Ευκλείδης Β' Λυκείου ΜΕΡΟΣ Α
|
|
- Εφθαλία Γαλάνης
- 9 χρόνια πριν
- Προβολές:
Transcript
1 Ευκλείδης Β' Λυκείου ΜΕΡΟΣ Α. Δύο ίσα τετράγωνα ΑΒΓΔ και ΕΖΗΘ πλευράς 0 τοποθετούνται έτσι ώστε η κορυφή Ε να βρίσκεται στο κέντρο του τετραγώνου ΑΒΓΔ. Το εμβαδό του μέρους του επιπέδου που καλύπτεται κατ' αυτόν τον τρόπο είναι α) 75 β) 0 γ) 5 δ) 50 η) 75. Τρεις κύβοι με όγκο, 8, 7 είναι κολλημένοι μεταξύ τους στις έδρες τους. Η ελάχιστη δυνατή επιφάνεια του σχηματιζόμενου στερεού έχει εμβαδό α) 36 β) 56 γ) 70 δ) 7 η) Αν x, y είναι πραγματικοί αριθμοί, συμβολίζουμε με m(x,y) τον μικρότερο από τους x, y και αντίστοιχα με Μ(x,y) τον μεγαλύτερο από τους x, y. Αν α<β<γ<δ<ε τότε Μ{Μ[α,m(β,γ)],m[δ,m(α,ε)]} = α) α β) β γ) γ δ) δ ε) ε 4. Σ' ένα σάκο υπάρχουν μπλε και κόκκινοι βόλοι. Αν αφαιρέσουμε από τον σάκο ένα κόκκινο βόλο, τότε το ένα έβδομο των υπόλοιπων βόλων είναι κόκκινοι. Αν, αντί του κόκκινου βόλου αφαιρέσουμε από τον σάκο δύο μπλε βόλους, τότε το ένα πέμπτο των υπόλοιπων βόλων είναι κόκκινοι. Πόσοι βόλοι υπήρχαν στο σάκο; α) 8 β) γ) 36 δ) 57 η) 7 5. Ένα ορθογώνιο παραλληλόγραμμο με διαστάσεις 8 και έχει το ίδιο κέντρο μ' ένα κύκλο ακτίνας. Το κοινό εμβαδό των δύο γεωμετρικών σχημάτων είναι α) π β) π+ γ) 4π 4 δ) π+4 η) π 6. Μέσα σ' ένα κουτί υπάρχουν: μία σφαίρα σημαδεμένη με τον αριθμό δύο σφαίρες σημαδεμένες με τον αριθμό τρεις σφαίρες σημαδεμένες με τον αριθμό 3... και πενήντα σφαίρες σημαδεμένες με τον αριθμό 50. Ποιος είναι ο ελάχιστος αριθμός σφαιρών που πρέπει να τραβήξουμε τυχαία από το κουτί για να είμαστε σίγουροι ότι θα υπάρχουν δέκα σφαίρες σημαδεμένες με τον ίδιο αριθμό; α) 0 β) 5 γ) 45 δ) 45 η) 50
2 7. Αν οι αριθμοί α, β, γ είναι διαδοχικοί όροι Γ.Π. με λόγο λ και οι αριθμοί α, β, 3γ είναι διαδοχικοί όροι Α.Π., τότε ο λόγος λ ισούται με α) 4 β) 3 γ) δ) η) 4 8. Εννέα καρέκλες σε ευθεία γραμμή πρόκειται να καλυφθούν από 6 μαθητές και 3 καθηγητές Α, Β, Γ. Οι καθηγητές φθάνουν πριν από τους μαθητές και αποφασίζουν να επιλέξουν τις καρέκλες τους έτσι, ώστε κάθε καθηγητής να έχει αμέσως δεξιά του και αμέσως αριστερά του μαθητή. Κατά πόσους διαφορετικούς τρόπους μπορούν οι καθηγητές να διαλέξουν τις καρέκλες τους; α), β) 36, γ) 60, δ) 84, η) Αν α, β είναι μη μηδενικοί πραγματικοί αριθμοί που ικανοποιούν τις σχέσεις: α β + β 3 =0 και α + β=3, τότε ο πλησιέστερος ακέραιος στον αριθμό α β είναι α) 3 β) γ) δ) 3 η) 5 0. Αν ρίξουμε ν ζάρια, η πιθανότητα να πάρουμε άθροισμα 994 είναι θετική και ισούται με την πιθανότητα να πάρουμε ως άθροισμα κάποιο αριθμό Α. Η μικρότερη δυνατή τιμή του Α είναι α) 333 β) 335 γ) 337 δ) 339 η) 34 ΜΕΡΟΣ Β. Έστω β>3, β ακέραιος, μία βάση την οποία χρησιμοποιούμε για την παράσταση αριθμών (στο δεκαδικό σύστημα β=0). Να αποδειχτεί ότι ο αριθμός που έχει παράσταση 3 στη βάση β δεν μπορεί να είναι τετράγωνο ακέραιου αριθμού.. Μία κοινή εσωτερική εφαπτομένη δύο κύκλων τέμνει τις κοινές εξωτερικές εφαπτόμενες των κύκλων αυτών στα σημεία Α και Δ. Η ευθεία ΑΔ συναντά τους κύκλους στα σημεία Β και Γ. Να αποδειχτεί ότι ΑΒ=ΓΔ. 3. Να βρεθούν όλοι οι πραγματικοί αριθμοί x τέτοιοι, ώστε ο αριθμός Α=[ x 3 x ] 3 [ x 3 3 x ] να είναι ακέραιος.
3 Ευκλείδης Β' Λυκείου Έστω πολυώνυμο Ρ x = x ν ν x ν ν, ν N, ν 0. α) Να εξετάσετε αν υπάρχει ν, ώστε Ρ =3 ν. β) Να αποδείξετε ότι Ρ = Ρ ν.. Έστω τρίγωνο ΑΒΓ με Α= Β, ΑΔ-διχοτόμος, Ε το μέσο της ΑΓ και η ΔΕ είναι παράλληλη προς την ΑΒ. Να βρεθούν οι γωνίες του ΑΒΓ. 3. Έστω παραλληλόγραμμο ΑΒΓΔ και ευθείες ε και ε που διέρχονται από το Α και τέμνουν τις ΒΔ, ΓΔ, ΒΓ στα Ε, Ζ, Η και Κ, Λ, Μ αντίστοιχα. Αν ΑΕ= λ ΑΚ, λ 0, να δειχτεί ότι: ΕΖ ΕΗ ΚΛ ΚΜ = λ. 4. Σε 4 κουτιά υπάρχουν 5 σοκολάτες και είναι γνωστό ότι κάθε κουτί περιέχει ή ή 3 σοκολάτες. Ακόμα γνωρίζουμε ότι ο αριθμός των κουτιών με μια σοκολάτα είναι μεγαλύτερος του 6 και ότι ο αριθμός των σοκολατών στα κουτιά με ή 3 σοκολάτες είναι μεγαλύτερος από 7. Να προσδιορίσετε πόσα κουτιά περιέχουν μία, δύο ή τρεις σοκολάτες.
4 Ευκλείδης Β' Λυκείου Έστω οι αριθμοί α, β, γ, δ τοποθετημένοι στις θέσεις: α γ β δ Κάνουμε την παρακάτω κίνηση: Είτε προσθέτουμε έναν ακέραιο (θετικό ή αρνητικό) σε κάθε στοιχείο μιας γραμμής, είτε προσθέτουμε έναν ακέραιο (θετικό ή αρνητικό) σε κάθε στοιχείο μιας στήλης. Να δειχτεί ότι μπορούμε να καταλήξουμε στο αν και μόνο αν α δ= β γ Να λυθεί στο σύνολο των ακεραίων το σύστημα { x y z =55 x y z= }. 3. Έστω ισοσκελές τρίγωνο ΑΒΓ (AB=AΓ) εγγεγραμμένο σε κύκλο (Ο,R). Η εφαπτομένη του κύκλου στο Γ τέμνει την προέκταση της ΑΒ στο Ε, η διχοτόμος της Α E Γ τέμνει την ΑΓ στο Ζ και η ΒΖ τέμνει τον κύκλο στο Κ και τη ΓΕ στο Λ. Να δειχτεί ότι ΚΖ ΚΛ = ΑΖ ΑΓ ΕΒ ΕΛ. 4. Έστω το σύνολο Α={α, α,..., α ν }, α i 0, i=,,..., ν. Για κάθε i, j υπάρχει κ, i, j, κ ν ώστε α κ = α i α j. Να δειχτεί ότι α i =0 για όλα τα i.
5 Ευκλείδης Β' Λυκείου Έστω α,β N * και A= α3 β β 3 α N*. Να δειχτεί ότι οι αριθμοί α 3 β, β 3 α είναι φυσικοί.. Έστω ορθογώνιο ΑΒΓΔ με ΑΒ= ΑΔ. Με διάμετρο την ΓΔ γράφουμε ημικύκλιο στο εξωτερικό του ΑΒΓΔ και συνδέουμε τυχαίο σημείο M του ημικυκλίου με τα Α, Β. Έστω Κ, Λ οι τομές των ΜΑ, ΜΒ με την ΓΔ. Να δειχτεί ότι ΔΛ +ΔΚ =ΑΒ. (Η άσκηση αυτή κατασκευάστηκε από τον P. Fermat και λύσεις έδωσαν οι L.Euler, R Simson κ.α.) 3. Να δειχτεί ότι ο αριθμός Α=... ν ψηφία ν ψηφία... είναι σύνθετος για κάθε ν N *. 4. Έστω 0 α, β,γ,δ και 0 x, y,z,w ώστε α+β+γ+δ=x+y+z+w= (). Να δειχτεί ότι αx+βy+γz+δw min { α β, α γ, α δ, β γ, β δ, γ δ }.
6 Ευκλείδης Β' Λυκείου Έστω η συνάρτηση f: N R με f()=999 και ισχύει f()+f()+...+f(ν)=ν f(ν), ν N. Να υπολογιστεί ο f(999).. Να βρεθούν όλοι οι ακέραιοι ν, για τους οποίους η εξίσωση x y = ν x y, xy x y 0 έχει ακέραιες λύσεις. 3. Για α, α,..., α ν Ρ ονομάζουμε άθροισμα Cesaro τον αριθμό C v = s s...=s v, όπου v s κ =α +α +...+α κ. Το άθροισμα Cesaro των αριθμών α, α,..., α 99 είναι 000. Να υπολογιστεί το άθροισμα Cesaro των αριθμών, α, α,..., α Έστω τρίγωνο ΑΒΓ και Θ το βαρύκεντρο. Από το Θ παίρνουμε ευθεία που τέμνει τις ΑΒ, ΑΓ στα Κ, Λ αντίστοιχα. Να δειχτεί ότι ΒΚ 4 ΑΚ ΓΛ 4 ΑΛ 8.
7 Ευκλείδης Β' Λυκείου Στο σχήμα τα τετράπλευρα ΑΒΓΔ και ΓΕΖH είναι τετράγωνα και οι περιγεγραμμένοι κύκλοι τους τέμνονται στα Γ και Μ. Να δειχτεί ότι: Α Η Μ Β Ζ ) Τα σημεία Δ, Μ και Η είναι συνευθειακά. ) Τα σημεία Μ, Β και Ε είναι συνευθειακά. Δ Γ Ε. Να δειχτεί ότι x xy 0. y y x 5 x y y x 6 0 για όλους τους πραγματικούς x, y με 3. Έστω κύκλος (Ο,R) και χορδή του ΒΓ μήκους α<r. Σημείο Α κινείται στο τόξο ΒΓ έτσι ώστε Β Α Γ 90 ο. Να προσδιορίσετε τη θέση του Α, για την οποία η παράσταση ΑΒ +ΑΓ γίνεται μέγιστη και να βρείτε τη μέγιστη τιμή της παράστασης. 4. Ο εξαψήφιος αριθμός α000β είναι πολλαπλάσιο του 99. Να βρεθούν τα ψηφία α και β.
8 Ευκλείδης Β' Λυκείου Έστω κύκλος (Ο,R), μια διάμετρός του ΑΒ και ένα σημείο του Γ διαφορετικό των Α, Β. Θεωρούμε τις εφαπτόμενες του κύκλου στα σημεία Β και Γ αντιστοίχως, οι οποίες τέμνονται στο Ρ. Η κάθετος από το Γ προς τη διάμετρο ΑΒ την τέμνει στο Δ, ενώ η ευθεία ΑΡ τέμνει την ευθεία ΓΔ στο Ε. Να υπολογιστεί ο λόγος ΓΕ ΓΔ.. Για x,y,z>0 να αποδειχτεί ότι: α) x 3 y 3 x xy y x y β) f x, y, z = x 3 x xy y y 3 y yz z z 3 x y z. z zx x 3. Θεωρούμε το ευθύγραμμο τμήμα ΑΒ=3α και τα σημεία του Γ και Θ με ΒΓ=α, ΒΘ=α. Κατασκευάζουμε τα τετράγωνα ΒΓΔΕ και ΒΘΗΖ εκατέρωθεν του ΑΒ. Να αποδείξετε ότι οι ευθείες ΑΒ, ΔΖ και ΕΗ διέρχονται από το ίδιο σημείο. 4. Δύο μαθητές Α και Β παίζουν το ακόλουθο παιχνίδι: Πάνω σε ένα κύκλο δίνονται 00 διαφορετικά σημεία και οι δύο μαθητές διαδοχικά ο ένας μετά τον άλλο γράφουν μια χορδή, διαφορετική κάθε φορά, με άκρα δύο οποιαδήποτε από τα 00 δεδομένα σημεία. Το παιχνίδι τελειώνει όταν καθένα από τα 00 σημεία χρησιμοποιηθεί ως άκρο χορδής μία τουλάχιστον φορά. Νικητής είναι ο μαθητής ο οποίος θα γράψει τη χορδή με την οποία τελειώνει το παιχνίδι. Αν ο μαθητής Α αρχίσει πρώτος, ποιος από τους δύο μαθητές έχει στρατηγική νίκης; (δηλαδή ποιος από τους δύο μαθητές μπορεί να παίξει έτσι, ώστε να νικήσει, ανεξαρτήτως του πως θα παίξει ο άλλος;)
9 Ευκλείδης Β' Λυκείου Να βρείτε όλες τις τιμές του α R για τις οποίες το σύστημα Σ : { x y x x y α=0 } έχει μοναδική λύση και για τις τιμές αυτές να το λύσετε.. Δίνεται ορθογώνιο τρίγωνο ΑΒΓ με A=90 o. Από σημείο Δ της πλευράς ΑΒ φέρνουμε δύο ευθείες που χωρίζουν το τρίγωνο ΑΒΓ σε τρία τρίγωνα ίσα μεταξύ τους. Να δειχτεί ότι: ) Το σημείο Δ είναι εσωτερικό σημείο της πλευράς ΑΒ, δηλαδή δεν είναι ένα από τα άκρα του. ) B=30 ο. 3. Έστω τρίγωνο ΑΒΓ με A 90 ο. Φέρνουμε ευθύγραμμο τμήμα ΑΔ κάθετο και ίσο προς την πλευρά ΑΒ καθώς και ευθύγραμμο τμήμα ΑΕ κάθετο και ίσο προς την πλευρά ΑΓ, έτσι ώστε Δ Α Ε 90 ο. Να αποδείξετε ότι η ευθεία που διέρχεται από το Α και το μέσον της ΒΕ είναι κάθετη προς την ευθεία ΓΔ. 4. Στην Ε.Μ.Ε. γίνονται μαθήματα προετοιμασίας για τις Διεθνείς Μαθηματικές Ολυμπιάδες για τους 0 μαθητές που προκρίνονται στην τελική φάση. Διδάσκονται 4 μαθήματα: Γεωμετρία, Θεωρία αριθμών, Συνδυαστική, Άλγεβρα. Δήλωσαν συμμετοχή: στη Γεωμετρία 5 μαθητές, στη Θεωρία αριθμών 3, στη Συνδυαστική 4 και στην Άλγεβρα 9 μαθητές. Να αποδείξετε ότι ένας τουλάχιστον μαθητής δήλωσε συμμετοχή και στα 4 μαθήματα.
10 Ευκλείδης Β' Λυκείου Για τους ακέραιους α, β ισχύει α β = 4αβ α β. α) Να αποδείξετε ότι το α+β είναι τέλειο τετράγωνο. β) Να βρείτε τα ζεύγη (α,β) των ακεραίων που ικανοποιούν την ().. Στο καρτεσιανό επίπεδο Οxy θεωρούμε 5 σημεία με συντεταγμένες (κ,λ), όπου κ,λ {0,,, 3, 4}. Να προσδιορίσετε το πλήθος των τετραγώνων που κατασκευάζονται με κορυφές 4 από τα 5 δεδομένα σημεία. 3. Δίνεται ορθογώνιο τρίγωνο ΑΒΓ Α=90 ο. Εξωτερικά του τριγώνου κατασκευάζουμε τα ισόπλευρα τρίγωνα ΒΓΔ και ΑΓΕ. Έστω Μ το μέσο της ΑΒ και ΜΔ=u, ΜΕ=v. Να υπολογίσετε το μήκος της ΑΒ, ως συνάρτηση των u, v. 4. Αν ισχύει α 6 α 4 α = 3, να δειχτεί ότι α 8 >.
11 Ευκλείδης Β' Λυκείου Να λύσετε στο σύνολο των πραγματικών αριθμών την εξίσωση Ε : 9x 3x 3 4y y 9 =55.. Έστω α, β θετικοί ακέραιοι με β α. Θεωρούμε και τους αριθμούς Α= α β α, Β= α β α. Να δειχτεί ότι: ) Ο αριθμός α β είναι άρρητος. ) Ο αριθμός Α είναι άρρητος με 0<Α<0,5. 3) Ο αριθμός Β είναι άρρητος με δεκαδικό μέρος μεγαλύτερο του 0, Δίνεται ισόπλευρο τρίγωνο ΑΒΓ πλευράς α και σημεία Δ, Ε και Ζ πάνω στις πλευρές ΒΓ, ΓΑ και ΑΒ αντίστοιχα, έτσι ώστε ΓΔ= α 3, Ε μέσον της ΓΑ και ΖΑ= 3α 3. Να βρεθεί η γωνία Δ Ε Ζ. 4. Δίνεται ορθογώνιο ΑΒΓΔ με ΒΓ<ΑΒ<ΒΓ. Στις πλευρές ΑΒ, ΒΓ και ΓΔ παίρνουμε τα σημεία Μ, Ρ και Ν, αντίστοιχα, τέτοια ώστε ΜΒ=ΓΡ=ΔΝ=ΑΒ ΒΓ. ) Να βρεθεί η γωνία Ρ Α Ν. ) Να αποδείξετε ότι Ν Μ Γ π 4.
12 Ευκλείδης Β' Λυκείου Δίνεται τρίγωνο ΑΒΓ με Β=3 Γ. Η μεσοκάθετη της ΒΓ τέμνει την ΑΓ στο Δ. Από το Α φέρνουμε κάθετη προς τη ΒΔ που τέμνει τη ΒΔ στο Ε και τη ΒΓ στο Ζ. Η παράλληλη από το Δ προς τη ΒΓ τέμνει την ΑΖ στο σημείο Ι. Να αποδείξετε ότι: α) Η ΒΙ είναι διχοτόμος της γωνίας Α Β Δ. β) Το τετράπλευρο ΒΖΔΙ είναι ρόμβος.. Δίνεται τρίγωνο ΑΒΓ με ΑΒ>ΑΓ και η κάθετος από το Γ προς τη διάμεσο ΑΔ την τέμνει στο Ε και ισχύει Α Β Γ = Α Γ Ε. Να αποδείξετε ότι το τρίγωνο ΑΒΓ είναι ορθογώνιο. 3. Οι πραγματικοί αριθμοί x, y, z ικανοποιούν τις σχέσεις: Σ : { x y z=6 x y z =96}. α) Να αποδείξετε ότι και οι τρεις ανήκουν στο διάστημα [ 8 3, 6 3 ]. β) Αν x, y,z Z με x y z, να βρείτε τις τριάδες (x,y,z) που είναι λύσεις του (Σ). 4. Δίνεται τρίγωνο ΑΒΓ με πλευρές ΒΓ=α<ΓΑ=β<ΑΒ=γ. Να εξετάσετε αν είναι δυνατόν να ελαττωθούν και οι τρεις πλευρές κατά το ίδιο μήκος, έτσι ώστε να γίνουν πλευρές ορθογωνίου τριγώνου.
13 Ευκλείδης Β' Λυκείου Υπάρχει θετικός ακέραιος ν τέτοιος ώστε: α) Ο 3ν είναι τέλειος κύβος, ο 4ν τέλεια τέταρτη δύναμη και ο 5ν τέλεια πέμπτη δύναμη; β) Ο 3ν είναι τέλειος κύβος, ο 4ν τέλεια τέταρτη δύναμη, ο 5ν τέλεια πέμπτη δύναμη και ο 6ν τέλεια έκτη δύναμη;. Να βρεθούν πραγματικοί αριθμοί x, y, z, w για τους οποίους ισχύει: x y y z z w x w= x. Γ 3. Οι κορυφές Α, Β, Γ, Δ, Ε μιας τεθλασμένης γραμμής βρίσκονται πάνω σε ένα κύκλο όπως στο σχήμα. Είναι Α Β Γ = Β Γ Δ= Γ Δ Ε=45 ο. Να δειχτεί ότι ΑΒ +ΓΔ =ΒΔ +ΔΕ. Α 45 ο Β 45 ο Ε 45 ο Δ 4. Μια πραγματική συνάρτηση f είναι ορισμένη στο Ρ και ισχύει: f x f x f x = f x, για κάθε x P. Να δειχτεί ότι για κάθε x P ισχύουν: α) f x β) f x 0 γ) f(x+4)=f(x).
14 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) ΑΘΗΝΑ Τηλ Fax: GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou Venizelou) Str. GR Athens HELLAS Tel Fax: Web site: ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 67ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ " Ο ΕΥΚΛΕΙΔΗΣ " ΣΑΒΒΑΤΟ, 0 ΙΑΝΟΥΑΡΙΟΥ 007. Δίνεται ότι το πολυώνυμο ( ) 3 Β ΛΥΚΕΙΟΥ Ρ x = x + κ x+ λ με κ, λ έχει τις πραγματικές ρίζες x, x, και x 3 που ανά δύο είναι διαφορετικές μεταξύ τους. Να εκφράσετε την παράσταση συναρτήσει των κ, λ. ( x )( )( x x 3 ) Γ=. Θεωρούμε τόξο ΑΒ = 90 και προεκτείνουμε τη χορδή ΑΒ κατά ευθύγραμμο τμήμα ΒΓ=ΑΒ. Ονομάζουμε Δ το σημείο επαφής της εφαπτομένης του τόξου ΑΒ από το Γ και Κ το ίχνος της κάθετης από το Α προς τη ΒΔ. Να αποδείξετε ότι: ΚΒ= ΚΑ. 3. Αν α, β είναι θετικοί ακέραιοι, να αποδείξετε ότι: α + β α + β α+ β α β α β. 4. Δίνεται τρίγωνο ΑΒΓ. Από σημείο Μ της πλευράς ΒΓ φέρουμε παράλληλες προς τις ΑΓ και ΑΒ που τέμνουν τις ΑΒ και ΑΓ στα σημεία Κ και Λ, αντίστοιχα. Αν είναι ΜΚ= x, ΜΛ= y, να βρείτε το ελάχιστο της παράστασης S = x + y και τη θέση του σημείου Μ για την οποία λαμβάνεται αυτό. Διάρκεια διαγωνισμού: 3 ώρες Καλή επιτυχία
15 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) ΑΘΗΝΑ Τηλ Fax: GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou Venizelou) Street GR Athens - HELLAS Tel Fax: ΕΠΙΤΡΟΠΗ ΙΑΓΩΝΙΣΜΩΝ 68 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙ ΗΣ ΣΑΒΒΑΤΟ, 9 ΙΑΝΟΥΑΡΙΟΥ 008 Β τάξη Λυκείου Πρόβλημα Να λύσετε την εξίσωση: x + = 3 3x. Πρόβλημα Σε ένα τουρνουά ποδοσφαίρου συμμετέχουν n ομάδες οι οποίες θα παίξουν όλες μεταξύ τους μία μόνο φορά. Για τη νίκη μιας ομάδας δίνονται 3 βαθμοί, για την ισοπαλία βαθμοί και για την ήττα βαθμό. Αν στο τέλος του τουρνουά ο συνολικός αριθμός των βαθμών που συγκέντρωσαν όλες οι ομάδες είναι 364, να βρεθεί ο αριθμός n των ομάδων που συμμετείχαν. Πρόβλημα 3 Αν για τους πραγματικούς αριθμούς x, yz, ισχύει x y z x y z = 0, τότε να προσδιορίσετε το μέγιστο θετικό αριθμό m που είναι τέτοιος ώστε: Πρόβλημα 4. x+ y+ z+ m 0. Δίνεται τραπέζιο ΑΒΓΔ με ˆ ˆ Α=Β= 90, ΑΔ= α και ΑΒ=ΒΓ= α. (i) Να αποδείξετε ότι: ΔΑ + ΑΓ < ΔΒ + ΒΓ. (ii) Να βρείτε σημείο Μ πάνω στην ευθεία ΑΒ για το οποίο το άθροισμα ΔΜ + ΜΓ (iii) είναι το ελάχιστο δυνατό. Για το σημείο Μ που θα βρείτε, να υπολογίσετε το εμβαδόν του τριγώνου ΔΜΓ. ΚΑΛΗ ΕΠΙΤΥΧΙΑ
16 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) ΑΘΗΝΑ Τηλ Fax: GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou Venizelou) Street GR Athens - HELLAS Tel Fax: ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 69 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 7 ΙΑΝΟΥΑΡΙΟΥ 009 Β τάξη Λυκείου Πρόβλημα Να προσδιορίσετε τις τιμές του έχει μία μόνο λύση. Για τις τιμές του a a για τις οποίες το σύστημα x + 4y = 4a ax y = a, που θα βρείτε, να λύσετε το σύστημα. Πρόβλημα Έστω S = x+ y+ z και S = xy+ yz+ zx, όπου xyz,, τέτοιοι ώστε να ικανοποιούν την ισότητα x ( y+ z) + y ( z+ x) + z ( x+ y) = 6. (α) Να αποδείξετε ότι: 3xyz = SS 6. Μονάδες 4 (β) Να προσδιορίσετε τους αριθμούς x, yz,, αν είναι S = 3 και S =. Μονάδες Πρόβλημα 3 Δίνεται ορθογώνιο τρίγωνο ΑΒΓ με ˆ Α= 90. Αν ΑΔ είναι ύψος του τριγώνου και Κ, Κ, Κ 3 είναι τα κέντρα των εγγεγραμμένων κύκλων των τριγώνων ΑΒΔ, ΑΓΔ, ΑΒΓ, αντίστοιχα, να αποδείξετε ότι: ΑΚ 3 = ΚΚ. Πρόβλημα 4. Να προσδιορίσετε την τιμή του ακέραιου αριθμού k,< k < 30και μη σταθερό πολυώνυμο P( x) για κάθε x. με πραγματικούς συντελεστές, έτσι ώστε να ισχύει: ( x k) P( x) = k( x ) P( x) 3, ΚΑΛΗ ΕΠΙΤΥΧΙΑ
17 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) ΑΘΗΝΑ Τηλ Fax: GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou Venizelou) Street GR Athens - HELLAS Tel Fax: Πρόβλημα ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 70 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 3 ΙΑΝΟΥΑΡΙΟΥ 00 Να προσδιορίσετε όλες τις τριάδες (,, ) x yz πραγματικών αριθμών που είναι λύσεις του συστήματος: Β τάξη Λυκείου x + y = 65z x y+ xy = 0z x y+ z = 0. 3 Πρόβλημα Δίνεται οξυγώνιο και σκαληνό τρίγωνο ABC, K τυχόν σημείο στο εσωτερικό του και τα ύψη του AH, BH, CH 3. Ο περιγεγραμμένος κύκλος του τριγώνου AH H 3 τέμνει την ημιευθεία AK στο σημείο K, ο περιγεγραμμένος κύκλος του τριγώνου BHH 3 τέμνει την ημιευθεία BK στο σημείο K και ο περιγεγραμμένος κύκλος του τριγώνου CHH τέμνει τη ημιευθεία CK στο σημείο K 3. Να αποδείξετε ότι τα σημεία K, K, K3, H και K είναι ομοκυκλικά, δηλαδή ανήκουν στον ίδιο κύκλο, όπου H είναι το ορθόκεντρο του τριγώνου ABC. Πρόβλημα 3 Να αποδείξετε ότι η εξίσωση x x x αx + + =, α, έχει, για κάθε α, δύο διαφορετικές μεταξύ τους ρίζες στο σύνολο. Για ποιες τιμές του α οι δύο ρίζες είναι ετερόσημες; Πρόβλημα 4 Να λύσετε στους πραγματικούς αριθμούς την εξίσωση x 3x x x x = +. ΚΑΛΗ ΕΠΙΤΥΧΙΑ
18 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) ΑΘΗΝΑ Τηλ Fax: GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou Venizelou) Street GR Athens - HELLAS Tel Fax: ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 70 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 5 ΙΑΝΟΥΑΡΙΟΥ 0 Β τάξη Λυκείου Πρόβλημα Να λύσετε στους πραγματικούς αριθμούς την εξίσωση ( ) x = x + α, για τις διάφορες τιμές του πραγματικού αριθμού α. Πρόβλημα Να λύσετε στους πραγματικούς αριθμούς το σύστημα: x + y + z = 8 x + y + z = 6 Πρόβλημα 3 Αν οι αβγ,, ( ) xy + xz = yz +. είναι θετικοί πραγματικοί αριθμοί τέτοιοι ώστε + + =, να αποδεί- α β γ αβγ ξετε ότι: ( α +β ) γ ( β +γ ) α ( γ +α ) β + + <. α +β β +γ γ +α Πότε ισχύει η ισότητα; Πρόβλημα 3 Δίνεται οξυγώνιο και σκαληνό τρίγωνο ΑΒΓ (με ΑΒ< AΓ) εγγεγραμμένο σε κύκλο () c με κέντρο O και ακτίνα R. Από το σημείο Α φέρνουμε τις δύο εφαπτόμενες προς τον κύκλο ( c ), που έχει κέντρο το σημείο O και ακτίνα r = OM ( M είναι το μέσο της BΓ ). Η μία εφαπτόμενη εφάπτεται στο κύκλο ( c ) στο σημείο T, τέμνει την ΒΓ στο σημείο Ν και το κύκλο () c στο σημείο N (θεωρούμε BN < BM ). Η άλλη εφαπτόμενη εφάπτεται στο κύκλο ( c ) στο σημείο Σ, τέμνει την ΒΓ στο σημείο K και το κύκλο () c στο σημείο K (θεωρούμε ΓK< ΓM). Να αποδείξετε ότι οι ευθείες BN, ΓΚ και AM περνάνε από το ίδιο σημείο (συντρέχουν). ΚΑΛΗ ΕΠΙΤΥΧΙΑ
19 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) ΑΘΗΝΑ Τηλ Fax: GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou Venizelou) Street GR Athens - HELLAS Tel Fax: ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 7 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, ΙΑΝΟΥΑΡΙΟΥ 0 Β τάξη Λυκείου Πρόβλημα Να προσδιορίσετε τις τιμές της παραμέτρου a 0 για τις οποίες η εξίσωση a + 6 =, 3 a+ ax x x x 4x έχει δύο πραγματικές ρίζες με διαφορά 4. Πρόβλημα Αν y ακέραιος και x, να προσδιορίσετε όλα τα ζευγάρια (, ) συστήματος x y που είναι λύσεις του + y x 3x+ > 0. ( ) y + x < 0 Να παραστήσετε γραφικά στο Καρτεσιανό επίπεδο Oxy, το σύνολο των σημείων ( x, y) όπου ( x, y ) λύση του συστήματος (Σ). Σ Μ, Πρόβλημα 3 Δίνεται οξυγώνιο σκαληνό τρίγωνο ΑΒΓ με ΑΒ<ΑΓ, εγγεγραμμένο σε κύκλο cor (, ). Η διχοτόμος της γωνίας ˆΑ τέμνει τον κύκλο cor (, ) στο σημείο Μ. Ο κύκλος c (, ) ΜΑΜ τέμνει την προέκταση της ΑΓ στο σημείο Δ. Να αποδείξετε ότι ΓΔ=ΑΒ. Πρόβλημα 4 Βρείτε όλες τις ρητές τιμές του x για τις οποίες είναι ρητός ο αριθμός ab, ρητοί τέτοιοι ώστε a < 4b. x + ax + b, όπου ΚΑΛΗ ΕΠΙΤΥΧΙΑ
[ f 1 ] 3 [ f 2 ] 3... [ f ν ] 3 = [ f 1 f 1... f ν ] 2, για κάθε ν N.
Ευκλείδης Γ' Λυκείου 1995-1996 1. Να ορίσετε συνάρτηση με πεδίο ορισμού και σύνολο τιμών το N* και η οποία να ικανοποιεί τη σχέση: [ f 1 ] [ f ]... [ f ν ] = [ f 1 f 1... f ν ], για κάθε ν N.. Ο Α και
2. Να προσδιορίσετε τους επταψήφιους αριθμούς, οι οποίοι είναι τέλεια τετράγωνα και τα τρία πρώτα ψηφία τους, στη σειρά, είναι τα 4, 0 και 0.
Ευκλείδης Γ' Γυμνασίου 1995-1996 1. Να γίνει γινόμενο η παράσταση Α= ν 2 3ν 1 2 1. 2. Να προσδιορίσετε τους επταψήφιους αριθμούς, οι οποίοι είναι τέλεια τετράγωνα και τα τρία πρώτα ψηφία τους, στη σειρά,
2. Αν α, β είναι θετικοί πραγματικοί και x, y είναι θετικοί πραγματικοί διαφορετικοί από το 0, να δείξετε ότι: x β 2 α β
Ευκλείδης Ά Λυκείου 1994-1995 1. Έχουμε στο επίπεδο 4 διαφορετικές ευθείες. Είναι γνωστό ότι κάθε άλλη ευθεία του ίδιου επιπέδου τέμνει ή ή 4 από τις ευθείες. Να βρείτε πόσες από τις ευθείες είναι παράλληλες..
ΕΠΙΤΡΟΠΗ ΙΑΓΩΝΙΣΜΩΝ 67 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ ΣΑΒΒΑΤΟ, 9 ΕΚΕΜΒΡΙΟΥ Β τάξη Λυκείου
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 4 106 79 ΑΘΗΝΑ Τηλ. 10 6165-10617784 - Fax: 10 64105 e-mail : info@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou
Β τάξη Λυκείου. ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 69 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 17 ΙΑΝΟΥΑΡΙΟΥ 2009
Β τάξη Λυκείου Πρόβλημα Να προσδιορίσετε τις τιμές του πραγματικού αριθμού a για τις οποίες το σύστημα x + 4y = 4a ax y = a έχει μία μόνο λύση. Για τις τιμές του a που θα βρείτε να λύσετε το σύστημα. Το
2. Αν ΑΒΓΔ είναι ένα τετράπλευρο περιγεγραμμένο σε κύκλο ακτίνας ρ, να δείξετε ότι ισχύει: ΑΒ + ΓΔ 4ρ.
Θαλής Β' Λυκείου 1995-1996 1. Έστω κύκλος ακτίνας 1, στον οποίο ορίζουμε ένα συγκεκριμένο σημείο Α 0. Στη συνέχεια ορίζουμε τα σημεία Α ν ως εξής: Το μήκος του τόξου Α 0 Α ν (όπου αυτό μπορεί να είναι
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 33 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" 27 Φεβρουαρίου 2016
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 4 6 79 ΑΘΗΝΑ Τηλ 665-67784 - Fax: 645 e-mail : info@hmsgr wwwhmsgr GREEK MATHEMATICAL SOCIETY 4 Panepistimiou (Εleftheriou Venizelou) Street
Πρόβλημα 1 (α) Να συγκρίνετε τους αριθμούς Μονάδες 2 (β) Αν ισχύει ότι: και αβγ 0, να βρείτε την τιμή της παράστασης: Γ= + +.
ΣΤΑ ΜΑΘΗΜΑΤΙ- ΚΑ B τάξη Γυμνασίου (α) Να συγκρίνετε τους αριθμούς 3 3 0 3 3 1 1 1 8 3 Α= + + : και Β= : 4 +. 4 31 8 4 4 1 3 9 Μονάδες (β) Αν ισχύει ότι: 6( αβ + βγ + γα) = 11αβγ και αβγ 0, να βρείτε την
Θαλής Α' Λυκείου 1995-1996
Θαλής Α' Λυκείου 1995-1996 1. Δυο μαθητές Α και Β παίζουν το ακόλουθο παιχνίδι: Τους δίνεται ένα κανονικό πολύγωνο με άρτιο πλήθος πλευρών, μεγαλύτερο από 6 (π.χ. ένα 100-γωνο). Κάθε παίκτης συνδέει δυο
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 76 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 14 Νοεμβρίου 2015. Ενδεικτικές λύσεις Β ΓΥΜΝΑΣΙΟΥ
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 06 79 ΑΘΗΝΑ Τηλ. 36653-367784 - Fax: 36405 e-mail : info@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou
GREEK MATHEMATICAL SOCIETY Πανεπιστημίου (Ελευθερίου Βενιζέλου) ΑΘΗΝΑ Τηλ Fax:
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ GREEK MATHEMATICAL SOCIETY Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 106 79 ΑΘΗΝΑ Τηλ. 361653-3617784 - Fax: 364105 e-mail : info@hms.gr www.hms.gr 34, Panepistimiou (Εleftheriou
: :
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 106 79 ΑΘΗΝΑ Τηλ. 361653-3617784 - Fax: 364105 e-mail : info@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 70 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 23 ΙΑΝΟΥΑΡΙΟΥ 2010
Πανεπιστημίου (Ελευθερίου Βενιζέλου) 4 Τηλ. 6165-617784 - Fax: 64105 4, Panepistimiou (Εleftheriou Venizelou) Street Tel. 6165-617784 - Fax: 64105 ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ,
ΕΠΙΤΡΟΠΗ ΙΑΓΩΝΙΣΜΩΝ 68 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ ΣΑΒΒΑΤΟ, 24 ΝΟΕΜΒΡΙΟΥ Α τάξη Λυκείου
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 106 79 ΑΘΗΝΑ Τηλ. 10 361653-103617784 - Fax: 10 364105 e-mail : info@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 34, Panepistimiou
B τάξη Γυμνασίου : : και 4 :
Τηλ. 10 6165-10617784 - Fax: 10 64105 Tel. 10 6165-10617784 - Fax: 10 64105 ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΣΑΒΒΑΤΟ, 18 ΙΑΝΟΥΑΡΙΟΥ 014 B τάξη Γυμνασίου Να βρείτε τους αριθμούς 0 4 1 1 77 16 60 19 7 : 000 : και 4 : 4 9
β =. Β ΓΥΜΝΑΣΙΟΥ Πρόβλημα 1 Να βρείτε την τιμή της παράστασης: 3β + α α 3β αν δίνεται ότι: 3
Β ΓΥΜΝΑΣΙΟΥ Να βρείτε την τιμή της παράστασης: α αν δίνεται ότι: 3 β =. 3β + α α 3β 13 Α= 10 +, β α 3 Στο διπλανό σχήμα το τρίγωνο ΑΒΓ είναι ισοσκελές με ΑΒ = ΑΓ και Γ= ˆ Α ˆ. Το τετράπλευρο ΑΓΔΕ είναι
Α τάξη Λυκείου ( ) 2. ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 69 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 17 ΙΑΝΟΥΑΡΙΟΥ 2009
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 69 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 7 ΙΑΝΟΥΑΡΙΟΥ 009 Α τάξη Λυκείου Πρόβλημα Να απλοποιήσετε την αλγεβρική παράσταση όπου mακέραιοι, και, m
Ευκλείδης Β' Γυμνασίου 1995-1996. 1. Να λύσετε την εξίσωση: 1 {3 [5 7 x : 9] 7} 5=26
Ευκλείδης Β' Γυμνασίου 1995-1996 1. Να λύσετε την εξίσωση: 1 {3 [5 7 x : 9] 7} 5=26 2. Σ' ένα ισόπλευρο τρίγωνο ΑΒΓ παίρνουμε τις διαμέσους ΑΔ, ΒΕ και ΓΖ (που διέρχονται από το ίδιο σημείο Θ). Πόσες γωνίες,
2ηέκδοση 20Ιανουαρίου2015
ηέκδοση 0Ιανουαρίου015 ΦΡΟΝΤΙΣΤΗΡΙΟ Μ.Ε. ΣΥΓΧΡΟΝΗ ΜΑΘΗΣΗ (β-πακέτο ασκήσεων) 1 89 Δίνεται τρίγωνο ΑΒΓ και Δ εσωτερικό σημείο του ΒΓ. Φέρουμε από το Δ παράλληλες στις πλευρές ΑΒ και ΑΓ. Η παράλληλη στην
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 72 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 21 ΙΑΝΟΥΑΡΙΟΥ 2012
Τηλ. 361653-3617784 - Fax: 364105 Tel. 361653-3617784 - Fax: 364105 7 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΑΒΒΑΤΟ, 1 ΙΑΝΟΥΑΡΙΟΥ 01 ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕΔΡΟΥΣ
Αρχιμήδης Μεγάλοι 1996-1997. 1. Έστω μια ακολουθία θετικών αριθμών για την οποία: i) α ν 2 α ν. για κάθε ν φυσικό διαφορετικό του 0.
Αρχιμήδης Μεγάλοι 1996-1997 1. Έστω μια ακολουθία θετικών αριθμών για την οποία: i) α ν 2 α ν = 1 4 για κάθε ν φυσικό διαφορετικό του 0. ii) α n 1 α n Να αποδείξετε: α ν 1 =1 για κάθε n - ν 1 α ν α) ότι
Ασκήσεις για τις εξετάσεις Μάη Ιούνη στη Γεωμετρία Β Λυκείου του ΜΑΝΩΛΗ ΨΑΡΡΑ
Ασκήσεις για τις εξετάσεις Μάη Ιούνη 014 στη Γεωμετρία Β Λυκείου του ΜΑΝΩΛΗ ΨΑΡΡΑ Άσκηση 1 η Δίνεται παραλληλόγραμμο ΑΒΓΔ και. Με διάμετρο τη διαγώνιο ΑΓ γράφουμε κύκλο με κέντρο Ο που τέμνει τη ΓΔ στο
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 73 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 20 Οκτωβρίου 2012 ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ Β ΓΥΜΝΑΣΙΟΥ 18 :
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 06 79 ΑΘΗΝΑ Τηλ 36653-367784 - Fax: 36405 e-mail : info@hmsgr wwwhmsgr GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou Venizelou)
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 77 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 12 Νοεμβρίου Ενδεικτικές λύσεις Β ΓΥΜΝΑΣΙΟΥ
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 106 79 ΑΘΗΝΑ Τηλ. 361653-3617784 - Fax: 364105 e-mail : info@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 33 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" 27 Φεβρουαρίου 2016
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 4 6 79 ΑΘΗΝΑ Τηλ 665-67784 - Fax: 645 e-mail : ifo@hmsgr wwwhmsgr GREEK MATHEMATICAL SOCIETY 4 Paepistimiou (Εleftheriou Veielou) Street
ΑΣΚΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ
ΑΣΚΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ 1. Να επιλέξετε μια απάντηση για κάθε ερώτηση και να δικαιολογήσετε σύντομα την απάντησή σας. i. Αν η εξωτερική γωνία ενός κανονικού ν-γώνου ισούται με 0 ο, τότε το ν ισούται
Τάξη A Μάθημα: Γεωμετρία
Τάξη A Μάθημα: Γεωμετρία Η Θεωρία σε Ερωτήσεις Ερωτήσεις Κατανόησης Επαναληπτικά Θέματα Επαναληπτικά Διαγωνίσματα Περιεχόμενα Τρίγωνα Α. Θεωρία-Αποδείξεις Σελ.2 Β. Θεωρία-Ορισμοί..Σελ.9 Γ. Ερωτήσεις Σωστού
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 71 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 15 ΙΑΝΟΥΑΡΙΟΥ 2011
Τηλ. 36653-367784 - Fax: 36405 Tel. 36653-367784 - Fax: 36405 7 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΑΒΒΑΤΟ, 5 ΙΑΝΟΥΑΡΙΟΥ 0 ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕΔΡΟΥΣ ΕΞΕΤΑΣΤΙΚΩΝ
ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕΔΡΟΥΣ ΕΞΕΤΑΣΤΙΚΩΝ ΚΕΝΤΡΩΝ ΚΑΙ ΕΠΙΤΗΡΗΤΕΣ
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 106 79 ΑΘΗΝΑ Τηλ. 361653-3617784 - Fax: 364105 GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou Venizelou) Street GR. 106 79
Γεωμετρία Β Λυκείου Τράπεζα θεμάτων
Γεωμετρία Β Λυκείου Τράπεζα θεμάτων www.askisopolis.gr η έκδοση - - 0 Μεταβολές από την προηγούμενη έκδοση Αφαιρέθηκαν οι ασκήσεις _90, _900 και _907 Αλλαγές: Στην άσκηση _909 άλλαξε το β ερώτημα, στην
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 27 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" ΣΑΒΒΑΤΟ, 27 ΦΕΒΡΟΥΑΡΙΟΥ 2010
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 4 06 79 ΑΘΗΝΑ Τηλ 66-67784 - Fax: 640 e-mail : info@hmsgr wwwhmsgr GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou Venizelou)
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 69 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 17 ΙΑΝΟΥΑΡΙΟΥ B τάξη Γυμνασίου Α= ( 2 2)
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 4 06 79 ΑΘΗΝΑ Τηλ. 0 665-067784 - Fa: 0 6405 e-mail : ifo@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 4, Paepistimiou (Εleftheriou Veizelou)
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 29 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" 3 Μαρτίου 2012
ΕΛΛΗΝΙΚΗ ΜΘΗΜΤΙΚΗ ΕΤΙΡΕΙ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 06 79 ΘΗΝ Τηλ 665-677 - F: 605 e-mail : info@hmsgr wwwhmsgr GREEK MATHEMATICAL SOCIETY, Panepistimiou (Εleftheriou Venizelou) Street GR 06
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 75 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 1 Νοεμβρίου 2014. Ενδεικτικές λύσεις Β ΓΥΜΝΑΣΙΟΥ
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 06 79 ΑΘΗΝΑ Τηλ. 36653-367784 - Fax: 36405 e-mail : info@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou
B τάξη Γυμνασίου ( 2 2) ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 69 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 17 ΙΑΝΟΥΑΡΙΟΥ 2009
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 69 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 7 ΙΑΝΟΥΑΡΙΟΥ 009 B τάξη Γυμνασίου Πρόβλημα. Αν ισχύει ότι 4x 5y = 0, να βρείτε την τιμή της παράστασης Η
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 70 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 23 ΙΑΝΟΥΑΡΙΟΥ 2010 ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ.
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 4 06 79 ΑΘΗΝΑ Τηλ. 0 665-067784 - Fax: 0 6405 e-mail : info@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou
( 5) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) Ενδεικτικές λύσεις
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 106 79 ΑΘΗΝΑ Τηλ. 361653-3617784 - Fax: 364105 e-mail : info@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou
ΘΕΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΪΟΣ ΙΟΥΝΙΟΣ
ΘΕΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΪΟΣ ΙΟΥΝΙΟΣ ΤΑΞΗ: ΜΑΘΗΜΑ: A ΓΕΩΜΕΤΡΙΑ ΘΕΜΑ Α Α1. Να αποδείξετε ότι σε κάθε ορθογώνιο τρίγωνο η διάμεσος που αντιστοιχεί στην υποτείνουσα ισούται με το μισό της.
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 70 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 23 ΙΑΝΟΥΑΡΙΟΥ 2010
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 4 06 79 ΑΘΗΝΑ Τηλ. 665-67784 - Fax: 6405 GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou Venizelou) Street GR. 06 79 - Athens
B τάξη Γυμνασίου Πρόβλημα 1. Να υπολογίσετε την τιμή της αριθμητικής παράστασης
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 06 79 ΑΘΗΝΑ Τηλ 0 36653-0367784 - Fax: 0 36405 GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou Venizelou) Street GR 06 79
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 79 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 10 Νοεμβρίου Ενδεικτικές λύσεις Β ΓΥΜΝΑΣΙΟΥ
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 106 79 ΑΘΗΝΑ Τηλ. 361653-3617784 - Fax: 364105 e-mail : info@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou
ΘΕΜΑΤΑ. β. ΜΗΔ = 45 Μονάδες 5. Θέμα 4 ο Δίνεται ορθογώνιο τρίγωνο ΑΒΓ ( Α = 90 ) με ΑΓ > ΑΒ, η διάμεσός του ΑΖ και έστω Δ και
Α. Να χαρακτηρίσετε Σωστές (Σ) ή Λάθος (Λ) τις παρακάτω προτάσεις: α. Οι διχοτόμοι δύο διαδοχικών και παραπληρωματικών γωνιών σχηματίζουν ορθή γωνία. β. Οι διαγώνιες κάθε παραλληλογράμμου είναι ίσες μεταξύ
ΘΕΜΑ 4 Ο ΑΒ 3 ΕΓ Α ΑΒ,
ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΚΕΦΑΛΑΙΟ 7 Ο - ΑΝΑΛΟΓΙΕΣ ΘΕΜΑ Ο Άσκηση (_8975) Θεωρούμε τρίγωνο ΑΒΓ ΑΒ=9 και ΑΓ=5. Από το βαρύκεντρο Θ του τριγώνου, φέρουμε ευθεία ε παράλληλη στην πλευρά ΒΓ, που τέμνει τις ΑΒ και ΑΓ
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ Προκριματικός διαγωνισμός Απριλίου 2015
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 06 79 ΑΘΗΝΑ Τηλ 36653-367784 - Fax: 36405 e-mail : info@hmsgr, wwwhmsgr GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou Venizelou)
5o ΚΕΦΑΛΑΙΟ : Παραλληλόγραμμα - Τραπέζια
5o ΚΕΦΑΛΑΙΟ : Παραλληλόγραμμα - Τραπέζια 7 η διδακτική ενότητα : Παραλληλόγραμμα-Είδη παραλληλογράμμων 1. Να εξετάσετε αν είναι σωστή ή λανθασμένη καθεμιά από τις επόμενες προτάσεις: α) Οι διαγώνιοι κάθε
Μαθηματικά Α' Γυμ. - Ερωτήσεις Θεωρίας 1 ΕΡΩΤΗΣΕΙΣ. (1) Ποιοι είναι οι φυσικοί αριθμοί; Γράψε τέσσερα παραδείγματα.
Μαθηματικά Α' Γυμ. - Ερωτήσεις Θεωρίας 1 ΕΡΩΤΗΣΕΙΣ (1) Ποιοι είναι οι φυσικοί αριθμοί; Γράψε τέσσερα παραδείγματα. (2) Ποιοι είναι οι άρτιοι και ποιοι οι περιττοί αριθμοί; Γράψε από τρία παραδείγματα.
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 73 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 20 Οκτωβρίου 2012 Β ΓΥΜΝΑΣΙΟΥ
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 06 79 ΑΘΗΝΑ Τηλ. 36653-367784 - Fax: 36405 GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou Venizelou) Street GR. 06 79 - Athens
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 72 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 19 Νοεμβρίου 2011 Β ΓΥΜΝΑΣΙΟΥ 2 : 2.
Τηλ. 361653-3617784 - Fax: 364105 Tel. 361653-3617784 - Fax: 364105 7 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ 19 Νοεμβρίου 011 Β ΓΥΜΝΑΣΙΟΥ Να υπολογίσετε την τιμή της παράστασης: 1 17 1 1 3 7 1 : 5 1 7 14
= π 3 και a = 2, β =2 2. a, β
1 of 68 Δίνονται τα διανύσματα a και β με a, β = π 3 και a =, β =. α) Να βρείτε το εσωτερικό γινόμενο a β. (Μονάδες 8) β) Αν τα διανύσματα a + β και κ a + β είναι κάθετα να βρείτε την τιμή του κ. γ) Να
( ) ( ) ( ) ( ) ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 30 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" 23 Φεβρουαρίου 2013 ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ Λύση (α) Έχουμε
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 3 06 79 ΑΘΗΝΑ Τηλ. 36653-36778 - Fax: 3605 e-mail : info@hms.gr, www.hms.gr GREEK MATHEMATICAL SOCIETY 3, Panepistimiou (Εleftheriou Venizelou)
x , οπότε : Α = = 2.
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 69 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 7 ΙΑΝΟΥΑΡΙΟΥ 009 Πρόβλημα Αν ισχύει ότι Γ τάξη Γυμνασίου a+ b=, να βρείτε την τιμή της παράστασης Α= ( 6a+
ΚΕΦΑΛΑΙΟ 9 ο ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΕ ΟΡΘΟΓΩΝΙΟ ΤΡΙΓΩΝΟ
ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΕ ΟΡΘΟΓΩΝΙΟ ΤΡΙΓΩΝΟ ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ Βασικά θεωρήματα Σε κάθε ορθογώνιο τρίγωνο, το τετράγωνο μιας κάθετης πλευράς του είναι ίσο με το γινόμενο της υποτείνουσας επί την προβολή της
Ερωτήσεις τύπου «Σωστό - Λάθος» Σωστό Λάθος
Εγγράψιμα και περιγράψιμα τετράπλευρα Ερωτήσεις τύπου «Σωστό - Λάθος» Σωστό Λάθος 1. Ένα τετράπλευρο είναι εγγράψιμο σε κύκλο αν είναι παραλληλόγραμμο.. Ένα τετράπλευρο είναι εγγράψιμο σε κύκλο αν είναι
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 75 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 1 Νοεμβρίου Ενδεικτικές λύσεις Β ΓΥΜΝΑΣΙΟΥ
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 06 79 ΑΘΗΝΑ Τηλ 36653-367784 - Fax: 36405 e-mail : info@hmsgr wwwhmsgr GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou Venizelou)
Κεφάλαιο 6 Παράλληλες Ευθείες και Τετράπλευρα Ορισμός. Δύο ευθείες ονομάζονται παράλληλες όταν ανήκουν στο ίδιο επίπεδο και δεν τέμνονται. Δύο παράλληλες ευθείες ε και ζ συμβολίζονται ε ζ. Γωνίες δύο ευθειών
ΚΕΦΑΛΑΙΟ 8 ο ΟΜΟΙΟΤΗΤΑ
ΟΜΟΙΟΤΗΤΑ Ορισμός: Δύο ευθύγραμμα σχήματα ονομάζονται όμοια, αν έχουν τις πλευρές τους ανάλογες και τις γωνίες που σχηματίζονται από ομόλογες πλευρές τους ίσες μία προς μία. ΚΡΙΤΗΡΙΑ ΟΜΟΙΟΤΗΤΑΣ ΤΡΙΓΩΝΩΝ
4 ΔΙΑΜΕΣΟΣ ΟΡΘΟΓΩΝΙΟΥ ΤΡΙΓΩΝΟΥ
4 ΔΙΑΜΕΣΟΣ ΟΡΘΟΓΩΝΙΟΥ ΤΡΙΓΩΝΟΥ 1. Δίνεται ορθογώνιο και ισοσκελές τρίγωνο ΑΒΓ( ˆ =90 ο ) και ΑΔ η διχοτόμος της γωνίας A. Από το σημείο Δ φέρουμε παράλληλη προς την ΑΒ που τέμνει την πλευρά ΑΓ στο σημείο
Αρχιμήδης Μικροί Θεωρούμε τους αριθμούς. A= : : και B= 2 25 : Ποιος είναι μεγαλύτερος;
Αρχιμήδης Μικροί 1994-1995 Θεωρούμε τους αριθμούς Ποιος είναι μεγαλύτερος; A= 2 0 8 21 :16 15 6 27 10 :81 7 63 και B= 2 25 :2 52 1 54 2. Θεωρούμε 6 διαδοχικούς φυσικούς αριθμούς. Έστω α το άθροισμα των
β φυσικοί αριθμοί. Δίνεται ότι η Ευκλείδεια διαίρεση με διαιρετέο τον α και
06 79 ΑΘΗΝΑ Τηλ. 36653-367784 - Fax: 36405 GR. 06 79 - Athens - HELLAS Tel. 36653-367784 - Fax: 36405 ΣΑΒΒΑΤΟ, 30 ΟΚΤΩΒΡΙΟΥ 00 B Γυμνασίου 3. Έστω x = 3 4 :4+ 5 και y = 45 4 3 + 73. (α) Να βρεθούν οι αριθμοί
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 32 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" 28 Φεβρουαρίου 2015 Θέματα μικρών τάξεων
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 4 06 79 ΑΘΗΝΑ Τηλ. 665-67784 - Fax: 6405 e-mail : info@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou Venizelou)
Θέματα ενδοσχολικών εξετάσεων Γεωμετρίας Β Λυκείου Σχ. έτος , Ν. Δωδεκανήσου ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ
ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΓΕΩΜΕΤΡΙΑ ΣΧΟΛΙΚΟ ΕΤΟΣ: 013-014 Επιμέλεια: Καραγιάννης Ιωάννης Σχολικός Σύμβουλος Μαθηματικών Μαθηματικός Περιηγητής 1 ΠΡΟΛΟΓΟΣ Η συλλογή των θεμάτων
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 78 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 11 Νοεμβρίου 2017 Β ΓΥΜΝΑΣΙΟΥ 1 Α=
Β ΓΥΜΝΑΣΙΟΥ Να υπολογίσετε την τιμή της αριθμητικής παράστασης: 3 3 ( 0) ( 5) 3 ( 8) Α= + 3 3 ( ) +. ( 3) 4 Στο διπλανό σχήμα τα τρίγωνα ΑΒΓ και ΑΒΟ είναι ισοσκελή με βάση την πλευρά ΑΒ. Η προέκταση της
ΔΙΑΝΥΣΜΑΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ. ΘΕΜΑ 2ο
Β ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΝΥΣΜΑΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ ΘΕΜΑ ο ΘΕΜΑ 8603 Δίνεται τρίγωνο και σημεία και του επιπέδου τέτοια, ώστε 5 και 5. α) Να γράψετε το διάνυσμα ως γραμμικό
Β ΓΥΜΝΑΣΙΟΥ. Πρόβλημα 1 Να υπολογίσετε την τιμή των αριθμητικών παραστάσεων: 2 24 : : 2, : και να τις συγκρίνετε.
Τηλ. 6165-617784 - Fa: 64105 Tel. 6165-617784 - Fa: 64105 Β ΓΥΜΝΑΣΙΟΥ Να υπολογίσετε την τιμή των αριθμητικών παραστάσεων: 5 5 4 : 6 5 8 8:, 11 : 1 11 7 και να τις συγκρίνετε. Ένα ορθογώνιο έχει μήκος
: :
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 106 79 ΑΘΗΝΑ Τηλ. 361653-3617784 - Fax: 364105 e-mail : info@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou
ΓΕΩΜΕΤΡΙΑ - ΚΕΦΑΛΑΙΟ 4ο Το Θεώρημα του Θαλή και οι Συνέπειές του
ΓΕΩΜΕΤΡΙΑ - ΚΕΦΑΛΑΙΟ 4ο Το Θεώρημα του Θαλή και οι Συνέπειές του 198 ΕΡΩΤΗΣΕΙΣ ΑΝΑΠΤΥΞΗΣ ΚΑΙ ΑΝΤΙΚΕΙΜΕΝΙΚΟΥ ΤΥΠΟΥ 1. Στο παρακάτω σχήμα το τρίγωνο ΑΒΓ είναι ορθογώνιο στο Α. Αν ΑΔ ΒΓ, ΕΔ ΑΒ τότε το τρίγωνο
f(x - 2) + f(x + 2) = 3 f(x).
Θαλής Γ' Λυκείου 1995-1996 1. Να βρεθεί η μέγιστη τιμή της παράστασης: με x 1, y 1. Π x, y = xy x 1 y y 1 x 1 x 1 y. Έστω η συνάρτηση f: R R τέτοια ώστε για κάθε x R να ισχύει ότι: Να δείξετε ότι η f είναι
Α={1,11,111,1111,..., 11...1 }
Θαλής Γ' Γυμνασίου 1995-1996 1. Δύο μαθητές Α, Β χρησιμοποιούν ένα πίνακα 3x3, όπως στο σχήμα, για να παίξουν "τρίλιζα". Καθένας γράφει σ' ένα τετραγωνάκι της επιλογής του ένα σταυρό ή έναν κύκλο. (Και
Θαλής 1998 Β Γυµνασίου
Να βρεθούν όλες οι πραγµατικές ρίζες της εξίσωσης 2 42 x + x= 2 x + x+ 1. Θαλής 1998 Α Λυκείου Έστω ότι για τους θετικούς πραγµατικούς αριθµούς α, β, γ ισχύει α+ β β+ γ γ + α αβ γ + βγ α + γα β = 0. 2
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 78 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 11 Νοεμβρίου Ενδεικτικές λύσεις Β ΓΥΜΝΑΣΙΟΥ
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 106 79 ΑΘΗΝΑ Τηλ. 361653-361774 - Fax: 364105 e-mail : info@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 34 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" 4 Μαρτίου 2017
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 4 06 79 ΑΘΗΝΑ Τηλ. 665-67784 - Fax: 6405 e-mail : ifo@hms.gr, www.hms.gr GREEK MATHEMATICAL SOCIETY 4, Paepistimiou (Εleftheriou Veizelou)
ΚΕΦΑΛΑΙΟ 9 ο ΓΕΝΙΚΕΥΣΗ ΠΥΘΑΓΟΡΕΙΟΥ ΘΕΩΡΗΜΑΤΟΣ
ΓΕΝΙΚΕΥΣΗ ΠΥΘΑΓΟΡΕΙΟΥ ΘΕΩΡΗΜΑΤΟΣ Θεώρημα οξείας γωνίας Το τετράγωνο πλευράς τριγώνου, που βρίσκεται απέναντι από οξεία γωνία, είναι ίσο με το άθροισμα των τετραγώνων των δύο άλλων πλευρών του, ελαττωμένο
ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕΔΡΟΥΣ ΕΞΕΤΑΣΤΙΚΩΝ ΚΕΝΤΡΩΝ ΚΑΙ ΕΠΙΤΗΡΗΤΕΣ
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 06 79 ΑΘΗΝΑ Τηλ. 36653-367784 - Fa: 36405 GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou Venizelou) Street GR. 06 79 - Athens
: :
Τηλ. 361653-3617784 - Fax: 364105 Tel. 361653-3617784 - Fax: 364105 19 Οκτωβρίου 013 Β ΓΥΜΝΑΣΙΟΥ Να υπολογίσετε την τιμή της παράστασης: 16 1 74 3 1 : 4 53 3 4 :. 9 8 9 Πρόβλημα Ένας οικογενειάρχης πήρε
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 69 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 17 ΙΑΝΟΥΑΡΙΟΥ 2009
Τηλ. 36653-367784 - Fax: 36405 Tel. 36653-367784 - Fax: 36405 ΣΑΒΒΑΤΟ, 7 ΙΑΝΟΥΑΡΙΟΥ 009 ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕΔΡΟΥΣ ΕΞΕΤΑΣΤΙΚΩΝ ΚΕΝΤΡΩΝ ΚΑΙ ΕΠΙΤΗΡΗΤΕΣ. Παρακαλούμε
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 73 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 20 Οκτωβρίου 2012 Β ΓΥΜΝΑΣΙΟΥ
06 79 ΑΘΗΝΑ Τηλ. 36653-367784 - Fax: 36405 GR. 06 79 - Athens - HELLAS Tel. 36653-367784 - Fax: 36405 0 Οκτωβρίου 0 Β ΓΥΜΝΑΣΙΟΥ Πρόβλημα Να υπολογίσετε την τιμή της παράστασης: 5 44 39 8 : Α= 5 5 5 6 3+
Β.1.8. Παραπληρωματικές και Συμπληρωματικές γωνίες Κατά κορυφήν γωνίες
Β.1.6. Είδη γωνιών Κάθετες ευθείες 1. Ορθή γωνία λέγεται η γωνία της οποίας το μέτρο είναι ίσο με 90 ο. 2. Οξεία γωνία λέγεται κάθε γωνία με μέτρο μικρότερο των 90 ο. 3. Αμβλεία γωνία λέγεται κάθε γωνία
B τάξη Γυμνασίου Πρόβλημα 1 (α) Να συγκρίνετε τους αριθμούς (β) Αν ισχύει ότι: και αβγ 0,
7 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, ΙΑΝΟΥΑΡΙΟΥ 0 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 06 79 ΑΘΗΝΑ Τηλ. 0 36653-0367784 - Fax: 0 36405
ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕΔΡΟΥΣ ΕΞΕΤΑΣΤΙΚΩΝ ΚΕΝΤΡΩΝ ΚΑΙ ΕΠΙΤΗΡΗΤΕΣ
Τηλ 361653-3617784 - Fax: 364105 Tel 361653-3617784 - Fax: 364105 ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 68 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΑΒΒΑΤΟ, 4 ΝΟΕΜΒΡΙΟΥ 007 ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ
Β ΓΥΜΝΑΣΙΟΥ. + και. ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 67ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ "Ο ΕΥΚΛΕΙΔΗΣ" ΣΑΒΒΑΤΟ, 20 ΙΑΝΟΥΑΡΙΟΥ 2007
GR. 06 79 - Athens - HELLAS ΜΑΘΗΜΑΤΙΚΑ "Ο ΕΥΚΛΕΙΔΗΣ" Β ΓΥΜΝΑΣΙΟΥ. Να προσδιορίσετε τους φυσικούς αριθμούς ν που είναι τέτοιοι ώστε ο αριθμός 42 2 ν + να είναι ακέραιος. 2. Θεωρούμε οξεία γωνία ΑΟΒ και
A λ υ τ ε ς Α σ κ η σ ε ι ς ( Τ ρ ι γ ω ν α )
A λ υ τ ε ς Α σ κ η σ ε ι ς ( Τ ρ ι γ ω ν α ) 1 Στις πλευρες ΑΒ, ΒΓ, ΓΑ ισοπλευρου τριγωνου ΑΒΓ, παιρνουμε 3 Να δειχτει οτι α + 110 0α Ποτε ισχυει Συγκρινετε το ισον; τα τριγωνα με σημεια Δ, Ε, Ζ αντιστοιχα,
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 71 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 15 ΙΑΝΟΥΑΡΙΟΥ 2011
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 4 06 79 ΑΘΗΝΑ Τηλ. 665-67784 - Fax: 6405 GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou Venizelou) Street GR. 06 79 - Athens
117 ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ Μανώλη Ψαρρά. Μαθηματικού
117 ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ Μανώλη Ψαρρά Μαθηματικού Περιεχόμενα 1. Διανύσματα (47) ελ. - 9. Ευθεία (18) ελ. 10-1 3. Κύκλος (13).ελ. 13-15 4. Παραβολή (14) ελ. 16-18 5. Έλλειψη (18)..
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 69 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ ΣΑΒΒΑΤΟ, 1 ΝΟΕΜΒΡΙΟΥ 2008 B ΓΥΜΝΑΣΙΟΥ
Tel. 10 361653-103617784 - Fax: 10 364105 B ΓΥΜΝΑΣΙΟΥ 1. Να υπολογίσετε την τιμή της παράστασης: 3 Α= 4 5 + 008: 4 + (3 5 ) 49 10 4. Στο διπλανό σχήμα η ευθεία A y είναι παράλληλη προς την πλευρά ΒΓ του
Θέματα ενδοσχολικών εξετάσεων Άλγεβρας Α Λυκείου Σχ. έτος , Ν. Δωδεκανήσου ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ
ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΓΕΩΜΕΤΡΙΑ ΣΧΟΛΙΚΟ ΕΤΟΣ: 2013-2014 Επιμέλεια: Καραγιάννης Ιωάννης Σχολικός Σύμβουλος Μαθηματικών Μαθηματικός Περιηγητής 1 ΠΡΟΛΟΓΟΣ Η συλλογή των θεμάτων
Για το Διοικητικό Συμβούλιο της Ελληνικής Μαθηματικής Εταιρείας
Τηλ 6165-617784 - Fax: 64105 Tel 6165-617784 - Fax: 64105 7 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΑΒΒΑΤΟ, 1 ΙΑΝΟΥΑΡΙΟΥ 01 ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕΔΡΟΥΣ ΕΞΕΤΑΣΤΙΚΩΝ
Θεώρημα Θαλή. μ10. μ 10 γ) Δίνεται κυρτό τετράπλευρο ΑΒΓΔ και τα σημεία Ε,Ζ,Η και Θ των πλευρών του ΑΔ, ΑΒ, ΒΓ, ΓΔ αντίστοιχα τέτοια, ώστε
Θεώρημα Θαλή.8975. Θεωρούμε τρίγωνο ΑΒΓ με AB 9 και 5. Από το βαρύκεντρο Θ του τριγώνου, φέρουμε ευθεία ε παράλληλη στην πλευρά ΒΓ, που τέμνει τις ΑΒ και ΑΓ στα σημεία Δ και Ε αντίστοιχα. α) Να αποδείξετε
ΚΕΦΑΛΑΙΟ 1 ο ΠΡΩΤΑΡΧΙΚΕΣ ΓΕΩΜΕΤΡΙΚΕΣ ΕΝΝΟΙΕΣ Τα αξιώματα είναι προτάσεις που δεχόμαστε ως αληθείς, χωρίς απόδειξη: Από δύο σημεία διέρχεται μοναδική ευθεία. Για κάθε ευθεία υπάρχει τουλάχιστον ένα σημείο
ΚΕΦΑΛΑΙΟ 7 ο ΑΝΑΛΟΓΙΕΣ
ΑΝΑΛΟΓΙΕΣ ΘΕΩΡΗΜΑ ΤΟΥ ΘΑΛΗ Βασικά θεωρήματα Αν τρεις τουλάχιστον παράλληλες ευθείες τέμνουν δύο άλλες ευθείες, ορίζουν σε αυτές τμήματα ανάλογα. (αντίστροφο Θεωρήματος Θαλή) Θεωρούμε δύο ευθείες δ και
ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ
Ο ΓΕΛ ΣΤΑΥΡΟΥΠΟΛΗΣ ΣΧΟΛΙΚΟ ΕΤΟΣ 015-016 ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΕΠΙΜΕΛΕΙΑ ΧΑΛΑΤΖΙΑΝ ΠΑΥΛΟΣ ΚΕΦΑΛΑΙΟ 9 Ο : ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΟΡΘΕΣ ΠΡΟΒΟΛΕΣ Το τμήμα ΒΔ λέγεται προβολή του.. πάνω στην Το τμήμα
ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ. ΚΕΦΑΚΑΙΟ 3 ο -ΤΡΙΓΩΝΑ
ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΟΙ ΕΡΩΤΗΣΕΙΣ ΚΛΕΙΣΤΟΥ ΤΥΠΟΥ ΑΠΟΤΕΛΟΥΝ ΜΕΡΟΣ ΤΟΥ ΘΕΜΑΤΟΣ Α ΤΩΝ ΕΞΕΤΑΣΕΩΝ (ΘΕΜΑ ΘΕΩΡΙΑΣ) Α. ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ - ΛΑΘΟΥΣ ΚΕΦΑΚΑΙΟ 3 ο -ΤΡΙΓΩΝΑ 1. Ένα τρίγωνο είναι οξυγώνιο όταν έχει
Για τις εορτές των Χριστουγέννων και το νέο έτος το Δ.Σ. της ΕΜΕ σας εύχεται ολόψυχα χρόνια πολλά, προσωπική και οικογενειακή ευτυχία.
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 4 06 79 ΑΘΗΝΑ Τηλ. 665-67784 - Fax: 6405 GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou Venizelou) Street GR. 06 79 - Athens
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 70 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ ΣΑΒΒΑΤΟ, 21 ΝΟΕΜΒΡΙΟΥ 2009 B ΓΥΜΝΑΣΙΟΥ
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 06 79 ΑΘΗΝΑ Τηλ. 0 3663-0367784 - Fax: 0 3640 GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou Venizelou) Street GR. 06 79
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 74 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 18 ΙΑΝΟΥΑΡΙΟΥ 2014
Τηλ. 6165-617784 - Fax: 64105 Tel. 6165-617784 - Fax: 64105 ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕΔΡΟΥΣ ΕΞΕΤΑΣΤΙΚΩΝ ΚΕΝΤΡΩΝ ΚΑΙ ΕΠΙΤΗΡΗΤΕΣ 1. Παρακαλούμε να διαβάσετε προσεκτικά
1 ο Αχαρνών 197 Αγ. Νικόλαος 210.8651962. 2 ο Αγγ. Σικελιανού 43 Περισσός 210.2718688
1 ο Αχαρνών 197 Αγ. Νικόλαος 10.865196 ο Αγγ. Σικελιανού 4 Περισσός 10.718688 AΣΚΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ 1. Θεωρούμε ορθογώνιο τρίγωνο ΑΒΓ (Α =90Ο ) και Α το ύψος του. Αν Ε και Ζ είναι οι προβολές του
ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.3 ΕΓΓΡΑΦΗ ΒΑΣΙΚΩΝ ΚΑΝΟΝΙΚΩΝ ΠΟΛΥΓΩΝΩΝ ΣΕ ΚΥΚΛΟ ΚΑΙ ΤΑ ΣΤΟΙΧΕΙΑ ΤΟΥΣ
ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 113 ΕΓΓΡΑΦΗ ΒΑΣΙΚΩΝ ΚΑΝΟΝΙΚΩΝ ΠΟΛΥΓΩΝΩΝ ΣΕ ΚΥΚΛΟ ΚΑΙ ΤΑ ΣΤΟΙΧΕΙΑ ΤΟΥΣ ΘΕΩΡΙΑ Θα ασχοληθούμε με την εγγραφή μερικών βασικών κανονικών πολυγώνων σε κύκλο και θα υπολογίσουμε
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 73 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 20 Οκτωβρίου 2012 ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ Β ΓΥΜΝΑΣΙΟΥ
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 06 9 ΑΘΗΝΑ Τηλ 36653-3684 - Fax: 36405 e-mail : info@hmsgr wwwhmsgr GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou Venizelou)
Τράπεζα συναρτήσει των διανυσμάτων α,β,γ. Μονάδες 13 β) να αποδείξετε ότι τα σημεία Α, Β, Γ είναι συνευθειακά. Μονάδες 12
Τράπεζα 0- Πολλαπλασιασμός αριθμού με διάνυσμα.58 Θεωρούμε τα διανύσματα α,β,γ και τυχαίο σημείο Ο. Αν α β 5γ, α 3β 4γ και 3α β 6γ, τότε: α) να εκφράσετε τα διανύσματα, συναρτήσει των διανυσμάτων α,β,γ.
2 Β Βάσεις παραλληλογράµµου Βαρύκεντρο Γ Γεωµετρική κατασκευή Γεωµετρικός τόπος (ς) Γωνία Οι απέναντι πλευρές του. Κέντρο βάρους τριγώνου, δηλ. το σηµ
1 ΛΕΞΙΚΟ ΓΕΩΜΕΤΡΙΚΩΝ ΟΡΩΝ Α Ακτίνιο Ακτίνα κύκλου Ακτίνα σφαίρας Άκρα ευθύγραµµου τµήµατος Αµβλεία γωνία Αµβλυγώνιο Ανάλογα ευθύγραµµα τµήµατα Αντιδιαµετρικό σηµείο Αντικείµενες ηµιευθείες Άξονας συµµετρίας
και των πλευρών του,,, 1 αντίστοιχα τέτοια, ώστε. 3 Να αποδείξετε ότι: α) / / / /. (Μονάδες 10)
ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ 04 ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ ΤΑΞΙΝΟΜΗΣΗ ΘΕΜΑΤΩΝ ΑΝΑ ΕΝΟΤΗΤΑ ΘΕΩΡΗΜΑ ΘΑΛΗ ΘΕΜΑ ο ΘΕΜΑ -8975 Δίνεται τρίγωνο ABΓ με AB=9, AΓ=5. Από το βαρύκεντρο φέρνουμε ευθεία παράλληλη στην πλευρά BΓ που τέμνει