Τηλ. 361653-3617784 - Fax: 364105, Ιστοσελίδα: Site: 7 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΑΒΒΑΤΟ, 19 ΝΟΕΜΒΡΙΟΥ 011 ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕΔΡΟΥΣ ΕΞΕΤΑΣΤΙΚΩΝ ΚΕΝΤΡΩΝ ΚΑΙ ΕΠΙΤΗΡΗΤΕΣ 1. Παρακαλούμε να διαβάσετε προσεκτικά τις οδηγίες στους μαθητές.. Οι επιτηρητές των αιθουσών θα διανείμουν πρώτα κόλλες αναφοράς, στις οποίες οι μαθητές θα πρέπει απαραίτητα να γράψουν ΕΠΩΝΥΜΟ, ΟΝΟΜΑ, ΣΧΟΛΕΙΟ, ΤΑΞΗ, ΔΙΕΥΘΥΝΣΗ ΚΑΤΟΙΚΙΑΣ και ΤΗΛΕΦΩΝΟ, τα οποία θα ελεγχθούν σε αντιπαραβολή με την ταυτότητα που θα έχουν οι εξεταζόμενοι, πριν καλυφθούν και μετά θα γίνει η υπαγόρευση ή διανομή φωτοτυπιών των θεμάτων στους μαθητές. 3. Να φωτοτυπηθεί και να μοιραστεί σε όλους τους μαθητές η επιστολή που σας αποστέλλουμε μαζί με τα θέματα. 4. Η εξέταση πρέπει να διαρκέσει ακριβώς τρεις (3) ώρες από τη στιγμή που θα γίνει η εκφώνηση των θεμάτων (9-1 περίπου). Δε θα επιτρέπεται σε κανένα μαθητή ν' αποχωρήσει πριν παρέλθει μία ώρα από την έναρξη της εξέτασης. 5. Οι επιτηρητές των αιθουσών έχουν το δικαίωμα ν' ακυρώσουν τη συμμετοχή μαθητών, αν αποδειχθεί ότι αυτοί έχουν χρησιμοποιήσει αθέμιτα μέσα, σημειώνοντας τούτο στις κόλλες των μαθητών. Η επιτροπή Διαγωνισμών της Ε.Μ.Ε. έχει δικαίωμα να επανεξετάσει μαθητή αν έχει λόγους να υποπτεύεται ότι το γραπτό του είναι αποτέλεσμα χρήσης αθέμιτου μέσου. 6. Υπολογιστές οποιουδήποτε τύπου καθώς και η χρήση κινητών απαγορεύονται. 7. Αμέσως μετά το πέρας της εξέτασης, οι κόλλες των μαθητών πρέπει να σφραγιστούν εντός φακέλου ή φακέλων, που θα έχουν την υπογραφή του υπεύθυνου του εξεταστικού κέντρου και ν' αποσταλούν στην Επιτροπή Διαγωνισμών της Ε.Μ.Ε., Πανεπιστημίου 34, 106 79 Αθήνα, αφού πρώτα στα παραρτήματα, εφόσον είναι εφικτό, γίνει μία πρώτη βαθμολόγηση, σύμφωνα με το σχέδιο βαθμολόγησης της επιτροπής διαγωνισμών. 8. Τα αποτελέσματα του διαγωνισμού θα σταλούν στους Προέδρους των Τοπικών Νομαρχιακών Επιτροπών (ΤΝΕ) και τα Παραρτήματα της Ε.Μ.Ε. 9. Ο «ΕΥΚΛΕΙΔΗΣ» θα διενεργηθεί στις 1 Ιανουαρίου 01 και η Εθνική Ολυμπιάδα Μαθηματικών «ΑΡΧΙΜΗΔΗΣ» θα γίνει στις 3 Μαρτίου 01 στην Αθήνα. Από τους διαγωνισμούς αυτούς και επί πλέον από ένα τελικό διαγωνισμό στην Ε.Μ.Ε. και μια προφορική εξέταση με προκαθορισμένη διαδικασία θα επιλεγεί η εθνική ομάδα, που θα συμμετάσχει στην 9 η Βαλκανική Μαθηματική Ολυμπιάδα (Τουρκία, Μάιος 01), στην 16 η Βαλκανική Μαθηματική Ολυμπιάδα Νέων (Ιούνιος 01) και στην 53 η Διεθνή Μαθηματική Ολυμπιάδα (Αργεντινή, Ιούλιος 01). 10. Με την ευκαιρία αυτή, το Δ.Σ. της Ε.Μ.Ε. ευχαριστεί όλους τους συναδέλφους που συμβάλλουν με την εθελοντική τους συμμετοχή στην επιτυχία των Πανελλήνιων Μαθητικών Διαγωνισμών της Ελληνικής Μαθηματικής Εταιρείας. 11. Παρακαλούμε τον Πρόεδρο της ΤΝΕ να αναπαράγει με τα ονόματα των επιτηρητών την ευχαριστήρια επιστολή του Δ.Σ. της Ελληνικής Μαθηματικής Εταιρείας και να την παραδώσει στους επιτηρητές. Για το Διοικητικό Συμβούλιο της Ελληνικής Μαθηματικής Εταιρείας Ο Πρόεδρος Γρηγόριος Καλογερόπουλος Καθηγητής Πανεπιστημίου Αθηνών Ο Γενικός Γραμματέας Εμμανουήλ Κρητικός Λέκτορας Οικονομικού Πανεπιστημίου Αθηνών
Τηλ. 361653-3617784 - Fax: 364105 7 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ 19 Νοεμβρίου 011 Β ΓΥΜΝΑΣΙΟΥ Να υπολογίσετε την τιμή της παράστασης: 1 17 1 1 3 7 1 : 5 1 7 14 7 6 3. Πρόβλημα Αν ο είναι πρώτος φυσικός αριθμός και το κλάσμα 10 παριστάνει φυσικό αριθμό, να βρείτε όλες τις δυνατές τιμές της παράστασης: :. 1 9 5 Τρεις αριθμοί α, β, γ είναι ανάλογοι με τους αριθμούς 3, 9, 11 αντίστοιχα. Αν πάρουμε τον αριθμό γ ως μειωτέο και τον αριθμό α ως αφαιρετέο, τότε προκύπτει διαφορά ίση με 56. Να βρεθούν οι αριθμοί α, β και γ. Δίνεται οξυγώνιο τρίγωνο με και η διχοτόμος του. Προεκτείνουμε τη διχοτόμο ΑΔ κατά το ευθύγραμμο τμήμα ΔΗ έτσι ώστε ΑΔ = ΔΗ. Από το σημείο Η φέρνουμε ευθεία παράλληλη προς την πλευρά ΑΒ που τέμνει την πλευρά ΑΓ στο σημείο Ε και την πλευρά ΒΓ στο σημείο Ζ. 1. Να αποδείξετε ότι : ˆ 90.. Να βρείτε τη γωνία ˆ, αν γνωρίζετε ότι : ˆ ˆ 0 0.
Τηλ. 361653-3617784 - Fax: 364105 7 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ 19 Νοεμβρίου 011 Γ ΓΥΜΝΑΣΙΟΥ Αν 1 3 5, 7 1 10 :10 10 :10 και 10 1000 να βρείτε την τιμή της παράστασης: 6 Πρόβλημα Να βρεθούν οι ακέραιοι που επαληθεύουν και τις δύο ανισώσεις: x 3 x x5 x9 και x. 4 4 8 Στο ορθοκανονικό σύστημα συντεταγμένων y 3 1 x, όπου, με εξίσωση y x Oxy δίνεται ότι η ευθεία με εξίσωση πραγματικοί αριθμοί, είναι παράλληλη με την ευθεία και περνάει από το σημείο,8 (α) Να βρείτε τους πραγματικούς αριθμούς και.. (β) Να επαληθεύσετε ότι τα σημεία 4, 4 και 1, ανήκουν στην ευθεία και να αποδείξετε ότι το σημείο Μ είναι το μέσον του ευθύγραμμου τμήματος ΚΛ. Στο διπλανό σχήμα τα τετράπλευρα ΑΒΓΔ και ΕΖΗΘ είναι τετράγωνα. Το τετράγωνο ΕΖΗΘ έχει πλευρές που εφάπτονται του κύκλου C, στα σημεία Α, Β, Γ και Δ. 1 (α) Να βρείτε το άθροισμα των εμβαδών των τεσσάρων χωρίων που βρίσκονται εσωτερικά του κύκλου C, και εξωτερικά του τετραγώνου ΑΒΓΔ. (β) Να βρείτε το άθροισμα των εμβαδών των τεσσάρων χωρίων που βρίσκονται εσωτερικά του τετραγώνου ΕΖΗΘ και εξωτερικά του κύκλου C,. 1 4 (γ) Να αποδείξετε ότι. (Θεωρείστε ότι 3,1415). 3
Τηλ. 361653-3617784 - Fax: 364105 7 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ 19 Νοεμβρίου 011 Α ΛΥΚΕΙΟΥ Να βρείτε τις ακέραιες λύσεις του συστήματος: x10 x 7x10 0 x 1 x1 xx1. 5 Πρόβλημα Να απλοποιηθεί η παράσταση: x x x x 3x 1 4 3 3 3 1x 1x x 1x 1 1 x 1 1 (α) Αν ακέραιος, να λύσετε την εξίσωση: x x 3 x 1 x. 4 4 (β) Για ποιες τιμές του ακέραιου η παραπάνω εξίσωση έχει ακέραιες λύσεις; Δίνεται οξυγώνιο ισοσκελές τρίγωνο ΑΒΓ (ΑΒ ΑΓ ). Κύκλος με κέντρο την κορυφή Α και ακτίνα τέμνει τις πλευρές ΑΒ και ΑΓ στα σημεία Ε και Δ, αντίστοιχα. Οι ευθείες ΒΔ, ΓΕ τέμνουν για δεύτερη φορά το κύκλο στα σημεία K, N αντίστοιχα. Αν T είναι το σημείο τομής των ΒΔ, ΓΕ και S το σημείο τομής των ΔΝ, ΕΚ, να αποδείξετε ότι τα σημεία Α,S και T βρίσκονται επάνω στην ίδια ευθεία. 3
Τηλ. 361653-3617784 - Fax: 364105 7 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ 19 Νοεμβρίου 011 Β ΛΥΚΕΙΟΥ (α) Να απλοποιήσετε την παράσταση: xx1 x1 x4 x, x x. (β) Να υπολογίσετε την τιμή της αριθμητικής παράστασης: 014019009 006, 010 χωρίς την εκτέλεση των σημειούμενων πράξεων. Πρόβλημα Να αποδείξετε ότι η εξίσωση 1 1 1, x a xb c με άγνωστο το x, έχει ρίζες στο, για όλες τις τιμές των παραμέτρων abc,,, c 0. Να λύσετε στους πραγματικούς αριθμούς το σύστημα: 3 3 3 y x x, z y y, x z z. Δίνεται οξυγώνιο σκαληνό τρίγωνο ΑΒΓ με ΑΒ< ΑΓ < ΒΓ, εγγεγραμμένο σε κύκλο c(o,r). Οι διχοτόμοι των γωνιών ˆΑ, ˆΒ και ˆΓ, τέμνουν το κύκλο c(o,r) στα σημεία Δ, Ε και Ζ αντίστοιχα. Από το σημείο Ζ, θεωρούμε παράλληλη στην ΑΓ, που τέμνει την ΒΓ στο σημείο M. Από το σημείο Ε, θεωρούμε παράλληλη στην ΑΒ, που τέμνει την ΒΓ στο σημείο Ν. Να αποδείξετε ότι: α) Τα τετράπλευρα ΒΜΟΖ και ΓΝΟ Ε είναι εγγράψιμα σε κύκλους, έστω (c 1) και (c ), αντίστοιχα. β) Το δεύτερο κοινό σημείο, έστω Κ, των κύκλων (c 1) και (c ) ανήκει στο κύκλο με κέντρο το σημείο Δ και ακτίνα ΔΙ, όπου Ι το έκκεντρο του τριγώνου ΑΒΓ.
Τηλ. 361653-3617784 - Fax: 364105 7 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ 19 Νοεμβρίου 011 Γ ΛΥΚΕΙΟΥ Να λυθεί στους πραγματικούς αριθμούς η εξίσωση x 3x x x 16x 4 4 4. Πρόβλημα Να προσδιορίσετε την τιμή της παραμέτρου,, αν το σύστημα έχει λύση στο x y x y, x y ( Σ ), για κάθε τιμή της παραμέτρου. Η ακολουθία a, n n 0,1,,... είναι τέτοια ώστε η ακολουθία d, n an an 1 με n 1,,.3,... είναι αριθμητική πρόοδος με διαφορά a1 a0. 1. Να προσδιορίσετε, συναρτήσει των a, 0 και n τον γενικό όρο a n και το άθροισμα S n 1 a 0 a 1 a n.. Αν είναι a0 1 και a1 7, να προσδιορίσετε τον ελάχιστο θετικό ακέραιο n 3 3 για τον οποίο συναληθεύουν οι ανισώσεις: a 10 και 810. n Sn 1 Δίνεται οξυγώνιο σκαληνό τρίγωνο ΑΒΓ με ΑΒ< ΑΓ < ΒΓ, εγγεγραμμένο σε κύκλο (c) και Δ τυχόν σημείο της πλευράς ΒΓ. Η διχοτόμος της γωνίας ˆΒ, τέμνει τον κύκλο (c) στο σημείο Σ, τη διχοτόμο της γωνίας ΑΔΒ ˆ στο σημείο Κ και τη διχοτόμο της γωνίας ΑΔˆ Γ στο σημείο M. Η διχοτόμος της γωνίας ˆΓ, τέμνει τον κύκλο (c) στο σημείο Τ, τη διχοτόμο της γωνίας ΑΔΓ ˆ στο σημείο Λ και τη διχοτόμο της γωνίας ΑΔˆ Β στο σημείο N. Να αποδείξετε ότι: α) Τα σημεία Α,Ι,Λ,Μ και Α,Ι,Κ, Ν, όπου Ι το έκκεντρο του τριγώνου ΑΒ Γ, είναι ομοκυκλικά σε δύο διαφορετικούς κύκλους, έστω (c 1) και (c ), αντίστοιχα. β) Αν η ΑΔ ταυτιστεί με το ύψος του τριγώνου ΑΒΓ που αντιστοιχεί στη κορυφή Α, τότε οι κύκλοι (c 1) και (c ) είναι ίσοι μεταξύ τους.