The Friction Stir Welding Process

Σχετικά έγγραφα
21. Stresses Around a Hole (I) 21. Stresses Around a Hole (I) I Main Topics

Chapter 7a. Elements of Elasticity, Thermal Stresses

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Fundamental Equations of Fluid Mechanics

4.2 Differential Equations in Polar Coordinates

Finite Field Problems: Solutions

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Section 8.3 Trigonometric Equations

The Simply Typed Lambda Calculus

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Inflation and Reheating in Spontaneously Generated Gravity

Lifting Entry (continued)

4.6 Autoregressive Moving Average Model ARMA(1,1)

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

ASYMMETRICAL COLD STRIP ROLLING. A NEW ANALYTICAL APPROACH

Solutions to Exercise Sheet 5

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΧΑΟΤΙΚΕΣ ΚΙΝΗΣΕΙΣ ΓΥΡΩ ΑΠΟ ΜΑΥΡΕΣ ΤΡΥΠΕΣ

Space Physics (I) [AP-3044] Lecture 1 by Ling-Hsiao Lyu Oct Lecture 1. Dipole Magnetic Field and Equations of Magnetic Field Lines

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

e t e r Cylindrical and Spherical Coordinate Representation of grad, div, curl and 2

Approximation of distance between locations on earth given by latitude and longitude

Finite difference method for 2-D heat equation

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Analytical Expression for Hessian

Higher Derivative Gravity Theories

Example Sheet 3 Solutions

6.3 Forecasting ARMA processes

Matrices and Determinants

2. Μηχανικό Μαύρο Κουτί: κύλινδρος με μια μπάλα μέσα σε αυτόν.

ANTENNAS and WAVE PROPAGATION. Solution Manual

Areas and Lengths in Polar Coordinates

EE512: Error Control Coding

Homework 3 Solutions

Problems in curvilinear coordinates

3.7 Governing Equations and Boundary Conditions for P-Flow

Lifting Entry 2. Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion MARYLAND U N I V E R S I T Y O F

Second Order RLC Filters


Every set of first-order formulas is equivalent to an independent set

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

( y) Partial Differential Equations

Concrete Mathematics Exercises from 30 September 2016

High order interpolation function for surface contact problem

Forced Pendulum Numerical approach

Introduction to Theory of. Elasticity. Kengo Nakajima Summer

Inverse trigonometric functions & General Solution of Trigonometric Equations

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Solar Neutrinos: Fluxes

6.003: Signals and Systems. Modulation

Homework 8 Model Solution Section

ΗΜΥ 220: ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Ακαδημαϊκό έτος Εαρινό Εξάμηνο Κατ οίκον εργασία αρ. 2

CE 530 Molecular Simulation

Dr. D. Dinev, Department of Structural Mechanics, UACEG

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Figure A.2: MPC and MPCP Age Profiles (estimating ρ, ρ = 2, φ = 0.03)..

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Problem Set 3: Solutions

Applications. 100GΩ or 1000MΩ μf whichever is less. Rated Voltage Rated Voltage Rated Voltage

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

ΑΡΙΘΜΗΤΙΚΗ ΠΡΟΣΟΜΟΙΩΣΗ ΣΥΝΕΚΤΙΚΗΣ ΡΟΗΣ ΜΕ ΕΛΕΥΘΕΡΗ ΕΠΙΦΑΝΕΙΑ ΚΑΤΑ ΤΗ ΙΑ ΟΣΗ ΚΥΜΑΤΩΝ ΠΑΝΩ ΑΠΟ ΠΥΘΜΕΝΑ ΜΕ ΠΤΥΧΩΣΕΙΣ ΠΕΡΙΛΗΨΗ

On the Galois Group of Linear Difference-Differential Equations

Math 6 SL Probability Distributions Practice Test Mark Scheme

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

Testing for Indeterminacy: An Application to U.S. Monetary Policy. Technical Appendix

( ) ( ) ( ) ( ) ( ) λ = 1 + t t. θ = t ε t. Continuum Mechanics. Chapter 1. Description of Motion dt t. Chapter 2. Deformation and Strain

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

Srednicki Chapter 55

derivation of the Laplacian from rectangular to spherical coordinates

Tridiagonal matrices. Gérard MEURANT. October, 2008

Lecture 34 Bootstrap confidence intervals

Depth versus Rigidity in the Design of International Trade Agreements. Leslie Johns

Numerical Analysis FMN011

Spherical Coordinates

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

12. Radon-Nikodym Theorem

Global nonlinear stability of steady solutions of the 3-D incompressible Euler equations with helical symmetry and with no swirl

Areas and Lengths in Polar Coordinates

A SIMPLE WAY TO ESTABLISH THE EQUATION OF SHELLS s YIELD SURFACE

Linearized Lifting Surface Theory Thin-Wing Theory

Second Order Partial Differential Equations

Oscillating dipole system Suppose we have two small spheres separated by a distance s. The charge on one sphere changes with time and is described by

STEADY, INVISCID ( potential flow, irrotational) INCOMPRESSIBLE + V Φ + i x. Ψ y = Φ. and. Ψ x

ΠΣΤΥΙΑΚΗ ΔΡΓΑΙΑ. Μειέηε Υξόλνπ Απνζηείξσζεο Κνλζέξβαο κε Τπνινγηζηηθή Ρεπζηνδπλακηθή. Αζαλαζηάδνπ Βαξβάξα

Oscillatory Gap Damping

Research Article Two-Phase Flow in Wire Coating with Heat Transfer Analysis of an Elastic-Viscous Fluid

Tutorial Note - Week 09 - Solution

Matrix Hartree-Fock Equations for a Closed Shell System

Section 7.6 Double and Half Angle Formulas

ST5224: Advanced Statistical Theory II

Curvilinear Systems of Coordinates

Exercises to Statistics of Material Fatigue No. 5

If ABC is any oblique triangle with sides a, b, and c, the following equations are valid. 2bc. (a) a 2 b 2 c 2 2bc cos A or cos A b2 c 2 a 2.

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

Repeated measures Επαναληπτικές μετρήσεις

Physics 401 Final Exam Cheat Sheet, 17 April t = 0 = 1 c 2 ε 0. = 4π 10 7 c = SI (mks) units. = SI (mks) units H + M

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

Space-Time Symmetries

Transcript:

1 / 27 The Fiction Sti Welding Pocess Goup membes: Kik Fase, Sean Bohun, Xiulei Cao, Huaxiong Huang, Kate Powes, Aina Rakotondandisa, Mohammad Samani, Zilong Song 8th Monteal Industial Poblem Solving Wokshop 11 August 2017

The FSW pocess 2 / 27

The Fou Phases of Ceating a Weld 3 / 27

Mechanisms of Welding Steady State: Heat Shea flow Applied pessue Plastic/elastic Paametes: Aluminium k 237 E 70 ν 0.35 ρ 2700 cp 897 Steel 24 210 0.3 8170 418 J/s.m.K GPa kg/m3 J/kg.K 4 / 27

5 / 27 Heat What Role Does Heat Play?

6 / 27 The heat model Newtonian Cooling ρc T t = 1 dt p ρ p c p dt = q p [ k T ] + q s (p, s] + h ps (T p T s ) + h p (T p T p ) p V p V p ρ s c s dt s dt = h ps V s (T p T s ) + h s V s (T s T (p, s])

The Heat Equation 7 / 27

8 / 27 Lessons Leaned 1 The shoulde is mostly esponsible fo heating, not the pin. 2 The heat loss though the tool is significant. 3 The heat does not tavel too fa in the diection, due to the lage heat capacity of the mateial. 4 The effect of yielding mateial should be taken into consideation to avoid the constant ise in tempeatue. The mateial should yield in less than 10 s.

9 / 27 Plastic/Elastic Plastic / Elastic

Elastic/Plastic 10 / 27

11 / 27 Elastic/Plastic Equations Elastic equations σ = 0 (1) σ = Cε (2) ε = 1 2 ( u + ut ) (3) Heat Equation ρc DT = (k T ) + σ : ε (4) Dt Plastic equations σ = ρ D v Dt v = 0 (5) ε = Λ σ y (σ 1 3 T(σ)I) = Λ σ y σ dev (6) σy(t 2 ) = 3 2 σdev ij σij dev (7)

Plastic I ( p b ) Foce balance: v = v (), v θ (), 0 ( ) v ρ t + v v v2 θ ( vθ ρ t + v v θ + v ) v θ v + v Constitutive elation: σ = p + σ y v Λ, σ θ = σ ( y vθ 2Λ v θ = σ + 1 (σ σ θθ ), (8) = σ θ + 2 σ θ, (9) = 0. (10) σ θθ = p + σ y v Λ, (11) ), p = 1 3 (σ + σ θθ + σ zz ), (12) (σ p) 2 + (σ θθ p) 2 + (σ zz p) 2 + 2σ 2 θ = 2σ2 y 3. (13) 12 / 27

13 / 27 Elastic I ( b L) Foce balance: u = u (), u θ (), 0 Constitutive elation: 0 = σ + 1 (σ σ θθ ), (14) 0 = σ θ + 2 σ θ. (15) σ = (λ + 2µ)ε + λε θθ, σ θ = 2µε θ, (16) σ θθ = (λ + 2µ)ε θθ + λε, σ zz = λ(ε θθ + ε ), (17) ε = u, ε θ = 1 ( uθ 2 u ) θ, (18) ε θθ = u. (19)

14 / 27 Bounday conditions = p : v θ = γω p, (20) σ θ = fσ. (21) = L: σ = 0, (22) σ θ = 0. (23) = b : v θ = 0, (24) p = p b, (25) [σ ] = 0, (26) [σ θ ] = 0. (27)

15 / 27 Solution fo the elastic defomation in steady state σ = σ b b 2, 2 u = σ b 1+ν E σ θθ = σ b b 2 2, 2 b, u θ = σ b θ 1+ν E σ θ = σθ b b 2, (28) 2 2 b (29)

16 / 27 Solution fo the plastic defomation in steady state Incompessibility gives v = c 1, and fom the flow elations ( ) 3σyc 2 2 1 2 1 Λ = ( ) 4 σy 2 3σθ 2. Shea foce balance gives σ θ = ρc 1v θ and the emaining flow elation gives ( v θ 1 = + 2Λρc 1 σ y with the foce balance giving σ = 2σ yc 1 Λ 3 ρc2 1 3 ρv2 θ, + c 2 2, ) v θ + 2Λc 2 σ y 2, v θ = { γω p at p 0 at b, { σ θ = fσ at p p = p b at b. (30) (31)

Solution fo the plastic defomation in steady state 17 / 27

Solution fo the plastic defomation in steady state 18 / 27

Solution fo the elastic/plastic defomation 19 / 27

20 / 27 Lessons leaned If v = 0 (stationay at pin) solution does not exist If v > 0 (unphysical) then v is huge Inconsistency of plastic flow with incompessible fluid Pehaps a shea stess condition at p is unwise

Plastic II Equations: 0 = dσ d + 1 (σ σ θθ ), (32) 0 = dσ θ d + 2 σ θ, (33) 1 4 (σ σ θθ ) 2 + σθ 2 = σ2 y(t ) (34) Bounday conditions: Solutions: σ = P 0, σ θ = fσ, = p. (35) σ θ () = fp 0 p/ 2 2, (36) σ () = 2 p s σy 2 σθ 2 (s)ds + P 0, (37) σ θθ = σ ± 2 σy 2 σθ 2 (). (38) Use yield citeion and two matching conditions [σ ] = [σ θ ] = 0 to detemine b and σ, b σθ b. Decouples flow and stess. Tempeatue could be useful: σ y = σ y () 21 / 27

22 / 27 Stokes Flow + Heat Equation Numeical simulation with finite element method using Stokes model. (2µ ε) p = 0, (39) v = 0, (40) ρc DT Dt (k T ) Q = 0 (41) Q = α dissipation σ dev : ε with σ dev = 2µ ε (42) ε = 1 2 ( T (v) + (v)) (43) Noton-Hoff law: µ = K(T )(2 ε : ε + 3γ 2 m(t ) 1 ) 2. We assume K and m constant: K = 10 6 and m = 0.2, γ = 10 3.

T Numeical simulation with finite element method 450 400 350 300 Tempeatue 1.2 1 0.8 v θ 250 200 150 100 50 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 v θ 0.6 0.4 0.2 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 1 v 0.5 v 0-0.5-1 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 Stess components seem unstable. Bounday laye? Tempeatue is uncoupled. Still need K = K(T ), m = m(t ). 23 / 27

v θ = 0, v = 0, at = L. 24 / 27 Numeical simulation fo plastic defomation FV We deive the following system with the unkowns (v, v θ, Λ, p) ρ v t + (ρv σ y Λ ) v (σ y Λ ρ v θ t + (ρv σ y Λ ) v θ + ( σ y 2Λ v θ σ y 2Λ Λ = 3 ( 2 2 ( v v ) σ y + Λ 2 v = ρ v2 θ + p, ) 2 1( v θ + 2 v θ ) ) 2, v θ ) (ρv + + σ y ) vθ Λ 3 = 0, and ( p) ( = ( σ y Λ v ) 2σ y + Λ v v ) + ρv ρv2 θ closed by the bounday conditions v θ = γ p ω, σ = 10 5, at = p,

25 / 27 Numeical simulation fo plastic defomation FV To be done late: pessue equation is unstable.

26 / 27 Poposed consistent mechanism Plasticize egion with pessue σ zz Heating is seconday u z o u θ z is impotant (may esolve incompessibility poblem) Tanslation of pin within plastic egion geneates flow Shea flow blending the mateial

Thank you! 27 / 27