Unified dispersive approach to real and virtual photon-photon scattering into two pions

Σχετικά έγγραφα
Three coupled amplitudes for the πη, K K and πη channels without data

Dong Liu State Key Laboratory of Particle Detection and Electronics University of Science and Technology of China

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Predictions on the second-class currents

ExpIntegralE. Notations. Primary definition. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation

Hadronic Tau Decays at BaBar

상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님

Inverse trigonometric functions & General Solution of Trigonometric Equations

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

Low Frequency Plasma Conductivity in the Average-Atom Approximation

Revisiting the S-matrix approach to the open superstring low energy eective lagrangian

AdS black disk model for small-x DIS

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Bessel functions. ν + 1 ; 1 = 0 for k = 0, 1, 2,..., n 1. Γ( n + k + 1) = ( 1) n J n (z). Γ(n + k + 1) k!

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

Math221: HW# 1 solutions

Math 6 SL Probability Distributions Practice Test Mark Scheme

Approximation of distance between locations on earth given by latitude and longitude

EPS-HEP 2015 DOUBLE-SCATTERING MECHANISM. Antoni Szczurek 1,2 Mariola Kłusek-Gawenda 1

Forced Pendulum Numerical approach

measured by ALICE in pp, p-pb and Pb-Pb collisions at the LHC

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Nucleon resonances extracted from Bonn-Gatchina coupled channel analysis

6.4 Superposition of Linear Plane Progressive Waves

Theory predictions for the muon (g 2): Status and Perspectives

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

CRASH COURSE IN PRECALCULUS

Large β 0 corrections to the energy levels and wave function at N 3 LO

Example Sheet 3 Solutions

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä664

L. F avart. CLAS12 Workshop Genova th of Feb CLAS12 workshop Feb L.Favart p.1/28

Lifting Entry (continued)

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

General 2 2 PT -Symmetric Matrices and Jordan Blocks 1

is like multiplying by the conversion factor of. Dividing by 2π gives you the

2 Composition. Invertible Mappings

Hartree-Fock Theory. Solving electronic structure problem on computers

On the Galois Group of Linear Difference-Differential Equations

Statistical Inference I Locally most powerful tests

D Alembert s Solution to the Wave Equation

Lecture 2. Soundness and completeness of propositional logic

Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation. Mathematica StandardForm notation

Solutions to the Schrodinger equation atomic orbitals. Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Homework 8 Model Solution Section

PARTIAL NOTES for 6.1 Trigonometric Identities

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

SPECIAL FUNCTIONS and POLYNOMIALS

Light Hadrons and New Enhancements in J/ψ Decays at BESII

Graded Refractive-Index

Differential equations

( ) Sine wave travelling to the right side

Baryon Studies. Dongliang Zhang (University of Michigan) Hadron2015, Jefferson Lab September 13-18, on behalf of ATLAS Collaboration

The Simply Typed Lambda Calculus

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Concrete Mathematics Exercises from 30 September 2016

Geodesic Equations for the Wormhole Metric

ME 365: SYSTEMS, MEASUREMENTS, AND CONTROL (SMAC) I

On the summability of divergent power series solutions for certain first-order linear PDEs Masaki HIBINO (Meijo University)

4.6 Autoregressive Moving Average Model ARMA(1,1)

Section 7.6 Double and Half Angle Formulas

Lecture 26: Circular domains

wave energy Superposition of linear plane progressive waves Marine Hydrodynamics Lecture Oblique Plane Waves:

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is

1. 3. ([12], Matsumura[13], Kikuchi[10] ) [12], [13], [10] ( [12], [13], [10]

g-selberg integrals MV Conjecture An A 2 Selberg integral Summary Long Live the King Ole Warnaar Department of Mathematics Long Live the King


Problem Set 3: Solutions

4.- Littlest Higgs Model with T-parity. 5.- hhh at one loop in LHM with T-parity

Second Order RLC Filters

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

A summation formula ramified with hypergeometric function and involving recurrence relation

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Areas and Lengths in Polar Coordinates

derivation of the Laplacian from rectangular to spherical coordinates

EE101: Resonance in RLC circuits

The kinetic and potential energies as T = 1 2. (m i η2 i k(η i+1 η i ) 2 ). (3) The Hooke s law F = Y ξ, (6) with a discrete analog

Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

Problem 3.1 Vector A starts at point (1, 1, 3) and ends at point (2, 1,0). Find a unit vector in the direction of A. Solution: A = 1+9 = 3.

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

C.S. 430 Assignment 6, Sample Solutions

What happens when two or more waves overlap in a certain region of space at the same time?

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

([28] Bao-Feng Feng (UTP-TX), ( ), [20], [16], [24]. 1 ([3], [17]) p t = 1 2 κ2 T + κ s N -259-

Section 9.2 Polar Equations and Graphs

Parametrized Surfaces

Srednicki Chapter 55

P AND P. P : actual probability. P : risk neutral probability. Realtionship: mutual absolute continuity P P. For example:

DETERMINATION OF DYNAMIC CHARACTERISTICS OF A 2DOF SYSTEM. by Zoran VARGA, Ms.C.E.

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

w o = R 1 p. (1) R = p =. = 1

The Standard Model. Antonio Pich. IFIC, CSIC Univ. Valencia

Transcript:

Unified dispersive approach to real and virtual photon-photon scattering into two pions Bachir Moussallam Project started with Diogo Boito arxiv:1305.3143 Photon 2013 *** Paris, May 20-24

Introduction Goal: representations for amplitudes γγ (q 2 ) ππ or γ (q 2 ) γππ ( q 2 < 1 GeV 2 ) Method: combine nonperturbative QCD tools [Unitarity, analyticity, Chiral symmetry, soft photon theorems] Relevancefor muon g 2 HVP contribution from γππ channels[reduced model dependence] Future: 2π contribution in light-by-light amplitude γγ (q 2 2 ) ππ γ (q 2 3 )γ (q 2 ) ([Hoferichter et al.]) 4 Account for ππ re-scattering (exp. progress recently: [NA48/2],[DIRAC]...) 2/24

Experimental aspects q 2 >4m 2 π : e + e γπ 0 π 0 direct relation to γ γπ 0 π 0. Measurements performed (q < 1 GeV): SND:[Phys. Lett. B 537 (2002) 201] CMD-2:[Phys. Lett. B 580 (2004) 119] also KLOE[EPJ C49 (2007) 473] but q=m ϕ e + e γπ + π ISR and FSR amplitudesinterfere. q 1 p 1 k 1 q 2 (A) k 2 (B) p 2 must measure angular distributions 3/24

q 2 <0 : From (in principle) e + e e + e π 0 π 0, e + e π + π with single tagging 4/24

Theory: Unitarity key ingredient to FSI ππ scattering elastic: s< 1 GeV 2 Fermi-Watson theorem. Valid for γγ (q 2 ) ππ? Depends on q 2 q 2 4m 2 π : Im(γγ ππ) J =(γγ ππ) J (ππ ππ) J q 2 >4m 2 π : Im(γγ ππ) J =(γγ ππ) (ππ ππ) J J +(γ ππ)(γππ ππ) J [Creutz,Einhorn PR D1 (1970)2537.] 5/24

Chiral low energy expansion: Valid when q 2, s <<1 GeV 2 π 0 π 0 probes loops, NLO calculations [Bijnens, Cornet NP B296 (1988) 557] (q 2 =0) [Donoghue,Holstein,PR D48 (1993) 137] (q 2 =0) H n = 2(s m2 π ) Ḡ(s,q 2 ) ++ NLO F 2 π H c = s Ḡ(s,q 2 )+( l ++ NLO F 2 6 l 5 ) s q2 + H Born 48π 2 F 2 ++ π π with Ḡ(s,q 2 )= sḡ π (s) q 2 Ḡ π (q 2 ) s q 2 q 2 J π (s) J π (q2 ) s q 2 ImḠ π (z), J π (z) =0 when z>4m 2 π 6/24

Analyticity in QCD Combine unitarity with analyticity[omnès, NC 8 (1958) 316]. PW amplitudes analytic s with two cuts right-handcut:[4m 2 π, ] left-hand cut:[, 0] (usually!) Discontinuity on RHC: disc(γγ ππ)=(γγ ππ) s iε (ππ ππ) s+iε also when q 2 >4m 2. FSI problem solved π Amplitude from LHC from Muskhelishvili equation Appl. to γγ ππ[gourdin, Martin NC 17 (1960) 224] Matching w. ChPT[Morgan, Pennington PL B272 (1991) 134, Donoghue, Holstein PR D48 (1993) 137] 7/24

Phenomenology of LHC Pion pole (Born Amplitude) π + π + π + γ γ γ π π (a) (b) (c) π Resonance poles π 0 π + π ω, ρ 0 ρ + γ π 0 γ π γ π q 2 =0: form-factors 8/24

Born helicity amplitudes: H Born λλ (s,q 2,θ)=F v π (q2 ) H Born λλ (s,q 2,θ) H Born ++ (s,q2,θ)= 2(4m2 π q2 (1 σ 2 π cos2 θ)) (s q 2 )(1 σ 2 π cos2 θ) 2(s 4m 2 H Born + (s,q2 π,θ)= )sin2 θ (s q 2 )(1 σ 2 π cos2 θ) H Born +0 (s,q2,θ)= 2 2q 2 (s 4m 2 π )sinθcosθ s(s q 2 )(1 σ 2 π cos2 θ) Partial-waveJ=0 h Born 0,++ (s,q2 )= 1 s q 2 4m2 π σ π (s) log1+σ π(s) 1 σ π (s) 2q2 Singularities: LHC[,0], pole s=q 2 (soft photon), 9/24

Resonance exchange partial-waves: LHC in case q 2 >4m 2 π Im(s)/m 2 π 4 3 2 1 0-1 -2-3 Omnès applicable? 0 s s + -4-5 0 5 10 15 20 25 Re(s)/m 2 π 10/24

Yes a) Use Källen-Lehmann representation for propagators BW V (t)= 1 π 4m 2 π dt σ(t,m V,γ V ) (t t) b) Limiting prescriptions: q 2 =lim ε 0 q 2 +iε (generalized) LHC does not intersect RHC 0.02 0.01 Im (s)/m 2 π 0-0.01-0.02 0 10 20 30 40 50 Re (s)/m 2 π 11/24

Representation based on 2-subtracted DR H I ++ (s,q2,z)=f v π (q2 ) H I,Born ++ (s,q2,z)+ V=ρ,ω F Vπ(q 2 ) H I,V ++ (s,q2,z) +Ω (s q I 0 (s) 2 )b I (q 2 )+sf v s(j π (q2 ) I,π (s,q 2 ) J I,π (q 2,q 2 )) q 2 Ĵ I,π (q 2 ) s q 2 +s V=ρ,ω F Vπ(q 2 ) sj I,V (s,q 2 ) q 2 J I,V (q 2,q ) 2. Remarks: H I ++ isospin amplitude,hn ++, Hc linear combination ++ First line: tree diagrams Omnès function Ω I 0 (s)=exp 1 π 4m 2 π ds s (s s) δi 0 (s ) 12/24

(Continued) J I,π (s,q 2 ),J I,V (s,q 2 ): integrals of h I,Born 0,h I,V 0, phase-shifts J I,π (s,q 2 )= 1 π J I,V (s,q 2 )= 1 π 4m 2 π 4m 2 π (integrals well defined) also ds sinδ I 0 (s ) h I,π (s ) 2 (s s) Ω I 0 (s ) 0,++ (s,q 2 ) ds sinδ I 0 (s ) h I,V (s ) 2 (s s) Ω I 0 (s ) 0,++ (s,q 2 ) Ĵ I,π (q 2 )= JI,π (s,q 2 ) s Satisfies soft-photon theorem s=q 2 Extra polynomial in s: paramatrize higher energy portionsof cuts. Two unknownfunctions: b I (q 2 ) 13/24

Chiral symmetry constraints π 0 π 0 amplitudeat s=0 H n ++ (0,q2,z)= H n,v ++ (0,q2,z) q 2 b n (q 2 ) V Adlerzero b n (q 2 )=O(m 2 π ) Except if q 2 =0! NLO ChPT: H n ++ (0,q2,z) = 2m2 π Ḡπ NLO F 2 (q 2 ) J π (q 2 ) π q 2 = 96π 2 F 2 1+ q2 15m 2 + π π 14/24

Parametrization of subtraction functions: b n (q 2 )=b n (0) F(q 2 ) +β ρ (GS ρ (q 2 ) 1)+β ω (BW ω (q 2 ) 1) b c (q 2 )=b c (0) +β ρ (GS ρ (q 2 ) 1)+β ω (BW ω (q 2 ) 1) F(q 2 ) from chiral NLO b n (0), b c (0): comp. with chiral amplitude Note: relation to pion polarizabilities α π 0 β π 0= 2α 1 lim s=0 m π s Hn,V ++ (s,0,θ)+bn (0) α π + β π += 2α 1 lim s=0 s Hc,V ++ (s,0,θ)+bc (0) m π β ρ, β ω : experimental inputs 15/24

Comparison with NLO ChPT q 2 = 0.2 GeV 2 H++(s, q 2, z) t=m 2 π 0.6 0.4 0.2 0-0.2 Re(H++) disp. Re(H++) chiral Im(H++) disp. Im(H++) chiral q 2 = 0.2 (GeV) 2-0.4-0.2-0.1 0 0.1 0.2 0.3 s (GeV) 2 q 2 =0.2 GeV 2 H++(s, q 2, z) t=m 2 π Form factor=1 at NLO 0.2 0.1 0-0.1-0.2-0.3-0.4 Re(H++) disp. Re(H++) chiral Im(H++) disp. Im(H++) chiral q 2 = 0.2 (GeV) 2-0.1-0.05 0 0.05 0.1 0.15 0.2 0.25 s (GeV) 2 16/24

q 2 =0: comparison w. data[γγ π 0 π 0 ] 0(z < 0.8) (nb) σγγ π 0 π 16 14 12 10 8 6 4 2 α β = 1.9 α β = 1.3 α β = 1.0 Crystal Ball Belle 0 0.2 0.3 0.4 0.5 0.6 0.7 0.8 s (GeV) 2 Crystal Ball: [PR D41 (1990) 3324] Belle : [PR D78 (2008) 052004] KLOE-2 [expected] 17/24

Fit of σ e + e γπ 0 π 0(q2 ) data β ρ β ω χ 2 /N dof ref. 0.14±0.12 ( 0.39±0.12)10 1 20.2/27 SND (2002) 0.13±0.15 ( 0.31±0.15)10 1 15.0/21 CMD-2 (2003) 0.05±0.09 ( 0.37±0.09)10 1 38.1/50 Combined 18/24

Fit of σ e + e γπ 0 π 0(q2 ) data (cont.) Cross-section (nb) Cross-section (nb) 0.5 0.4 0.3 0.2 0.1 0 0.5 0.4 0.3 0.2 0.1 Akhmetshin (2003) β ρ, β ω : fitted β ρ = β ω = 0 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 Achasov (2002) β ρ, β ω : fitted β ρ = β ω = 0 q (GeV) 0 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 q (GeV) 19/24

Differential cross-sections dσ ds (s,q2 ) (nb GeV 1) dσ e + e π 0 π 0 γ d s 1.8 1.6 1.4 1.2 1 0.8 0.6 0.4 0.2 q = 0.75 q = m ρ q = m ω q = 0.95 0 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 s (GeV) shape changeswhen q>(m ρ +m π ) no σ meson bump 20/24

Illustrative comp. w. other approaches Consider ρ 0 π 0 π 0 γ (GeV) 1 2 1.5 Dispersive UChPT σ-model 10 4 B ρ π 0 π 0 γ d s 1 0.5 0 0.3 0.4 0.5 0.6 0.7 s (GeV) Chiral Lagr.+V + unitarized pion loop [Palomar,Hirenzaki,Oset NP A707 (2002)161] Chiral Lagr.+V +pion loop +sigma meson[bramon et al. PL B517 (2001) 345] 21/24

Muon(g 2)/2: γππ contribution in HVP a [γππ] μ = 1 q 2 max 4π 3 dq 2 K μ q 2 σ e + e γ γππ(q 2 ) 4m 2 π cross-sections: σ c, σ n α 3 σ(q 2 )= 12(q 2 ) 3 q 2 4m 2 π ds(q 2 s)σ π (s) 1 dz 1 σ c : SeparateBorn H c λλ 2 = H Born λλ +Ĥ c λλ 2 σ c (q 2 )=σ Born (q 2 )+ ˆσ Born (q 2 )+ ˆσ c (q 2 ) H λλ (s,q 2,θ) 2 Define σ Born (e.g. add rad. corr. part σ(e + e π + π )) 22/24

σ Born corresponds to sqed σ Born (q 2 )= πα2 Numerical results: channel cross-section 3q 2 σ3 π (q2 ) F v π (q2 ) 2 α π η(q2 ) γπ + π σ Born 41.9 10 11 γπ + π ˆσ Born (1.31±0.30) 10 11... γπ + π ˆσ c (0.16±0.05) 10 11 γπ 0 π 0 σ n (0.33±0.05) 10 11 Remarks a Born comparableto Δa SM μ μ =±49 10 11 a μ [ˆσ Born ]>0 unlike[dubinskyetal. EPJC40 (2005)41] σ-meson approx: a [γσ] =1.2 10 11 [Narison (2003)], μ =1.5 10 11 [Ahmadov,Kuraev,Volkov (2010)] a μ 23/24

Conclusions Analyticity based treatment of FSI in γγ ππ extended to γγ (q 2 ) Main issue: left-hand cut [pion, resonances] becomes generalized one, but properly defined Good description of experimentaldata e + e γπ 0 π 0 (2 parameters) a μ : contributionsfrom γπ 0 π 0, γπ + π [q<0.95 GeV] Other applications: pion generalized polarizabilities, sigma meson (pole)-γ form factor Extensions possible [ q> 1 GeV ] (coupled-channel MO). Double virtual scattering? 24/24