38 8 Vol. 38, No ACTA AUTOMATICA SINICA August, , (Graphic processing unit, GPU). : 1) GPU Based Fast 3D-Object Modeling with Kinect

Σχετικά έγγραφα
ER-Tree (Extended R*-Tree)

ΕΥΡΕΣΗ ΤΟΥ ΔΙΑΝΥΣΜΑΤΟΣ ΘΕΣΗΣ ΚΙΝΟΥΜΕΝΟΥ ΡΟΜΠΟΤ ΜΕ ΜΟΝΟΦΘΑΛΜΟ ΣΥΣΤΗΜΑ ΟΡΑΣΗΣ

No. 7 Modular Machine Tool & Automatic Manufacturing Technique. Jul TH166 TG659 A

2016 IEEE/ACM International Conference on Mobile Software Engineering and Systems

GPU. CUDA GPU GeForce GTX 580 GPU 2.67GHz Intel Core 2 Duo CPU E7300 CUDA. Parallelizing the Number Partitioning Problem for GPUs

GPGPU. Grover. On Large Scale Simulation of Grover s Algorithm by Using GPGPU

High order interpolation function for surface contact problem

n 1 n 3 choice node (shelf) choice node (rough group) choice node (representative candidate)

Detection and Recognition of Traffic Signal Using Machine Learning

( ) , ) , ; kg 1) 80 % kg. Vol. 28,No. 1 Jan.,2006 RESOURCES SCIENCE : (2006) ,2 ,,,, ; ;

Reading Order Detection for Text Layout Excluded by Image

Quick algorithm f or computing core attribute

Schedulability Analysis Algorithm for Timing Constraint Workflow Models

Motion analysis and simulation of a stratospheric airship

Estimation of stability region for a class of switched linear systems with multiple equilibrium points

Area Location and Recognition of Video Text Based on Depth Learning Method

VSC STEADY2STATE MOD EL AND ITS NONL INEAR CONTROL OF VSC2HVDC SYSTEM VSC (1. , ; 2. , )

Adaptive grouping difference variation wolf pack algorithm

J. of Math. (PRC) 6 n (nt ) + n V = 0, (1.1) n t + div. div(n T ) = n τ (T L(x) T ), (1.2) n)xx (nt ) x + nv x = J 0, (1.4) n. 6 n

Ερευνητική+Ομάδα+Τεχνολογιών+ Διαδικτύου+

Διπλωματική Εργασία. Μελέτη των μηχανικών ιδιοτήτων των stents που χρησιμοποιούνται στην Ιατρική. Αντωνίου Φάνης

ΓΙΑΝΝΟΥΛΑ Σ. ΦΛΩΡΟΥ Ι ΑΚΤΟΡΑΣ ΤΟΥ ΤΜΗΜΑΤΟΣ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΜΑΚΕ ΟΝΙΑΣ ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ

Bundle Adjustment for 3-D Reconstruction: Implementation and Evaluation

Buried Markov Model Pairwise

3: A convolution-pooling layer in PS-CNN 1: Partially Shared Deep Neural Network 2.2 Partially Shared Convolutional Neural Network 2: A hidden layer o

Correction of chromatic aberration for human eyes with diffractive-refractive hybrid elements

Study on the Strengthen Method of Masonry Structure by Steel Truss for Collapse Prevention

CorV CVAC. CorV TU317. 1

Real time mobile robot control with a multiresolution map representation

Supporting Information

[4] 1.2 [5] Bayesian Approach min-max min-max [6] UCB(Upper Confidence Bound ) UCT [7] [1] ( ) Amazons[8] Lines of Action(LOA)[4] Winands [4] 1

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

(Υπογραϕή) (Υπογραϕή) (Υπογραϕή)

A summation formula ramified with hypergeometric function and involving recurrence relation

Research on real-time inverse kinematics algorithms for 6R robots

Optimization, PSO) DE [1, 2, 3, 4] PSO [5, 6, 7, 8, 9, 10, 11] (P)

Speeding up the Detection of Scale-Space Extrema in SIFT Based on the Complex First Order System

1 (forward modeling) 2 (data-driven modeling) e- Quest EnergyPlus DeST 1.1. {X t } ARMA. S.Sp. Pappas [4]


: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM

Automatic extraction of bibliography with machine learning

HOSVD. Higher Order Data Classification Method with Autocorrelation Matrix Correcting on HOSVD. Junichi MORIGAKI and Kaoru KATAYAMA

ΓΕΩΜΕΣΡΙΚΗ ΣΕΚΜΗΡΙΩΗ ΣΟΤ ΙΕΡΟΤ ΝΑΟΤ ΣΟΤ ΣΙΜΙΟΤ ΣΑΤΡΟΤ ΣΟ ΠΕΛΕΝΔΡΙ ΣΗ ΚΤΠΡΟΤ ΜΕ ΕΦΑΡΜΟΓΗ ΑΤΣΟΜΑΣΟΠΟΙΗΜΕΝΟΤ ΤΣΗΜΑΣΟ ΨΗΦΙΑΚΗ ΦΩΣΟΓΡΑΜΜΕΣΡΙΑ

Δυνατότητα Εργαστηρίου Εκπαιδευτικής Ρομποτικής στα Σχολεία (*)

ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΑΓΩΓΗΣ

Development of the Nursing Program for Rehabilitation of Woman Diagnosed with Breast Cancer

Test Data Management in Practice

Re-Pair n. Re-Pair. Re-Pair. Re-Pair. Re-Pair. (Re-Merge) Re-Merge. Sekine [4, 5, 8] (highly repetitive text) [2] Re-Pair. Blocked-Repair-VF [7]

Ανάκτηση Εικόνας βάσει Υφής με χρήση Eye Tracker

, Litrrow. Maxwell. Helmholtz Fredholm, . 40 Maystre [4 ], Goray [5 ], Kleemann [6 ] PACC: 4210, 4110H

Resurvey of Possible Seismic Fissures in the Old-Edo River in Tokyo

Supporting Information. Generation Response. Physics & Chemistry of CAS, 40-1 South Beijing Road, Urumqi , China. China , USA

Mapping Textures on 3D Geometric Model Using Reflectance Image

,,, (, ) , ;,,, ; -

Δυσκολίες που συναντούν οι μαθητές της Στ Δημοτικού στην κατανόηση της λειτουργίας του Συγκεντρωτικού Φακού

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΕΠΑΝΑΣΧΕΔΙΑΣΜΟΣ ΓΡΑΜΜΗΣ ΣΥΝΑΡΜΟΛΟΓΗΣΗΣ ΜΕ ΧΡΗΣΗ ΕΡΓΑΛΕΙΩΝ ΛΙΤΗΣ ΠΑΡΑΓΩΓΗΣ REDESIGNING AN ASSEMBLY LINE WITH LEAN PRODUCTION TOOLS

Τμήμα Πολιτικών και Δομικών Έργων

{takasu, Conditional Random Field

HIV HIV HIV HIV AIDS 3 :.1 /-,**1 +332

Wiki. Wiki. Analysis of user activity of closed Wiki used by small groups

ΑΝΑΠΤΥΞΗ ΠΑΙΧΝΙΔΙΟΥ ΣΟΒΑΡΟΥ ΣΚΟΠΟΥ ΓΙΑ ΤΗΝ ΕΚΜΑΘΗΣΗ ΕΝΝΟΙΩΝ ΑΝΤΙΚΕΙΜΕΝΟΣΤΡΕΦΟΥΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ΣΕ JAVA

MOTROL. COMMISSION OF MOTORIZATION AND ENERGETICS IN AGRICULTURE 2014, Vol. 16, No. 5,

A Method for Singularity Detection in Fingerprint Images

Approximation of distance between locations on earth given by latitude and longitude

Studies on the Binding Mechanism of Several Antibiotics and Human Serum Albumin

PLATEAU METEOROLOGY. X 6 min. 6 min Vol. 34 No. 4 August doi /j. issn X X / cosθcosφ P412.

Vol. 31,No JOURNAL OF CHINA UNIVERSITY OF SCIENCE AND TECHNOLOGY Feb

IPSJ SIG Technical Report Vol.2014-CE-127 No /12/6 CS Activity 1,a) CS Computer Science Activity Activity Actvity Activity Dining Eight-He

Supporting information. An unusual bifunctional Tb-MOF for highly sensing of Ba 2+ ions and remarkable selectivities of CO 2 /N 2 and CO 2 /CH 4

Fusing Multiple Features for Object Tracking Based on Uncertainty Measurement

Applying Markov Decision Processes to Role-playing Game

Supporting Information. Asymmetric Binary-acid Catalysis with Chiral. Phosphoric Acid and MgF 2 : Catalytic

College of Life Science, Dalian Nationalities University, Dalian , PR China.

Q L -BFGS. Method of Q through full waveform inversion based on L -BFGS algorithm. SUN Hui-qiu HAN Li-guo XU Yang-yang GAO Han ZHOU Yan ZHANG Pan

Supplementary Materials for Evolutionary Multiobjective Optimization Based Multimodal Optimization: Fitness Landscape Approximation and Peak Detection

UAV. UAV Unmanned Aerial Vehicle LED Light Emitting Diodes LQR Linear Quadratic Regulator

Κάθε γνήσιο αντίγραφο φέρει υπογραφή του συγγραφέα. / Each genuine copy is signed by the author.

ΚΛΙΜΑΤΟΛΟΓΙΑ CLIMATOLOGY

LUO, Hong2Qun LIU, Shao2Pu Ξ LI, Nian2Bing

Congruence Classes of Invertible Matrices of Order 3 over F 2

Research on Economics and Management

[1] DNA ATM [2] c 2013 Information Processing Society of Japan. Gait motion descriptors. Osaka University 2. Drexel University a)

Optimizing Microwave-assisted Extraction Process for Paprika Red Pigments Using Response Surface Methodology

Conductivity Logging for Thermal Spring Well

Nov Journal of Zhengzhou University Engineering Science Vol. 36 No FCM. A doi /j. issn

Application of Wavelet Transform in Fundamental Study of Measurement of Blood Glucose Concentration with Near2Infrared Spectroscopy

HCI - Human Computer Interaction Σχεδιασμός Διεπαφής. ΓΤΠ 61 Βαµβακάρης Μιχάλης 09/12/07

FENXI HUAXUE Chinese Journal of Analytical Chemistry. Savitzky-Golay. n = SG SG. Savitzky-Golay mmol /L 5700.

Ultrasound Probe Calibration Method Based on Optical Tracking Systems

Parametrized Surfaces

An Automatic Modulation Classifier using a Frequency Discriminator for Intelligent Software Defined Radio

þÿ Ç»¹º ³µÃ ± : Ãż²» Ä Â

Rapid determination of soluble reactive silicate in seawater by flow injection analysis with spectrophotometric detection and its application

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

ΠΕΡΙ ΑΠΕΙΛΟΥΜΕΝΩΝ ΖΩΩΝ...ΑΝΘΡΩΠΩΝ ΕΡΓΑ.

Supporting Information. Research Center for Marine Drugs, Department of Pharmacy, State Key Laboratory


Homework 3 Solutions

(Synesthesia) (B) 22-25

2 ~ 8 Hz Hz. Blondet 1 Trombetti 2-4 Symans 5. = - M p. M p. s 2 x p. s 2 x t x t. + C p. sx p. + K p. x p. C p. s 2. x tp x t.

Transcript:

38 8 Vol. 38, No. 8 2012 8 ACTA AUTOMATICA SINICA August, 2012 GPU Kinect 1 2 1. Kinect, (Graphic processing unit, GPU). : 1) ; 2)., ;,.,. (Loop-closure),.,,.,.,. DOI,, Kinect,,,,. GPU Kinect., 2012, 38(8): 1288 1297 10.3724/SP.J.1004.2012.01288 GPU Based Fast 3D-Object Modeling with Kinect LIU Xin 1 XU Hua-Rong 2 HU Zhan-Yi 1 Abstract The cost-effective 3D-object modeling is a topic in computer vision field that is full of significance. In this paper, we report a method for object modeling with Kinect, as well as its implementation on graphic processing unit (GPU). Our modeling solution is divided into two steps: one is the system calibration, and the other is the fast 3D-object modeling. We present a easy-to-use calibration method for the first step, and a fully automatic modeling method for the other. Besides, our method is robust to registration of point clouds. For the well-known loop closure problem, we present a global registration method. Our method is validated by the modeling of several difficult real-world objects. In addition, the modeling of the objects with occlusion is also investigated and satisfactory results are obtained. Key words 3D object modeling, graphic processing unit (GPU), Kinect, occlusion, loop-closure Citation Liu Xin, Xu Hua-Rong, Hu Zhan-Yi. GPU based fast 3D-object modeling with Kinect. Acta Automatica Sinica, 2012, 38(8): 1288 1297, 3D,.,,.,,,.,,. Kinect, 2012-01-10 2012-05-22 Manuscript received January 10, 2012; accepted May 22, 2012 (60905020), (2011H0032) Supported by National Natural Science Foundation of China (60905020) and the Key Project of Fujian Province (2011H0032) Recommended by Associate Editor JIA Yun-De 1. 100190 2. 361024 1. National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190 2. Department of Computer Science and Technology, Xiamen University of Technology, Xiamen 361024. Kinect Xbox360,, [1 6]. Engelhard [1] Kinect RGB-D SLAM,. SURF [7],, ICP (Iterative closest point) [8]. Henry [2 3] Kinect, ICP.,. Izadi [4 5] GPU,. ICP,, (Loop-closure). Tong [6] Kinect ( ).

8 : GPU Kinect 1289.,..,,,.,., Kinect : Kinect ; Kinect, [9 10] ; Kinect CMOS,, Kinect ;, Kinect,. GPU Kinect GPU., Kinect, GPU. : 1). [1 5], Kinect. 2),. [1 3, 6],.., [4 5]. 3),. 4) Loop-closure. [6],.,,,. 1 ICP EM-ICP ICP EM-ICP. ICP. X = {x 1, x 2,, x n } Y = {y 1, y 2,, y m }, ICP R t, X ( ) Y (Y Y R t ). ICP [7, 11 12],. EM-ICP ICP, : ICP, X x j (j = 1, 2,, n), Y ;, EM-ICP, Y x j,., EM-ICP R t, X Y. n m E = α ij d 2 ij, d ij = x j (Ry i + t) (1) j=1 i=1, α ij x j y i, : α ij = 1 ( d 2 ) ij exp (2) C i σ 2 p ( ) d 2 n+1 ( ) C i = exp 0 d 2 + exp ik σ 2 p k=1 σ 2 p, σ p d 0. (1) [11] λ i = E = (3) m λ 2 i x i (Ry i + t) (4) i=1 n αij, x i = 1 λ i j=1 EM-ICP 1. 1. EM-ICP n αij x j (5) j=1 1. R 0 I, t 0 0, k 0, σ p sigma p, σ recon sigma inf, d 2 0 d 02. 2. while σ p > σ recon do 3. i, j (i = 1, 2,, n; j = 1, 2,, m), (2) α ij. 4. (4) R t [11 12]. 5. R k R, t k t, k k + 1. 6. σ p σ p sigma factor. 7. end while. ICP, EM-ICP, [13 14]. EM-ICP [13 16]. 2 2.1 : Kinect GPU, 1..,. ω : ω = v sω 0 tm (6) 360

1290 38, v s (step/s), ω 0, tm. ( R 01 t 01 ) = ( R 12 t 12 ) = = ( R n 2,n 1 t n 2,n 1 ) (7), Kinect Kinect,, : (a) (a) Turntable 1 Fig. 1 2.2 (b) (b) System configuration System platform,,., Kinect tm 0., RGB,., (X 0, X 1,, X n 1 ),, X 0.,,.,. 2.2.1 Kinect :. P, Kinect d, P.,, P. Kinect. 2.2.2 Kinect Kinect, Kinect.,.,,. : 1) tm 0. (6), ω 01 = ω 12 = = ω n 2,n 1 (ω i,i+1 ). ( R i,i+1 t i,i+1 ) (i = 0, 1,, n 1), : ( R 01 t 01 ) ( R 12 t 12 ) ( R n 2,n 1 t n 2,n 1 ) (8) 2) (8),.,, (R 0 t 0 ). : 1),, ; 2),,.,. (R 0 t 0 ),,.,., Kinect,. 2.2.3,.,. 2. Fig. 2 2 Flow diagram of the system : 4 Kinect Kinect

8 : GPU Kinect 1291 (R 0 t 0 ) ; 5 ; 6 GPU. 3 Kinect Kinect 3.1 Kinect Kinect [10, 17] : 1), α, β, b K IR. K IR = f uir 0 u 0IR 0 f vir v 0IR 0 0 1 (9), (f uir f vir ), (u 0IR v 0IR )., P d ( 0 2 047), P (x IR y IR z IR ) T. x IR = b(u IR u 0IR ) d y IR = bf uir(v IR v 0IR ) f vir d z IR = 1 α(d β) (10) (11) (12) 2) f urgb 0 u 0RGB K RGB = 0 f vrgb v 0RGB (13) 0 0 1, (f urgb f vrgb ), (u 0RGB v 0RGB ). 3) T RGB IR = (R RGB IR t RGB IR ). Kinect [17]. 3.2 Kinect EM-ICP : (R 0 t 0 ).,,, tm 0. n (X 0, X 1,, X n 1 )., (I 0), EM-ICP (R i,i+1 t i,i+1 ) (i = 0, 1,, n 2). (R i,i+1 t i,i+1 ), X 0 X n 1 (R i 0,n 1 t i 0,n 1): ( R i 0,n 1 t i 0,n 1 0 1 ) = ( R i,i+1 t i,i+1 0 1 ) n 1 (14) X 0 X n 1 (X n 1 X n 1 R 0,n 1 t 0,n 1 ) ε i. (R0,n 1 i t i 0,n 1) (R 0 t 0 ). : (R 0 t 0 ) = arg min ε ( ) R i 0,n 1 t i 0,n 1 (15) i,. 4 4.1,, c. P, Kinect d, (10) (12) P., (16) (17), P (x RGB y RGB z RGB ) T (u RGB v RGB ) T. 1 z RGB x RGB y RGB z RGB u RGB v RGB 1 = R RGB IR x IR y IR z IR + t RGB IR (16) = K RGB x RGB y RGB z RGB (17) (R 0 t 0 ), ICP., (R 0 t 0 ),. 2. 2. 1. while do 2. Kinect. 3. RGB X i. 4. for X i c X j (j = i c, i c + 1,, i 1; j 0) do 5. ˆR ji ˆt ji: ( ) ( ) i j ˆRji ˆt ji R0 t 0 = 0 1 0 1 6. ˆR ji ˆt ji, ICP X j X i R ji t ji. 7. ( ˆR ji tˆ ji) (R ji t ji) ε.

1292 38 8. if ε < ε inf do 9. R ji R ji, t ji t ji 10. else 11. R ji ˆR ji, t ji ˆt ji 12. end if. 13. end for. 14. i i + 1. 15. end while. 4.2, (X 0, X 1,, X n 1 ).,, c X i (i = 0, 1,, c 1) c X j (j = n c, n c+1,, n 1),., 2 5,, (I 0), EM-ICP X 0 X n 1 (R 0,n 1 t 0,n 1 )., X j (j = n c, n c + 1,, n 1) X i (i = 0, 1,, c 1) ( ˆR ji ˆt ji ): ( ) ( ˆRji ˆt ji R0 T R0 T t 0 = 0 1 0 1 ) j ( ) ( ) n 1 i R0,n 1 T R0,n 1t T 0,n 1 R0 T R0 T t 0 0 1 0 1 (18), ( ˆR ji ˆt ji ), ICP. 4.3,, X i X 0 R 0i t 0i (i = 1, 2,, n 1)., SVD [18] R 0i. X i X j ( R ij t ij ) (i, j = 0, 1,, n 1; i j). Ā R. R 01 I 0 0 0 R 02 0 I 0 0 Ā = R 0,n 1 0 0 0 I........ 0 0 0 Rn 2,n 1 I (19) R = I R 01 R 02. R 0,n 1 (20), Ā rel n, rel, n. R n 3. : Ā R = 0 (21) Ā A. R 01 I 0 0 0 R 02 0 I 0 0 A = R 0,n 1 0 0 0 I........ 0 0 0 R n 2,n 1 I (22) AR ( ) R R, : A SVD, : R = arg min R AR (23) A = UΣV T (24), V R : R = R 00 R 01. R 0,n 1 R 0i (i = 1, 2,, n 1) : (25) R 0i = R 0iR T 00 (26), R 0i t 0i (i = 1, 2,, n 1). B āa. R 01 I 0 0 0 R 02 0 I 0 0 B = R 0,n 1 0 0 0 I........ 0 0 0 R n 2,n 1 I (27)

8 : GPU Kinect 1293 āa = 0 t 01 t 02. t 0,n 1 (28) Ā, B rel n. X 0 x 0, X 1, X 2,, X n 1 x 1, x 2,, x n 1. b. x 0 x b = 1 (29). : x n 1 B b āa = 0 (30) B B. R0i R ij : R ij = R 0j RT 0i (31) R ij, (31) R ij, B. R 01 I 0 0 0 R 02 0 I 0 0 B = R 0,n 1 0 0 0 I........ 0 0 0 R n 2,n 1 I (32) āa a 0 t 01 a = t 02 (33). t 0,n 1 [19] b b b = ( B T B ) 1 B T a = x 0 x 1 x 2. x n 1 (34) X 0 X i (i = 1, 2,, n 1) t 0i = x i R 0i x 0 (35) 4.4 R 0i t 0i (i = 1, 2,, n 1), X i (i = 1, 2,, n 1) X 0,., Kinect Kinect,,.. RGB,.. 5 GPU : Kinect ; ; ; ;. GPU. CUDA [20] GPU. 5.1 Kinect Kinect GPU : 1) EM-ICP ; 2) X 0 X n 1. EM-ICP CUDA 5 : 1) d ij ; 2) C = (α ij ) n m ; 3) x i; 4) ; 5) R t. 5 Kernel 4 CUBLAS [21] : Sgemv, Saxpy, Sgemm Sscal. [14]. X 0 X n 1 3. 3 4 5 6 Kernel. X n 1, CUDA-thread. 5, CUDA-thread GPU- KD, x i. Kernel. 3. X 0 X n 1 1. X 0 GPU-KD,. 2. X 0 X n 1. 3. for R i,i+1 t i,i+1 do 4. X n 1 (X n 1 R i,i+1 t i,i+1 ). 5. GPU-KD, X n 1.

1294 38 6. ε. 7. if ε < ε min do 8. R 0 R i,i+1, t 0 t i,i+1, ε min ε 9. end if. 10. end for. 5.2 Kinect i D i, GPU RGB. CUDA Kernel. CUDA-thread. 5.3 4. CUDA Kernel CUBLAS : Sgemm. Kernel 5.1. S Sgemm, Kernel Xi., CPU, R k t k. X i, GPU-KD. 4. c 1. X i GPU-KD,. 2. for X j (i c j < i) do 3. X j. 4. ˆR ji ˆt ji ( ) ( ) i j ˆRji ˆt ji R0 t 0 = 0 1 0 1 5. R 0 ˆR ji, t 0 ˆt ji. 6. for k = 1,, maxiterations do 7. GPU-KD, X j. 8. Xi = {x i1, x i2,, x im }. 9. X j Xi R t. 10. R k R, t k t. 11. end for. 12. end for.. CUDA-thread, RGB,. 6, 7, : ( ) ( ) ( ). 3 ( ), 1.,,.,, 1, 3, tm 0 = 1 s; c = 3., c c EM-ICP ICP,,. 5.4 A SVD CULA [22] : Sgesvd., CUBLAS. 5.5 Kernel Fig. 3 3 Object images and reconstruction results 4 :,, ;, ; ;

8 : GPU Kinect 1295. 3.,,.,,,. 4., ;,.,,.,,. ; 3) ; 4) ; 5) ; 6) ; 7) ; 8) ; 9)., 2., 2 %.,.,, X 0 X n 1 (X n 1 R 0,n 1 t 0,n 1 ), 3. 3 3,,. 1 Table 1 Some meta-information and reconstruction results (mm) 195 164 332 1 169 981 82 121 213 367 036 81 201 220 305 162 310 1 114 669 163 280 707 175 98 187 319 312 90 120 170 49 308 5 Fig. 5 Measurements Table 2 2 Results of measurements (mm) (mm) (mm) (%) 1 87.3 86.1 1.2 1.37 2 33.2 32.8 0.4 1.20 3 174.1 171.9 2.2 1.26 4 78.7 77.9 0.8 1.01 5 33.1 32.5 0.6 1.81 6 24.7 24.3 0.4 1.62 7 84.2 82.9 1.3 1.54 8 50.1 49.4 0.7 1.49 9 163.1 161.6 1.5 0.92 4 Fig. 4 Fusion models,,. 5, : 1) ; 2),,. 2, Kinect,., 4. ( 46 ),

1296 38 50. 3 Table 3 Residual-errors (mm) X 0 0.217 20 166 0.187 6 288 0.494 4 252 0.378 21 064 0.345 11 662 0.221 7 145 0.198 578.,,,. Kinect,. References 1 Engelhard N, Endres F, Hess J, Sturm J, Burgard W. Realtime 3D visual SLAM with a hand-held RGB-D camera. In: Proceedings of the 2011 RGB-D Workshop on 3D Perception in Robotics at the European Robotics Forum. Västeras, Sweden: Robotdalen, 2011 Table 4 4 (s) Time consuming of objects reconstruction (s) 2 Henry P, Krainin M, Herbst E, Ren X, Fox D. RGB-D mapping: using depth cameras for dense 3D modeling of indoor environments. In: Proceedings of the 12th International Symposium on Experimental Robotics. Delhi, India: IEEE, 2010 Kinect 1.5 46.0 3.3 50.8 1.5 46.0 2.5 50.0 1.5 46.0 2.2 49.7 1.5 46.0 1.9 49.4 1.5 46.0 3.1 50.6 1.5 46.0 2.3 49.8 1.5 46.0 1.5 49.0 7 Kinect.,. GPU, 50 s.,.,.,., : 1).,. 2) Kinect. Kinect 0.5 m,,., 3 Du H, Henry P, Ren X F, Cheng M, Goldman D B, Seitz S M, Fox D. Interactive 3D modeling of indoor environments with a consumer depth camera. In: Proceedings of the 13th International Conference on Ubiquitous Computing. Beijing, China: IEEE, 2011. 75 84 4 Izadi S, Newcombe R A, Kim D, Hilliges O, Molyneaux D, Hodges S, Kohli P, Davison A, Fitzgibbon A. KinectFusion: real-time dynamic 3D surface reconstruction and interaction. In: Proceedings of the 2011 International Conference on Computer Graphics and Interactive Techniques. Vancouver, Canada: ACM, 2011 5 Izadi S, Kim D, Hilliges O, Molyneaux D, Newcombe R, Kohli P, Shotton J, Hodges S, Freeman D, Davison A, Fitzgibbon A. KinectFusion: real-time 3D reconstruction and interaction using a moving depth camera. In: Proceedings of the 2011 Annual ACM Symposium on User Interface Software and Technology. Santa Barbara, CA: ACM, 2011. 559 568 6 Tong J, Zhou J, Liu L G, Pan Z G, Yan H. Scanning 3D full human bodies using Kinects. IEEE Transactions on Visualization and Computer Graphics, 2012, 18(4): 643 650 7 Bay H, Ess A, Tuytelaars T, van Gool L. Speeded-up robust features (SURF). Computer Vision and Image Understanding, 2008, 110(3): 346 359 8 Besl P J, McKay H D. A method for registration of 3-d shapes. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1992, 14(2): 239 256 9 Konolige K, Mihelich P. Technical description of Kinect calibration [Online], available: http://www.ros.org/wiki/ kinect calibration/technical, November 3, 2011 10 Gu Zhao-Peng. A Study on Monocular Simultaneous Localization and Mapping [Ph. D. dissertation]. Institute of Automation, Chinese Academy of Sciences, China, 2011 (. [ ],,, 2011)

8 : GPU Kinect 1297 11 Liu Y H. Automatic registration of overlapping 3D point clouds using closest points. Image and Vision Computing, 2006, 24(7): 762 781 12 Horn B K P. Closed-form solution of absolute orientation using unit quaternions. Journal of the Optical Society of America, 1987, 4(4): 629 642 13 Granger S, Pennec X. Multi-scale EM-ICP: a fast and robust approach for surface registration. In: Proceedings of the 7th European Conference on Computer Vision. Copenhagen, Denmark: Springer-Verlag, 2002. 418 432 14 Tamaki T, Abe M, Raytchev B, Kaneda K. Softassign and EM-ICP on GPU. In: Proceedings of the 2010 1st International Conference on Networking and Computing. Washington DC, USA: IEEE, 2010. 179 183 15 Dewaele G, Devernay F, Horaud R. Hand motion from 3D point trajectories and a smooth surface model. In: Proceedings of European Conference on Computer Vision. Prague, Czech: Springer, 2004. 495 507 16 Tamaki T. Pose estimation and rotation matrices. IEICE Technical Report SIS2009-23, 2009, 109(203): 59 64 17 Herrera C D, Kannala J, HeikkilAa J. Accurate and practical calibration of a depth and color camera pair. In: Proceedings of the 14th international conference on Computer analysis of images and patterns. Seville, Spain: Springer, 2011. 437 445 18 Martinec D, Pajdla T. Robust rotation and translation estimation in Multiview reconstruction. In: Proceedings of 2007 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Minneapolis, Minnesota, USA: IEEE, 2007. 1 8 19 Hartley R, Zisserman A. Multiple View Geometry in Computer Vision (Second edition). London: Cambridge University Press, 2004 20 CUDA 3.0. CUDA Programming Guide 3.0 [Online], available: http://developer.download.nvidia.com/compute/ cuda/, December 5, 2011 21 CUBLAS library 2.0. CUBLAS Library User s Guide [Online], available: http://developer.download.nvidia.com/ compute/cuda/, December 5, 2011 22 CULA library. CULA Library User s Guide [Online], available: http://www.culatools.com/, December 5, 2011. 2004. GPU.. E-mail: liux skylark@tom.com (LIU Xin Ph. D. candidate at the Institute of Automation, Chinese Academy of Sciences. He received his bachelor degree from Beijing Normal University in 2004. His research interest covers 3D reconstruction and GPU computing. Corresponding author of this paper.).. E-mail: huarong xu@sina.com (XU Hua-Rong Associate professor in the Department of Computer Science and Technology, Xiamen University of Technology. His research interest covers computer vision and image processing.).,,. E-mail: huzy@nlpr.ia.ac.cn (HU Zhan-Yi Professor at the Institute of Automation, Chinese Academy of Sciences. His research interest covers robot vision, which include camera calibration and 3D reconstruction, vision guided robot navigation, image based modeling and rendering.)