- imensiona consevaion a hich is a o imensiona eqaion Fom his eqaion e e ooin ssem o o imensiona eqaions: R an e T Le D be an abia omain o n n n bona D o D Then i oo om ( ha be he oa ni noma o he j n j s D j D This is consevaion a in inea om This eqaion has a hsica meanin ha he Vaiaion o is eqa o he osses hoh he bona D D

9 Heboic Ssem o Consevaion Las: Fo a j e i ij j A be an Jacobian mai o ; j eqaion (is cae a heboic ssem I o an Ω an R he mai j A j j A has ea eienvaes ih Ineenen eienvecos λ A ie ae ih eienvecos λ A ae e eienvecos I A has ea eienvaes an coesonin inea ineenen eienvecos an i ea isinc eienvaes hen he ssem is cae sic heboic Eame: Le hen A Hee he eienvae is an eienveco is Eame: ( ( = + = ; v υ v λ v v v v

v v v I is heboic ssem I he eienvaes heboic ae a isinc The ssem ( is cae sic Cach Pobem: Le s s s be he aia ieenia eqaion ih iniia aa o he cve We have he sace hich conains he cve is cae Cach obem : R aone an hich have iniia vae : R o > an is he ncion o Whee an ae consans hen he Cach obem is cae Riemann obem 4 Riemann Pobem: The consevaion as is iven Le an be o saes o Ω R ; e have o ieceise smooh coninos ncion :( ( soions o ( ha connecion an :ih iniia coniion is cae Riemann obem Eame: The eqaion o as namics in Eeian cooinae: In Eeian cooinaes he Ee eqaions o a comessibe invisci i in he consevaion om + j= ( i + j= ( j = ( + δ = i j i ij

( ( ( = + + = j j e e hei o = ensi veoci he ene seciic inena esse heseciic oaene e λi A e e e e

- - - - - - eienvae s ae - I A o λ λ -λ -λ -λ λ _

assme mie( - (4 ( ( ( is ih Coesonin eienveco Theeienvae assme

4 ] om eqaion 7 6 5 in eqaion ( in

5 heboic a sic an i is ( an is eienveco s ae ( ( Theeienveco is omeqaion so assme 5 Wea soion: Chaaceisics cve in one-imensiona case: Le R : R be a C ncion The consevaion as ih iniia aa: 8 R R Hee be a smooh soion hich oos he above eqaions

6 C Le be smooh soion o Eqaion ( hen he non-consevaion om We ae a( ( Fom above eqaion e have non-consevaion om a( The chaaceisics cve o above coniion; i i be eine as he soion is inea cve o he ieenia eqaion a (9 Theoem (: Assme ha is a smooh o ( he chaaceisic cve ae saih ines aon hich is consan Poo: Consie a chaaceisic cve assin hoh he oin a soion o he oina ieenia eqaion is sin he Meho o chaaceisics so ih iniia vae C Aon a cve is consan i e above eqaion is sin b chain e so Hence he chaaceisic cves ae saih ines hose consan soes eens on he iniia vae C ( in inea cve

7 Eame: 4 a Soion: a e i e a he chaaceisiccves ae accoin oiniia aa a a a is smooh ncion Non-smooh Soion: an esecive Eisences o non-smooh soion: We consie conve case ie Le R sch ha i is eceasin ncion hen ae o cases o conve an concave Since hen ( ( imies ha So ha chaaceisics inesec ae inie ime an om non smooh soion Eame: 5 The es eqaion (invisci eqaion is ih iniia coniion i - i i Soion: sovin chaaceisic cve e e

8 ( In hese means he chaaceisics cve asses hoh he oin Then e have i i i i - e no ha i - i i - i - i A = he chaaceisic inesec i i No i is isconiniies ma eveo ae a inie ime i is noninea hen is smooh in i ( i (

9 Chae- Riemann Pobem o isenoic maneoasnamics Shoc an aeacion aves: When o o an isenoic invisci an eec concin comessibe i is sbjece o a ansvese maneic ie hen consevaion om can be ien as R ( Whee i ma eesen ensi veoci esse ansvesa maneic ie an enoe maneic emeabii esecive; an ae ncions in hich ae an hee an ae osiive consans an is he aiabaic consan hich ies in he ane o mos o he ases The ineenen vaiabes ae an hen hee

/ ha i imies above eqaion can be ien as o smooh soions ssem ( can be ien as AU U ( hee he mai A is eine as A = an b c is he maneo-acosic see ih c is he oca son see an ( b hich is Aven see; AU U b c A hee

λ λi A ( b c λ λ λ λ λ λ λ ( λ λ λ -λ λ The eienvaes o A ae an Ths he ssem ( is sic heboic hen > Le an ae he ih eienvecos coesonin o he eienvaes an esecive We have j i hen he is chaaceisic ie is enine noninea Simia i can be shon ha he secon chaaceisic ie is noninea hen

The aves associae ih an chaaceisic ie i be eihe shoc o aeacion aves Shoc: Le an he e an ih han saes o eihe a shoc o a aeacion ave ae an enoes esecive; he ssem ( ae sin in Ranine Honis jm coniions he iven b 4 hee enoe he jm acoss a isconini cve an υ is he shoc see Lemma : Le S an S esecive enoe - shoc an -shoc associae ih an chaaceisic ies Le he saes cves sais U an U sais he Ranine-Honio jm coniions (4 an ( Then he shoc (5 Whee sch ha o e have o an on S his o an on S Poo: The -eiminaion o υ e have

( ( ( ( ( ( ( ( ( ( ( ( Le ; on he ieeniain (5 ih esec o e obain - Ψ

4 hich is neaive o We can aea sho ha an ae osiive o an ψ ψ he ψ hisψ ; Le χ ψ ψψ so ha χ Since χ ψψ i oos o χ Hence o Ths o i e ieeniae aain e e ψ ψψ 4ψ on S Simia o an e have on aain ieeniain hen on S No hese shoc cves ae saisie he La eno coniions Lemma(: I saisies an hen he La coniion ho ie -shoc saisies Whis he -shoc saisies Poo: U U 6 U U U U 7 Le s consie -shoc cve o ove U On a -shoc e no ha an b Laane s mean vae heoem hee eis eiss a a b cb a cab a b ξ ξ ξ since sch ha

5 he since e have an is an inceasin ncion c ξ an hs ξ ξ c an i imies ha 8 ( c ξ ξ Aso since e have i imies ha ( This imies b ha b an heeoe

6 b (9 Fom eqaion (8 an (9 e have ( ( ( ( ( ( ( ( b c In (5 he above ineqai hos ha an hence U In same manne anohe coniion since an on -shoc e have η o some η an hence ( c ( Fhe since

7 b ( an hence om ( an ( e obain b c ( ( I imies ha - Fom eqaion ( an (5 im ha - - U υ an hence λ υ Las e sho ha U In his a he eqaion ( hich imin ha ( Fo -shoc cve sin (5 e have hich imies ha ( U Hence -shoc saisie La coniion; as e as a saisie b he a coniion o he -shoc No e i sho ha he ensi esse veoci maneic ie va acoss a shoc Ain eqaion ( o -shoc he e an ih saes have o saisies La coniions (6 Le s eine V - ; V an hence υ U i oos ha hen since Simia b sin secon coniion ie U U e e V imies ha

8 - υ v so - V hence V Fom ( e have V V Since an ae osiive boh V an V ms have same sin; since V e have V Fo -shoc he as see on he boh sies o shoc is eae han shoc see an heeoe he aices coss he om e o ih In case o -shoc ain La coniions (7 his imin V since ( U o eqivaen υ hich oos ha V an hencev In case o -shoc aices coss om ih o e Le he saes ahea o an behin he shoc be esinae he - sae an -sae esecive Then o -shoc an hencev W an V W ; o -shoc so V W an V W Ths o boh shocs e have V W an V W To his coniions saisie he eqaion (4 hos ha V V hich imies ha ; V V ; so c ( c ( he above ineqaiies oos ha an heeoe an an om ( e have ; V V

9 Since i oos ha V V Since o -shoc V an an i oos ha V V imies ha an so Simia o -shoc V an is imin hav V Raeacion aves: The U hich ae o he ieceise smooh coninos soions o ( sch ha U λ U( U( λn U λn U n U U λn U ( I e ae η hen he eqaion ( is a ssem o oina ieenia eqaions an i can be ien as A- I hee I is ieni mai an he ieeniain ih esec o he vaiabe is enoe b o I ( hen an become consans I hen hee eis a eienveco o he mai A coesonin o he eienvae Since i has o ea an isinc eienvaes so i has o amiies o he aeacion aves R an R hich ae -Raeacion aves an -Raeacion aves esecive; Le s consie -aeacion aves since A-I an ih e have

(4 - - - - Whee -Riemann invaian is (4 eesens R cve Simia -Riemann invaian o he -Raeacion ave cve is eesen R cve (5 Theoem On R esecive R he Riemann invaian esecive ( is consan Lemma:Acoss-aeacion aves (esecive -aeacion aves an (esecive an i an on i chaaceisic see inceases om e han sae o ih han sae

Poo: Since e no ha c b is an inceasin ncion o ; o i can be ien as - These ineqaiies ae an - sho ha λ U λ U Simia e can ove λ U λ U o -aeacion aves Then he convese o -aeacion aves since U e have U so i om o -aeacion aves - (6 In he since -aeacion ave eion is consan hen e e - he eqaion (6 shos ha - hich imies ha - an Hence an Simia i can be shon ha he -aeacion aves an Inocin a ne aamee hee obain om (5 he ooin omas o shoc cves o -shoc cve an -shoc cve (Resecive aeacion cves in he em o aameeizaions Fom eqaion (5

θ θ i iminheeb hee ha imies so ha (7 θ θ A θ θ ( ( ( ( Fo -aeacion aves ( since -Riemann invaian is consan e have θ θ θ so ha i e se θ θ θ A A (8 Simia o -aeacion ave e have hen as e as e se

A A θ Ths o -ami eihe shoc o aeacion ave e have A θ A θ θ i θ i θ (9 In he simia a θ A θ A θ i θ i θ ( hee A an ; is as o eession in above eqaions (9 an ( Theoem : The R cve is conve an monoonic eceasin hie R cve is concave an monoonic inceasin Poo: We no ha -aeacion ave is i ( On ieeniain ih esec o e have -

4 ( We no ha c b since in he ooin eqaions Aain on ieeniain ih esec o e have cc bb cc bb cc bb cc bb cc bb We no ha b an c ae ieeniain e have so ha an hee i imies cc cc c bb b cc bb b c cc bb b c

5 o ho an heeoe is conve ih esec o-aeacion aves Simia e can sho o -aeacion aves No e ove ha he shoc cves ae saie ih esec o o an hese has a oo eome in Riemann invaian cooinaes heneve an Theoem : The -shoc an -shoc cve ae saie ih esec o hen an o vaes o in in he ane Poo: We have o ove ha an a hoh he oin be inesece -shoc cve in a amos one oin o his is sicien o ove he as hoh he o ieen oins on he -shoc cve an hose soe ae ieen The soe o he ine joinin ih is - an Fo he -shoc eqaion (5 ae imies ha

6 - - hee e ove ha an When in in an ieeniain ih esec o an e have an is aain ieeniain ih esec o e have I aso ove ha hen in an ieeniain ih esec o an e obain ( on ieeniain e have

7 β ( ( Le hen Then Since i above coniion ae oos ha he vaes o in e have The above eqaion o be he in -shoc an hen

an imin ha is a eceasin ncion o ; an his oos ha i heeoe Ths - is a eceasin ncion o ; e hence -shoc cve - is saie ih esec o as sa in same a -shoc cve an is aso a saie ih esec o 8 Lemma Π Π an he ineqaiies an ho aon -shoc an - Π Π Wih shoc esecive ih Π Π ( (4 Poo: Fom ( an (4 e have Π an Π We no ha he above heoem as on a -shoc cves Fhe as aon -shoc cves Π Π in sicien a Π i has ha Π Π Π e have In oe o ove ha Π Π < Fo a coniion -shoc cve eqaion (5 i im ha

9 hence he above coniion hos ha an hese imies ha Π Simia e sho ha Π Π aon -shoc cves 4 Riemann Pobem: The ssem ( be he iniia coniion as i U i U U (4 is cae as Riemann obem Whee U be he sae o he e o an U be he sae o he ih o he consan saes ae seaae b in boh aves eihe a shoc aves o aeacion ave The Riemann invaian cooinaes ae Π Π an Lemma (4: The main Π Π is one o one an he Jacobian o his main is nonzeo hen

4 Poo: Since Π an Π On ieeniain ih esec o e e Π Π Π Π Ths he Jacobian o he main Π Π Π Π Π Π This is one-one an ono We consie Riemann invaians as cooinae ssem Le s i ae a ane ΠΠ in ha ane e a he cves S S R an R hich ivie he ane can ino o isinc eions I II III an IV Le U ae e sae Fiin U an vain U Le s consie U beon o an o he o eion as i4 (a Fo U R S R n n U Π Π : Π Π Snn U Π Π : Π Π R n an T U S U R U n n n In an above ave cves he ane ivies ino a o eion To sove he Riemann obem consie he ave cve U m T hee U T U U m Um m cves o enie ha sace T o m n n U T An e have o vei ha o cves U T U m an so hese a o cves ae non-inesecin an he se o a sch in he ane Π Π in one-one ashion I U I a a veica ine Π Π in i4 (a Which i be inesecs S niqe a a oin U m The soion o Riemann obem is no obvios; e ain on consan sae ou m b a -shoc an hen om U m o he consan sae U b a -aeacion ave

4 Le U II eion a a veica ine Π Π in i4 (a hich is inesec R niqe a a oin U m The soion is oin om U an U m b R an o om U m o U b R I U III eion e eine he conce o invese shoc cve The invese cve enoe b S consiss o hose saes Π Π hich can be connece o he sae Π Π on he ih b S shoc in i4 (a These eesene om (5 b Fi 4(a Raeacion cves (R an R an shoc cves (S an S in he ane Π Π The above cve inesec he R niqe a oin U m Theeoe U can be connece ih U b R ae ooe bs Π I U IV eion (see i4(c (as om emma Π ons I aso eines in on S Π Π This mean ha he S an S i inesecin niqe a he oinu heeoe he soion consiss o -shoc an -shoc Ths e have shon ha set U m :Um T U sace in he ane Π in a one-one a Π m 4 coves he enie ha When he vacm sae i s no saisie he same coniion Lemma (4: I Π Π he vacm occs

4 Poo: Fom i4 (a Π m Π an Πm Π; i Π Π hen Π Π Π Π m m i i be m Π m Πm Which imin ha ha m Hence vacm occs Fi4(b ave cves in ane( Theoem (4: Assme ha an ha e ae iven iniia saes U an U hee o he Riemann obem o ssem ( Assme ha Π Π Then hee eiss a soion o he Riemann obem o ssem ( Moeove he soion is iven b - ave ooin b a -ave saisin an he soion is niqe in he cass o consan saes seaae b shoc aves an aeacion aves

4 i4(c -shoc ave an -shoc ave i4( vacm cve 5 Ineacion o Eemena aves: The ineacion o eemena aves obainin om he Riemann obem (4 ives ise o ne emein eemena aves An hen o jm isconiniies a an i as oos: U U i 5 U i U i The choice o U an U in he ems o U an an abia an R Wih he iniia aa e have o Riemann obem oca The is Riemann obem o he eemena ave ma ineac he secon Riemann obem o he eemena ave an he ime o ineacion a ome a ne Riemann obem a one imensiona Ee eqaion I ma be on o he ineacion o he eemena aves Hee e ie RS R i means ha a -aeacion aves o R o he is Riemann obem ineacs ih -shoc S o he secon Riemann obem o Then i ineacs o ne Riemann obem o via m S R In ieen amiies ae ossibe o ineacion o eemena aves an as e as he same ami ae esecive ( SS SR RR RS an (SS SS RS SR SR RS

44 5 Ineacion o Eemena aves om ieen Famiies: (a Coision o o shocs (S S : Le U is connecion o U b he - shoc S is a is Riemann obem an U is connece o b a -shoc S o he secon Riemann obem Fo a iven U e consie U an U in sch a a ha ien ( om (5 e have U in ohe a ha hen e have i 5(a S S coision Since see o -shoc o he secon Riemann obem is neaive S an see -shoc o he is Riemann obem is osiive S oveaess Then i shos ha o an abia saeu he sae U ies in he eion IV (in i4 (b I in sicien o ove ha o an Le ae in cona ha I in his hen Imin heeb ha

45 P P P P The above eqaion (5 is sic osiive hich is a conaicion Hence (5 ie he cve S U ae ies beo he cvess U heeoe U ies in he eion IV Ths an i oos ineacion ess isss SS ineacion ess in case o isae in i5 (a (b Coision o a shoc an aeacion (S R : Hee U SU an U R U eqaion (5 e have ie o a iven U Le U an U sch ha an om eqaion (5 e have om Since -shoc o he Riemann obem is osiive an - aeacion ave o he secon Riemann obem is neaive veoci i oos ha RoveaesS Since o an ivenu o an can be oos ha he cve U in he eion III sbseqen SR RS The come ess his case in i5 (b R ies beo he cve R U hence U ies i 5(b S R coision

46 (c Coision o o aeacion aves (R R : We consie R an R U U In an ohe a o a ivenu Le U an U U U sch ha an hen Since he aiin en o - aeacion ave has a osiive veoci (bone above in - ane an ha -aeacion ave has a neaive veoci (bone above ineacion i ae ace Since an I oos ha he cve R U ies above he cve R U ; hence U ies in he eion II an he ineacion ess II an he ineacion es is R R R R Then come ess in i5 (c i 5(c R R coision ( Coision o a aeacion ave an a shoc (R S : Hee R an S U U an ie o ivenu e choose U an U sch ha U U an Since he secon Riemann obem o -shoc see is ess han -aeacion ave o is Riemann obem o he see o aiin en in ( - ane an heeoe S eneaes R Fo an iven ha U I sho ha U I hen i o sho

47 (5 Since is a eceasin ncion ih esec o he is vaiabes o he cve S U an hen e i have Hence he eqaiies (5 hee im ha cves S (U ies above U ies in he eion I Ths he ineacion es isrs SR ; an is come ess in i 5( i 5( R S coision 5 Ineacion o Eemena aves om same ami: (a - shoc ave oveaes anohe -shoc ave (S S : We consie he siaion in hich U is connecion o U b a shoc o he is Riemann obem an U is connece o U b a - shoc o he secon Riemann obem In ohe siaion a iven e saeu he inemeiae sae U an he ih sae ih La coniions sais U U U U U U U an U ae chose sch ha (54 an ih La sabii coniions U U U U U U U (55 an

48 hee U U is he see o shoc connecion U o U an simia U U is he see o shoc connecin U o U Fom (54 an (55 e obaine U U U U ie he secon Riemann obem o -shoc oveaes he is Riemann obem o -shoc a a inie ime hen is ive ise o ne Riemann obem ih aa U an U To ove his obem We ms have o eemine he eion in hich U ies esec o U Le be caim ha U va ies in eion III so his have soion o he ne Riemann obem consiss o R an S In an moe a o sho ha o o caim: e have o ove ha S U ies in enie in he eion III; o ove his eqie o sho ha o - We consie on he conaicion ha - o Then he oo ha i e ae hen (56 Imin hee b ha Povin ha (57 hich is conaicion on as e han o ineqaiies (57 is osiive Hence R S S S ; an come ess in above siaion i5(a i 5(a S oveaes S

49 (b -shoc ave oveaes anohe - shoc ave (S S : Le U ies in a eion I so ha SS SR is simia o he evios case an is above siaion isae come ess i 5(b S oveaes R (C -shoc ave oveaes -Raeacion ave (R S : U is connece o U b - aeacion ave an he secon In case he Riemann obem o he Riemann o he U is connece o U b -shoc ie a ivenu Le U an he an R U o in ohe a o So e sho ha (58 U in sch a a ha S U ies beo o Le s eine F so ha F On ieeniain F ih esec o e obain F imin ha F F ie F an hence beo he cve RU o In anohe o sho ha i is sicien o U he cve S U o ; he sicien a he caim has S U ies S ies above

5 ; (59 Le s eine F So ha F F Le s consie ha o imin ha imin heeb ha ; P P P P o eqivaen P P P P (5 he e han sie o ineqai (5 is osiive hich eaves s ih a conaicion Hence o - imin ha F We eine a ne ncion o F A some oin ~ ~ inesece in U S an S U o ~ Since F an F i is inemeiae vae oe hee eiss a ~ beeen an sch ha ~ F b vie o monoonici Ths U S an S U is niqe eemine o he

5 inesecion an he come ess in i 5(b We isinishe hee cases o eenin on he vae o (a I ~ inee -shoc is ea as comae o - aeacion ave hen U III an he ineacion ess is RS RS (b I ~ inee o aves o is ami ineac he annihiae each ohe an ive ise o ave o secon ami henu ies on S U an he ineacion es is RS S (c I ~ an he ineacion es is RS SS on U IV; inee he -aeacion o he is Riemann obem is ea as comae o he -shoc o secon Riemann obem hich is sone oveaes an he aiin en o -aeacion ave a eece shoc S U U m an a connecion ne connecion consans sae U m on he e o U on he ih is oce The ansmie ave ae ineacion is he -shoc ha joins sae U on he e an U m on he ih i5(c R oveaes S ( - Raeacion ave oveaes -shoc ave (S R : Hee o a iven U e consie U an U sch ha U SU an U R U om eqaion (5 e have - an om eqaion (5 e have In he ane ( he see o aiin en o U U U ie is ess han -shoc see an heeoe he -aeacion ave om ih oveaes -shoc om e a inie ime We sho ha he cve R U ies beo he cve S U o ; o his e have o ha

5 G o Le s a ne ncion G o sho ha hen in his a i eine he o o an G o ho ha on - G ieeniain e have ha Imin heeb ha G G since G e have RU ies beo he cve R U o hen o o be G hich is G RU an S U inesec ino niqe a some oins ~ ~ G hen e ove ha Since he e han sie o his ineqaiies o is osiive so he concsion above So e sho ha o ; o sho ha o his a niqe oo has ~ sch ha ~ To sho a ne ncion e eine G G hee imin ha G i aes neaive as cose o zeo hen R U an U hee cases he vae o G ; an e no The cves ae inees niqe a he S i oos ha he inemeiae vae oe an in vie o monoonica; hee on eenin e isinish ie (i hen ~ an U IV ; he ineacion es is SR SS ; inee in sicien case he boh cves ae ineacion an hen he -aeacion ave is ea comae o he -shoc is sone hich is oce a ne eemena ave (ii hen ~ an U SU he ineacion es issr S ie ineacion o he is ami o eemena aves Gives ise o a secon ami o a ne eemena ave (iii hen ~ an U III he ineacion es is SR RS

5 Fi5( R oveaes S (e -Raeacion ave oveaes - shoc ave (S R : When U an U R U iven S U o he U e have consie U an an U S R ineacion aes ace in an anohe o in a U ae in a sch a ha om (5 e have S ies above he cve R U ie om (5 e have We sho ha o (5 We eine o sho ha M M Since hee imin b ha S U ies above R U On ieeniaion M since M e have M M since M i oos ha M e ove ha he R U ies above he cve R U o ; o sho ha o his i is enoh M o an he cve R U ies above he cve R U o M ; han sie o his ineqaiies is M hich o osiive e sho ha U niqe S U a oin ~ ~ o ~ M - o so ha M he e R o he inesec We eine an e consie a

54 consan K sch ha M o a K Then hee eiss a ~ sch ha M ~ Ths R U an S U ae inesec niqe a ~ ~ as R U an S U in a ems o monoone an he come ess shon in i5(c Hee hee cases ae ooin (i I ~ U IV he ineacion es issr SS inee he senh o R is sma comae o he eemena ave S an S annihiaes R in a inie ime The senh o he eece S is sma comae o he incien aves S an R (ii When ~ an U S( U he ineacion es issr S inee S is eae han R comae o he incien aves R ans (iii I ~ he ineacion ess issr SR ; inee R is sone hans ( -Shoc aves oveaes -Raeacion(R S : Fo a iven U e have U an S U o U hee U an R U U S U sch ha an We ove ha U R ies above he cve To sho ha e have a ne ncion (5 N o ; so ha N This in vie o he eession o an ies N Thee imin b ha Hence his es N N e sho ha U cve ; o sho i is sicien o his S U o S ies above he

55 o I N hen We consie hich is conaicion ha Ths i e have ha Thee imies b ha - ems o an ies o eqivaen ; his eession in (5 Which is conacion he above eqaion (5 is osiive o hence o e ove ha a oin ( ~ ~ 4 4 a SU an S U inesec niqe o ~ 4 Hee aain e isinish hee cases eenin on he vae o (i I ~ 4 U I he ineacion ess is R S SR inee he eemena ave R is sone comae o S he senh o eece S is sma comae o he incien aves S an R (ii I ~ 4 an U S U he ineacion es is R S S (iii I ~ 4 an U IV he ineacion es is R S SS ; inee S is sone han comae o he eemena ave R is eae ;

56 REFERENCES [] E Goesi PA Ravia Nmeica Aoimaion o Heboic Ssems o Consevaion Las Sine-Vea Ne Yo 996 [] T Raja Seha VD Shama Riemann Pobem an Eemena ave Ineacion in Isenoic Maneoasnamics Noninea Anasis: Rea Wo Aicaion ( 69-66 [] YehaPinchoveJacob Rbinsein An Inocion o Paia Dieenia Eqaions Cambie Univesi Pess UK 5 [4] JKevoian Paia Dieenia Eqaions(Anaica Soion Techniqes Secon Eiion Sine-Vea Ne Yo