Figure 1 - Plan of the Location of the Piles and in Situ Tests 1 2 3 A B C D DMT4 DMT5 PMT1 CPT4 A 2.2 1.75 S5+ SPT CPT7 CROSS SECTION A-A C2 E7 E5 S4+ SPT E3 E1 E DMT7 T1 CPT9 DMT9 CPT5 C1 ground level E9 CPT6 PMT2 T2 E8 E6 E4 DMT8 CPT8 DMT6 CPT3 E2 CPT2 DMT3 TRENCH FOR SEISMIC PROFILES DMT2 CPT1 DMT1 S1+ SPT P S2 PMT3 S3+ SPT REFERENCE SLAB variable (min..5m; max..9m) LEGEND : PILES E - Bored (D=.6m) T - CFA (D=.6m) C - Driven (.35x.35m) SITE CHARACTERIZATION S - Borehole with Sampling (+ SPT) SPT; CPT; DMT; PMT P - Piezometer Cross-Hole new platform (opened at 29/9/3) trench (opened at 2/7/3) Reference Elevation
Figure 2 - Piles Description 1 2 3 [PILES] A B C 1.75 C2 (19/9/3) E7 (29/7/3) E5 (29/7/3) E3 (3/7/3) T1 (17/7/3) C1 (19/9/3) E9 (31/7/3) T2 (17/7/3) E8 (28/7/3) E6 (29/7/3) E4 (3/7/3) E - Bored piles with temporary casing (diameter =.6m) E and E9 (embedded length = 6m) E1 to E8 (embedded length = 22m) T - Continuous Flight Auger - CFA piles (diameter =.6m) T1 and T2 (embedded length = 6m) C - Driven Piles (square section =.35m.35m) C1 and C2 (embedded length = 6m) [PILE TESTS] High strain dynamic tests [vertical]: E, E2 and E6 (bored); T2 (CFA); C2 (driven) Static tests [vertical]: E9 (bored); C1 (driven); T1 (CFA) [MATERIAL CHARACTERISTICS] D 2.2 E1 (31/7/3) E (31/7/3) E2 (3/7/3) Concrete - cubic specimens after 28 days: f cm = 31MPa; f ck = 28MPa; E c = 29GPa Reinforcement - S5 Piles with 6m of embedded length Bored: longitudinal reinforcement - 12φ25mm; shear reinforcement - φ12mm//.1m CFA: longitudinal reinforcement - 12φ25mm; shear reinforcement - φ1mm//.1m Bored Piles with 22m of embedded length At the first 12m - longitudinal reinforcement - 12φ25mm; shear reinforcement - φ12mm//.1m Below the first 12m - longitudinal reinforcement - 6φ25mm; shear reinforcement - φ12mm//.2m
Table 1 - Site Characterization In Situ Tests Date (day/month/year) Opening Elevation (m) S1 + SPT 2/1/22 -.7 SPT S3 + SPT 3/9/22 -.6 S4 + SPT 11/9/23 -.7 S5 + SPT 11/9/23 -.62 CPT1 13/9/22 -.7 CPT2 23/5/23 -.65 CPT CPT3 21/5/23 -.55 CPT4 23/5/23 -.6 CPT5 25/9/23 CPT6 15/9/23 -.55 DMT1 14/9/22 -.7 DMT2 14/9/22 -.7 DMT DMT3 14/9/22 -.7 DMT4 22/5/23 -.6 DMT5 22/5/23 -.6 DMT6 9/1/23 CPT7 + DMT7 25/9/23 CPT + DMT CPT8 + DMT8 8/1/23 CPT9 + DMT9 1/9/23 PMT1 1/9/23 -.6 PMT PMT2 1/9/23 PMT3 9/9/23 -.65 CH CH 11-14/9/23 Figure 3 - Cross section - ground level new platform trench variable (min..5m; max..9m) Reference Elevation z
Figure 4 - Geological Profile Figure 5 - SPT results 1 12. 13. 14. 1 Sandy deposit Residual soil: fine to medium sand (w 5 -w 6 ) + + + +....... Residual soil: fine to medium sand (structured saprolitic soil from granite) Degree of weathering w 5 + + + +....... + + + + GWL GWL....... + + + +...... + + + + 1 2 3 4 5 6 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 N 6 (SPT) N(S1+SPT) N(S3+SPT) N(S4+SPT) N(S5+SPT) z (m) N 6 (SPT) S1 S3 S4 S5.35 8.85 1 14 11 1.35 14 1.85 2 2.35 1 11 2.85 3.35 3.85 14 18 17 4.35 14 4.85 5.35 34 23 26 5.85 6.35 6.85 25 21 28 17 7.35 7.85 8.35 25 29 21 29 8.85 9.35 9.85 3 26 23 33 1.35 1.85 11.35 25 24 21 56 11.85 12.35 12.85 38 25 13.35 13.85 14.35 27 26 14.85 15.35 16. 1 18. 19. 2 2 2....... Highly weathered granite, medium grain (w 5 -w 4 ) + + Bedrock + + + + + 16 17 18 19 2 21 15.85 6 (29cm) 6 (42cm) 16.35 16.85 17.35 6 (28cm) 33 17.85 18.35 18.85 6 (26cm) 42 19.35 19.85 2.35 6 (24cm) 2.85 21.35 21.85
Figure 6a - CPT profiles before driven piles Figure 6b - CPT profiles after driven piles q c (MPa) q c (MPa) 2 4 6 8 1 12 14-2 4 6 8 1 12 14 - CPT1 CPT2 CPT3 CPT4 CPT6 CPT5 CPT8 CPT7 CPT9
Figure 7 - PMT results p LM, p f (MPa) PMT curves [per depth] 8 7 6 PMT1-3m PMT2-3m PMT3-3m p f p LM E M Volume (cm3) 5 4 3 2 1 2 4 6 8 1 12 14 16 Pressure (bar) 8 7 6 PMT1-6m PMT2-6m PMT3-6m Volume (cm3) 5 4 3 2 1 2 4 6 8 1 12 14 16 Pressure (bar) 1 2 3 E M (MPa) PMT1 PMT2 PMT3 plm plm plm pf pf pf Em Em Em Volume (cm3) 8 7 6 5 4 3 2 1 PMT1-9m PMT2-9m PMT3-9m 2 4 6 8 1 12 14 16 Pressure (bar)
Figure 8a - DMT profiles before driven piles Figure 8b - DMT profiles after driven piles Id Id.1 1 -.1 1 - clay silt sand clay silt sand DMT1 DMT2 DMT3 DMT6 DMT7 DMT4 DMT5 DMT8 DMT9
Figure 8c - DMT profiles before driven piles Figure 8d - DMT profiles after driven piles Kd Kd 1 2 3 4 5-1 2 3 4 5 - DMT1 DMT2 DMT3 DMT6 DMT7 DMT4 DMT5 DMT8 DMT9
Figure 8e - DMT profiles before driven piles Figure 8f - DMT profiles after driven piles Ed (MPa) Ed (MPa) 1 2 3 4 5 6-1 2 3 4 5 6 DMT1 DMT2 DMT3 DMT6 DMT7 DMT4 DMT5 DMT8 DMT9
Table 2 - Identification and soil properties of the laboratory specimens Identification Properties Borehole Specimen Depth Seismic Testing method waves σ' cv σ' ch γ w e Sr w L w P <2um <#2 * <#1 * (m) test # (kpa) (kpa) (kn/m 3 ) (%) (%) (%) (%) (%) (%) (%) G S2/1(c) 3.2 triaxial compression 1 BE 6 3 18.2 16.3.716 62 3 2 5.3 38.5 8 2.74 S2/2(e) 3.5 triaxial extension 2 --- 6 3 16.6 18.8.925 56 2.74 S2 S2/3(c) triaxial compression 1 BE 9 4 18.4 16.2.748 61 4 2 9.5 47.2 74.4 2.82 S2/4(e) 4.4 triaxial extension 2 --- 8 4 18.4 21.7.83 74 2.82 S2/5(c) 5.5 triaxial compression 1 BE 1 5 1 22.5.79 86 NP NP 7.7 41.2 82.5 2.7 S2/6(c) triaxial compression 1 BE 14 7 1 2.2.676 81 NP NP 3.3 4.7 86.9 2.7 S5/1 resonant column RC 8 4 2 13.8.55 74 --- --- --- --- --- --- S5 S5/2 6.3 oedometer --- --- --- 17.8 22.1.818 73 --- --- --- --- --- 2.7 S5/3 resonant column RC 16 8 1 19.7.663 8 --- --- --- --- --- --- (1) CK =.5D under stress-path control: σ v'<<,σ h'= ctt; (2) CK =.5D under strain-path control: σ h'>>, σ v'= ctt * ASTM Sieves's series # BE = bender element test; RC = resonant column test
Figure 9 - Bore-Hole S2: Identification and soil properties profiles w (%) Sieve Analysis, % Passing γ (kn/m 3 ) 1 1 2 2 2 5 7 1 1 16. 1 18. 19. 2. <2um (%) <#2 * (%) <#1 * (%)
Figure 1 Grain size distribution curves 1 ASTM Sieves series (mm) 74.15.18.25.841 4.76 9 S2/1 + S2/2 [3.2-3.8m] 1 8 S2/3 + S2/4 [-4.7m] 2 7 S2/5 [5.5-6.1m] 3 % passed 6 5 S2/6 [-7.6m] 4 5 % retained 4 6 3 7 2 8 1 9 1 1 1.1 1 1 Grain size (mm) CLAY FINE SILT MEDIUM COARSE FINE SAND MEDIUM COARSE GRAVEL 2 6 2 6.2.6 mm
Figure 11 - Oedometer test curve.85.8.75.7 initial conditions e.82 w 22.1% S 72.9% final conditions e f.62 w f 21.3% S f 92.6% Void ratio.65.6.55.5 S5 [6.25-6.5m].45 1.1 1 1 Pressure (MPa)
Figure 12 - Triaxial stress path curves (compression and extension) 4 3 S2/1 (c) S2/2 (e) S2/3 (c) S2/4 (e) S2/5 (c) S2/6 (c) 2 Ko =.5 1 Deviatory stress, q (kpa) -1 5 1 15 2 25 3 35 4-2 -3 p' = (σ' v + 2σ 'h )/ 3-4 q = σ v - σ h Mean effective stress, p' (kpa)
Figure 13 - Triaxial stress strain curves (compression and extension) 4 3 stresses at failure sample σ' vf σ' hf S2/1(c) 27.4 32.3 2 S2/2(e) 73.3 243.9 S2/3(c) 172.8 45.7 Deviatory stress, q (kpa) 1 - - - 7. -1-2 S2/1 (c) S2/2 (e) S2/4(e) 154.2 467.8 S2/5(c) 352.9 5 S2/6(c) 435.9 7 φ cv 32º (Viana da Fonseca, 22) - determined on similar residual soil profiles -3 S2/3 (c) S2/4 (e) S2/5 (c) -4 internal axial strain, ε a (%) S2/6 (c)
Figure 14 Normalized stiffness and damping ratio versus shear strain (RC tests).9 14..8 12..7.6 G/G.5 ξ (%).4.3.2.1 S5/1 S5/3 E-6 E-5 E-4 E-3 shear strain, γ G/G G/G ξ (%) ξ (%)
Figure 15 - Comparison of wave velocities (V P & V S ) in situ and in laboratory V P (m/s) in situ (CH) 5 1 15 2 V S (m/s) in situ (CH) & lab (BE+RC) 1 2 3 4 2 S1+ SPT 4 6 S2 8 1 S3+ SPT 12. 12 S3-S2 S2-S1 14. 14 S2/1 - BE S2/3 - BE S2/5 - BE S2/6 - BE 16. 16 S5/1 - RC S5/2 - RC 18. 18