(Proper Orthogonal Decomposition, POD) POD POD Galerkin Projection PIV. Proper Orthogonal Decomposition in Fluid Flow Analysis: 1.

Σχετικά έγγραφα
Global nonlinear stability of steady solutions of the 3-D incompressible Euler equations with helical symmetry and with no swirl

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

D Alembert s Solution to the Wave Equation

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

ER-Tree (Extended R*-Tree)

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

ΕΡΓΑΣΤΗΡΙΟ ΡΕΥΣΤΟΜΗΧΑΝΙΚΗΣ ΚΑΙ ΣΤΡΟΒΙΛΟΜΗΧΑΝΩΝ

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

Congruence Classes of Invertible Matrices of Order 3 over F 2

High order interpolation function for surface contact problem

Finite difference method for 2-D heat equation

Approximation of distance between locations on earth given by latitude and longitude

Other Test Constructions: Likelihood Ratio & Bayes Tests

MOTROL. COMMISSION OF MOTORIZATION AND ENERGETICS IN AGRICULTURE 2014, Vol. 16, No. 5,

Computing the Gradient

Example Sheet 3 Solutions

J. of Math. (PRC) 6 n (nt ) + n V = 0, (1.1) n t + div. div(n T ) = n τ (T L(x) T ), (1.2) n)xx (nt ) x + nv x = J 0, (1.4) n. 6 n

Web-based supplementary materials for Bayesian Quantile Regression for Ordinal Longitudinal Data

Partial Differential Equations in Biology The boundary element method. March 26, 2013

1 String with massive end-points

Buried Markov Model Pairwise

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

EE512: Error Control Coding

Homework 3 Solutions

Durbin-Levinson recursive method

Bundle Adjustment for 3-D Reconstruction: Implementation and Evaluation

Prey-Taxis Holling-Tanner

Wavelet based matrix compression for boundary integral equations on complex geometries

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΕΠΑΝΑΣΧΕΔΙΑΣΜΟΣ ΓΡΑΜΜΗΣ ΣΥΝΑΡΜΟΛΟΓΗΣΗΣ ΜΕ ΧΡΗΣΗ ΕΡΓΑΛΕΙΩΝ ΛΙΤΗΣ ΠΑΡΑΓΩΓΗΣ REDESIGNING AN ASSEMBLY LINE WITH LEAN PRODUCTION TOOLS

Introduction to Theory of. Elasticity. Kengo Nakajima Summer

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Vol. 31,No JOURNAL OF CHINA UNIVERSITY OF SCIENCE AND TECHNOLOGY Feb

Discretization of Generalized Convection-Diffusion

ΕΛΕΓΧΟΣ ΚΑΙ ΤΡΟΦΟΔΟΤΗΣΗ ΜΕΛΙΣΣΟΚΟΜΕΙΟΥ ΑΠΟ ΑΠΟΣΤΑΣΗ

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

1. 3. ([12], Matsumura[13], Kikuchi[10] ) [12], [13], [10] ( [12], [13], [10]

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Graded Refractive-Index

Error Evaluation and Monotonic Convergence in Numerical Simulation of Flow

ΓΕΩΜΕΣΡΙΚΗ ΣΕΚΜΗΡΙΩΗ ΣΟΤ ΙΕΡΟΤ ΝΑΟΤ ΣΟΤ ΣΙΜΙΟΤ ΣΑΤΡΟΤ ΣΟ ΠΕΛΕΝΔΡΙ ΣΗ ΚΤΠΡΟΤ ΜΕ ΕΦΑΡΜΟΓΗ ΑΤΣΟΜΑΣΟΠΟΙΗΜΕΝΟΤ ΤΣΗΜΑΣΟ ΨΗΦΙΑΚΗ ΦΩΣΟΓΡΑΜΜΕΣΡΙΑ

«ΘΕΜΑΤΑ ΑΣΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ» ΔΙΔΑΣΚΟΥΣΕΣ: ΒΑΪΟΥ Ντ., ΜΑΝΤΟΥΒΑΛΟΥ Μ., ΜΑΥΡΙΔΟΥ Μ. «Gentrification Friendly» γειτονιές στο κέντρο της Αθήνας(;)

Development of Finer Spray Atomization for Fuel Injectors of Gasoline Engines

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

ACTA MATHEMATICAE APPLICATAE SINICA Nov., ( µ ) ( (

ΠΣΤΥΙΑΚΗ ΔΡΓΑΙΑ. Μειέηε Υξόλνπ Απνζηείξσζεο Κνλζέξβαο κε Τπνινγηζηηθή Ρεπζηνδπλακηθή. Αζαλαζηάδνπ Βαξβάξα

Evolution of Novel Studies on Thermofluid Dynamics with Combustion

Jordan Form of a Square Matrix

Math221: HW# 1 solutions

SPECIAL FUNCTIONS and POLYNOMIALS

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

C.S. 430 Assignment 6, Sample Solutions

{takasu, Conditional Random Field

ADVANCED STRUCTURAL MECHANICS

Ανάλυση Προτιμήσεων για τη Χρήση Συστήματος Κοινόχρηστων Ποδηλάτων στην Αθήνα

Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.

6.3 Forecasting ARMA processes

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint

Feasible Regions Defined by Stability Constraints Based on the Argument Principle

Correction of chromatic aberration for human eyes with diffractive-refractive hybrid elements

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

4.6 Autoregressive Moving Average Model ARMA(1,1)

Second Order Partial Differential Equations

(, ) (SEM) [4] ,,,, , Legendre. [6] Gauss-Lobatto-Legendre (GLL) Legendre. Dubiner ,,,, (TSEM) Vol. 34 No. 4 Dec. 2017

L p approach to free boundary problems of the Navier-Stokes equation

ΖΩΝΟΠΟΙΗΣΗ ΤΗΣ ΚΑΤΟΛΙΣΘΗΤΙΚΗΣ ΕΠΙΚΙΝΔΥΝΟΤΗΤΑΣ ΣΤΟ ΟΡΟΣ ΠΗΛΙΟ ΜΕ ΤΗ ΣΥΜΒΟΛΗ ΔΕΔΟΜΕΝΩΝ ΣΥΜΒΟΛΟΜΕΤΡΙΑΣ ΜΟΝΙΜΩΝ ΣΚΕΔΑΣΤΩΝ

38 Te(OH) 6 2NH 4 H 2 PO 4 (NH 4 ) 2 HPO 4

2016 IEEE/ACM International Conference on Mobile Software Engineering and Systems

Οι απόψεις και τα συμπεράσματα που περιέχονται σε αυτό το έγγραφο, εκφράζουν τον συγγραφέα και δεν πρέπει να ερμηνευτεί ότι αντιπροσωπεύουν τις

Coupling of a Jet-Slot Oscillator With the Flow-Supply Duct: Flow-Acoustic Interaction Modeling

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Lanczos and biorthogonalization methods for eigenvalues and eigenvectors of matrices

Motion analysis and simulation of a stratospheric airship

Study on Re-adhesion control by monitoring excessive angular momentum in electric railway traction

ΜΕΛΕΤΗ ΣΥΜΠΕΡΙΦΟΡΑΣ ΦΛΟΓΩΝ ΠΡΟΠΑΝΙΟΥ ΣΤΑΘΕΡΟΠΟΙΗΜΕΝΩΝ ΣΕ ΕΠΙΠΕΔΟ ΣΩΜΑ ΜΕ ΔΙΑΣΤΡΩΜΑΤΩΜΕΝΗ ΕΙΣΑΓΩΓΗ ΜΙΓΜΑΤΟΣ

Second Order RLC Filters

J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5

Poroelastic modelling of the coupled mechanical moisture behaviour of wood

Higher Derivative Gravity Theories

Eulerian Simulation of Large Deformations

Ι ΑΚΤΟΡΙΚΗ ΙΑΤΡΙΒΗ. Χρήστος Αθ. Χριστοδούλου. Επιβλέπων: Καθηγητής Ιωάννης Αθ. Σταθόπουλος

A Determination Method of Diffusion-Parameter Values in the Ion-Exchange Optical Waveguides in Soda-Lime glass Made by Diluted AgNO 3 with NaNO 3

«ΑΝΑΠΣΤΞΖ ΓΠ ΚΑΗ ΥΩΡΗΚΖ ΑΝΑΛΤΖ ΜΔΣΔΩΡΟΛΟΓΗΚΩΝ ΓΔΓΟΜΔΝΩΝ ΣΟΝ ΔΛΛΑΓΗΚΟ ΥΩΡΟ»

Schedulability Analysis Algorithm for Timing Constraint Workflow Models

CRASH COURSE IN PRECALCULUS

On a four-dimensional hyperbolic manifold with finite volume

Finite Field Problems: Solutions

Oscillatory Gap Damping

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Quick algorithm f or computing core attribute

Inverse trigonometric functions & General Solution of Trigonometric Equations

AΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ

3-dimensional motion simulation of a ship in waves using composite grid method

Parametrized Surfaces

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ

: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΟΙ ΕΠΙΜΟΡΦΩΤΙΚΕΣ ΑΝΑΓΚΕΣ ΣΤΙΣ ΕΠΙΧΕΙΡΗΣΕΙΣ ΤΟΥ ΔΗΜΟΥ ΗΡΑΚΛΕΙΟΥ ΑΔΑΜΑΚΟΠΟΥΛΟΥ ΑΝΔΡΙΑΝΗ ΔΗΜΗΤΡΟΥΛΑΚΗ ΑΡΙΣΤΕΑ

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΜΗΧΑΝΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ. Πτυχιακή εργασία

X g 1990 g PSRB

Transcript:

115 連載 固有直交分解による流体解析 : 1. ( ) (Proper Orthogonal Decomposition, POD) POD POD Galerkin Projection PI Proper Orthogonal Decomposition in Fluid Flow Analysis: 1. Introduction Kunihiko TAIRA, Fundamental Technology Research Center, Honda R&D Co., Ltd. (Received 14 January, 2011; in revised form 4 March, 2011) With increasing capabilities of capturing the vector flow field from simulations and experiments, a systematic approach to extract physically important flow structures (modes) from the data is required. In addition, describing complex flow physics with a reduced-order model also calls for a low-dimensional basis that captures the flow field in a constructive manner. In this paper, we revisit the use of Proper Orthogonal Decomposition (POD), a technique that optimally extracts spatial modes from flow data. As Part 1 of a two-part series, the fundamentals of POD are summarized with emphasis for use in fluid mechanics. Reduced-order models based on Galerkin projection with POD modes are also discussed. In Part 2, applications of POD in fluid mechanics, aeroacoustics, flow control, PI, and aerodynamic design are reviewed. Finally, other methods related to POD are mentioned. (KEY WORDS): proper orthogonal decomposition (POD), principal component analysis (PCA), reduced order model, Galerkin projection, fluid mechanics 1 Particle Image elocimetry (PI) 351 0193 1 4 1 E-mail: kunihiko taira@n.f.rd.honda.co.jp

116 (Proper Orthogonal Decomposition, POD) POD (Principal Component Analysis, PCA) Karhunen- Loève Compressive Sampling POD POD Jolliffe 1) Chatterjee 2) Lumley 3) 1967 POD POD POD Berkooz 4) Holmes 5) 90 POD POD POD 6) POD POD Snapshot POD Gappy POD POD POD POD PI POD Balanced POD 2 (POD, ) 2.1 POD (POD, ) POD 1 n r (r n) 1 1 1POD ( 1 ) POD 1 POD 2 x(t) R n, t min < t < t max. (1) x(t) r n (arg min) 3 {ϕ k } r k=1 P = r k=1 ϕ kϕ T k (arg max) tmax {ϕ k } r k=1 = arg min { ϕ k } r k=1 t min = arg max { ϕ k } r k=1 R = tmax tmax t min x(t) P x(t) P x(t) 2 dt 2 dt where P = ϕ k ϕ T k k=1 (2) t min x(t)x T (t)dt R n n (3) (ϕ k ) (λ k ) 5) Rϕ k = λ k ϕ k, λ 1... λ n 0. (4) 2 x(t) Holmes 5) x(t) 3 arg min f(x) {x y : f(x) f(y)} arg min (cos(x)) = x x (2n + 1)π, n Z

117 R ϕi, ϕ j = δij, i, j = 1,..., n. (5) 1 r tmax t min P x(t) 2 dt = λ k (6) k=1 / n λ k λ k 1 (7) k=1 k=1 r r POD POD R R R ˆR ˆR = P RP T = Λ. (8) P R (p k = ϕ k ) Λ R (4) POD 2.2 Snapshot POD POD n n n(e.g. CFD ) n = O(10 7 ) Snapshot POD 7) POD Snapshot POD t min = t 1,..., t m = t max (Snapshot) x(t j ) m m POD m R = ω j x(t j )x T (t j ) (9) j=1 ω j (e.g. ) X = [ ω 1 x(t 1 )... ω m x(t m )] R n m (10) R = XX T (11) (W ) R = XX T W. (12) (e.g. ) POD XX T R n n X T X R m m X T Xu k = λ k u k, u k R m, m n (13) ( X T W Xu k = λ k u k ) POD Snapshot POD r POD / ϕ k = Xu k λk (14) Φ = XUΛ 1/2 (15) ϕ k u k Φ = [ϕ 1... ϕ m ] R n m (16) U = [u 1... u m ] R m m (17) Λ R m m λ k POD Snapshot POD 1 ( ) Snapshot POD

118 2.3 Gappy POD Gappy POD 8) X 0 if x ij is missing or incorrect n ij = (18) 1 if x ij is known. POD POD POD POD POD Bui-Thanh 9) 3 2 3 Snapshot POD Immersed Boundary Projection 10, 11) Taira & Colonius 12) α = 30 Re = 100 300 (Re = 100) (Re = 300, AR = 2) x = (u, v) T POD POD ( ) 2 3 2 u-,v- curl x = (u, v, w) T POD x = Q (Q-Criterion, 2 ) POD 4 POD POD u-velocity v-velocity vorticity mode 5 mode 3 mode 2 mode 1 mean 2 α = 30 2 POD 1-5

119 3 0.9632 0.9968 0.9998 30 2 POD POD 1-2 96.32% 6 100% 3.1 λ i POD ϕ i X L 2 13) r r k=1 λ k r ( ) (2) ( ) x (u 1, u 2, u 3 ) T x 2 ( = u 2 1 + u 2 2 + u 2 ) 3 d (19) x 2 = ( ω 2 1 + ω2 2 + ω3 2 ) d (20) POD ρ e [ x 2 = ρe + 1 ] 2 ρ(u2 1 + u 2 2 + u 2 3) d (21) x = ( ρe, ρu1, ρu 2, ρu 3 ) T Rowley 13) x 2 = [ ] 2a 2 γ 1 + (u2 1 + u 2 2 + u 2 3) d. (22) a γ α x 2 ( = α1 u 2 1 + α 2 u 2 2 + α 3 u 2 3 + α 4 a 2 + α 5 p 2) d (23) 14) 4 6) λ ( 3 ) 3.2 ( u = 0) (u D = 0) 2 POD 3.3 POD 2 3 2 1 2 2 2 1 2 π/2 3 4 4 Gappy POD n α

120 15) POD POD Fourier 7) 3.4 POD POD POD POD POD POD 4 POD 2 POD 2 POD 1 2 POD POD 4 POD (Reduced-Order Model, ROM) Navier Stokes POD POD Navier Stokes n 5 POD r Galerkin Projection 4.1 POD u(x, t) = a j (t)ϕ j (x) (24) j=0 a 0 = 1 ϕ 0 (x) = ū(x) Navier Stokes POD i POD ( f ϕ i ) f, ϕ i f ϕ i d (25) 5 2 3 Navier Stokes n (i.e., x(t) R n ) 1 n = 2n x n y n r (r n) Navier Skotes u t + (u )u = p + 1 Re 2 u (26) (24) ϕ i j=0 da j dt ϕi, ϕ j + j=0 k=0 = ϕ i, p + 1 Re a j a k ϕi, (ϕ j )ϕ k a j ϕi, 2 ϕ j, j=0 i = 1, 2,..., r (27) POD p, ϕ i = [ (pϕ i ) p ϕ i ] d (28) = pϕ i ˆndS = 0 S ( ϕ i = 0) S(ˆn S ) ū Noack 16) POD 6 ϕi, ϕ j = δij (27) da i dt = j=0 k=0 F ijk a j a k + G ij a j, (29) j=0 F ijk = ϕ i, ϕ j ϕ k, (30) G ij = 1 ϕi, 2 ϕ Re j, i = 1,..., r. (31) Navier Stokes POD 17) POD a i (t 0 ) = u(x, t 0 ) ū(x), ϕ i (x), i = 1,..., r. (32) (24) POD n r a i F ijk G ij 6 i, j = 1, 2,..., r ϕ 0 = ū POD

121 u-velocity v-velocity w-velocity Q-criterion mode 2 mode 1 4 α = 30 (AR = 2) 3 POD POD (u,v,w-elocity) POD (Q-Criterion) 1 2 4.2 q = [ρ, u 1, u 2, u 3, T ] T Navier Stokes 13) ρ t = (ρu j ) x j (33) ρ u i t = ρu u i j p + τ ij x j x i x j (34) ρ T t = ρu T j ρ(γ 1)T u k x j x k + γ Re Φ + γ 2 T ReP r x k x k (35) p = γ 1 ρt γ (36) τ ij = 1 ( 2S ij 2 ) u k Re 3 x k (37) Φ = 2S ij S ij 2 ( ) 2 uk 3 x k (38) S ij = 1 ( ui + u ) j. 2 x j x i (39) (A 0 + A 1 ) q = b 1 + b 2 + b 3 (40) A 0 = diag(1, 0, 0, 0, 0) (41) A 1 = diag(0, ρ, ρ, ρ, ρ) (42) b 1 (q) b 2 (q, q) b 3 (q, q, q) q 1 2 3 b 1, b 2, b 3 q POD Navier Stokes Galerkin Projection q q(x, t) = a j (t)ϕ j (x) (43) j=0 (40) ϕ i M ij (a) a j = H i (a) (44) where M ij (a) = ϕ i, A 0 ϕ j + a k ϕi, A 1 (ϕ k )ϕ j (45) H i (a) = + + k=0 a k ϕi, b 1 (ϕ k ) k=0 k=0 m=0 a k a m ϕi, b 2 (ϕ k, ϕ m ) k=0 m=0 n=0 a k a m a n ϕi, b 3 (ϕ k, ϕ m, ϕ n ) (46) ϕ i, b 3 (ϕ k, ϕ m, ϕ n ) 4 Rowley 13) T 0 4 q = (u 1, u 2, u 3, a) T 3 (a ) Rowley 13) Navier Stokes Galerkin Projection q 5 CFD PI (POD)

122 POD POD (POD) POD Snapshot POD Gappy POD POD Navier Stokes 6) POD PI POD 1 POD X Snapshot POD POD u = (u, v) (x p, y q ), p = 1,..., n x, q = 1,..., n y (47) u pq = (u pq, v pq) = (u(x p, y q), v(x p, y q)) (48) ( 5 ) Snapshot POD t j stack 2 u 11... u 3 n x1....... u 1n y... u n xny v 11... v n x1 6 4.. 7..... 5 v 1ny... v nxny t=t j stack unstack 2 0 1 3 u 11 B @ C. A u 1ny. 0 1 u n x1 B @ C. A x(t j) u n 0 xny 1 v 11 R n B @ C. A v 1ny. 0 1 v nx1 6 B 4 @ C 7. A 5 v n xny t=t j (49) n (i.e., n = 2n xn y) x q = n y q = 2 q = 1 p = 1 p = 2 5 X v pq (x p, y q ) u pq p = n x X = [ ω 1 x(t 1 )... ω m x(t m )] R n m. (50) ω j (12) 2.2 Snapshot POD X T Xu k = λ k u k, u k R m, m n (51) ( )r (r m) POD ϕ k = Xu k.p λk R n, k = 1,..., r (52) (49) unstack ϕ k ( 2 4 ) 1) Jolliffe, I.T.: Principal Component Analysis, Springer Series in Statistics, 2nd ed, Springer (2002). 2) Chatterjee, A.: An introduction to the proper orthogonal decomposition, Current Science 78(7) (2000) 808 817. 3) Lumley, J. L.: The structure of inhomogeneous turbulent flows, In Atmospheric turbulence and wave propagation, eds. Yaglom, A. M. & Tatarski,. I., Moscow, Nauka (1967) 166 178. 4) Berkooz, G., Holmes, P. & Lumley, J. L.: The proper orthogonal decomposition in the analysis of turbulent flows, Ann. Rev. Fluid Mech. 25 (1993) 539 575. 5) Holmes, P., Lumley, J. L & Berkooz, G.: Turbulence, Coherent Structures, Dynamical Systems and Symmetry, Cambridge Univ. Press (1996). 6) : : 2., 30(3) (2011) in press. 7) Sirovich, L.: Turbulence and the dynamics of coherent structures, Parts I III. Q. Appl. Math. XL (1987) 561 590.

123 8) Everson, R. & Sirovich, L.: The Karhunen-Loève procedure for gappy data, J. Opt. Soc. Am. A 12(8) (1995) 1657 1664. 9) Bui-Thanh, T., Damodaran, M & Wilcox, K.: Aerodynamic data reconstruction and inverse design using proper orthogonal decomposition, AIAA J. 42(8) (2004) 1505 1516. 10) Taira, K. & Colonius, T.: The immersed boundary method: A projection approach, J. Comp. Phys. 225 (2007) 2118 2137. 11) Colonius, T. & Taira, K.: A fast immersed boundary method using a nullspace approach and multi-domain far-field boundary conditions, Comput. Methods Appl. Mech. Engrg. 197 (2008) 2131 2146. 12) Taira, K. & Colonius, T.: Three-dimensional flows around low-aspect-ratio flat-plate wings at low Reynolds numbers, J. Fluid Mech. 623 (2009) 187 207. 13) Rowley, C. W., Colonius, T. & Murray, R. M.: Model reduction for compressible flows using POD and Galerkin projection, Physica D 189 (2004) 115 129. 14) Freund, J. B. & Colonius, T.: Turbulence and soundfield POD analysis of a turbulent jet, Int l J. Aeroacoustics 8(7) (2009) 337 354. 15) Tadmor, G., Bissex, D., Noack, B. R., Morzyński, M., Colonius, T. & Taira, K.: Temporal-harmonic specific POD mode extraction, 4th Flow Control Conference, Paper 2008-4190, AIAA (2008). 16) Noack, B. R., Papas, P. & Monkewitz, P.: The need for pressure-term representation in empirical Galerkin models of incompressible shear flows, J. Fluid Mech. 523 (2005) 339 365. 17) Aubry, N., Holmes, P., Lumley, J. L. & Stone, E.: The dynamics of coherent structures in the wall region of a turbulent boundary layer, J. Fluid Mech. 192 (1988) 115 173 (also see: Corrigendum 324 (1996) 407 408).