39 2 2015 4 Journal of Nanjing University of Science and Technology Vol. 39 No. 2 Apr. 2015 1 3 4-1 1 2 1 1. 210094 2. 213164 DFT 56 1 3 4 - HOFs - N 3 - NH - NH - 1 3 4 - HOMO - LUMO - ONO 2 - NH - NH - - N = N - 1 3 4-4 1 3 4 - HEDC 1 3 4 - O641 1005-9830 2015 02-0246 - 07 DOI 10. 14177 /j. cnki. 32-1397n. 2015. 39. 02. 020 Molecular design of 1 3 4-oxadiazole-based high energy density material Bei Fengli 1 Zhang Xingming 1 Chen Haiqun 2 Pan Feng 1 2014-01 - 03 1. School of Chemical Engineering NUST Nanjing 210094 China 2. School of Environmental and Safety Engineering Changzhou University Changzhou 213164 China Abstract The heats of formation HOFs electronic structures and energetic properties of 56 1 3 4-oxadiazole derivatives with different substituents and linkages are studied using the density functional theory DFT. It is found that the groups - N 3 and - NH - NH - are effective structural units for increasing the HOF values of the 1 3 4-oxadiazole derivatives. The effects of the substituents on the HOMO-LUMO gap are combined with those of the bridge groups. The calculated detonation velocities and detonation pressures indicate that the substituting group - ONO 2 and nitrogen-bridges - NH - NH - - N = N - are very useful for enhancing the detonation performance of these derivatives. Based on detonation performance and thermal stability four of the compounds can be considered as potential candidates for high energy density compounds. Key words density functional theory 1 3 4-oxadiazole derivatives heat of formation electronic 2014-05 - 28 51472119 51202020 201201004TJ BY2012099 BY2013024-04 1973 - E-mail beifl@ njust. edu. cn 1971 - E-mail iempf@ 163. com. 1 3 4 - J. 2015 39 2 246-252. http / /zrxuebao. njust. edu. cn
201 1 3 4-247 structures detonation performance 1 2 5-9 HEDM - NH 2 - NO 2 - ONO 2 - NF 2 - N 3 - NHNO 2 1 1 3 4 - - NHNH 2 1 2 1 Joo Shreeve 13 - CH 2 - CH 2-1977 2 5 - - 1 - NH - NH - 3 4 - DPO - N = N - 1 3 5-2 DPO 6 965 m /s ρ = 1. 605 g /cm 3 370 30 s 1 3 2-6 10-12 14 15 4-1 3 4 - - NH - - NH - NH - - N = N - - CH 2 - - CH 2 - CH 2 - - CH = CH - 1 3 4 - - NH 2 - NO 2 - ONO 2 - NF 2 - N 3 - NHNO 2 - NHNH 2 56 1 3 4-7 A - G 7 1 DFT 56 1 3 4 - HEDC 7 8 1 1 3 4 -
248 39 2 1 DFT 1 Δn = 0 Δ PV = 0 B3LYP /6-311 ** K - J 11 D 16-19 6-311G ** P D = 1. 011 + 1. 312ρ φ 1 /2 6 P = 1. 558ρ 2 φ 7 16 20-22 φ = N M珚 1 /2 Q 1 /2 8 P GPa D km /s ρ g cm - 3 N 23 1 3 4 - mol g - 1 M珚 g mol - 1 298 K 11 Q 0. 001 e bohr - 3 Monte-Carlo 25 B3LYP /6-311G ** 1 R = - NH 2 - NO 2 - ONO 2 - NF 2 - N 3 - NHNO 2 - NHNH 2 R 1 = - - NH - - NH - NH - - N = N - - CH 2 - - CH 2 - CH 2 - - CH = CH - 298 K ΔH 298 K ΔH 298 K = ΔH f p - ΔH f r 2 ΔH f r ΔH f p 2. 1 298 K 1 3 4 - CH 4 CH 3 NH 2 CH 3 NO 2 CH 3 ONO 2 CH 3 NHCH 3 CH 3 CH 3 CH 3 CH 2 CH 3 CH 3 CH 2 CH 2 CH 3 CH 3 NHNHCH 3 ΔZPE 0 K ΔH T 0 ~ 298 K Δ PV = ΔnRT Gaussian 98 2 HEDC CH 3 CH = CHCH 3 HEDC CH 3 NF 2 CH 3 N 3 H 3 CN = NCH 3 HOF 56 G2 1 3 4 - HOF 24 3 1 3 4 - CH 3 NF 2 CH 3 N = NCH 3 CH 3 N 3 1 1 4 CH 3 NH 2 g + F 2 g CH 3 NF 2 g + H 2 g 3 1 16 B3LYP /6-311G ** C a H b N c g ac g + bh g + cn g 4 0. 96 CH 4 CH 3 NH 2 CH 3 NO 2 ΔH 298 K CH 3 ONO 2 CH 3 NHCH 3 CH 3 CH 2 CH 3 CH 3 CH 2 = 2 ΔH 298 K 5 ΔH 298 K = ΔE 298 K + Δ PV = ΔE 0 + ΔZPE + CH 2 CH 3 CH 3 NH = NHCH 3 27 28 G2 3 ΔH T + ΔnRT 5 CH 3 NF 2 4 CH 3 N 3 ΔE 0 0 K CH 3 N = NCH 3
201 1 3 4-249 1 E 0 H T ZPE HOF a E 0 / kj mol - 1 H T a / kj mol - 1 ZPE / kj mol - 1 HOF b / kj mol - 1 HOF c / kj mol - 1 1 3 4 - - 262. 0476 0. 004384 0. 047 61. 05 CH 3 CH 3-79. 7552 0. 004417 0. 075-85. 51-84. 00 CH 4-40. 5337 0. 003824 0. 045-77. 46-74. 60 CH 3 NH 2-95. 8884 0. 004403 0. 064-22. 71-22. 50 CH 3 NO 2-245. 0817 0. 005355 0. 050-80. 80 CH 3 ONO 2-320. 1675 0. 006006 0. 053-124. 40 CH 3 NF 2-294. 2983 0. 005275 0. 047-114. 78 CH 3 N 3-204. 1484 0. 005488 0. 050 296. 50 CH 3 NHNO 2-300. 4345 0. 006223 0. 067-10. 43 CH 3 NHNH 2-151. 2222 0. 005233 0. 081 92. 26 94. 70 CH 3 NHCH 3-135. 2054 0. 005441 0. 092-17. 87-18. 80 CH 3 NHNHCH 3-189. 6987 0. 006658 0. 114 92. 20 CH 3 N = NCH 3-189. 2798 0. 006193 0. 083 152. 54 151. 80 CH 3 CH 2 CH 3-119. 1785 0. 005576 0. 101-105. 48-103. 80 CH 3 CH 2 CH 2 CH 3-158. 4889 0. 006543 0. 129-126. 06-125. 60 CH 3 CH = CHCH 3-157. 2875 0. 006543 0. 105-11. 40 a. ZPE H T 0. 98 0. 96 b. G2 c. 27 28 2 1 3 4 - CH = CH - - NH - NH - 2 - CH 2 - CH 2 - A1 E4 F4 G4 - N = N - - CH = CH - - N 3 - NO 2 - NH 2 - NO 2 - NF 2 - NHNO 2 - N 3 - NHNH 2 - NH - NH - - NF 2 - NHNO 2 - NHNH 2 A1 - G1 - CH 2 - - NH - NH - - ONO 2 A1 - G1 - NH - NH - 2 1 3 4 - - N = N - - 2. 2 2 1 3 4 - E HOMO E LUMO ΔE = E LUMO - E HOMO A D E F G - NH 2 - N 3 - NHNO 2 E HOMO - NO 2 - ONO 2 - NF 2 - NHNH 2 E HOMO - NH 2 - NHNO 2 E LUMO - NO 2 - ONO 2 - NF 2 - NHNH 2 E LUMO
250 39 2 E HOMO E LUMO E HOMO - CH 2 - - CH 2 - CH 2 - F1 D4 1 3 4 - - N = N - - CH = CH - ΔE - NH - NH - B1 - G1 E1 F1 - NHNO 2 C7 A1 E HOMO C1 2 1 3 4 - E LUMO E HOMO ΔE E LUMO /a. u. E HOMO /a. u. ΔE /a. u. E LUMO /a. u. E HOMO /a. u. ΔE /a. u. A D5-0. 3023-0. 1686 0. 1336 A1-0. 2838-0. 0813 0. 2025 D6-0. 2579-0. 1422 0. 1157 A2-0. 2139-0. 0436 0. 1703 D7-0. 2222-0. 1141 0. 1081 A3-0. 3327-0. 1583 0. 1744 D8-0. 2817-0. 1543 0. 1274 A4-0. 2868-0. 1281 0. 1586 E - CH 2 - A5-0. 3196-0. 1269 0. 1928 E1-0. 2841-0. 0278 0. 2563 A6-0. 2595-0. 0979 0. 1616 E2-0. 2219 0. 0113 0. 2331 A7-0. 2249-0. 0565 0. 1684 E3-0. 3331-0. 1354 0. 1977 A8-0. 2943-0. 1096 0. 1847 E4-0. 2808-0. 1127 0. 1682 B - NH - E5-0. 3086-0. 0834 0. 2252 B1-0. 2469-0. 0260 0. 2209 E6-0. 2690-0. 0754 0. 1936 B2-0. 1964 0. 0112 0. 2076 E7-0. 2374-0. 0146 0. 2228 B3-0. 2961-0. 1354 0. 1607 E8-0. 3135-0. 0838 0. 2298 B4-0. 2584-0. 1108 0. 1476 F - CH 2 - CH 2 - B5-0. 2719-0. 0736 0. 1983 F1-0. 2864-0. 0239 0. 2625 B6-0. 2404-0. 0747 0. 1656 F2-0. 2340 0. 0031 0. 2370 B7-0. 2612-0. 0880 0. 1732 F3-0. 3258-0. 1312 0. 1946 B8-0. 1645 0. 0193 0. 1838 F4-0. 2931-0. 1076 0. 1856 C - NH - NH - F5-0. 3008-0. 0680 0. 2328 C1-0. 2157-0. 0108 0. 2049 F6-0. 2638-0. 0718 0. 1920 C2-0. 1791 0. 0315 0. 2106 F7-0. 2342-0. 0039 0. 2303 C3-0. 2966-0. 1294 0. 1672 F8-0. 2896-0. 0874 0. 2022 C4-0. 2616-0. 1091 0. 1525 G - CH = CH - C5-0. 2773-0. 0760 0. 2013 G1-0. 2553-0. 0953 0. 1601 C6-0. 2167-0. 0706 0. 1461 G2-0. 2031-0. 0659 0. 1372 C7-0. 2197 0. 0046 0. 2243 G3-0. 2979-0. 1536 0. 1443 C8-0. 2646-0. 0863 0. 1783 G4-0. 2637-0. 1274 0. 1364 D - N = N - G5-0. 2749-0. 1225 0. 1524 D1-0. 2762-0. 1402 0. 1360 G6-0. 2429-0. 1041 0. 1388 D2-0. 2237-0. 1110 0. 1127 G7-0. 2142-0. 0778 0. 1364 D3-0. 3162-0. 1874 0. 1288 G8-0. 2685-0. 1159 0. 1525 D4-0. 2596-0. 1692 0. 0903 - - - -
201 1 3 4-251 2. 3 K - J - N 3 - NH - NH - 1 3 4-1 3 4-3 3 RDX HMX - NH 2 - NHNO 2 3 E LUMO E HOMO - NO 2 - ONO 2 - NF 2 - NHNH 2 ρ D P E LUMO E HOMO F1 A3 - NO 2 A4 - ONO 2 A5 - NF 2 A6 - N 3 A8 - NHNH 2 B3 - NO 2 B5 - NF 2 B7 - NHNO 2 C3 - NO 2 C4 - ONO 2 C5 - NF 2 C6 - N 3 C7 - NHNO 2 1 3 4 - D3 - NO 2 D4 - ONO 2 D5 - NF 2 D8 - NHNH 2 E5 - NF 2 E8 - NHNH 2 G3 - NO 2 RDX A3 A4 A5 A6 A8 B3 B5 B7 C3 C4 C5 C7 D4 D5 E5 E8 G3 HMX 1 HEDC 3 3 1 3 4-6Akhter M Husain A Azad B et al. Aroylpropionic acid based 2 5-disubstituted-1 3 4-oxadiazoles Synthesis and their anti-inflammatory and analgesic activities B3LYP 56 1 3 4 - D4 - ONO 2 - NH - NH - - N = N - A5 B5 C7 E8 HEDC. J. 2004 27 1 32-36. Zhang DexiongZhang YanWang Qi. Advances in high energy density matter of furazan series J. Journal of Solid Rocket Technology 2004 27 1 32-36. 2. 2 5 - - 1 3 4 - J. 1998 2 8-15. Sheng Dilun Ma Fenge Lv Qiaoli. Study on the preparation of 2 5-dipicry-1 3 4-oxadiazoleJ. Initiators and Pyrotechnics 1998 2 8-15. 3Han J. 1 3 4-oxadiazole based liquid crystalsj. Journal of Materials Chemistry C 2013 47 1 7779-7797. 4Fuloria N K Singh V Shaharyar M et al. Synthesis and antimicrobial evaluation of some new oxadiazoles derived from phenylpropionohydrazidesj. Molecules 2009 14 5 1898-1903. 5Sangshetti J N Chabukswar A R Shinde D B et al. Microwave assisted one-pot synthesis of some novel 2 5-disubstituted 1 3 4-oxadiazoles as antifungal agents J. Bioorganic and Medicinal Chemistry Letters 2011 21 1 444-448. J. European Journal of Medicinal Chemistry 2009 44 6 2372-2378.
252 39 2 7Adachi C Tsutsui T Saito S. Organic electroluminescent device having a hole conductor as an emitting layer J. Applied Physics Letters 1989 55 15 1489-1491. 8Rice B M Hare J. Predicting heats of detonation using quantum mechanical calculationsj. Thermochimica Acta 2002 384 1-2 377-391. 9Muthurajan H Sivabalan R Talawar M B et al. Prediction of heat of formation and related parameters of high energy materialsj. Journal of Hazardous Materials 2006 133 1-3 30-45. 10Anatoli T Korkin A Bartlett R J. Theoretical prediction of 2 4 6-trinitro-1 3 5-triazine TNTA. A new powerful high-energy density materialj. Journal of the American Chemical Society 1996 118 48 12244-12245. 11Kamlet M J Jacobs S J. Chemistry of detonations. I. A simple method for calculating detonation properties of C - H - N - O explosives J. The Journal of Chemical Physics 1968 48 1 23-35. 12Kamlet M J Jacobs S J. Chemistry of detonations. II. Buffered equilibria J. The Journal of Chemical Physics 1968 48 1 36-42. 13Joo Y H Shreeve J M. Energetic mono - di - and trisubstituted nitroiminotetrazolesj. Angewandte Chemie International Edition 2009 48 3 564-567. 14Huynh M H V Hiskey M A Hartline E L et al. Polyazido high-nitrogen compounds Hydrazo-and azo-1 3 5- triazine J. Angewandte Chemie International Edition 2004 43 37 4924-4928. 15Zhang X W Zhu W H Xiao H M. Comparative theoretical studies of energetic substituted carbon-and nitrogen-bridged difurazansj. The Journal of Physical Chemistry A 2010 114 1 603-612. 16Wei T Zhu W H Zhang X W et al. Molecular design of 1 2 4 5-tetrazine-based high-energy density materials J. The Journal of Physical Chemistry A 2009 113 33 9404-9412. 17Xu X J Xiao H M Ju X H et al. Computational studies on polynitrohexaazaadmantanes as potential high energy density materials J. The Journal of Physical Chemistry A 2006 110 17 5929-5933. 18Yalalov D A Tsogoeva S B Schmatz S. Chiral thioureabased bifunctional organocatalysts in the asymmetric nitro-michael addition A joint experimental-theoretical studyj. Advanced Synthesis & Catalysis2006 348 7-8 826-832. 19Nathan J H Koop L. Ab initio density functional computations of conformations and bond dissociation energies for hexahydro-1 3 5-trinitro-1 3 5-triazineJ. Journal of the American Chemical Society 1997 119 28 6583-6589. 20Wei T Zhu W H Zhang J J et al. DFT study on energetic tetrazolo- 1 5 - b-1 2 4 5-tetrazine and 1 2 4-triazolo- 4 3 - b-1 2 4 5-tetrazine derivatives J. Journal of Hazardous Materials 2010 179 1-3 581-590. 21. M. 2000. 22Ju X H Li Y M Xiao H M. Theoretical studies on the heats of formation and the interactions among the difluoroamino groups in polydifluoroaminocubanes J. The Journal of Physical Chemistry A 2005 109 5 934-938. 23Hahre W J Radom L Schleyer P V R et al. Ab initio molecular orbital theorym. New York US Wiley-Interscience 1986. 24Curtiss L ARaghavachari KTrucks G Wet al. Gaussian-2 theory for molecular energies of first-and second-row compoundsj. The Journal of Physical Chemistry A 1991 94 11 7221-7230. 25Curtiss L A Raghavachari K Trucks G W et al. Assessment of Gaussian-2 and density functional theories for the computation of enthalpies of formation J. The Journal of Physical Chemistry A 1997 106 3 1063-1079. 26Rice B M Hare J J Byrd E F C. Accurate predictions of crystal densities using quantum mechanical molecular volumes J. The Journal of Physical Chemistry A 2007 111 42 10874-10879. 27Dean J A. Lange s handbook of chemistry 15th edition M. New York US McGraw-Hill 1999. 28David R L. CRC handbook of chemistry and physics 84th EditionM. Boca Raton US CRC Press 2003.