ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕΔΡΟΥΣ ΕΞΕΤΑΣΤΙΚΩΝ ΚΕΝΤΡΩΝ ΚΑΙ ΕΠΙΤΗΡΗΤΕΣ
|
|
- Νικόστρατος Καραβίας
- 8 χρόνια πριν
- Προβολές:
Transcript
1 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) ΑΘΗΝΑ Τηλ Fax: GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou Venizelou) Street GR Athens - HELLAS Tel Fax: ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 75 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ ΣΑΒΒΑΤΟ, ΝΟΕΜΒΡΙΟΥ 04 ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕΔΡΟΥΣ ΕΞΕΤΑΣΤΙΚΩΝ ΚΕΝΤΡΩΝ ΚΑΙ ΕΠΙΤΗΡΗΤΕΣ Παρακαλούμε να διαβάσετε προσεκτικά τις οδηγίες στους μαθητές Οι επιτηρητές των αιθουσών θα διανείμουν πρώτα κόλλες αναφοράς, στις οποίες οι μαθητές θα πρέπει απαραίτητα να γράψουν ΕΠΩΝΥΜΟ, ΟΝΟΜΑ, ΣΧΟΛΕΙΟ, ΤΑΞΗ, ΣΤΑΘΕΡΟ και ΚΙΝΗΤΟ ΤΗΛΕΦΩΝΟ, τα οποία θα ελεγχθούν σε αντιπαραβολή με την ταυτότητα που θα έχουν οι εξεταζόμενοι, πριν καλυφθούν και μετά θα γίνει διανομή φωτοτυπιών των θεμάτων στους μαθητές 3 Να φωτοτυπηθεί και να μοιραστεί σε όλους τους μαθητές η επιστολή που σας αποστέλλουμε μαζί με τα θέματα 4 Η εξέταση πρέπει να διαρκέσει ακριβώς τρεις (3) ώρες από τη στιγμή που θα γίνει η εκφώνηση των θεμάτων (9- περίπου) Δε θα επιτρέπεται σε κανένα μαθητή ν' αποχωρήσει πριν παρέλθει μια ώρα από την έναρξη της εξέτασης 5 Οι επιτηρητές των αιθουσών έχουν το δικαίωμα ν' ακυρώσουν τη συμμετοχή μαθητών, αν αποδειχθεί ότι αυτοί έχουν χρησιμοποιήσει αθέμιτα μέσα, σημειώνοντας τούτο στις κόλλες των μαθητών Η επιτροπή Διαγωνισμών της ΕΜΕ έχει δικαίωμα να επανεξετάσει μαθητή αν έχει λόγους να υποπτεύεται ότι το γραπτό του είναι αποτέλεσμα χρήσης αθέμιτου μέσου 6 Υπολογιστές οποιουδήποτε τύπου καθώς και η χρήση κινητών απαγορεύονται 7 Αμέσως μετά το πέρας της εξέτασης, οι κόλλες των μαθητών πρέπει να σφραγιστούν εντός φακέλου ή φακέλων, που θα έχουν την υπογραφή του υπεύθυνου του εξεταστικού κέντρου και ν' αποσταλούν στην Επιτροπή Διαγωνισμών της ΕΜΕ, Πανεπιστημίου 34, Αθήνα, αφού πρώτα στα παραρτήματα, εφόσον είναι εφικτό, γίνει μία πρώτη βαθμολόγηση, σύμφωνα με το σχέδιο βαθμολόγησης της επιτροπής διαγωνισμών 8 Τα αποτελέσματα του διαγωνισμού θα σταλούν στους Προέδρους των Τοπικών Νομαρχιακών Επιτροπών (ΤΝΕ) και τα Παραρτήματα της ΕΜΕ 9 Ο «ΕΥΚΛΕΙΔΗΣ» θα διενεργηθεί στις 7 Ιανουαρίου 05 και η Εθνική Ολυμπιάδα Μαθηματικών «ΑΡΧΙΜΗΔΗΣ» θα γίνει στις 8 Φεβρουαρίου 05 στην Αθήνα Από τους διαγωνισμούς αυτούς και επί πλέον από ένα τελικό προκριματικό διαγωνισμό στην ΕΜΕ που θα γίνει στις 4 Απριλίου 05 θα επιλεγεί η εθνική ομάδα, που θα συμμετάσχει στην 3 η Βαλκανική Μαθηματική Ολυμπιάδα (Ελλάδα, Μάιος 05), στην 9 η Βαλκανική Μαθηματική Ολυμπιάδα Νέων (Σερβία, Ιούνιος 05) και στην 56 η Διεθνή Μαθηματική Ολυμπιάδα (Ταϊλάνδη, Ιούλιος 05) 0 Με την ευκαιρία αυτή, το ΔΣ της ΕΜΕ ευχαριστεί όλους τους συναδέλφους που συμβάλλουν με την εθελοντική τους συμμετοχή στην επιτυχία των Πανελλήνιων Μαθητικών Διαγωνισμών της Ελληνικής Μαθηματικής Εταιρείας Παρακαλούμε τον Πρόεδρο της ΤΝΕ να αναπαράγει με τα ονόματα των επιτηρητών την ευχαριστήρια επιστολή του ΔΣ της Ελληνικής Μαθηματικής Εταιρείας και να την παραδώσει στους επιτηρητές Για το Διοικητικό Συμβούλιο της Ελληνικής Μαθηματικής Εταιρείας Ο Πρόεδρος Γεώργιος Δημάκος Καθηγητής Πανεπιστημίου Αθηνών Ο Γενικός Γραμματέας Εμμανουήλ Κρητικός Επίκουρος Καθηγητής Οικονομικού Πανεπιστημίου Αθηνών
2 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ GREEK MATHEMATICAL SOCIETY Πανεπιστημίου (Ελευθερίου Βενιζέλου) ΑΘΗΝΑ Τηλ Fax: , Panepistimiou (Εleftheriou Venizelou) Street GR Athens - HELLAS Tel Fax: ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 75 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ Νοεμβρίου 04 Πρόβλημα Β ΓΥΜΝΑΣΙΟΥ Να υπολογίσετε την τιμή της παράστασης: : Πρόβλημα Ένας έμπορος συλλεκτικών αντικειμένων αγόρασε δύο παλαιά ραδιόφωνα Α κα Β αντί 00 ευρώ και στη συνέχεια τα πούλησε με συνολικό κέρδος 40% πάνω στην τιμή της αγοράς τους Αν το ραδιόφωνο Α πουλήθηκε με κέρδος 5% και το ραδιόφωνο Β πουλήθηκε με κέρδος 50%, πάνω στην τιμή της αγοράς τους, να βρείτε πόσο πλήρωσε ο έμπορος για να αγοράσει το καθένα από τα ραδιόφωνα Α και Β Πρόλημα 3 Χωρίς την εκτέλεση των διαιρέσεων αριθμητή με παρανομαστή, να βρείτε τον μεγαλύτερο και τον μικρότερο από τους παρακάτω αριθμούς: ,,,,,,, Πρόβλημα 4 Στο παρακάτω σχήμα το τρίγωνο ΑΒΓ είναι ορθογώνιο ισοσκελές με ˆ 90 και Το τρίγωνο ΑΓΔ είναι ισόπλευρο και το σημείο Ε είναι το μέσο της πλευρά ΒΓ (α) Να αποδείξετε ότι η ευθεία ΔΕ είναι μεσοκάθετη του ευθύγραμμου τμήματος ΑΓ (β) Βρείτε πόσων μοιρών είναι η γωνία ˆ Κάθε θέμα βαθμολογείται με 5 μονάδες Καλή επιτυχία! Διάρκεια διαγωνισμού: 3 ώρες
3 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) ΑΘΗΝΑ Τηλ Fax: GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou Venizelou) Street GR Athens - HELLAS Tel Fax: Πρόβλημα ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 75 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ Νοεμβρίου 04 Να βρείτε την τιμή της παράστασης Γ ΓΥΜΝΑΣΙΟΥ x 4 6, αν 3 x x 3 3 x 4 Πρόβλημα Το πλήθος των μαθητών σε ένα Γυμνάσιο είναι τουλάχιστον 70 και το πολύ 30 Αν γνωρίζουμε ότι ακριβώς το 4% των μαθητών παίζουν βιολί και ότι το 3 από αυτούς που παίζουν βιολί, παίζει και πιάνο, να βρείτε το πλήθος των μαθητών του Γυμνασίου Πρόβλημα 3 Δίνεται ισόπλευρο τρίγωνο πλευράς Προεκτείνουμε την πλευρά ΑΓ κατά τμήμα και στη συνέχεια προεκτείνουμε την πλευρά κατά τμήμα είναι το εμβαδόν του τριγώνου Αν και και του τετραπλεύρου, αντίστοιχα, να βρείτε το λόγο Πρόβλημα 4 Ένα διαμάντι Δ κόβεται σε δύο κομμάτια και με βάρη και, 3 αντίστοιχα, και λόγο βαρών Δίνεται ότι η αξία ενός διαμαντιού είναι 7 ευθέως ανάλογη προς το τετράγωνο του βάρους του Να προσδιορίσετε πόσο επί τις εκατό μειώθηκε η αξία του διαμαντιού Δ μετά την κοπή του στα δύο κομμάτια και Κάθε θέμα βαθμολογείται με 5 μονάδες Διάρκεια διαγωνισμού: 3 ώρες Καλή επιτυχία
4 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) ΑΘΗΝΑ Τηλ Fax: GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou Venizelou) Street GR Athens - HELLAS Tel Fax: ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 75 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ Νοεμβρίου 04 Α ΛΥΚΕΙΟΥ Πρόβλημα Να βρείτε την τιμή της αριθμητικής παράστασης: Πρόβλημα Ένα βιβλίο μαθηματικών κυκλοφορεί σε τόμους Α και Β 00 αντίτυπα του τόμου Α και 0 αντίτυπα του τόμου Β κοστίζουν συνολικά 4000 ευρώ Ένα βιβλιοπωλείο πούλησε 50 αντίτυπα του τόμου Α με έκπτωση 0% και 60 αντίτυπα του τόμου Β με έκπτωση 0% και εισέπραξε συνολικά 680 ευρώ Να προσδιορίσετε την τιμή πώλησης του ενός βιβλίου από κάθε τόμο Πρόβλημα 3 Δίνονται οι παραστάσεις: x y xy και όπου x, y είναι ρητοί x y xy x 4 y 4, (α) Να γράψετε την παράσταση Α ως πολυώνυμο των μεταβλητών x, y διατεταγμένο ως προς τις φθίνουσες δυνάμεις του x (β) Να αποδείξετε ότι ο αριθμός αριθμών x, y είναι ρητός, για οποιαδήποτε τιμή των ρητών Πρόβλημα 4 Θεωρούμε τετράπλευρο ABCD με τη γωνία Aˆ 00 o και ˆ o D 40 Αν DB είναι διχοτόμος της γωνίας ˆ, να υπολογισθεί το μέτρο της γωνίας CAB ˆ CDA και DB DC Κάθε θέμα βαθμολογείται με 5 μονάδες Διάρκεια διαγωνισμού: 3 ώρες Καλή επιτυχία!
5 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) ΑΘΗΝΑ Τηλ Fax: GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou Venizelou) Street GR Athens - HELLAS Tel Fax: ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 75 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ Νοεμβρίου 04 Β ΛΥΚΕΙΟΥ Πρόβλημα Έστω k ένας ακέραιος και x ένας θετικός πραγματικός αριθμός Να συγκριθούν οι αριθμοί: k x k x και x x k k Πρόβλημα Να προσδιορίσετε όλα τα ζεύγη ακεραίων x, y που είναι λύσεις της εξίσωσης: x 0xy3y x y 5 Πρόβλημα 3 Δίνεται οξυγώνιο τρίγωνο ABC (με AB AC BC ) εγγεγραμμένο σε κύκλο ( c ) (με κέντρο O και ακτίνα R ) και έστω D, E τα αντιδιαμετρικά σημεία των B, C, αντίστοιχα (ως προς τον κύκλο ( c )) Ο κύκλος ( c ) (με κέντρο A και ακτίνα AE ), τέμνει την AC στο σημείο K Ο κύκλος ( c ) (με κέντρο Α και ακτίνα AD ), τέμνει την προέκταση της AB (προς το μέρος του Α) στο σημείο L Να αποδείξετε ότι οι ευθείες EK και DL τέμνονται επάνω στο κύκλο ( c ) Πρόβλημα 4 Σε έναν διαγωνισμό που η μέγιστη δυνατή βαθμολογία ήταν 00 έλαβαν μέρος x μαθητές Οκτώ μαθητές πήραν βαθμό 00, ενώ όλοι οι υπόλοιποι πήραν βαθμό μεγαλύτερο ή ίσο του 70 Αν ο μέσος όρος των βαθμών των μαθητών ήταν 78, να βρεθεί η ελάχιστη δυνατή τιμή του πλήθους των μαθητών Κάθε θέμα βαθμολογείται με 5 μονάδες Διάρκεια διαγωνισμού: 3 ώρες Καλή επιτυχία!
6 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) ΑΘΗΝΑ Τηλ Fax: GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou Venizelou) Street GR Athens - HELLAS Tel Fax: Πρόβλημα ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 75 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ Νοεμβρίου 04 Γ ΛΥΚΕΙΟΥ Δίνεται η παραβολή με εξίσωση y x 3 5 x86, Να προσδιορίσετε τις τιμές του για τις οποίες η παραβολή τέμνει τον άξονα των x σε δύο σημεία διαφορετικά μεταξύ τους με ακέραιες συντεταγμένες Πρόβλημα Να λυθεί στους πραγματικούς αριθμούς το σύστημα : 4 4 x x y y 9 x xy y 3 Πρόβλημα 3 Δίνεται τρίγωνο (με εγγεγραμμένο σε κύκλο COR (, ) Η διχοτόμος τέμνει τον περιγεγραμμένο κύκλο COR, (, ) στο σημείο Z Έστω τυχόν σημείο του τμήματος Η ευθεία τέμνει τον κύκλο COR (, ) στο σημείο Οι ευθείες και τέμνονται στο σημείο Επίσης, η ευθεία τέμνει τον κύκλο COR (, ) στο σημείο Να αποδείξετε ότι τα τετράπλευρα, και είναι εγγράψιμα Πρόβλημα 4 Να βρείτε όλους τους φυσικούς αριθμούς n, που έχουν ακριβώς τέσσερις θετικούς διαιρέτες d d d3 d4 και ικανοποιούν τη σχέση: d d d3 d4 640 Κάθε θέμα βαθμολογείται με 5 μονάδες Διάρκεια διαγωνισμού: 3 ώρες Καλή επιτυχία!
7 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) ΑΘΗΝΑ Τηλ Fax: GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou Venizelou) Street GR Athens - HELLAS Tel Fax: Πρόβλημα ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 75 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ Νοεμβρίου 04 Να υπολογίσετε την τιμή της παράστασης: Ενδεικτικές λύσεις Β ΓΥΜΝΑΣΙΟΥ :8 : : : Πρόβλημα Ένας έμπορος συλλεκτικών αντικειμένων αγόρασε δύο παλαιά ραδιόφωνα Α κα Β αντί 00 ευρώ και στη συνέχεια τα πούλησε με συνολικό κέρδος 40% πάνω στην τιμή της αγοράς τους Αν το ραδιόφωνο Α πουλήθηκε με κέρδος 5% και το ραδιόφωνο Β πουλήθηκε με κέρδος 50%, πάνω στην τιμή της αγοράς τους, να βρείτε πόσο πλήρωσε ο έμπορος για να αγοράσει το καθένα από τα ραδιόφωνα Α και Β Έστω ότι ο έμπορος αγόρασε x ευρώ το ραδιόφωνο Α Τότε η τιμή αγοράς του 5x 5x ραδιοφώνου Β ήταν 00 x ευρώ Τότε το ραδιόφωνο Α πουλήθηκε x ευρώ, ενώ το ραδιόφωνο Β πουλήθηκε x ευρώ Συνολικά τα δύο ραδιόφωνα πουλήθηκαν 00 ευρώ, δηλαδή 80 ευρώ 00 Σύμφωνα με τα δεδομένα του προβλήματος προκύπτει η εξίσωση 5 x 00 x ,5x5x ,5x00 x80 Άρα ο έμπορος αγόρασε 80 ευρώ το ραδιόφωνο Α και ευρώ το ραδιόφωνο Β :8
8 Πρόβλημα 3 Χωρίς την εκτέλεση διαιρέσεων αριθμητή με παρανομαστή, να βρείτε τον μεγαλύτερο και τον μικρότερο από τους παρακάτω αριθμούς: ,,,,,,, Παρατηρούμε ότι σε όλα τα δεδομένα κλάσματα την ίδια διαφορά: (Παρανομαστής) - (Αριθμητής) = 0 Έτσι γράφουμε: ,,, ,,, Γνωρίζουμε ότι μεταξύ ρητών αριθμών με τον ίδιο αριθμητή, μεγαλύτερος είναι αυτός που έχει μικρότερο παρανομαστή, οπότε έχουμε: Άρα έχουμε: , οπότε ο αριθμός 0 είναι ο μεγαλύτερος από τους δεδομένους ρητούς αριθμούς, ενώ ο είναι ο μικρότερος Πρόβλημα 4 Στο παρακάτω σχήμα το τρίγωνο ΑΒΓ είναι ορθογώνιο ισοσκελές με ˆ 90 και Το τρίγωνο ΑΓΔ είναι ισόπλευρο και το σημείο Ε είναι το μέσο της πλευρά ΒΓ (α) Να αποδείξετε ότι η ευθεία ΔΕ είναι μεσοκάθετη του ευθύγραμμου τμήματος ΑΓ (β) Βρείτε πόσων μοιρών είναι η γωνία ˆ Σχήμα
9 Σχήμα (α) Επειδή το τρίγωνο ΑΒΓ είναι ορθογώνιο και ισοσκελές θα έχει ˆ ˆ 45 και η διάμεσός του ΑΕ είναι και ύψος του, οπότε το τρίγωνο ΑΕΓ είναι ορθογώνιο στο Ε με μία γωνία του 45 Επομένως θα έχει ˆ , οπότε αυτό είναι ισοσκελές με Επιπλέον, από το ισόπλευρο τρίγωνο ΑΓΔ έχουμε ότι: Επομένως τα σημεία Δ και Ε ισαπέχουν από τα άκρα Α και Γ του ευθύγραμμου τμήματος ΑΓ, οπότε η ευθεία ΔΕ είναι η μεσοκάθετη του ΑΓ (β) Από το ισοσκελές τρίγωνο ΑΒΓ και το ισόπλευρο τρίγωνο ΑΓΔ λαμβάνουμε τις ισότητες, οπότε το τρίγωνο ΑΒΔ είναι ισοσκελές Από το ισόπλευρο τρίγωνο ΑΓΔ έχουμε ˆ 60, οπότε ˆ ˆ ˆ Επειδή ΑΒΔ ισοσκελές τρίγωνο έπεται ότι: ˆ ˆ Επειδή οι ευθείες ΑΒ και ΔΕ είναι παράλληλες, ως κάθετες προς την ίδια ευθεία ΑΓ, που τις τέμνει η ευθεία ΒΔ, σχηματίζουν τις εντός εναλλάξ γωνίες του ίσες, οπότε: ˆ ˆ 5 Πρόβλημα Να βρείτε την τιμή της παράστασης Έχουμε Γ ΓΥΜΝΑΣΙΟΥ x 4 6, αν 3 x x 3 x x 3 x 4 4 x 6 6 x 6, x x 3 3 x x 3 3 x 3 3 3
10 3 4 6 οπότε για x λαμβάνουμε: x x Πρόβλημα Το πλήθος των μαθητών σε ένα Γυμνάσιο είναι τουλάχιστον 70 και το πολύ 30 Αν γνωρίζουμε ότι ακριβώς το 4% των μαθητών παίζουν βιολί και ότι το 3 από αυτούς που παίζουν βιολί, παίζει και πιάνο, να βρείτε το πλήθος των μαθητών του Γυμνασίου Έστω n το πλήθος των μαθητών του Γυμνασίου Τότε το πλήθος των μαθητών που παίζει βιολί είναι 4 n Το πλήθος των μαθητών που παίζει και βιολί και πιάνο είναι 00 4n 4n n Επειδή ο αριθμός των μαθητών του Γυμνασίου είναι θετικός ακέραιος, πρέπει ο αριθμητής n να είναι πολλαπλάσιο του παρανομαστή, δηλαδή πρέπει n 75 k, όπου k θετικός ακέραιος Έτσι, από την υπόθεση70 n 30, έχουμε: n75k 30 k k 3 k Επομένως έχουμε n μαθητές Πρόβλημα 3 Δίνεται ισόπλευρο τρίγωνο πλευρά Προεκτείνουμε την πλευρά ΑΓ κατά τμήμα και στη συνέχεια προεκτείνουμε την πλευρά κατά τμήμα είναι το εμβαδόν του τριγώνου και του Αν και τετραπλεύρου, αντίστοιχα, να βρείτε το λόγο Το τρίγωνο ΑΒΔ έχει βάση Άρα είναι: 3 και ύψος
11 Σχήμα 3 Για το τετράπλευρο ΑΒΔΖ έχουμε: Στο τρίγωνο ΑΒΖ έχουμε βάση και ύψος, οπότε έχει εμβαδό Στο τρίγωνο ΒΔΖ έχουμε βάση και ύψος ΔΕ το οποίο μπορεί να υπολογιστεί από τα όμοια ορθογώνια τρίγωνα ΑΗΓ και ΓΕΔ ως εξής: Διαφορετικά, μπορούμε να έχουμε: 60 4 Άρα έχουμε: Επομένως έχουμε: , οπότε θα είναι
12 Πρόβλημα 4 Ένα διαμάντι Δ κόβεται σε δύο κομμάτια και με βάρη και, 3 αντίστοιχα, και λόγο βαρών Δίνεται ότι η αξία ενός διαμαντιού είναι 7 ευθέως ανάλογη προς το τετράγωνο του βάρους του Να προσδιορίσετε πόσο επί τις εκατό μειώθηκε η αξία του διαμαντιού Δ μετά την κοπή του στα δύο κομμάτια και Έστω, και Τότε έχουμε Άρα έχουμε η αξία των διαμαντιών, και, αντίστοιχα,, Όμως από την υπόθεση έχουμε: Από τις () και () λαμβάνουμε 3 7, Επομένως η αξία των δύο κομματιών του διαμαντιού ισούται με το 58% της αρχικής αξίας του, δηλαδή η αξία του μειώθηκε κατά = 4% () () Α ΛΥΚΕΙΟΥ Πρόβλημα Να βρείτε την τιμή της αριθμητικής παράστασης: Επειδή οι εμφανιζόμενες πράξεις είναι πολλές και χρονοβόρες, προσπαθούμε με κατάλληλη αντικατάσταση, να μετασχηματίσουμε την αριθμητική παράσταση σε αλγεβρική Η παράσταση που προκύπτει μετά την απλοποίησή της οδηγεί τελικά σε απλό υπολογισμό της δεδομένης αριθμητικής παράστασης Έτσι, αν θέσουμε x 04, η παράσταση γίνεται: 6
13 x x 35x x x x x x x x x x x x x x x x x x x x x x x 3 x x 3 4x x 3 5x 5x 4x 5x 4x 5x 4x 5x 4x x x x 4x5x 4x0x xx 3 x x 300 5x 4x5x 4x Άρα είναι Πρόβλημα Ένα βιβλίο μαθηματικών κυκλοφορεί σε τόμους Α και Β 00 αντίτυπα του τόμου Α και 0 αντίτυπα του τόμου Β κοστίζουν συνολικά 4000 ευρώ Ένα βιβλιοπωλείο πούλησε 50 αντίτυπα του τόμου Α με έκπτωση 0% και 60 αντίτυπα του τόμου Β με έκπτωση 0% και εισέπραξε συνολικά 680 ευρώ Να προσδιορίσετε την τιμή πώλησης του ενός βιβλίου από κάθε τόμο Έστω ότι η τιμή πώλησης του τόμου Α είναι x ευρώ και τόμου Β είναι y ευρώ Από τα δεδομένα του προβλήματος προκύπτουν οι εξισώσεις: 00x0y x6y 00 () 90x 80y x48y 680 () Έτσι έχουμε το σύστημα 5x6y00 45x54y800 6y0 45x48y x48y x48y680 y 0 y y x x 6 45 Άρα η τιμή πώλησης του τόμου Α ήταν 6 ευρώ και του τόμου Β ήταν 0 ευρώ Πρόβλημα 3 Δίνονται οι παραστάσεις: όπου x, y είναι ρητοί x y xy και x y xy x y 4 4, 7
14 (α) Να γράψετε την παράσταση Α ως πολυώνυμο των μεταβλητών x, y διατεταγμένο ως προς τις φθίνουσες δυνάμεις του x (β) Να αποδείξετε ότι ο αριθμός αριθμών xy, (α) Έχουμε είναι ρητός για οποιαδήποτε τιμή των ρητών x y xy x y xy x y xy x y x y x y x yxy x x y3x y xy y Διαφορετικά μπορούμε να έχουμε: x y xy x y xy x y xy x y xy xy xyxy x x y3x y xy y (β) Έχουμε, όπως στο προηγούμενο ερώτημα, ότι: x y xy x 4 4x 3 y6x y 4 xy 3 y 4, x y xy x y x 4x y6x y 4xy y x y x 4x y6x y 4xy y 4x x y3x y xy y 4 x y xy, όπου στην τελευταία σχέση χρησιμοποιήσαμε το αποτέλεσμα του ερωτήματος (α) Άρα έχουμε x xy y x xy y B, y 3y αφού οι αριθμοί x, y είναι ρητοί και x xy y x 4 0 Πρόβλημα 4 Θεωρούμε τετράπλευρο ABCD με τη γωνία Aˆ 00 και Dˆ 40 Αν DB είναι διχοτόμος της γωνίας CDAκαι ˆ DB DC, να υπολογισθεί το μέτρο της γωνίας CAB ˆ Εφόσον η DB είναι διχοτόμος της γωνίαςcda ˆ, θα έχουμε ότι ˆ ˆ CDB BDA 0 και από το ισοσκελές τρίγωνο DBC θα έχουμε ότι DBC ˆ DCB ˆ 80 και επιπλέον ˆ DBA 0 =60 Αν τώρα φέρουμε τις προβολές BK και BL, έχουμε ότι αφού το Β είναι σημείο της διχοτόμου, θα έχουμε ότι BK = BL και BAK ˆ 80, οπότε τα ορθογώνια τρίγωνα BAK και BLC είναι ίσα, που σημαίνει ότι BA = BC Επομένως, από το ισοσκελές τρίγωνο BAC παίρνουμε ότι: CAB ˆ 0 8
15 Σχήμα 4 Β ΛΥΚΕΙΟΥ Πρόβλημα Έστω k ένας ακέραιος και x ένας θετικός πραγματικός αριθμός Να συγκριθούν οι αριθμοί: k k x k x και x k x ( ος τρόπος) Θεωρούμε τη διαφορά των δύο αριθμών και έχουμε: k k k k k x x x x x B k k k k x x x x k k k k k k k x x x x x x x x, k k k k k k x x x x x x οπότε, αφού x 0 και k ακέραιος, έχουμε: 0, αν x, αν x 0, αν 0 x,αν 0 x ος τρόπος Έχουμε ότι k k k k k ( x )( x ) x x x k k ( x ) ( x ) k k k k x x x x ( x) k k ( x ) ( x ) Η ισότητα στην τελευταία ισχύει, αν, και μόνο αν, x Επομένως έχουμε ότι:, αν x και A B, αν 0 x 9
16 Πρόβλημα Να προσδιορίσετε όλα τα ζεύγη ακεραίων x, y που είναι λύσεις της εξίσωσης: x 0xy3y xy 5 Η εξίσωση γράφεται στη μορφή x 0xy 3y 5 x y () Η παράσταση του πρώτου μέλους γράφεται: 5y 5y 5y y x 0xy3y x 5xy 3y x 0, 4 5y όπου η ισότητα ισχύει αν, και μόνον αν: x y 0 x y 0 Επομένως για το δεύτερο μέλος της εξίσωσης () πρέπει να ισχύει: 5 5 x y 0 x y x y 0,,, οπότε έχουμε τις περιπτώσεις: x y 0 x y Τότε η εξίσωση γίνεται: x 0x 3x 5 x xή x, οπότε προκύπτουν οι λύσεις: xy,, ή xy,, x y xy ή xy x yή x y Για x y y 0 y y3y 3 η εξίσωση γίνεται: 5y 6y0 της είναι 56, η οποία δεν έχει ακέραιες λύσεις αφού η διακρίνουσα 3 xy xy ή xy x y ή x y Πρόβλημα 3 Για x y y 0 y y3y η εξίσωση γίνεται: 5y y7 0, η οποία έχει ακέραιες λύσεις αφού η διακρίνουσα της είναι 4 και έχει ρίζες Άρα προκύπτει η λύση xy, 3, Για x y 7 y y ή y 0 5 y 0 y y3y η εξίσωση γίνεται: 5y y7 0, η οποία έχει ακέραιες λύσεις αφού η διακρίνουσα της είναι 4 και έχει ρίζες Άρα προκύπτει η λύση xy, 3, 7 y y ή y 0 5 Επομένως η εξίσωση έχει τις λύσεις:,,,,3,, 3, 0
17 Δίνεται οξυγώνιο τρίγωνο ABC (με AB AC BC ) εγγεγραμμένο σε κύκλο ( c ) (με κέντρο O και ακτίνα R ) και έστω D, E τα αντιδιαμετρικά σημεία των B, C, αντίστοιχα (ως προς τον κύκλο ( c ) ) Ο κύκλος ( c ) (με κέντρο A και ακτίνα AE ), τέμνει την AC στο σημείο K Ο κύκλος ( c ) (με κέντρο Α και ακτίνα AD ), τέμνει την προέκταση της AB (προς το μέρος του Α) στο σημείο L Να αποδείξετε ότι οι ευθείες EK και DL τέμνονται πάνω στο κύκλο ( c ) Έστω Μ το σημείο τομής της DL με τον κύκλο ( c ) θα αποδείξουμε ότι τα σημεία E, K, M βρίσκονται επάνω στον ίδια ευθεία Η γωνία EAC ˆ είναι ορθή, διότι βαίνει στη διάμετρο EC του κύκλου ( c ) Το τρίγωνο AEK είναι ισοσκελές (διότι AE, AK είναι ακτίνες του κύκλου ( c )) Άρα: AEK ˆ AKE ˆ 45 () Σχήμα 5 Η γωνία BAD ˆ είναι ορθή, γιατί βαίνει στη διάμετρο BD του κύκλου ( c ), οπότε και η γωνία DAL ˆ είναι ορθή Το τρίγωνο ADL είναι ισοσκελές (διότι AD, AL είναι ακτίνες του κύκλου ( c )) Άρα έχουμε ADL ˆ ALD ˆ 45 () Οι γωνίες ADM=ADL ˆ ˆ και AEM ˆ είναι ίσες, γιατί είναι εγγεγραμμένες στο κύκλο ( c ) και βαίνουν στο τόξο AM, δηλαδή AEM ˆ ADL ˆ (3) Άρα από τις σχέσεις (), () και (3) προκύπτει η ισότητα AEK ˆ AEM ˆ 45, οπότε τα σημεία Ε, Κ, Μ είναι συνευθειακά Πρόβλημα 4 Σε έναν διαγωνισμό που η μέγιστη δυνατή βαθμολογία ήταν 00 έλαβαν μέρος x μαθητές Οκτώ μαθητές πήραν βαθμό 00, ενώ όλοι οι υπόλοιποι πήραν βαθμό μεγαλύτερο ή ίσο του 70 Αν ο μέσος όρος των βαθμών των μαθητών ήταν 78, να βρεθεί η ελάχιστη δυνατή τιμή του πλήθους των μαθητών
18 Για το άθροισμα των βαθμών όλων των μαθητών έχουμε τη σχέση x 800 x870 x 70x 40, () οπότε για το μέσο όρο των βαθμών έχουμε: x 70x () x x x Έχοντας υπόψη ότι ο μέσος όρος της βαθμολογίας των μαθητών είναι 78, αν υποθέσουμε ότι ισχύει x 30, τότε από τη σχέση () λαμβάνουμε: x , (3) x x 30 που είναι αντίθετο προς την υπόθεση ότι ο μέσος όρος των βαθμών είναι 78 Επομένως δεν είναι δυνατόν να ισχύει ότι x 30, οπότε πρέπει να είναι x 30 Παρατηρούμε ότι για x 30, έχουμε την περίπτωση , οπότε η ελάχιστη δυνατή τιμή του x είναι 30 Πρόβλημα Γ ΛΥΚΕΙΟΥ Δίνεται η παραβολή με εξίσωση y x 3 5 x86, Να προσδιορίσετε τις τιμές του για τις οποίες η παραβολή τέμνει τον άξονα των x σε δύο σημεία διαφορετικά μεταξύ τους με ακέραιες συντεταγμένες Τα σημεία τομής της παραβολής είναι της μορφής x,0 και x,0, x x y x 3 5 x86, με τον άξονα των x όπου x, x είναι οι ρίζες της εξίσωσης: , Άρα έχουμε: xx 3a5, () xx 86 () Επειδή πρέπει οι ρίζες x και x να είναι ακέραιοι αριθμοί, σύμφωνα με την υπόθεση διαφορετικοί μεταξύ τους, έστω x x, από την εξίσωση (), έχουμε ότι οι x, x πρέπει να είναι ομόσημοι ακέραιοι, με γινόμενο Άρα έχουμε τα εξής δυνατά ζεύγη: x, x,86,,93, 3,6, 6,3,, 86,, 93, 3, 6, 6, 3 x x 5 Από την εξίσωση () προκύπτει ότι:, οπότε οι δυνατές τιμές για την 3 παράμετρο είναι οι εξής: 64, 4, -30, -0 Πρόβλημα Να λυθεί στους πραγματικούς αριθμούς το σύστημα :
19 ( ος τρόπος) Προσθέτοντας και αφαιρώντας το 4 4 x x y y 9 x xy y 3 x y η πρώτη εξίσωση γίνεται: 4 4 x x y y x y x y x y x y xy x y xy 9 Επομένως, έχουμε x y xy 7 Προσθέτοντας τώρα αυτή και τη δεύτερη 3 x y 0 x y 0, οπότε εξίσωση του συστήματος, βρίσκουμε ότι: xy 3 από τη δεύτερη εξίσωση του συστήματος Έτσι καταλήγουμε στο ισοδύναμο σύστημα: x y 0 x y 0, xy 3 xy 6 από το οποίο με πρόσθεση και αφαίρεση των δύο εξισώσεων κατά μέλη, λαμβάνουμε x y xy 6 x y 6 x y 4 x y xy 4 x y 4 x y x y 4 x y 4 x y 4 x y 4 ή ή ή x y x y x y x y xy, 3, ή xy,, 3 ή xy,, 3 ή xy, 3, ος τρόπος Έχουμε 4 4 x x y y 9 x y xy 9, x xy y 3 x xy y 3 οπότε, αν θέσουμε x y και xy, λαμβάνουμε το σύστημα x y xy 3 Στη συνέχεια εργαζόμαστε, όπως στον πρώτο τρόπο Πρόβλημα 3 Δίνεται τρίγωνο (με εγγεγραμμένο σε κύκλο C ( O,R ) Η διχοτόμος τέμνει τον κύκλο C ( O,R ), στο σημείο Z Έστω τυχόν σημείο του τμήματος Η ευθεία τέμνει τον κύκλο C ( O,R ) στο σημείο Οι ευθείες και τέμνονται στο σημείο Επίσης, η ευθεία τέμνει τον κύκλο στο σημείο Να αποδείξετε ότι τα τετράπλευρα, και είναι εγγράψιμα 3
20 Η γωνία ˆ είναι εγγεγραμμένη στον κύκλο C ( O,R ) και βαίνει στο τόξο Άρα: ˆ ˆ ˆ Η γωνία ˆ είναι εξωτερική του τριγώνου Άρα: ˆ ˆ ˆ ˆ ˆ Σχήμα 6 Από την ισότητα των γωνιών ˆ ˆ, προκύπτει η ισότητα των παραπληρωματικών τους γωνιών και από εκεί ότι το τετράπλευρο είναι εγγράψιμο Από το εγγεγραμμένο τετράπλευρο έχουμε: ˆ ˆ, η οποία σε συνδυασμό με την ισότητα ˆ ˆ, μας δίνει την εγγραψιμότητα του τετραπλεύρου Από το εγγράψιμο έχουμε: ˆ ˆ Από το εγγράψιμο έχουμε: ˆ ˆ ˆ ˆ Άρα είναι: Επομένως και το τετράπλευρο είναι εγγράψιμο Πρόβλημα 4 Να βρείτε όλους τους φυσικούς αριθμούς n, που έχουν ακριβώς τέσσερις θετικούς διαιρέτες d d d3 d4 και ικανοποιούν τη σχέση: d d d3d4 640 Για τους τέσσερις διαιρέτες ισχύουν οι σχέσεις d, d4 n και dd3 n 4
21 Επομένως, έχουμε dd d3 d4 640 d d3 dd d d 640 d d Αλλά d d d3 d4 d d3 και επειδή οι d και d 3 είναι ακέραιοι αριθμοί, διακρίνουμε τις περιπτώσεις: d 4,d3 60 d 3, d , απορρίπτονται, αφού ο n 3 59 έχει και άλλους διαιρέτες d 5,d3 8 d 4, d3 7, απορρίπτονται, αφού ο n 47 έχει και άλλους διαιρέτες d 8,d3 80 d 7, d3 79, οπότε είναι n d 0,d3 64 d 9, d3 63, απορρίπτονται, αφού ο n 963 έχει και άλλους διαιρέτες d 6,d3 40 d 5, d3 39, απορρίπτονται, αφού ο n 5 39 έχει και άλλους διαιρέτες d 0,d3 3 d 9, d3 3, οπότε είναι n Τελικά, οι αριθμοί που ικανοποιούν τις αρχικές υποθέσεις είναι οι 553 και 589 5
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 75 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 1 Νοεμβρίου Ενδεικτικές λύσεις Β ΓΥΜΝΑΣΙΟΥ
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 06 79 ΑΘΗΝΑ Τηλ 36653-367784 - Fax: 36405 e-mail : info@hmsgr wwwhmsgr GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou Venizelou)
Διαβάστε περισσότεραΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕΔΡΟΥΣ ΕΞΕΤΑΣΤΙΚΩΝ ΚΕΝΤΡΩΝ ΚΑΙ ΕΠΙΤΗΡΗΤΕΣ
Τηλ. 36653-367784 - Fax: 36405 ΣΑΒΒΑΤΟ, ΝΟΕΜΒΡΙΟΥ 04 ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕΔΡΟΥΣ ΕΞΕΤΑΣΤΙΚΩΝ ΚΕΝΤΡΩΝ ΚΑΙ ΕΠΙΤΗΡΗΤΕΣ. Παρακαλούμε να διαβάσετε προσεκτικά τις
Διαβάστε περισσότεραΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 75 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 1 Νοεμβρίου 2014. Ενδεικτικές λύσεις Β ΓΥΜΝΑΣΙΟΥ
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 06 79 ΑΘΗΝΑ Τηλ. 36653-367784 - Fax: 36405 e-mail : info@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou
Διαβάστε περισσότεραΒ ΓΥΜΝΑΣΙΟΥ ,,,,,,,
Τηλ 36653-367784 - Fa: 36405 Tel 36653-367784 - Fa: 36405 Νοεμβρίου 04 Β ΓΥΜΝΑΣΙΟΥ 3 74 3 3 Να υπολογίσετε την τιμή της παράστασης: :8 9 9 37 4 Πρόβλημα Ένας έμπορος συλλεκτικών αντικειμένων αγόρασε δύο
Διαβάστε περισσότεραΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕΔΡΟΥΣ ΕΞΕΤΑΣΤΙΚΩΝ ΚΕΝΤΡΩΝ ΚΑΙ ΕΠΙΤΗΡΗΤΕΣ
Τηλ. 361653-3617784 - Fax: 364105 Tel. 361653-3617784 - Fax: 364105 ΣΑΒΒΑΤΟ, 19 ΟΚΤΩΒΡΙΟΥ 013 ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕΔΡΟΥΣ ΕΞΕΤΑΣΤΙΚΩΝ ΚΕΝΤΡΩΝ ΚΑΙ ΕΠΙΤΗΡΗΤΕΣ
Διαβάστε περισσότεραΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕΔΡΟΥΣ ΕΞΕΤΑΣΤΙΚΩΝ ΚΕΝΤΡΩΝ ΚΑΙ ΕΠΙΤΗΡΗΤΕΣ
ΣΑΒΒΑΤΟ,14 ΝΟΕΜΒΡΙΟΥ 2015 ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕΔΡΟΥΣ ΕΞΕΤΑΣΤΙΚΩΝ ΚΕΝΤΡΩΝ ΚΑΙ ΕΠΙΤΗΡΗΤΕΣ 1. Παρακαλούμε να διαβάσετε προσεκτικά τις οδηγίες στους μαθητές. 2.
Διαβάστε περισσότεραΓια το Διοικητικό Συμβούλιο της Ελληνικής Μαθηματικής Εταιρείας
Τηλ 6165-617784 - Fax: 64105 Tel 6165-617784 - Fax: 64105 7 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΑΒΒΑΤΟ, 1 ΙΑΝΟΥΑΡΙΟΥ 01 ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕΔΡΟΥΣ ΕΞΕΤΑΣΤΙΚΩΝ
Διαβάστε περισσότεραΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 72 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 21 ΙΑΝΟΥΑΡΙΟΥ 2012
Τηλ. 361653-3617784 - Fax: 364105 Tel. 361653-3617784 - Fax: 364105 7 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΑΒΒΑΤΟ, 1 ΙΑΝΟΥΑΡΙΟΥ 01 ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕΔΡΟΥΣ
Διαβάστε περισσότεραΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕΔΡΟΥΣ ΕΞΕΤΑΣΤΙΚΩΝ ΚΕΝΤΡΩΝ ΚΑΙ ΕΠΙΤΗΡΗΤΕΣ
Τηλ. 361653-3617784 - Fax: 364105, Ιστοσελίδα: Site: 7 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΑΒΒΑΤΟ, 19 ΝΟΕΜΒΡΙΟΥ 011 ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕΔΡΟΥΣ ΕΞΕΤΑΣΤΙΚΩΝ
Διαβάστε περισσότεραΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 74 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 18 ΙΑΝΟΥΑΡΙΟΥ 2014
Τηλ. 6165-617784 - Fax: 64105 Tel. 6165-617784 - Fax: 64105 ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕΔΡΟΥΣ ΕΞΕΤΑΣΤΙΚΩΝ ΚΕΝΤΡΩΝ ΚΑΙ ΕΠΙΤΗΡΗΤΕΣ 1. Παρακαλούμε να διαβάσετε προσεκτικά
Διαβάστε περισσότεραΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 70 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 23 ΙΑΝΟΥΑΡΙΟΥ 2010
Πανεπιστημίου (Ελευθερίου Βενιζέλου) 4 Τηλ. 6165-617784 - Fax: 64105 4, Panepistimiou (Εleftheriou Venizelou) Street Tel. 6165-617784 - Fax: 64105 ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ,
Διαβάστε περισσότεραΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕΔΡΟΥΣ ΕΞΕΤΑΣΤΙΚΩΝ ΚΕΝΤΡΩΝ ΚΑΙ ΕΠΙΤΗΡΗΤΕΣ
ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΣΑΒΒΑΤΟ,1 ΝΟΕΜΒΡΙΟΥ 016 ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕΔΡΟΥΣ ΕΞΕΤΑΣΤΙΚΩΝ ΚΕΝΤΡΩΝ ΚΑΙ ΕΠΙΤΗΡΗΤΕΣ 1. Παρακαλούμε να διαβάσετε προσεκτικά τις οδηγίες στους
Διαβάστε περισσότεραΕΠΙΤΡΟΠΗ ΙΑΓΩΝΙΣΜΩΝ 77 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙ ΗΣ ΣΑΒΒΑΤΟ, 28 ΙΑΝΟΥΑΡΙΟΥ 2017
ΕΠΙΤΡΟΠΗ ΙΑΓΩΝΙΣΜΩΝ 77 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΙΑΓΩΝΙΣΜΟΣ Ο ΕΥΚΛΕΙ ΗΣ ΣΑΒΒΑΤΟ, 8 ΙΑΝΟΥΑΡΙΟΥ 017 Ο ΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕ ΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕ ΡΟΥΣ ΕΞΕΤΑΣΤΙΚΩΝ ΚΕΝΤΡΩΝ ΚΑΙ ΕΠΙΤΗΡΗΤΕΣ
Διαβάστε περισσότεραΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕΔΡΟΥΣ ΕΞΕΤΑΣΤΙΚΩΝ ΚΕΝΤΡΩΝ ΚΑΙ ΕΠΙΤΗΡΗΤΕΣ
Τηλ 361653-3617784 - Fax: 364105 Tel 361653-3617784 - Fax: 364105 ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 68 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΑΒΒΑΤΟ, 4 ΝΟΕΜΒΡΙΟΥ 007 ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ
Διαβάστε περισσότεραΓια το Διοικητικό Συμβούλιο της Ελληνικής Μαθηματικής Εταιρείας
ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΣΑΒΒΑΤΟ, 10 ΝΟΕΜΒΡΙΟΥ 2018 ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕΔΡΟΥΣ ΕΞΕΤΑΣΤΙΚΩΝ ΚΕΝΤΡΩΝ ΚΑΙ ΕΠΙΤΗΡΗΤΕΣ 1. Παρακαλούμε να διαβάσετε προσεκτικά τις οδηγίες
Διαβάστε περισσότεραΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 67 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ ΣΑΒΒΑΤΟ, 9 ΔΕΚΕΜΒΡΙΟΥ 2006
Τηλ. 361653-3617784 - Fax: 364105 Tel. 361653-3617784 - Fax: 364105 ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 67 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΑΒΒΑΤΟ, 9 ΔΕΚΕΜΒΡΙΟΥ 006 ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ
Διαβάστε περισσότεραΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 76 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 16 ΙΑΝΟΥΑΡΙΟΥ 2016
ΣΑΒΒΑΤΟ, 16 ΙΑΝΟΥΑΡΙΟΥ 2016 ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕΔΡΟΥΣ ΕΞΕΤΑΣΤΙΚΩΝ ΚΕΝΤΡΩΝ ΚΑΙ ΕΠΙΤΗΡΗΤΕΣ 1. Παρακαλούμε να διαβάσετε προσεκτικά τις οδηγίες στους μαθητές.
Διαβάστε περισσότεραΓια το Διοικητικό Συμβούλιο
ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΣΑΒΒΑΤΟ,11 ΝΟΕΜΒΡΙΟΥ 017 ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕΔΡΟΥΣ ΕΞΕΤΑΣΤΙΚΩΝ ΚΕΝΤΡΩΝ ΚΑΙ ΕΠΙΤΗΡΗΤΕΣ 1. Παρακαλούμε να διαβάσετε προσεκτικά τις οδηγίες στους
Διαβάστε περισσότεραΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕΔΡΟΥΣ ΕΞΕΤΑΣΤΙΚΩΝ ΚΕΝΤΡΩΝ ΚΑΙ ΕΠΙΤΗΡΗΤΕΣ
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 106 79 ΑΘΗΝΑ Τηλ. 361653-3617784 - Fax: 364105 GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou Venizelou) Street GR. 106 79
Διαβάστε περισσότεραΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 71 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 15 ΙΑΝΟΥΑΡΙΟΥ 2011
Τηλ. 36653-367784 - Fax: 36405 Tel. 36653-367784 - Fax: 36405 7 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΑΒΒΑΤΟ, 5 ΙΑΝΟΥΑΡΙΟΥ 0 ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕΔΡΟΥΣ ΕΞΕΤΑΣΤΙΚΩΝ
Διαβάστε περισσότεραΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 67ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ "Ο ΕΥΚΛΕΙΔΗΣ" ΣΑΒΒΑΤΟ, 20 ΙΑΝΟΥΑΡΙΟΥ 2007
e-mail : info@hms.gr www.hms.gr 4, Panepistimiou (Εleftheriou Venizelou) Street GR. 106 79 - Athens - HELLAS e-mail : info@hms.gr www.hms.gr ΜΑΘΗΜΑΤΙΚΑ "Ο ΕΥΚΛΕΙΔΗΣ" ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ
Διαβάστε περισσότεραΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 778 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 20 ΙΑΝΟΥΑΡΙΟΥ 2018
7 ΣΑΒΒΑΤΟ, 20 ΙΑΝΟΥΑΡΙΟΥ 2018 ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕΔΡΟΥΣ ΕΞΕΤΑΣΤΙΚΩΝ ΚΕΝΤΡΩΝ ΚΑΙ ΕΠΙΤΗΡΗΤΕΣ 1. Παρακαλούμε να διαβάσετε προσεκτικά τις οδηγίες στους μαθητές.
Διαβάστε περισσότεραΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 69 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 17 ΙΑΝΟΥΑΡΙΟΥ 2009
Τηλ. 36653-367784 - Fax: 36405 Tel. 36653-367784 - Fax: 36405 ΣΑΒΒΑΤΟ, 7 ΙΑΝΟΥΑΡΙΟΥ 009 ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕΔΡΟΥΣ ΕΞΕΤΑΣΤΙΚΩΝ ΚΕΝΤΡΩΝ ΚΑΙ ΕΠΙΤΗΡΗΤΕΣ. Παρακαλούμε
Διαβάστε περισσότεραΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 68 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 19 ΙΑΝΟΥΑΡΙΟΥ 2008
Τηλ. 3616532-3617784 - Fax: 3641025 Tel. 3616532-3617784 - Fax: 3641025 ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 68 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ Ο ΕΥΚΛΕΙΔΗΣ ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ,
Διαβάστε περισσότεραΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕΔΡΟΥΣ ΕΞΕΤΑΣΤΙΚΩΝ ΚΕΝΤΡΩΝ ΚΑΙ ΕΠΙΤΗΡΗΤΕΣ
Τηλ. 36653-367784 - Fax: 36405, Ιστοσελίδα: Tel. 36653-367784 - Fax: 36405 Site: ΣΑΒΒΑΤΟ, 30 ΟΚΤΩΒΡΙΟΥ 00 ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕΔΡΟΥΣ ΕΞΕΤΑΣΤΙΚΩΝ ΚΕΝΤΡΩΝ ΚΑΙ
Διαβάστε περισσότεραwww.hms.gr ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 67 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ ΣΑΒΒΑΤΟ, 9 ΔΕΚΕΜΒΡΙΟΥ 2006
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 4 06 79 ΑΘΗΝΑ Τηλ. 665-67784 - Fax: 6405 GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou Venizelou) Street GR. 06 79 - Athens
Διαβάστε περισσότεραΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕΔΡΟΥΣ ΕΞΕΤΑΣΤΙΚΩΝ ΚΕΝΤΡΩΝ ΚΑΙ ΕΠΙΤΗΡΗΤΕΣ
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 06 79 ΑΘΗΝΑ Τηλ. 36653-367784 - Fa: 36405 GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou Venizelou) Street GR. 06 79 - Athens
Διαβάστε περισσότερα: :
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 106 79 ΑΘΗΝΑ Τηλ. 361653-3617784 - Fax: 364105 e-mail : info@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou
Διαβάστε περισσότεραΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 76 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 14 Νοεμβρίου 2015. Ενδεικτικές λύσεις Β ΓΥΜΝΑΣΙΟΥ
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 06 79 ΑΘΗΝΑ Τηλ. 36653-367784 - Fax: 36405 e-mail : info@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou
Διαβάστε περισσότερα: :
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 106 79 ΑΘΗΝΑ Τηλ. 361653-3617784 - Fax: 364105 e-mail : info@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou
Διαβάστε περισσότεραΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 73 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 20 Οκτωβρίου 2012 ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ Β ΓΥΜΝΑΣΙΟΥ 18 :
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 06 79 ΑΘΗΝΑ Τηλ 36653-367784 - Fax: 36405 e-mail : info@hmsgr wwwhmsgr GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou Venizelou)
Διαβάστε περισσότεραΕΠΙΤΡΟΠΗ ΙΑΓΩΝΙΣΜΩΝ 67 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ ΣΑΒΒΑΤΟ, 9 ΕΚΕΜΒΡΙΟΥ Β τάξη Λυκείου
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 4 106 79 ΑΘΗΝΑ Τηλ. 10 6165-10617784 - Fax: 10 64105 e-mail : info@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou
Διαβάστε περισσότεραGREEK MATHEMATICAL SOCIETY Πανεπιστημίου (Ελευθερίου Βενιζέλου) ΑΘΗΝΑ Τηλ Fax:
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ GREEK MATHEMATICAL SOCIETY Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 106 79 ΑΘΗΝΑ Τηλ. 361653-3617784 - Fax: 364105 e-mail : info@hms.gr www.hms.gr 34, Panepistimiou (Εleftheriou
Διαβάστε περισσότεραΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 77 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 12 Νοεμβρίου Ενδεικτικές λύσεις Β ΓΥΜΝΑΣΙΟΥ
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 106 79 ΑΘΗΝΑ Τηλ. 361653-3617784 - Fax: 364105 e-mail : info@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou
Διαβάστε περισσότεραΕΠΙΤΡΟΠΗ ΙΑΓΩΝΙΣΜΩΝ 66 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙ ΗΣ ΣΑΒΒΑΤΟ, 21 ΙΑΝΟΥΑΡΙΟΥ 2006
Ο ΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕ ΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕ ΡΟΥΣ ΕΞΕΤΑΣΤΙΚΩΝ ΚΕΝΤΡΩΝ ΚΑΙ ΕΠΙΤΗΡΗΤΕΣ 1. Παρακαλούµε να διαβάσετε προσεκτικά τις οδηγίες στους µαθητές.. Οι επιτηρητές των αιθουσών
Διαβάστε περισσότεραΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 79 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 10 Νοεμβρίου Ενδεικτικές λύσεις Β ΓΥΜΝΑΣΙΟΥ
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 106 79 ΑΘΗΝΑ Τηλ. 361653-3617784 - Fax: 364105 e-mail : info@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou
Διαβάστε περισσότεραΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 33 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" 27 Φεβρουαρίου 2016
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 4 6 79 ΑΘΗΝΑ Τηλ 665-67784 - Fax: 645 e-mail : info@hmsgr wwwhmsgr GREEK MATHEMATICAL SOCIETY 4 Panepistimiou (Εleftheriou Venizelou) Street
Διαβάστε περισσότεραΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕΔΡΟΥΣ ΕΞΕΤΑΣΤΙΚΩΝ ΚΕΝΤΡΩΝ ΚΑΙ ΕΠΙΤΗΡΗΤΕΣ
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 06 79 ΑΘΗΝΑ Τηλ. 36653-367784 - Fax: 36405 GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou Venizelou) Street GR. 06 79 - Athens
Διαβάστε περισσότερα2. Να προσδιορίσετε τους επταψήφιους αριθμούς, οι οποίοι είναι τέλεια τετράγωνα και τα τρία πρώτα ψηφία τους, στη σειρά, είναι τα 4, 0 και 0.
Ευκλείδης Γ' Γυμνασίου 1995-1996 1. Να γίνει γινόμενο η παράσταση Α= ν 2 3ν 1 2 1. 2. Να προσδιορίσετε τους επταψήφιους αριθμούς, οι οποίοι είναι τέλεια τετράγωνα και τα τρία πρώτα ψηφία τους, στη σειρά,
Διαβάστε περισσότεραΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ Προκριματικός διαγωνισμός Απριλίου 2015
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 06 79 ΑΘΗΝΑ Τηλ 36653-367784 - Fax: 36405 e-mail : info@hmsgr, wwwhmsgr GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou Venizelou)
Διαβάστε περισσότεραB τάξη Γυμνασίου ( 2 2) ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 69 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 17 ΙΑΝΟΥΑΡΙΟΥ 2009
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 69 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 7 ΙΑΝΟΥΑΡΙΟΥ 009 B τάξη Γυμνασίου Πρόβλημα. Αν ισχύει ότι 4x 5y = 0, να βρείτε την τιμή της παράστασης Η
Διαβάστε περισσότερα( ) ( ) ( ) ( ) ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 30 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" 23 Φεβρουαρίου 2013 ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ Λύση (α) Έχουμε
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 3 06 79 ΑΘΗΝΑ Τηλ. 36653-36778 - Fax: 3605 e-mail : info@hms.gr, www.hms.gr GREEK MATHEMATICAL SOCIETY 3, Panepistimiou (Εleftheriou Venizelou)
Διαβάστε περισσότεραΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 73 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 20 Οκτωβρίου 2012 Β ΓΥΜΝΑΣΙΟΥ
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 06 79 ΑΘΗΝΑ Τηλ. 36653-367784 - Fax: 36405 GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou Venizelou) Street GR. 06 79 - Athens
Διαβάστε περισσότεραΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 33 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" 27 Φεβρουαρίου 2016
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 4 6 79 ΑΘΗΝΑ Τηλ 665-67784 - Fax: 645 e-mail : ifo@hmsgr wwwhmsgr GREEK MATHEMATICAL SOCIETY 4 Paepistimiou (Εleftheriou Veielou) Street
Διαβάστε περισσότεραΕΠΙΤΡΟΠΗ ΙΑΓΩΝΙΣΜΩΝ 68 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ ΣΑΒΒΑΤΟ, 24 ΝΟΕΜΒΡΙΟΥ Α τάξη Λυκείου
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 106 79 ΑΘΗΝΑ Τηλ. 10 361653-103617784 - Fax: 10 364105 e-mail : info@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 34, Panepistimiou
Διαβάστε περισσότερα( ) ( ) ( ) ( ) ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 30 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" 23 Φεβρουαρίου 2013 ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ Λύση (α) Έχουμε
ΕΛΛΗΝΙΚΗ ΜΘΗΜΤΙΚΗ ΕΤΙΡΕΙ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 06 79 ΘΗΝ Τηλ 665-6778 - Fax: 605 e-mail : info@hmsgr, wwwhmsgr GREEK MATHEMATICAL SOCIETY, Panepistimiou (Εleftheriou Venizelou) Street GR
Διαβάστε περισσότερα2. Αν α, β είναι θετικοί πραγματικοί και x, y είναι θετικοί πραγματικοί διαφορετικοί από το 0, να δείξετε ότι: x β 2 α β
Ευκλείδης Ά Λυκείου 1994-1995 1. Έχουμε στο επίπεδο 4 διαφορετικές ευθείες. Είναι γνωστό ότι κάθε άλλη ευθεία του ίδιου επιπέδου τέμνει ή ή 4 από τις ευθείες. Να βρείτε πόσες από τις ευθείες είναι παράλληλες..
Διαβάστε περισσότεραΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕΔΡΟΥΣ ΕΞΕΤΑΣΤΙΚΩΝ ΚΕΝΤΡΩΝ ΚΑΙ ΕΠΙΤΗΡΗΤΕΣ
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 06 79 ΑΘΗΝΑ Τηλ 36653-367784 - Fax: 36405 GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou Venizelou) Street GR 06 79 - Athens
Διαβάστε περισσότεραΘέματα μεγάλων τάξεων
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 4 106 79 ΑΘΗΝΑ Τηλ. 6165-617784 - Fax: 64105 e-mail : info@hms.gr www.hms.gr ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης"
Διαβάστε περισσότεραΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 32 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" 28 Φεβρουαρίου 2015 Θέματα μικρών τάξεων
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 4 06 79 ΑΘΗΝΑ Τηλ. 665-67784 - Fax: 6405 e-mail : info@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou Venizelou)
Διαβάστε περισσότεραΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 31 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" 22 Φεβρουαρίου 2014
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 106 79 ΑΘΗΝΑ Τηλ. 361653-3617784 - Fax: 364105 e-mail : info@hms.gr, GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou Venizelou)
Διαβάστε περισσότεραΘαλής Α' Λυκείου 1995-1996
Θαλής Α' Λυκείου 1995-1996 1. Δυο μαθητές Α και Β παίζουν το ακόλουθο παιχνίδι: Τους δίνεται ένα κανονικό πολύγωνο με άρτιο πλήθος πλευρών, μεγαλύτερο από 6 (π.χ. ένα 100-γωνο). Κάθε παίκτης συνδέει δυο
Διαβάστε περισσότεραΕΠΙΤΡΟΠΗ ΙΑΓΩΝΙΣΜΩΝ 77 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙ ΗΣ ΣΑΒΒΑΤΟ, 28 ΙΑΝΟΥΑΡΙΟΥ 2017
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 4 06 79 ΑΘΗΝΑ Τηλ. 665-67784 - Fax: 6405 ΕΠΙΤΡΟΠΗ ΙΑΓΩΝΙΣΜΩΝ 77 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙ ΗΣ ΣΑΒΒΑΤΟ,
Διαβάστε περισσότεραΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 34 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" 4 Μαρτίου 2017
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 6 79 ΑΘΗΝΑ Τηλ. 36653-367784 - Fax: 3645 e-mail : ifo@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 34, Paepistimiou (Εleftheriou Veizelou)
Διαβάστε περισσότερα( 5) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) Ενδεικτικές λύσεις
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 106 79 ΑΘΗΝΑ Τηλ. 361653-3617784 - Fax: 364105 e-mail : info@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou
Διαβάστε περισσότεραΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 34 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" 4 Μαρτίου 2017
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 4 06 79 ΑΘΗΝΑ Τηλ. 665-67784 - Fax: 6405 e-mail : ifo@hms.gr, www.hms.gr GREEK MATHEMATICAL SOCIETY 4, Paepistimiou (Εleftheriou Veizelou)
Διαβάστε περισσότεραΒ ΓΥΜΝΑΣΙΟΥ. Πρόβλημα 1 Να υπολογίσετε την τιμή των αριθμητικών παραστάσεων: 2 24 : : 2, : και να τις συγκρίνετε.
Τηλ. 6165-617784 - Fa: 64105 Tel. 6165-617784 - Fa: 64105 Β ΓΥΜΝΑΣΙΟΥ Να υπολογίσετε την τιμή των αριθμητικών παραστάσεων: 5 5 4 : 6 5 8 8:, 11 : 1 11 7 και να τις συγκρίνετε. Ένα ορθογώνιο έχει μήκος
Διαβάστε περισσότεραΓια τις εορτές των Χριστουγέννων και το νέο έτος το Δ.Σ. της ΕΜΕ σας εύχεται ολόψυχα χρόνια πολλά, προσωπική και οικογενειακή ευτυχία.
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 4 06 79 ΑΘΗΝΑ Τηλ. 665-67784 - Fax: 6405 GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou Venizelou) Street GR. 06 79 - Athens
Διαβάστε περισσότεραΑ τάξη Λυκείου ( ) 2. ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 69 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 17 ΙΑΝΟΥΑΡΙΟΥ 2009
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 69 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 7 ΙΑΝΟΥΑΡΙΟΥ 009 Α τάξη Λυκείου Πρόβλημα Να απλοποιήσετε την αλγεβρική παράσταση όπου mακέραιοι, και, m
Διαβάστε περισσότεραB τάξη Γυμνασίου Πρόβλημα 1. Να υπολογίσετε την τιμή της αριθμητικής παράστασης
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 06 79 ΑΘΗΝΑ Τηλ 0 36653-0367784 - Fax: 0 36405 GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou Venizelou) Street GR 06 79
Διαβάστε περισσότεραΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 76 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 16 ΙΑΝΟΥΑΡΙΟΥ 2016
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 4 6 79 ΑΘΗΝΑ Τηλ. 665-67784 - Fax: 645 ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 76 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ,
Διαβάστε περισσότεραΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 29 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" 3 Μαρτίου 2012
ΕΛΛΗΝΙΚΗ ΜΘΗΜΤΙΚΗ ΕΤΙΡΕΙ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 06 79 ΘΗΝ Τηλ. 665-677 - Fax: 605 e-mail : info@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY, Panepistimiou (Εleftheriou Venizelou) Street
Διαβάστε περισσότεραΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 27 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" ΣΑΒΒΑΤΟ, 27 ΦΕΒΡΟΥΑΡΙΟΥ 2010
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου 34 106 79 ΑΘΗΝΑ Τηλ. 361653-3617784 - Fax: 364105 e-mail : info@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou
Διαβάστε περισσότεραΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 36 η Εθνική Μαθηματική Ολυμπιάδα «Ο ΑΡΧΙΜΗΔΗΣ» 23 Φεβρουαρίου 2019 Θέματα και ενδεικτικές λύσεις μεγάλων τάξεων
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 06 79 ΑΘΗΝΑ Τηλ 036653 367784 Fax: 036405 e mail : info@hmsgr wwwhmsgr GREEK MATHEMATICAL SOCIETY 34, Paneistimiou (Εleftheriou Venizelou)
Διαβάστε περισσότεραB τάξη Γυμνασίου : : και 4 :
Τηλ. 10 6165-10617784 - Fax: 10 64105 Tel. 10 6165-10617784 - Fax: 10 64105 ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΣΑΒΒΑΤΟ, 18 ΙΑΝΟΥΑΡΙΟΥ 014 B τάξη Γυμνασίου Να βρείτε τους αριθμούς 0 4 1 1 77 16 60 19 7 : 000 : και 4 : 4 9
Διαβάστε περισσότεραΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 73 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 20 Οκτωβρίου 2012 ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ Β ΓΥΜΝΑΣΙΟΥ
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 06 9 ΑΘΗΝΑ Τηλ 36653-3684 - Fax: 36405 e-mail : info@hmsgr wwwhmsgr GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou Venizelou)
Διαβάστε περισσότεραΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 29 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" 3 Μαρτίου 2012
ΕΛΛΗΝΙΚΗ ΜΘΗΜΤΙΚΗ ΕΤΙΡΕΙ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 06 79 ΘΗΝ Τηλ 665-6778 - F: 605 e-mail : info@hmsgr wwwhmsgr GREEK MATHEMATICAL SOCIETY, Panepistimiou (Εleftheriou Venizelou) Street GR 06
Διαβάστε περισσότεραGREEK MATHEMATICAL SOCIETY Πανεπιστημίου (Ελευθερίου Βενιζέλου) ΑΘΗΝΑ Τηλ Fax:
Β ΓΥΜΝΑΣΙΟΥ. Δίνονται οι δεκαδικοί περιοδικοί αριθμοί α = 0, 2 και β = 0, 3.. (α) Να γράψετε τους αριθμούς α και β σε κλασματική μορφή. (β) Να βρείτε την τιμή της παράστασης 2015 2 2 ( 3 5 ) ( 18 ) 2016
Διαβάστε περισσότεραΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 67ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ "Ο ΕΥΚΛΕΙΔΗΣ" ΣΑΒΒΑΤΟ, 20 ΙΑΝΟΥΑΡΙΟΥ 2007
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 4 06 79 ΑΘΗΝΑ Τηλ 665-67784 - Fax: 6405 e-mail : info@hmsgr wwwhmsgr GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou Venizelou)
Διαβάστε περισσότερα: :
Τηλ. 361653-3617784 - Fax: 364105 Tel. 361653-3617784 - Fax: 364105 19 Οκτωβρίου 013 Β ΓΥΜΝΑΣΙΟΥ Να υπολογίσετε την τιμή της παράστασης: 16 1 74 3 1 : 4 53 3 4 :. 9 8 9 Πρόβλημα Ένας οικογενειάρχης πήρε
Διαβάστε περισσότεραΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 27 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" ΣΑΒΒΑΤΟ, 27 ΦΕΒΡΟΥΑΡΙΟΥ 2010
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 4 06 79 ΑΘΗΝΑ Τηλ 66-67784 - Fax: 640 e-mail : info@hmsgr wwwhmsgr GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou Venizelou)
Διαβάστε περισσότεραx , οπότε : Α = = 2.
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 69 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 7 ΙΑΝΟΥΑΡΙΟΥ 009 Πρόβλημα Αν ισχύει ότι Γ τάξη Γυμνασίου a+ b=, να βρείτε την τιμή της παράστασης Α= ( 6a+
Διαβάστε περισσότεραΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 35 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" 3 Μαρτίου 2018 Θέματα μικρών τάξεων Ενδεικτικές λύσεις
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 4 06 79 ΑΘΗΝΑ Τηλ. 665-67784 - Fax: 6405 e-mail : info@hms.gr, www.hms.gr GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou Venizelou)
Διαβάστε περισσότεραΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 70 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ ΣΑΒΒΑΤΟ, 21 ΝΟΕΜΒΡΙΟΥ 2009 B ΓΥΜΝΑΣΙΟΥ
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 06 79 ΑΘΗΝΑ Τηλ. 0 3663-0367784 - Fax: 0 3640 GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou Venizelou) Street GR. 06 79
Διαβάστε περισσότερα2. Αν ΑΒΓΔ είναι ένα τετράπλευρο περιγεγραμμένο σε κύκλο ακτίνας ρ, να δείξετε ότι ισχύει: ΑΒ + ΓΔ 4ρ.
Θαλής Β' Λυκείου 1995-1996 1. Έστω κύκλος ακτίνας 1, στον οποίο ορίζουμε ένα συγκεκριμένο σημείο Α 0. Στη συνέχεια ορίζουμε τα σημεία Α ν ως εξής: Το μήκος του τόξου Α 0 Α ν (όπου αυτό μπορεί να είναι
Διαβάστε περισσότεραΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 29 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" 3 Μαρτίου 2012
ΕΛΛΗΝΙΚΗ ΜΘΗΜΤΙΚΗ ΕΤΙΡΕΙ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 06 79 ΘΗΝ Τηλ 665-677 - F: 605 e-mail : info@hmsgr wwwhmsgr GREEK MATHEMATICAL SOCIETY, Panepistimiou (Εleftheriou Venizelou) Street GR 06
Διαβάστε περισσότεραΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 70 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 23 ΙΑΝΟΥΑΡΙΟΥ 2010
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 4 06 79 ΑΘΗΝΑ Τηλ. 665-67784 - Fax: 6405 GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou Venizelou) Street GR. 06 79 - Athens
Διαβάστε περισσότεραΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 70 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ ΣΑΒΒΑΤΟ, 21 ΝΟΕΜΒΡΙΟΥ 2009 B ΓΥΜΝΑΣΙΟΥ
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 06 79 ΑΘΗΝΑ Τηλ. 0 36653-0367784 - Fax: 0 36405 GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou Venizelou) Street GR. 06 79
Διαβάστε περισσότεραΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 73 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 20 Οκτωβρίου 2012 Β ΓΥΜΝΑΣΙΟΥ
06 79 ΑΘΗΝΑ Τηλ. 36653-367784 - Fax: 36405 GR. 06 79 - Athens - HELLAS Tel. 36653-367784 - Fax: 36405 0 Οκτωβρίου 0 Β ΓΥΜΝΑΣΙΟΥ Πρόβλημα Να υπολογίσετε την τιμή της παράστασης: 5 44 39 8 : Α= 5 5 5 6 3+
Διαβάστε περισσότεραΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 72 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 19 Νοεμβρίου 2011 Β ΓΥΜΝΑΣΙΟΥ 2 : 2.
Τηλ. 361653-3617784 - Fax: 364105 Tel. 361653-3617784 - Fax: 364105 7 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ 19 Νοεμβρίου 011 Β ΓΥΜΝΑΣΙΟΥ Να υπολογίσετε την τιμή της παράστασης: 1 17 1 1 3 7 1 : 5 1 7 14
Διαβάστε περισσότεραΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 35 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" 3 Μαρτίου 2018 Θέματα μικρών τάξεων Ενδεικτικές λύσεις
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 4 06 79 ΑΘΗΝΑ Τηλ. 665-67784 - Fax: 6405 e-ail : ifo@hs.gr, www.hs.gr GREEK MATHEMATICAL SOCIETY 4, Paepistiiou (Εleftheriou Veizelou)
Διαβάστε περισσότεραΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 69 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 17 ΙΑΝΟΥΑΡΙΟΥ B τάξη Γυμνασίου Α= ( 2 2)
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 4 06 79 ΑΘΗΝΑ Τηλ. 0 665-067784 - Fa: 0 6405 e-mail : ifo@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 4, Paepistimiou (Εleftheriou Veizelou)
Διαβάστε περισσότεραΑρχιμήδης Μεγάλοι 1996-1997. 1. Έστω μια ακολουθία θετικών αριθμών για την οποία: i) α ν 2 α ν. για κάθε ν φυσικό διαφορετικό του 0.
Αρχιμήδης Μεγάλοι 1996-1997 1. Έστω μια ακολουθία θετικών αριθμών για την οποία: i) α ν 2 α ν = 1 4 για κάθε ν φυσικό διαφορετικό του 0. ii) α n 1 α n Να αποδείξετε: α ν 1 =1 για κάθε n - ν 1 α ν α) ότι
Διαβάστε περισσότεραΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ ΕΜΕ 28 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" ΣΑΒΒΑΤΟ, 26 ΦΕΒΡΟΥΑΡΙΟΥ 2011 ( )
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ ΕΜΕ 8 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" ΣΑΒΒΑΤΟ 6 ΦΕΒΡΟΥΑΡΙΟΥ 0 Ενδεικτικές Λύσεις θεμάτων μεγάλων τάξεων ΠΡΟΒΛΗΜΑ Να λύσετε στους ακέραιους την εξίσωση 4 xy y x = xy 6.
Διαβάστε περισσότεραΠρόβλημα 1 (α) Να συγκρίνετε τους αριθμούς Μονάδες 2 (β) Αν ισχύει ότι: και αβγ 0, να βρείτε την τιμή της παράστασης: Γ= + +.
ΣΤΑ ΜΑΘΗΜΑΤΙ- ΚΑ B τάξη Γυμνασίου (α) Να συγκρίνετε τους αριθμούς 3 3 0 3 3 1 1 1 8 3 Α= + + : και Β= : 4 +. 4 31 8 4 4 1 3 9 Μονάδες (β) Αν ισχύει ότι: 6( αβ + βγ + γα) = 11αβγ και αβγ 0, να βρείτε την
Διαβάστε περισσότεραΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 76 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 16 ΙΑΝΟΥΑΡΙΟΥ 2016
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 4 6 79 ΑΘΗΝΑ Τηλ 665-67784 - Fax: 645 ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 76 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ,
Διαβάστε περισσότεραΒ ΓΥΜΝΑΣΙΟΥ. Πρόβλημα 1. (α) Να βρεθούν όλα τα μη μηδενικά κλάσματα α β, με αβ, μη αρνητικούς ακέραιους και
Β ΓΥΜΝΑΣΙΟΥ. (α) Να βρεθούν όλα τα μη μηδενικά κλάσματα α β, με αβ, μη αρνητικούς ακέραιους και α + β = 4. (β) Για το μικρότερο από τα κλάσματα του προηγούμενου ερωτήματος να βρείτε την τιμή της παράστασης:
Διαβάστε περισσότεραβ =. Β ΓΥΜΝΑΣΙΟΥ Πρόβλημα 1 Να βρείτε την τιμή της παράστασης: 3β + α α 3β αν δίνεται ότι: 3
Β ΓΥΜΝΑΣΙΟΥ Να βρείτε την τιμή της παράστασης: α αν δίνεται ότι: 3 β =. 3β + α α 3β 13 Α= 10 +, β α 3 Στο διπλανό σχήμα το τρίγωνο ΑΒΓ είναι ισοσκελές με ΑΒ = ΑΓ και Γ= ˆ Α ˆ. Το τετράπλευρο ΑΓΔΕ είναι
Διαβάστε περισσότεραΕυκλείδης Β' Λυκείου 1993-1994 ΜΕΡΟΣ Α
Ευκλείδης Β' Λυκείου 993-994 ΜΕΡΟΣ Α. Δύο ίσα τετράγωνα ΑΒΓΔ και ΕΖΗΘ πλευράς 0 τοποθετούνται έτσι ώστε η κορυφή Ε να βρίσκεται στο κέντρο του τετραγώνου ΑΒΓΔ. Το εμβαδό του μέρους του επιπέδου που καλύπτεται
Διαβάστε περισσότεραΜαθηματικά Α' Γυμ. - Ερωτήσεις Θεωρίας 1 ΕΡΩΤΗΣΕΙΣ. (1) Ποιοι είναι οι φυσικοί αριθμοί; Γράψε τέσσερα παραδείγματα.
Μαθηματικά Α' Γυμ. - Ερωτήσεις Θεωρίας 1 ΕΡΩΤΗΣΕΙΣ (1) Ποιοι είναι οι φυσικοί αριθμοί; Γράψε τέσσερα παραδείγματα. (2) Ποιοι είναι οι άρτιοι και ποιοι οι περιττοί αριθμοί; Γράψε από τρία παραδείγματα.
Διαβάστε περισσότεραΒ τάξη Λυκείου. ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 69 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 17 ΙΑΝΟΥΑΡΙΟΥ 2009
Β τάξη Λυκείου Πρόβλημα Να προσδιορίσετε τις τιμές του πραγματικού αριθμού a για τις οποίες το σύστημα x + 4y = 4a ax y = a έχει μία μόνο λύση. Για τις τιμές του a που θα βρείτε να λύσετε το σύστημα. Το
Διαβάστε περισσότεραΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 70 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ ΣΑΒΒΑΤΟ, 21 ΝΟΕΜΒΡΙΟΥ 2009 ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ B ΓΥΜΝΑΣΙΟΥ
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 4 06 79 ΑΘΗΝΑ Τηλ. 0 66-067784 - Fax: 0 640 e-mail : info@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou Venizelou)
Διαβάστε περισσότεραΠΡΟΤΕΙΝΟΜΕΝΟΣ ΣΧΕΔΙΑΣΜΟΣ ΕΠΑΝΑΛΗΨΗΣ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΓΥΜΝΑΣΙΟΥ
ΕΚΠΑΙΔΕΥΤΗΡΙΑ ΓΥΜΝΑΣΙΟ ΑΜΑΡΟΥΣΙΟΥ ΠΡΟΤΕΙΝΟΜΕΝΟΣ ΣΧΕΔΙΑΣΜΟΣ ΕΠΑΝΑΛΗΨΗΣ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ Επαναληπτικές Ασκήσεις (από σχολικό βιβλίο) (από βοήθημα Γ Γυμνασίου Πετσιά-Κάτσιου) Κεφάλαιο 1ο 17,
Διαβάστε περισσότεραΑ ΜΕΡΟΣ - ΑΛΓΕΒΡΑ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους
Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ Κεφάλαιο 1 ο ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ 1.1 Πράξεις με πραγματικούς αριθμούς Α. Οι πραγματικοί αριθμοί και οι πράξεις τους 1. Ποιοι αριθμοί ονομάζονται: α) ρητοί β) άρρητοι γ) πραγματικοί;
Διαβάστε περισσότερα: :
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 06 79 ΑΘΗΝΑ Τηλ. 36653-367784 - Fax: 36405 e-mail : info@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou
Διαβάστε περισσότεραΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ. και 25x i). Να κάνετε τις πράξεις στο πολυώνυμο.
ΣΥΛΛΟΓΟΣ «Η ΕΛΛΗΝΙΚΗ ΠΑΙΔΕΙΑ» ΓΥΜΝΑΣΙΟ ΑΜΑΡΟΥΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΘΕΜΑ 1 Δίνονται τα πολυώνυμα (3x ) (5 x)(3x ) και 5x 9 i). Να κάνετε τις πράξεις στο πολυώνυμο. ii). Να βρείτε την τιμή του
Διαβάστε περισσότεραGREEK MATHEMATICAL SOCIETY Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 106 79 ΑΘΗΝΑ Τηλ. 3616532-3617784 - Fax: 3641025 e-mail : info@hms.gr www.hms.
Τηλ 361653-3617784 - Fax: 364105 Tel 361653-3617784 - Fax: 364105 17 Ιανουαρίου 015 Β ΓΥΜΝΑΣΙΟΥ 7 49 3 4 3 6 11 Υπολογίστε την τιμή της παράστασης: Α= + + : 3 9 7 3 5 10 Πρόβλημα Μία οικογένεια αγόρασε
Διαβάστε περισσότερα[ f 1 ] 3 [ f 2 ] 3... [ f ν ] 3 = [ f 1 f 1... f ν ] 2, για κάθε ν N.
Ευκλείδης Γ' Λυκείου 1995-1996 1. Να ορίσετε συνάρτηση με πεδίο ορισμού και σύνολο τιμών το N* και η οποία να ικανοποιεί τη σχέση: [ f 1 ] [ f ]... [ f ν ] = [ f 1 f 1... f ν ], για κάθε ν N.. Ο Α και
Διαβάστε περισσότεραΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΠΑΓΚΥΠΡΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΔΕΚΕΜΒΡΙΟΣ 2017
ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΠΑΓΚΥΠΡΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΔΕΚΕΜΒΡΙΟΣ 2017 Α ΓΥΜΝΑΣΙΟΥ Ημερομηνία: 02/12/2017 Ώρα Εξέτασης: 09:30-12:30 ΟΔΗΓΙΕΣ: 1. Να λύσετε όλα τα θέματα, αιτιολογώντας πλήρως τις απαντήσεις
Διαβάστε περισσότεραΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 27 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" ΣΑΒΒΑΤΟ, 27 ΦΕΒΡΟΥΑΡΙΟΥ 2010
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 106 79 ΑΘΗΝΑ Τηλ. 361653-3617784 - Fax: 364105 e-mail : info@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou
Διαβάστε περισσότερα