Alexei GRICHINE, Mathieu FALLET & Sébastien MAILFERT. October, 2010

Σχετικά έγγραφα
Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

(1) Describe the process by which mercury atoms become excited in a fluorescent tube (3)

[1] P Q. Fig. 3.1

difluoroboranyls derived from amides carrying donor group Supporting Information

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

the total number of electrons passing through the lamp.

Homework 8 Model Solution Section

Section 8.3 Trigonometric Equations

6.003: Signals and Systems. Modulation

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ

6.3 Forecasting ARMA processes

Metal Oxide Varistors (MOV) Data Sheet

NMBTC.COM /

Inverse trigonometric functions & General Solution of Trigonometric Equations

CMOS Technology for Computer Architects

Dong Liu State Key Laboratory of Particle Detection and Electronics University of Science and Technology of China

Διαμόρφωση υποστρωμάτων στη μικροκαι νανο-κλίμακα για την δημιουργία πρωτεϊνικών μικροσυστοιχιών

Strain gauge and rosettes

Instruction Execution Times

Supporting information. An unusual bifunctional Tb-MOF for highly sensing of Ba 2+ ions and remarkable selectivities of CO 2 /N 2 and CO 2 /CH 4

Second Order RLC Filters

Statistical Inference I Locally most powerful tests

SUPPLEMENTARY INFORMATION

Engineering Tunable Single and Dual Optical. Emission from Ru(II)-Polypyridyl Complexes. Through Excited State Design

ΑΝΙΧΝΕΥΣΗ ΓΕΓΟΝΟΤΩΝ ΒΗΜΑΤΙΣΜΟΥ ΜΕ ΧΡΗΣΗ ΕΠΙΤΑΧΥΝΣΙΟΜΕΤΡΩΝ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

ΠΣΤΧΛΑΚΘ ΕΡΓΑΛΑ ΜΕΣΡΘΕΛ ΟΠΣΛΚΟΤ ΒΑΚΟΤ ΑΣΜΟΦΑΛΡΑ ΜΕ ΘΛΛΑΚΟ ΦΩΣΟΜΕΣΡΟ ΕΚΟ

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ

Quantitative chemical analyses of rocks with X-ray fluorescence analyzer: major and trace elements in ultrabasic rocks

Statistics 104: Quantitative Methods for Economics Formula and Theorem Review

Διερεύνηση ακουστικών ιδιοτήτων Νεκρομαντείου Αχέροντα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

ΠΣΤΥΙΑΚΗ ΔΡΓΑΙΑ. Μειέηε Υξόλνπ Απνζηείξσζεο Κνλζέξβαο κε Τπνινγηζηηθή Ρεπζηνδπλακηθή. Αζαλαζηάδνπ Βαξβάξα

Sampling Basics (1B) Young Won Lim 9/21/13

ΜΟΡΙΑΚΕΣ ΤΕΧΝΙΚΕΣ ΠΡΑΓΜΑΤΙΚΟΥ ΧΡΟΝΟΥ ΣΠΑΝΑΚΗΣ ΝΙΚΟΣ

상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님

Tunable Diode Lasers. Turning Laser Diodes into Diode Lasers. Mode selection. Laser diodes

Supporting Information. Introduction of a α,β-unsaturated carbonyl conjugated pyrene-lactose hybrid

Solutions to Exercise Sheet 5

Block Ciphers Modes. Ramki Thurimella

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ. Ειδική διάλεξη 2: Εισαγωγή στον κώδικα της εργασίας

MSM Men who have Sex with Men HIV -

ΓΕΩΜΕΣΡΙΚΗ ΣΕΚΜΗΡΙΩΗ ΣΟΤ ΙΕΡΟΤ ΝΑΟΤ ΣΟΤ ΣΙΜΙΟΤ ΣΑΤΡΟΤ ΣΟ ΠΕΛΕΝΔΡΙ ΣΗ ΚΤΠΡΟΤ ΜΕ ΕΦΑΡΜΟΓΗ ΑΤΣΟΜΑΣΟΠΟΙΗΜΕΝΟΤ ΤΣΗΜΑΣΟ ΨΗΦΙΑΚΗ ΦΩΣΟΓΡΑΜΜΕΣΡΙΑ

The challenges of non-stable predicates

Aluminum Electrolytic Capacitors (Large Can Type)

Solution to Review Problems for Midterm III

ΙΕΥΘΥΝΤΗΣ: Καθηγητής Γ. ΧΡΥΣΟΛΟΥΡΗΣ Ι ΑΚΤΟΡΙΚΗ ΙΑΤΡΙΒΗ

Probability and Random Processes (Part II)

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

CRASH COURSE IN PRECALCULUS

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

Biostatistics for Health Sciences Review Sheet

Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.

Homework 3 Solutions

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

ΠΑΡΑΜΕΤΡΟΙ ΕΠΗΡΕΑΣΜΟΥ ΤΗΣ ΑΝΑΓΝΩΣΗΣ- ΑΠΟΚΩΔΙΚΟΠΟΙΗΣΗΣ ΤΗΣ BRAILLE ΑΠΟ ΑΤΟΜΑ ΜΕ ΤΥΦΛΩΣΗ

Durbin-Levinson recursive method

ΠΕΡΙΕΧΟΜΕΝΑ. Κεφάλαιο 1: Κεφάλαιο 2: Κεφάλαιο 3:

Buried Markov Model Pairwise

Ε Κ Θ Ε Σ Η Δ Ο Κ Ι Μ Ω Ν

Bayesian modeling of inseparable space-time variation in disease risk

Approximation of distance between locations on earth given by latitude and longitude

Η ΠΡΟΣΩΠΙΚΗ ΟΡΙΟΘΕΤΗΣΗ ΤΟΥ ΧΩΡΟΥ Η ΠΕΡΙΠΤΩΣΗ ΤΩΝ CHAT ROOMS

Resurvey of Possible Seismic Fissures in the Old-Edo River in Tokyo

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΓΕΩΤΕΧΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ. Πτυχιακή εργασία

UDZ Swirl diffuser. Product facts. Quick-selection. Swirl diffuser UDZ. Product code example:

5.4 The Poisson Distribution.

ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. ΘΕΜΑ: «ιερεύνηση της σχέσης µεταξύ φωνηµικής επίγνωσης και ορθογραφικής δεξιότητας σε παιδιά προσχολικής ηλικίας»

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11

Physical and Chemical Properties of the Nest-site Beach of the Horseshoe Crab Rehabilitated by Sand Placement

Chapter 1 Introduction to Observational Studies Part 2 Cross-Sectional Selection Bias Adjustment

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Synthesis of Imines from Amines in Aliphatic Alcohols on Pd/ZrO 2 Catalyst at Ambient Conditions

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

Supplementary Information

A life-table metamodel to support management of data deficient species, exemplified in sturgeons and shads. Electronic Supplementary Material

Technical Information T-9100 SI. Suva. refrigerants. Thermodynamic Properties of. Suva Refrigerant [R-410A (50/50)]

ST5224: Advanced Statistical Theory II

* ** *** *** Jun S HIMADA*, Kyoko O HSUMI**, Kazuhiko O HBA*** and Atsushi M ARUYAMA***

Μη επεμβατική μέτρηση των μακροσκοπικών μηχανικών ιδιοτήτων του οφθαλμικού τοιχώματος.

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

Derivation of Optical-Bloch Equations

Μικροσκοπία Φθορισμού Μέρος 3 ο

Example Sheet 3 Solutions

Assalamu `alaikum wr. wb.

Coupling of a Jet-Slot Oscillator With the Flow-Supply Duct: Flow-Acoustic Interaction Modeling

1 String with massive end-points

First Sensor Quad APD Data Sheet Part Description QA TO Order #

65W PWM Output LED Driver. IDLV-65 series. File Name:IDLV-65-SPEC

CT Correlation (2B) Young Won Lim 8/15/14

Molecular Tweezers with Varying Anions - A Comparative Study

FP series Anti-Bend (Soft termination) capacitor series

SMD Transient Voltage Suppressors

Impact of ozone cross-section choice on (WF)DOAS total ozone retrieval

Estimation for ARMA Processes with Stable Noise. Matt Calder & Richard A. Davis Colorado State University

Συστήματα Διαχείρισης Βάσεων Δεδομένων

Managing Economic Fluctuations. Managing Macroeconomic Fluctuations 1

Transcript:

MIFOBIO 2010 : WORKSHOP #45 SPOT VARIATION FLUORESCENCE CORRELATION SPECTROSCOPY & FLUORESCENCE CROSS-CORRELATION STUDIES ON A ZEISS LSM 780 Alexei GRICHINE, Mathieu FALLET & Sébastien MAILFERT October, 2010

SUMMARY 2 / 21 1 THEORETICAL SURVEY General Purpose Fluorescence Correlation Spectroscopy Limitations 2 Biological samples Calibration : waist evaluation Measurements on living cells 3 4

SUMMARY THEORETICAL SURVEY GENERAL PURPOSE FLUORESCENCE CORRELATION SPECTROSCOPY LIMITATIONS 1 THEORETICAL SURVEY General Purpose Fluorescence Correlation Spectroscopy Limitations 2 Biological samples Calibration : waist evaluation Measurements on living cells 3 4

GENERAL PURPOSE FLUORESCENCE CORRELATION SPECTROSCOPY LIMITATIONS GENERAL PURPOSE 4 / 21 FLUORESCENCE CORRELATION SPECTROSCOPY Diffusion time measurements Innovative technique : Spot Variation FCS Diffusion coefficient available Discrimination between free and different models of molecular diffusion (Actin meshwork and Nanodomains)

GENERAL PURPOSE FLUORESCENCE CORRELATION SPECTROSCOPY LIMITATIONS CONVENTIONAL FCS 5 / 21 ω z ω xy CONFOCAL MEASUREMENT Fluorescence fluctuations analysis Confocal spot : ω xy from 200 to 400 nm Two main parameters : 1 Mean number of molecules : N 2 Mean diffusion time : τ d ADVANTAGES Low excitation power Low numbers of molecules (from 1 to 100) Physiological conditions @ 37 C Living cells High spatio-temporal resolution (µs to s, 200 to 400 nm)

GENERAL PURPOSE FLUORESCENCE CORRELATION SPECTROSCOPY LIMITATIONS PRINCIPLE 6 / 21 One point confocal measurement Confocal spot Membrane labeled with fluorescent probe Intensity fluctuations computation: Auto-Correlation Function Nucleus 1.3 Coverstrip Auto-Correlation Function 1.2 τ d 1/N 100x10 3 Intensity fluctuations recording 1.1 95 Rate (Hz) Count 90 85 1.0 0.001 0.01 0.1 1 10 100 1000 Time (ms) 80 0 2 4 6 8 10 12 14 16 18 20 Time (s) G(τ) = < δf(t)δf(t + τ) > < F(t) > 2

GENERAL PURPOSE FLUORESCENCE CORRELATION SPECTROSCOPY LIMITATIONS PRINCIPLE 6 / 21 Quite good N evaluation, not too much points for τ evaluation!

GENERAL PURPOSE FLUORESCENCE CORRELATION SPECTROSCOPY LIMITATIONS OPTICAL SETUP 7 / 21 SPOT VARIATION FCS SETUP Diaphragm: Variable spot size FCS Sample Water Immersion Objective Argon Laser Objective Optical Fiber Dichroïc Mirror Pinhole Fluorescence Filter Avalanche Photodiode

GENERAL PURPOSE FLUORESCENCE CORRELATION SPECTROSCOPY LIMITATIONS SPOT VARIATION FCS 8 / 21 DIFFUSION LAW CONCEPT increasing focal spot size longer diffusion time diffusion time τ d FCS diffusion law spot area

GENERAL PURPOSE FLUORESCENCE CORRELATION SPECTROSCOPY LIMITATIONS SPOT VARIATION FCS 9 / 21 DIFFUSION : EXPERIMENTAL RESULTS & COMPUTER SIMULATION Experimental Results Simulation Results GFP Mean Diffusion Time (Td) Trapping in meshwork (like TfR) HO Free diffusion Td (ms) HO TfR-GFP t 0 > 0 Dynamic partition In isolated domains (like Thy1) GFP HO HO t 0 = 0 t 0 < 0 Accessible spot size Spot Area GFP-Thy1 (GPI Anchor) Spot area Lipid nanodomain Actin cytoskeleton Fluorescent molecule (non excited/excited) Observation volume

GENERAL PURPOSE FLUORESCENCE CORRELATION SPECTROSCOPY LIMITATIONS LIMITATIONS 10 / 21 FCS LIMITATIONS Higher sensitivity to low probe concentration Higher sensitivity to fast events (µs to ms) Diffraction limit Diffusion coefficients available : 0.1 to 10 µm 2 /s Difficult to discriminate 2 populations with similar diffusion time

SUMMARY THEORETICAL SURVEY BIOLOGICAL SAMPLES CALIBRATION : WAIST EVALUATION MEASUREMENTS ON LIVING CELLS 1 THEORETICAL SURVEY General Purpose Fluorescence Correlation Spectroscopy Limitations 2 Biological samples Calibration : waist evaluation Measurements on living cells 3 4

BIOLOGICAL SAMPLES CALIBRATION : WAIST EVALUATION MEASUREMENTS ON LIVING CELLS BIOLOGICAL SAMPLES 12 / 21 ADHERENT CELLS 10 000 to 20 000 cells per well on 8 wells Labtek (here we use COS7 cells) in DMEM culture medium Cells must grow one night to be really adherent @ 37 C, 7% CO2 Prepare buffer solution for FCS : 500µl of HEPES into 50ml of HBSS (Ca2+) HOW TO OBTAIN THE GOOD FAB CONCENTRATION? Fab fragment 50kD Our tube is at 240ng/µl with 1.6 dye / Fab The good FCS dilution is 250ng/ml We must dilute 1µl of Fab in 1ml of buffer (HBSS (with Ca2+) + HEPES) FAB ANTIBODY LABELING Remove the cell culture medium from well Put 200µl of diluted Fab into the well Incubate 10 @ RT Wash 3 times in HBSS (with Ca2+) + HEPES

BIOLOGICAL SAMPLES CALIBRATION : WAIST EVALUATION MEASUREMENTS ON LIVING CELLS CALIBRATION ON KNOWN SOLUTION : SPOT SIZE EVALUATION 13 / 21 1 Laser intensity : 300 µw before objective 2 One drop of Rhodamine 6G solution : D = 280µm 2 /s 3 Intensity fluctuations measurement : 10 20s for example 4 Auto-Correlation computation 5 Mean diffusion time determination : 3D diffusion with Triplet State τ G(τ) = 1 + 1 + n T e τ 1 T ( 1 + τ ) ( ) 1 + s2 τ τ d3d τ d3d 6 Waist evaluation w xy = 4Dτ d3d = 4 280 τ d3d Confocal Spot Intensity fluctuations measurement Mean diffusion time determination 100x10 3 Countrate (Hz) 95 90 85 80 0 Auto-Correlation Function 2 1.3 1.2 1.1 1.0 4 τ d3d 6 8 10 12 Time (s) Rhodamine drop 14 0.001 0.01 0.1 1 10 100 1000 Time (ms) 16 18 20

BIOLOGICAL SAMPLES CALIBRATION : WAIST EVALUATION MEASUREMENTS ON LIVING CELLS RHODAMINE 6G SPECTRA 14 / 21 1.0 Abs. Rhodamine 6G Em. Rhodamine 6G (excitation @480nm) 0.8 Normalized intensity 0.6 0.4 0.2 0.0 400 450 500 550 Wavelenght (nm) 600 650 700 Excitation @488nm : not the max. of absorption Emission : 525±10nm Enough signal because high efficiency

T S P F C -C S R B C : M M : EGFR + F A -A 488 15 / 21 2 XY scan of the sample Mean diffusion time determination : 1 species Slow diffusion (τd1 ) Fast diffusion (τd2 ) but not necessary 6 1 1 G (τ) = 1 + N 1 + τ τd1 Position (µm) Intensity fluctuations measurements : 20 5s for example Z Scan Z scan and choice of 1 point (upper membrane for ex.) x 10 5 0 20 40 60 80 100x103 Countrate (Hz) 3 100x10 S V FCS FCCS Countrate (Hz) 5 y 15 95 90 85 80 0 2 1.20 Auto-Correlation Function 4 Green fluorophore 20 Mean diffusion time Intensity fluctuations determination measurement 3 AntiEGFR Antibody Intracellular domain 30µm Plasma membrane molecule with a labelled anti-egfr Fab antibody XY Scan TransMemb. protein 1 EGF Receptor 4 6 8 10 12 14 16 18 Time (s) 1.15 1.10 1.05 1.00 0.001 0.01 0.1 τ1 d2 10 Time (ms) τ 100 d1 1000 20

BIOLOGICAL SAMPLES CALIBRATION : WAIST EVALUATION MEASUREMENTS ON LIVING CELLS MEASUREMENTS ON LIVING CELLS : EGFR + FAB ANTIBODY-ALEXA488 16 / 21 RESULTS PREVIOUSLY OBTAINED ON OUR SETUP 90 EGFR-Alexa488 80 70 Diffusion Time τd (ms) 60 50 40 30 20 10 0 0.0 0.1 0.2 0.3 Spot Area (µm²) 0.4 T0 14.8 ± 3.4 ms Deff 0.45 ± 0.03µm 2 /s

BIOLOGICAL SAMPLES CALIBRATION : WAIST EVALUATION MEASUREMENTS ON LIVING CELLS MEASUREMENTS ON LIVING CELLS : EGFR + FAB ANTIBODY-FLUOPROBES 17 / 21 LARGE STOKE SHIFT PROBES Fluoprobes 480XXL (Interchim) : λ exc. : 500nm, λ em. : 630nm Fluoprobes 481XXL (Interchim) : λ exc. : 515nm, λ em. : 650nm AIM Use for FCCS with for example Alexa488 and Fluoprobes 480XXL with only one laser @ 488nm and 2 detectors ( egfp and Cy5 channels) No alignment problems but ratio of fluorescence emissions difficult to manage

SUMMARY THEORETICAL SURVEY 1 THEORETICAL SURVEY General Purpose Fluorescence Correlation Spectroscopy Limitations 2 Biological samples Calibration : waist evaluation Measurements on living cells 3 4

FCCS 19 / 21 This setup is based on 2 lasers and 2 channels One dye excited @488nm & one dye excited @633nm Cross-correlation is due to interactions between dyes or when dyes are linked PROBLEMS Both lasers must excite the same part of the sample with a high presicion Cross-correlation could be due to the crosstalk between channels The main idea is to use large shift between both emission spectra and to play with excitation power

SUMMARY THEORETICAL SURVEY 1 THEORETICAL SURVEY General Purpose Fluorescence Correlation Spectroscopy Limitations 2 Biological samples Calibration : waist evaluation Measurements on living cells 3 4

21 / 21 FCS, SVFCS AND BIOLOGICAL APPLICATIONS D. Madge et al. Phys. Rev. Lett., 29 :705-708, 1972. P. Schwille et al. Biophysics Textbook Online, 2004. L. Wawrezinieck et al. Biophys. J., 49 :4029-4042, 2005. P.-F. Lenne et al. EMBO J., 25 :3245-3256, 2006. K. Bacia et al. Nat. Methods, 3 :83-89, 2006. J. Wenger et al. Biophys. J., 92 :913-919, 2007. R. Lasserre et al. Nat Chem Biol., 4(9) :538-47, 2008. P.-F. Lenne et al. Histochem Cell Biol., 130(5) :795-805, 2008. K. Chakrabandhu et al. Cell Death Differ., 15(12) :1824-37, 2008. C. Eggeling et al. Nature, 457 :1159-1162, 2008. A. Rossin et al. Exp Cell Res, 15 ;316(9) :1513-22, 2010.