University of the Witwatersrand The Oxidation and Precipitation of Iron From a Manganese Sulphate Solution , -.

Σχετικά έγγραφα
Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O

/&25*+* 24.&6,2(2**02)' 24

REDOX (2) pe as a master variable. C. P. Huang University of Delaware CIEG 632

!"!# ""$ %%"" %$" &" %" "!'! " #$!

SIEMENS Squirrel Cage Induction Standard Three-phase Motors

DuPont Suva. DuPont. Thermodynamic Properties of. Refrigerant (R-410A) Technical Information. refrigerants T-410A ENG

..,..,.. ! " # $ % #! & %

Technical Information T-9100 SI. Suva. refrigerants. Thermodynamic Properties of. Suva Refrigerant [R-410A (50/50)]

Electronic Supplementary Information

DuPont Suva 95 Refrigerant

! "# $ % $&'& () *+ (,-. / 0 1(,21(,*) (3 4 5 "$ 6, ::: ;"<$& = = 7 + > + 5 $?"# 46(A *( / A 6 ( 1,*1 B"',CD77E *+ *),*,*) F? $G'& 0/ (,.

C 1 D 1. AB = a, AD = b, AA1 = c. a, b, c : (1) AC 1 ; : (1) AB + BC + CC1, AC 1 = BC = AD, CC1 = AA 1, AC 1 = a + b + c. (2) BD 1 = BD + DD 1,

DuPont Suva 95 Refrigerant

!!" #7 $39 %" (07) ..,..,.. $ 39. ) :. :, «(», «%», «%», «%» «%». & ,. ). & :..,. '.. ( () #*. );..,..'. + (# ).

Numerical Analysis FMN011

2. Chemical Thermodynamics and Energetics - I

ΣYΣKEYEΣ ΘEPMIKΩN ΔIEPΓAΣIΩN

Fe II aq Fe III oxide electron transfer and Fe exchange: effect of organic carbon

2013/2012. m' Z (C) : V= (E): (C) :3,24 m/s. (A) : T= (1-z).g. (D) :4,54 m/s

Homework 8 Model Solution Section

MEASUREMENT OF SURFACE TENSION IN BASE METAL SULFIDE MATTES BY AN IMPROVED SESSILE DROP METHOD

Parts Manual. Trio Mobile Surgery Platform. Model 1033

Supporting information. An unusual bifunctional Tb-MOF for highly sensing of Ba 2+ ions and remarkable selectivities of CO 2 /N 2 and CO 2 /CH 4

INDEX HOESUNG COIL PARTS

Fused Bis-Benzothiadiazoles as Electron Acceptors

Nickel and Platinum PCP Pincer Complexes Incorporating an Acyclic Diaminoalkyl Central Moiety Connecting Imidazole or Pyrazole Rings

Answers to practice exercises

A Method of Trajectory Tracking Control for Nonminimum Phase Continuous Time Systems

Conductivity Logging for Thermal Spring Well

(... )..!, ".. (! ) # - $ % % $ & % 2007

C M. V n: n =, (D): V 0,M : V M P = ρ ρ V V. = ρ

Heavier chalcogenone complexes of bismuth(iii)trihalides: Potential catalysts for acylative cleavage of cyclic ethers. Supporting Information

chlorostibine Iou-Sheng Ke and François P. Gabbai Department of Chemistry, Texas A&M University, College Station, TX

Supplementary Information 1.

ΘΕΡΜΟΚΗΠΙΑΚΕΣ ΚΑΛΛΙΕΡΓΕΙΕΣ ΕΚΤΟΣ ΕΔΑΦΟΥΣ ΘΡΕΠΤΙΚΑ ΔΙΑΛΥΜΑΤΑ

Model: MTZ22. Data. Cylinder count: 1 Displacement [m³/h]: 6,63 Cylinder capacity [cm³]: 38,1 RPM [min -1 ]: 2900 Weight [kg]: 21 Oil charge [dm³]: 1

Simon et al. Supplemental Data Page 1

Microelectronic Circuit Design Third Edition - Part I Solutions to Exercises

9-amino-(9-deoxy)cinchona alkaloids-derived novel chiral phase-transfer catalysts

Matrices and Determinants


VBA Microsoft Excel. J. Comput. Chem. Jpn., Vol. 5, No. 1, pp (2006)

!""#$%!& '% ("#% )'*+, &,!" &, ' %!'"!" &"#"-(5-1-,!&

Appendix B Table of Radionuclides Γ Container 1 Posting Level cm per (mci) mci

! " #! $ % & $ ' ( % & # ) * +, - ) % $!. /. $! $

Eight Examples of Linear and Nonlinear Least Squares

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

FORMULAS FOR STATISTICS 1

Estimation of grain boundary segregation enthalpy and its role in stable nanocrystalline alloy design

Swirl diffusers, Variable swirl diffusers Swirl diffusers

w o = R 1 p. (1) R = p =. = 1

Design Method of Ball Mill by Discrete Element Method

ΜΜ917-Σχεδιασμός Ενεργειακών Συστημάτων

ΤΜΗΜΑ ΦΥΣΙΚΩΝ ΠΟΡΩΝ & ΠΕΡΙΒΑΛΛΟΝΤΟΣ

By Futoshi Nagata, Katsuya Inoue, Kozo Shinoda, Shigeru Suzuki and Yoshio Waseda

FEATURES APPLICATION PRODUCT T IDENTIFICATION PRODUCT T DIMENSION MAG.LAYERS

Isotopic and Geochemical Study of Travertine and Hot Springs Occurring Along the Yumoto Fault at North Coast of the Oga Peninsula, Akita Prefecture

!"#$%& '!(#)& a<.21c67.<9 /06 :6>/ 54.6: 1. ]1;A76 _F -. /06 4D26.36 <> A.:4D6:6C C4/4 /06 D:43? C</ O=47?6C b*dp 12 :1?6:E /< D6 3:4221N6C 42 D:A6 O=

Si + Al Mg Fe + Mn +Ni Ca rim Ca p.f.u

Heterobimetallic Pd-Sn Catalysis: Michael Addition. Reaction with C-, N-, O-, S- Nucleophiles and In-situ. Diagnostics

ΚΕΦΑΛΑΙΟ 4 ΘΕΡΜΟΦΥΣΙΚΕΣ Ι ΙΟΤΗΤΕΣ ΤΩΝ ΤΡΟΦΙΜΩΝ

«ΑΝΑΠΣΤΞΖ ΓΠ ΚΑΗ ΥΩΡΗΚΖ ΑΝΑΛΤΖ ΜΔΣΔΩΡΟΛΟΓΗΚΩΝ ΓΔΓΟΜΔΝΩΝ ΣΟΝ ΔΛΛΑΓΗΚΟ ΥΩΡΟ»

Supporting Information. Experimental section

Photo-Induced Self-Assembly of Pt(II)-Linked Rings and Cages via the Photolabilization of a Pt(II) Pyridine Bond

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2


,, #,#, %&'(($#(#)&*"& 3,,#!4!4! +&'(#,-$#,./$012 5 # # %, )

Solutions to Exercise Sheet 5

Cycloaddition of Homochiral Dihydroimidazoles: A 1,3-Dipolar Cycloaddition Route to Optically Active Pyrrolo[1,2-a]imidazoles

Cite as: Pol Antras, course materials for International Economics I, Spring MIT OpenCourseWare ( Massachusetts

Ασηπτική Επεξεργασία Των Τροφίµων

IV. ANHANG 179. Anhang 178

r r t r r t t r t P s r t r P s r s r r rs tr t r r t s ss r P s s t r t t tr r r t t r t r r t t s r t rr t Ü rs t 3 r r r 3 rträ 3 röÿ r t

SMD Transient Voltage Suppressors

Thi=Τ1. Thο=Τ2. Tci=Τ3. Tco=Τ4. Thm=Τ5. Tcm=Τ6

ITU-R S (2010/01) &' (

Copper-catalyzed formal O-H insertion reaction of α-diazo-1,3-dicarb- onyl compounds to carboxylic acids with the assistance of isocyanide

Electronic Supplementary Information (ESI)

Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής

An experimental and theoretical study of the gas phase kinetics of atomic chlorine reactions with CH 3 NH 2, (CH 3 ) 2 NH, and (CH 3 ) 3 N

RECIPROCATING COMPRESSOR CALCULATION SHEET ISOTHERMAL COMPRESSION Gas properties, flowrate and conditions. Compressor Calculation Sheet

Cable Systems - Postive/Negative Seq Impedance

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint

Divergent synthesis of various iminocyclitols from D-ribose

!"#$ "%&$ ##%&%'()) *..$ /. 0-1$ )$.'-

Engineer Reference 1 / / A 35 7/16 X 7 7/8 X 23 5/8 31 1/8 X 21 7/8 X 11 1/4 14 T T 75 R410A oz/ft over 50' 265 / 318 / 388

#%" )*& ##+," $ -,!./" %#/%0! %,!

Solution Series 9. i=1 x i and i=1 x i.

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET


Enantioselective Organocatalytic Michael Addition of Isorhodanines. to α, β-unsaturated Aldehydes

! "#! & "0/! ).#! 71 1&$ -+ #" &> " %+# "1 2$

SUPPLEMENTARY INFORMATION

Consolidated Drained

(a b) c = a (b c) e a e = e a = a. a a 1 = a 1 a = e. m+n

Supporting Information

Assalamu `alaikum wr. wb.

Studies on the Binding Mechanism of Several Antibiotics and Human Serum Albumin

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ

Transcript:

University of the Witwatersrand The Oxidation and Precipitation of Iron From a Manganese Sulphate Solution! "#$%&'(#$)*+, -. /, Page 1 of 88

University of the Witwatersrand The Oxidation and Precipitation of Iron From a Manganese Sulphate Solution! "#"$ +, (! #$)*'! "#$%&'013#$$%+! "#$%&' 4 (#$5*' 01 3#$$%'+. 6 &7 78&764 7 6 97 7&4&8: ##+! ; #$%5' (! #$)*' ; ; &<<9+ #+ 97 7&4&8=884 +794 7 : #&+ &+ 97 794&8= 84+9 +794 7 : #9+ 9+ & 97 794&8=&89 +7*4 7 : #6+ 6+ 97 74&8=8486 +74 7 : #5+ 5+ 9& 86+97! 867#&4&8=! * 86+6 84+#& +7*4&86: #*+ Page of 88

University of the Witwatersrand The Oxidation and Precipitation of Iron From a Manganese Sulphate Solution (! #$)*'(#$%*+ >" %&& $%!" #' #" ( )? 884 &/95 %</$< @! 9 86+& 84+* A! BC46D498 C> E#5 $</#&< 4 &89 F G&H4&86 I#9< 8486 4 I&H4&86 I#9< 84+9 J9 E%< $'*+ ",$%-,&$%"$& Page 3 of 88

University of the Witwatersrand The Oxidation and Precipitation of Iron From a Manganese Sulphate Solution 84+ 9+ (! #$)*'4#$$9+>, 4#$%%+ - ; ; &<<9+ 4#$$9'(! #$)*+ '.#'+$,& > K/4 +, 4+ ; #& Page 4 of 88

University of the Witwatersrand The Oxidation and Precipitation of Iron From a Manganese Sulphate Solution L4&8 #%$& / (01)34%5 % + << ;" &7,+ /#))5 ;" 97,+ /## ;" 884 + /##<6#) ;" 986 + /&6&% ;" 4 7,+ << F 4&8,+ /5**)% F ;".; ; &<<9+'F.F #$%%+ G>&$)D ###< /9! ; ;;& E (V) 1.5 Fe 3+ (aq) 1 0.5 FeOOH(s) O line Fe + (aq) 0 H line -0.5 Fe 3 O 4 (s) -1 Fe(s) -1.5-0 1 3 4 5 6 7 8 9 10 11 1 13 14!$," KL4L4&8&$)D! #< /9! ph Page 5 of 88

University of the Witwatersrand The Oxidation and Precipitation of Iron From a Manganese Sulphate Solution! L4&8&$)D #& & #5!86 /,+ K 0+ # <5 < /<5 /# /#5 /& 8 &! &8 9 +! &7,+! 98 6 + 4 &! 84+ & +! + < # & 9 6 5 * % ) $ #< ## #& #9 #6 4!$," KL4! L4&8&$)D! #< /9! ## &$)D#< /9! Page 6 of 88

University of the Witwatersrand The Oxidation and Precipitation of Iron From a Manganese Sulphate Solution #9MN!$,"6 KL4L! L4&8&$)D! <<<# E (V) 1.5 1 0.5 0-0.5-1 -1.5 - Fe 3+ (aq) Fe + (aq) Mn + (aq) Fe(s) Mn(s) FeO*OH(s) Operating region 0 1 3 4 5 6 7 8 9 10 11 1 13 14 ph O line H line Page 7 of 88

University of the Witwatersrand The Oxidation and Precipitation of Iron From a Manganese Sulphate Solution 6 #$$$,$#%$#$ #O (#$%5' P&<<#+ /0! K Q0!, (#$%*+ K Q #O ( #$%*+ ( #$%5+ R / 884 + S L 884 R/884 ;( #$%*+ 0! ; #$%)+ Page 8 of 88

University of the Witwatersrand The Oxidation and Precipitation of Iron From a Manganese Sulphate Solution &)H&*H+8 495 ;4 / MN ( #$$#+ / ; 6 7$+$"&$&*+$&& +7*, K,##+ 4 ( #$5*+,. r Fe ( III ) b [ + t O = k Fe( II )] p( O ) k [ Fe( II)] p( ) : #%+ Page 9 of 88

University of the Witwatersrand The Oxidation and Precipitation of Iron From a Manganese Sulphate Solution #6<L#)<, &7,+ <<**L<<$$! +! " #$%&+,. + 1.84 [ Fe ] [ O ] 73.9 r exp( ) + = ko : #)+ Fe + 0.5 [ H ] RT 4 7 4. k m [ O ] = [ O ] sat : #$+ ko 4 C &7!" #$%&+ Page 10 of 88

University of the Witwatersrand The Oxidation and Precipitation of Iron From a Manganese Sulphate Solution 0 4 &Q8686C&86! 8& #$)6+ T +U 5*$ @O D 9L)O 4, Q &<<<+ #$)6+ &7! -; #$)&+T +U ;. r Fe + 51.6 + 144.0 + = AO [ Fe ] p( O )exp( ) + A1 [ SO4 )][ Fe ] p( O )exp( ) R T R T : ##<+ 86486 7 486 / Page 11 of 88

University of the Witwatersrand The Oxidation and Precipitation of Iron From a Manganese Sulphate Solution,, T +U G 01 3 #$$%+ + ; 5#@O 6%$-%$&&! 8 7$+$9$7*, &7 8& #$)6+ E <#69 O + Q &<<<+, &7 A #$95+,. Page 1 of 88

University of the Witwatersrand The Oxidation and Precipitation of Iron From a Manganese Sulphate Solution &7 78&= 97 78& / : ###+ &7 78& / 7&4 7 = 97 74&8& : ##&+ &7 74&8&= 97 784 V 784 / : ##9+ &7 784 V = 97 784 / : ##6+ K,##5+, &7 4*) + r Fe + = k Fe ][ O ] : ##5+ [! " #$%&+ 4 E& ; L 8& &7, &7 78&W 8& &7 : ##*+ 8& &7 7 &7 74&8=& 97 784 / 748& / : ##%+ 48& / 74 7 =4&8& : ##)+ 4&8&= 4&87X8& : ##$+ &7 78&W 8& &7 : ##*+ &7 74&8W84 7 74 7 : #&<+ 8& &7 7 84 7 74&8=& 97 7584 / : #&#+ Page 13 of 88

University of the Witwatersrand The Oxidation and Precipitation of Iron From a Manganese Sulphate Solution, #, k k [ Fe ] [ O ] + 1.16 1.17 r 3 [ Fe + = : #&&+ ] k 1.16, r k = 1.16 k 1.0 k 1.1 [ Fe + [ H 3 + [ Fe ] + 1.16 1.1 k k ] [ O ] ] : #&9+ P K,#&6+ K[ Fe + r[ Fe = : #&6+ 3+ ] 1/ 4 [ H ] ] [ O ] "Y #$$$+! " #$%&+ / M / 8/8 N. 78&B /8/8+ &7 : #&5+ /8/8+ &7 7 B /8/8/+ 67 : #&*+ /8/8/+ 67 7 B &/8+ 67 7 8/+ &7 : #&%+ Page 14 of 88

University of the Witwatersrand The Oxidation and Precipitation of Iron From a Manganese Sulphate Solution 8/+ &7 7 B &/8+ 67 : #&)+ &/8+ 67 7498 7 B84 / 74&87 : #&$+ 498+ 7 784 / B&4&8 : #9<+ 8 6 78&7498 7 B*4&876 : #9#+ ; #&5 #&* ;;5+ r II Fe II E /( RT ) α [ Fe ] e [ O ] = II 1+ ( α / β )[ Fe ] : #9&+ ARS ; *4$$%&$7$+$ > #9+ Z A#6 [ Page 15 of 88

University of the Witwatersrand The Oxidation and Precipitation of Iron From a Manganese Sulphate Solution O,, F,!$,;! MN N. A k m x DO = = Mass transfer coefficient δ D = Molecular diffusivity of oxygen a O o C &8 & P r δ = Apparent Interface film T8&U δ thickness : #99+ = Interfacial area of all bubbles per unit volume of aqueous phase ; K,#%#)##5#&6#9&+ T8 &U d[ O ] D a \ x 0 dx ([ O ] [ O ] sat ) = DO a o δ DO a o = ([ O ] [ O ]) sat δ = k a ([ O ] [ O ]) O = O o = m o sat Page 16 of 88

University of the Witwatersrand The Oxidation and Precipitation of Iron From a Manganese Sulphate Solution + α O ] : #96+ [ B Page 17 of 88 r Fe! r + = 4r O : #95+ Fe 1! r '[ O ] 4 Fe + = k : #9*+ A 'T +UT4 7 U /KO"+ K, #99+ #9*+ T8&U [ O ] [ O ] k' 1+ k a sat = : #9%+ L ; T8&UBT8&U, #%#)##5#&6#9&+ C #$)9+ m o 3 1336 O ] sat =.5 10 p ( O )exp 4. 48 K i Ci : #9%+ T [

University of the Witwatersrand The Oxidation and Precipitation of Iron From a Manganese Sulphate Solution D B\ ] #9 6 0 D D D 4 7 <<< C89 / <<9 C46 7 <<) / <<% D7 <&9 486 / <#* C7 <&5 84 / <#$! &7 <&% 86 &/ <&)! &7 &7 D <&% Page 18 of 88

University of the Witwatersrand The Oxidation and Precipitation of Iron From a Manganese Sulphate Solution <- ; + K - ; ; - K!(+ ; 86%4&8! 864&8! 8 K! + P(4+ ; + G 4 > G4>+ ; #O)/ #5 ; 5 O - +flowrate. Page 19 of 88

University of the Witwatersrand The Oxidation and Precipitation of Iron From a Manganese Sulphate Solution &9! /, &< O &# $< )< %< *< 5< 6< 9< &< #< << << <5 #< #5 &< &5 9< 95 6< 65 5< FO ;" #5!$," " 444 ;K> ;O; O && Page 0 of 88

University of the Witwatersrand The Oxidation and Precipitation of Iron From a Manganese Sulphate Solution " 4!$," / 7#$ ="# &9, + #O) ;6 + * 4 ( Page 1 of 88

University of the Witwatersrand The Oxidation and Precipitation of Iron From a Manganese Sulphate Solution 7#$ %+" P / &5 86%4&8+! 864&8+ &%5 / 9&O! &7 ' 8 ; 4 O &6<, A #< O -4*!88 - & A4*< &< O + 4 Page of 88

T-1 T- T-3 V--1 V-- V--3 GA Overhead stirrer Condenser TC ph Meter ph, ToC Needle Valves Rotameter Reactor Vessel Vacuum Pump Hot Plate Sampling Bottle Oxygen cylinder Air cylinder Nitrogen cylinder!$,"6 K / >&9))

GA 6!$$&*& &6 /! <&&µ 55 (+P ; #< " 4 "!$,"; ; 8 5< 55 ;, ; ; ;;+? tube 0 >&6)) 0 >

; $ $*&"& >! 8 4 &6;4 *! 8 + > 7#$ &%+"%+ - + 5L&<O 55L)5 >&5))

6 6 $ $ &&&%&%,%+ &< O95 O 9#+ &< O 8 TU O <9 <&5 <& <#5 <# <<5 < <<<$ <<<) <<<% <<<* <<<5 T4 7 U <<<6 T! +B<5) O <<<9 T +B<&% O 4B* <<<& 95 O &< O 95 O &< O B%% <<<# < < 5< #<< #5< &<< &5< T47U O!$,"6 K >&*))

&6<&<< 9&+ &6< 0.4 0.38 Oxydation by Oxygen 0.36 0.34 0.3 0.3 0.8 0.6 0.4 0. 0. 0 50 100 150 00 50 300 350 time, mins 00 rpm 40 rpm!$,"6 K [FeT], mol/l >&%))

6 #+"%$$$*7#$ &"& <#%* O ; 99 [FeT], mol/l 0.18 0.17 0.16 0.15 0.14 0.13 0.1 0.11 Starting ph ~6 [Mn(II)]=0.581 mol/l [Fe(II)]=0.176 mol/l oxygen flowrate=.0 l/min 0.1 0 50 100 150 00 50 300 350 time, mins Run 1 Run Run 3!$,"66 >&)))

66 $$$+&#&$$ 66 "$&*&$& G;; 96+/ #$%)+96, / ; / O 8 <*5 <* <55 <5 <65 <6 <95 TU <9 <&5 <& T! +U B%% < 5< #<< #5< &<< &5< 9<< 95<!$,"6; K >&$))

oxidation of ferrous sulphate by by oxygen 0.1 0.6 [FeT], mol/l 0.09 0.08 0.07 0.06 0.05 [Mn(II)] 0.55 0.5 0.45 [Fe T ] T= 77 oc 0.4 0.35 0.3 0 100 00 300 time, mins [Mn(II)],mol/l!$,"6; K 66 $+&*&$& ; P 5<< 55!;; 4 ;;6+ 9# >9<))

G %%! 8 4 A *<< 8 4&8 6 KC T +U O " H +! H + 86 H + 4&8 H + "# <<9& *< %&< <%) 6$) / "& <<)$ *< *$) #<6 5%5 / "9 <<)$ 6&< *69 ##6 / / "6 <#%# *< *)9 #&9 6$& / "5 <#%# &<< **< ##$ / / "* <95# *< *&) #&< )96 / "% <95# &<< *&% ### )&9 &5# ") A <95# &<< *9# ##$ 96% / "$^ <95# &<< *99 #&6 )*% &6) K55 A ^K! 8 / >9#))

#$%)+ /! 8 4+ "$ 9#!8 4 / 9# (#$%*'( #$$#+ *< &<< ; ## 9& 6 H + 86H + 84+9 5&9 / 884 *&$ / 8486 99# 5*$ 4989 86+& 84+* 96$ 6<< 9#+ 9&+P >9&))

9#+ 884+ "% ") 9# 55 ") "%+ C 666/*&$&&$+&?;+ 95 #< O "% "$+ &<< *<< + ; &<< ( #$%5+;?; 9# *<< >99))

Weight % 100 0.351M Fe(II) 95 Run R7 90 85 80 75 0 00 400 600 800 1000 Temperature ( o C)!$,"6>?; 1 0 0 0.3 5 1 M F e (II) n o M n O 9 5 Weight % 9 0 8 5 ""$ 8 0 7 5 0 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0 T e m p e ra tu re ( o C )!$,"6>?;! 8 + >96))

66; <*&$&&$+& ;_"( + 9*+!$,"6? _"( _"(?; Counts 100 50 0 E517A.CAF Fe O 3.H O 10 0 30 40 50 60 Position [ Theta] (#$%5#$%*'(#$$#+ 9# $%H ;; >95)) Fe +3 OOH

+ )5H ;;6+ 6; %# &7$+$ 6; %$$"&%%$ 9% ;;9 (#$$#'Q&<<<'#$)&+ ([FeT]/[FeT]o) 1 0.95 0.9 0.85 0.8 0.75 0.7 0.65 0.6 0.55 0.5 Oxidation of ferrous sulphate by oxygen T = 77 oc [Mn(II)] = 0.58 mol/l Starting ph ~ 6.0 0 50 100 150 00 50 300 350 time, mins 0.09 mol/l 0.17mol/l 0.7 mol/l 0.35 mol/l!$,"6@ KT +U >9*))

[Fe T ], mol/l 0.4 0.35 0.3 0.5 0. 0.15 0.1 0.05 0 GA 6; %7$+*# 9)!$,"61 K T =77 oc [Fe(II)] = 0.35 mol/l [Mn(II)] = 0.58 mol/l 0 50 100 150 00 50 300 350 Oxygen time, mins Air 6;6 %#" [Fe T ], mol/l 0. 0.18 0.16 0.14 0.1 0.1 0.08 0.06 0.04 0.0 0 T = 77 oc [Fe(II)] = 0.17 mol/l [Mn(II)] = 0.58 mol/l 0 50 100 150 00 50 300 350 Oxygen time, mins Air 9$ >9%))

TU O <6 <9) <9* <96 <9& <9 <&) <&* T +UB<95 O T! +UB<5) O 4J* <&6 <&& <& < 5< #<< #5< &<< &5< 9<< 95< B%% B)5 B55 B**!$,"60 K! "#$%&'013#$$%' #$)9+ 6;; %#' 4 ' 4 >9)))

G 4 95+ 4 4!8 9#<9## TU O <6 <9) <9* <96 <9& <9 <&) <&* <&6 B%% T! +UB<5)# O T +U B<95 O <&& <& < 5< #<< #5< &<< &5< 9<< 95< 4B95 4B5%!$,"6 K4 >9$))

0.009 [H+], mol/l 0.008 0.007 0.006 0.005 0.004 0.003 0.00 0.001 [Fe(II)] = 0.35 mol/l ph 5.7 ph 3.5!$,"6 T4 7 U 4 #$)&+ 0 0 50 100 150 00 50 300 350 time, mins 6;> '=#'+$, 9#& 4 / ""%+ >6<))

%<< *<< 5<< 6<< K 0+ 9<< &<< #<< < /#<< /&<< 8 T +UB<95# O B%% < # & 9 6 5 * % 4!$,"6 4/4, 4#$$9+,9# CK, ; 97 7B &7 : 9#+ RT ared E = h Eo ln : 9&+ n F aoxd >6#))

3+ RT [ Fe ] E = h Eo ln + n F [ Fe ] : 99+ C! " B"O 97 7&4&8B884 + 794 7 # : 96+, T 97 UBT 884+UT47U 9 OD# : 95+ K,99 [ FeOOH] + E h ' = ln + 3 ln[ ] + 1 [ ] C C H K Fe : 9*+ "B)9#6@O DB $*6)%@O 0B95<DB<<9',9* E h ' = const + ( 0.01 ph) : 9%+ /, KN4+ L<&<# 9#& L<&9,, >6&))

G 97 O &7 + 4 9#9+ T +UJ< [Fe 3+ ]/[Fe + ] 0.016 0.014 0.01 0.01 0.008 0.006 0.004 0.00 T = 77 oc [Fe(II)] o =0.35 mol/l Oxygen 0 0 1 3 4 5 6 ph!$,"66 6;? $$% $&%&$++ +$,. %% 55 >69))

%% 55 + 9#6 / + O <<<<* <<<<5 <<<<6 <<<<9 <<<<& <<<<# < < <<5 <# <#5 <& <&5 <9 <95 <6 TU O %% 55 ;`%%!$,"6; K >66))

GA ; - /!<- ; #$$%- +A"$ 99 / ' +,#)! " #$%&' #$)6+' +,6#. &7 7X8&7&4 7 B 97 74&8: 6#+! "#$%&'+ r o α = k [ Fe ] [ O ] [ H ] + β + γ exp( E / RT ) : 6&+ $%& 966T4 7 U +, + α β = k Fe ] [ O ] exp( E / RT ) : 69+ r o [ >65))

&7 + d [ Fe ] + α β = ro = k [ Fe ] [ O ] exp( E / RT ) : 66+ dt 965+ ;;; T8&UJT8&U #6+, d [ Fe dt T ] = K [ Fe ] T α [ O ] β sat exp E R T >6*)) : 65+ -'$%#, ab#5)sb<)) B59&@O DB#$%#< ) O <))! " #$%&' #$)6+ #$)6 01 3 #$$%+ "Y #$$$+ #$)6'013#$$%+

G,, 65+ 9#6 6#!$,";F, / + O <<<<* <<<<5 <<<<6 <<<<9 <<<<& <<<<# < < <<5 <# <#5 <& <&5 <9 <95 <6 TU O %% 55 ;`%% 8&`%% 8&55 ;`%% >6%))

; - %$&$% +$,%$ K, 65+! " #$%&+ # #9#+ 4 6# "Y #$$$+ / #9#+,;;5 rfe II II E /( RT ) α [ Fe ] e [ O ] = II 1+ ( α / β )[ Fe ] : 6*+ d II E /( RT ) ] α [ Fe ] e = 1+ ( α / β )[ Fe [ O II [ Fe II dt ] ] : 6%+ RSREES,, +! "#$%&'+ RIIS,,8 >6)))

, 6%+, 65 "Y #$$$+ RSK B<T UBT U+ 1 [ Fe II 1 II ] [ Fe ], o II 1 α = [ Fe ] ln II t β [ Fe ], o 1 + α [ O t ] exp E RT : 6)+ P 1 [ Fe II 1 II ] [ Fe ], o 1 [ Fe ln t [ Fe ROS α[ O ] exp >6$)) II ] II o E RT 1 t b< 6&

!$,"; K;K! "Y #$$$+ FD ##O KO" 69 y = -.769E+00x +.439E-04 R = 9.998E-01 oxygen [Fe(II)] =0.35 mol/l 55 oc 0-0.005-0.00-0.0015-0.001-0.0005 0 oxygen [Fe(II)] =0.351 mol/l 77 oc 1/t (ln([fe II ]/[Fe II ] o )) y = -3.00E+00x + 7.394E-04 R = 9.963E-01-0.003-0.00-0.001 0 1/t (ln([fe II ]/[Fe II ] o)) 0.007 0.006 0.005 0.004 0.003 0.00 0.001 0.009 0.008 0.007 0.006 0.005 0.004 0.003 0.00 0.001 0 1/t (1/[Fe II ] - 1/[Fe II ]o) 1/t [1/[Fe II ] - 1/[Fe II ]o) >5<)) y = -.69E+00x + 5.09E-04 R = 9.99E-01 oxygen 0.351 mol/l Fe(II) 66 oc 0-0.005-0.00-0.0015-0.001-0.0005 0 1/t (ln([fe II ]/[Fe II ] o )) y = -.81E+00x + 1.1E-03 oxygen 0.351 mol/l Fe(II) 85 oc R = 9.98E-01-0.005-0.004-0.003-0.00-0.001 0 1/t (ln([fe II ]/[Fe II ] o )) 0 0.008 0.007 0.006 0.005 0.004 0.003 0.00 0.001 0.016 0.014 0.01 0.01 0.008 0.006 0.004 0.00 1/t (1/[Fe II ] - 1/[Fe II ]o) 1/t (1/[Fe II ] - 1/[Fe II ]o)

LnK 1 y = -7090.6x + 0.357 R = 0.9906 0.5 0-0.5-1 -1.5 0.0075 0.008 0.0085 0.009 0.0095 0.003 0.00305 0.0031 1/T (k -1 )!$,";6 ;> "Y #$$$+ 5$<@O G R S K, 6% / ; - II II = ([ Fe ] ) exp [ Fe ] cac SSE : 6$+ T U T U K,6% >5#))

;, K+R S6665 SSE 0.09 0.08 0.07 0.06 0.05 0.04 0.03 0.0 0.01 0 0.0E+00 3.0E+09 6.0E+09 9.0E+09 1.E+10 1.5E+10!$,";; KRK >5&))

SSE 0.05 0.045 0.04 0.035 0.03 0.05 0.0 0.015 0.01 0.005 0 0.00E+00 5.00E+09 1.00E+10 1.50E+10.00E+10.50E+10 3.00E+10!$,";> KSK R S )<#< $ K,6% 6# ; K> > R S K K 5*5#< $!O $<#< $!O 5)$@O D >59))

K, 6%+ 6* 6%?+ Theoritical, [Fe] T, mol/l 0.4 0.35 0.3 0.5 0. 0.15 0.1 0.05 0 0 0.1 0. 0.3 0.4 Experimental, [Fe] T, mol/l!$,;? > >56))

35 30 5 frequency 0 15 10 5 0-0.0-0.015-0.01-0.005 0 0.005 0.01 0.015 0.0 Residuals!$,;@ 4 6# 6) %% ;;* >55))

!$,";1 [Fe]T, mol/l 0.35 0.33 0.31 0.9 0.7 0.5 0.3 0.1 0.19 [Fe T ] o = 0.35 mol/l R =0.96 R =0.94 [Fe T ] o = 0.7 mol/l 0.17 0 50 100 150 00 50 300 350 time, mins Experimental Model Fit Experimental Model Fit >5*)) Oxygen T=77 oc

GA > -- 5L&<O ++ &894&8+ ; " & O +,. r Fe 1.58 = 8 1.97 10 [ Fe] T [ O ] sat 53. KJ exp RT mol! O + "Y #$$$+/ "Y #$$$+ 9 II 58900 /( RT ) r 5.65 10 [ Fe ] e [ O ] = Fe II 9 9 II 1+ (5.65 10 / 9.0 10 )[ Fe ] >5%)) sat (Mol/l. min)

4!8 4 Q &<<<+ >5)))

-, ' '' ' ' ( )*''(+++,, -'..' /.0 1 /. 1 /. '' '. -3 456 5-''' ' ' '3 CO 476 8 79''' '3 5-''' '/ '3 5-''' '3 DO 8 :. /.79' 1 / ' '93 '' ; ' '' ; ''<"<;" 4(--,64 -- 6 4(---,64 --- 6 5.'' '3 5. '' '3 4 = 6 ''' '3 4 >= 6 ''' '3? ' '93 4 = 6 9' ''' '3 47@ " 6 '' ' '3 ## 0 '' # 8 5'.. ' '' >5$))

'' # 0 '' A. ' '9 ' ' ' po.79' 476 79''' '3.. '. 3 ' ) ''3# 47@ " 6 ''' '3 5 5 ; 5/ B. ( '. 0'., =3" ' '3' ' C 1'. ' >*<))

! # ;? K 4 #$$5+ D / "A! 88 9 '8 5' '?B#9/&6 & ; ; &<<9+ @? "&5 $5 5 < '9< '/< &%.65L 5& 9 P #$)$+5 :.''04 6 PD8D8 #$%%+5. '9' '(',/0 P 5 P;" &<<#+ 9 ' ' + > * A; #$)6+ +, 9&#L9< % D #$)5+D! ) (>D">D #$)&+K /86 9195L6% $ ( > " #$%5+ S/884 R/&89 5' '.-' '.8 ''9'89 1;)9/)* #< (>" #$%*+", \]9&5L99 ## (@K! ;@ #$)*+-' ' ' 9 K 4 K >*#))

#& K P 4? #$$<+ D'' '. -' 5? #9 @ D ( 8 ( > #$$#+ D / 58 '8'8 " : '9#*5L#%9 #6? ;@(@ #$$<+! K! 8 9 5' 'B&#%L&&) #5?> #$56+ <<;696$/695$ #* 4!! (! ; D #$%%+ ;'.1. '-'. 8 ''9'8 9@@ %+#9%/#6& #% 4> #$$9+ ' '8 ''8 ' 4> c ; #) 4"K(C #$5*+D/8 " ; <1<<>6.6)9%L6)6& #$!!-4;d #$)&+8 + ; (! 889 5' '6B9##/9#) &< F@F ; #$%%+ 97 /864&L86 &/ +)/<8 6C&.*%/%$ &# F- F4@ #$$&+ 1' 1 1 ' ' '" >*&))

&&! ""? @#$%&+, '9. 1 ' -'.8 ''9'8 9C&6&.6%/5* &9! ;"APA" @#$%5+> ' '-' '. 8 9 '?1C%59.#<#/##< &6 CKF4DC #$)9+, 9&#L&% &5 "Y!"Aef@ F! #$$$+ D '9''9 '>;6&&9L6&9& &* "Y!"Aef@ 0 (FK &<<#+ D 5**66%L65& &% "Y!"Aef@ &<<&+L / '9''9' '9; %59/%*< &) >D #$%$+<<5< '909<% L9#< &$ ;4 #$55+8 '9'P> F 9< ;? #$**+#'.-'9' '>>8 9# 0 F@ #$)<+ 1' 1 ' ; > Cd >*9))

9& 01"g3D> #$$%+D + 9;; ##9/#&6 99 A P #$)5+ 1 1 ' & 04 96 Zhang, W. David, M. and Singh, P. (000). Iron oxidation by SO / O in acidic media, Part II. Effect of copper, Hydrometallurgy, 58, 117 15. 95 (P-@A; #$)<+8 '9. '.'9' E 9'K#5$#/#*<< 9* 0;? #$*5+ 9. 8!?/4 C d >*6))

##+$7C $%&#$#% *() 9& <<<!5<<<L&<<<<+, ;; $%$#& ;, 0 F #$)<+ K,'A K'+ K'##+,. v = ( E nl E n l1) / h = E / h : ;##+ 1 λ = c / v = hc / E A > N,/ F, ;, >*5))

K ;## K 7hK /hk ; K?!$,"K ;, 7hK+, ''' '/ A, $&$#9&#$+%$. >**))

G EH K, E.; P -7 T kbc = e : ;#&+ log10 (1/ T ) = log10 ( I O / I) = abc : ;#9+ log 10 ( I O / I) = A : ;#6+ ;;B P/F + ; ;;+,,, ; A #$)5+ >*%))

,,. *$%" %$A" ;A #$)5+,, +, ;#& +; PKK"/F;! PK". A canalyte c analyte Aanalyte = creference : ;#5+ A reference = creference = A reference A analyte = ; = ; >*)))

; <<* <<5 <<6 <<9 <<& <<# < < 5 #< #5 &< &5 TU!$,";, ; 0 F #$)<+ P FP L / 0 F #$)5+. >*$))

4 C ' ;,,, A #$)5+ %& ; ;;,. '.' A-' ' '.' + '.' + '.' >%<))

*$%*&$&#& ;; 0 ; ; F- #$$&+! ;; F 5; ; ; 8 0 8 A µo &6)9 <& <<*L#5 9%&< <& #L#<< 9)*< <& #5L&<<!! &%$5 <& <<&L5 6<9# <& <5L*< >%#))

; A #$)5+ MN + ; #<<< + #<<<< +, #5#<#5&<' # 9 5 #<<< > 5 5O 9&O # #<<< ; " + ;#& >%&))

##+$7C &"%$"$7$,&, L4&8 #"$$% +74&8B8 +7&4 7,+7& : ;&#+ 9 +764&8B986 +7)4 7,+7) : ;&&+ 98 +74&8B986 +7&4 7,+7& : ;&9+ &986 +74&8B9&89 +7&4 7,+7& : ;&6+ &8 +74&8B&89 +7&4 7,+7& : ;&5+ #"$$% +B &7,+7& : ;&*+ &7,+74&8B8 +7&4 7,+ : ;&%+ 9 &7,+764&8B986 +7)4 7,+7& : ;&)+ & &7,+794&8B&89 +7*4 7,+7& : ;&$+ 97,+7&4&8B884 +794 7,+ : ;&#<+ #"$$% &7,+B 97,+7 : ;&##+ 97,+764&8B86 &/,+7)4 7,+79 : ;&#&+ &$% 8&764 7 76B&4&8 : ;&#9+ &4 7 7&B4& : ;&#6+ ' ' >%9))

, ;&#+ ' C,. RT {Re duced state} E = E o ln z F { Oxidised state} A"B#$%) /# D /# B &9<* /#0/#?. o G = z E F = RT ln K AD, ; 4 B& &$)D. o G G o G o + = FeO + H G o Fe G o H O kcal = 1.908 mol G E o = = 0. 0414V z F C,. + o RT [ FeO][ H ] E = E ln z F [ Fe][ H O] ;, o E = E 0.0059 ph = 0.0414 0.0059 ph >%6))

;, o E = E 0.0059 ph = 0.0414 0.0059 ph : ;&#6+ A 4 8&4& ()'*+, ; KL4! L4&8 >#$)*+ #"$$%! +74&8B!8 +7&4 7,+7& : ;&#5+ KB/<%&%L<<5$#4 9!8 +74&8B!986 +7&4 7,+7& : ;&#*+ KB<6*&L<<5$#4 &!986 +74&8B9!&89 +7&4 7,+7& : ;&#%+ KB<*)$L<<5$#4!&89 +74&8B&!8& +7&4 7,+7& : ;&#)+ E = 1.014 0.0591 ph #"$$%! +B! &7,+7& : ;&#$+ >%5))

KB/##%$L<<&$5! &7 +! &7,+74&8B!8 +7&4 7,+ : ;&&<+ F! &7 +B#59#L&4 9! &7,+764&8B!986 +7)4 7,+7& : ;&&#+ KB#)&6L<&9*64L<<))*! &7 + &! &7,+794&8B!&89 +7*4 7,+7& : ;&&&+ KB#669L<#%94L<<5$#! &7 +! &7,+7&4&8B!8& +764 7 7&,+ : ;&&9+ KB#&&)L<###)&4L<<&$5! &7 +!8& +7&4&8B!86 /,+764 7 7& : ;&&6+ KB#*$&L<<%))4L<<#$%!86 / + >%*))

##+$76C " & [Fe]T, mol/l 0.1 0.09 0.08 0.07 0.06 0.05 0.04 0.03 0.0 0.01 0 Oxygen T=77 o C Starting [Fe(II)] = 0.0895 mol/l 0 50 100 150 00 50 300 time, mins [Fe]T, mol/l 0.1 0.09 0.08 0.07 0.06 0.05 0.04 0.03 0.0 0.01 0 Air T=77 o C Starting [Fe(II)]=0.0895 mol/l 0 50 100 150 00 50 300 time, mins [Fe]T, mol/l 0. 0.18 0.16 0.14 0.1 0.1 0.08 0.06 0.04 0.0 0 Oxygen T=77 o C Starting [Fe(II)]=0.175 mol/l 0 50 100 150 00 50 300 350 time, mins [Fe]T, mol/l 0. 0.18 0.16 0.14 0.1 0.1 0.08 0.06 0.04 0.0 0 Air T=77 o C Starting [Fe(II)]=0.175 mol/l 0 50 100 150 00 50 300 350 time, mins >%%))

0.3 0.3 0.5 0.5 [Fe]T, mol/l 0. 0.15 0.1 0.05 Oxygen T=77 o C Starting [Fe(II)] = 0.71 mol/l [Fe]T, mol/l 0. 0.15 0.1 0.05 Air T=77 o C Starting [Fe(II)]=0.175 mol/l 0 0 50 100 150 00 50 time, mins 0 0 50 100 150 00 50 300 350 time, mins 0.4 0.4 0.35 0.35 0.3 0.3 [Fe]T, mol/l 0.5 0. 0.15 0.1 0.05 0 Oxygen T=77 o C Starting [Fe(II)] = 0.351 mol/l 0 50 100 150 00 50 300 350 time, mins [Fe]T, mol/l 0.5 0. 0.15 0.1 0.05 0 Air T=77 o C Starting[Fe(II)]=0.351mol/L 0 50 100 150 00 50 300 350 time, mins ;9# ' / >%)))

##+$7;C / $ $%*&$&"#&&B$" "# + P & P ' +,. P &7 0+786 &/ 0+BP86 + 7#$ %+" "G. >%$)) : ;6#+ G <5! P & <#! ;C89 9&H4 #+ ; <6<<< &5</ &+ #<L#5+/ 4 +8 #5< &9* +(P & 9+ P & +

P & &< +;P & 6+ G ;C89 ; ; A 5+ G 65##< %"$&! #+! > &+! >7 9+! B! P86 6+B 9+L &+ DP86 K,;6#! 86 &/ B! P86BP86! P86 >)<))

?86 &/ B 86 &/ 86 BP86 86 P86 H86 B86 #<< "%+. # &! <9556 + <956# +! > <565 + <59<& +! >7 <*#< + <*<% +! P86 <<*5 + <<%*) + H86 %56 )$6 ;H86 )&6 " BT )&6/%56+O )&6+U^#<< B)5H >)#))

##+$7>C $ $- %$&$%A"$, "Y #$$$+ /, #+ 78&B /8/8^+ &7 : #+ /8/8^+ &7 7 B /8/8/+ 67 : &+ /8/8/+ 67 7 7 B &/8+ 67 7 8/+ &7 : 9+ 8/+ &7 7 B &/8+ 67 : 6+ &/8+ 67 7498 7 B84 / 74&87& : 5+ 498+ 7 784 / B&4&8 : *+ 8 6 &7 78&7498 7 B*4&876 97 : %+ ;#&. : )+ r = r1 = k [ Fe 1 r = r = k II ][ O ] k 1 [( Fe O O*) [( Fe O O*) + ][ Fe II ] k + ] [( Fe O O Fe) 4+ : ] $+ ;// /8/8^+ &7 #B&. k1[ Fe II ][ O ] k 1 [( Fe O O*) + ] = k [( Fe O O*) >)&)) + [ Fe II ] k [( Fe O O Fe) 4+ ]

A [( Fe O O*) + k1[ Fe ] = II ][ O ] + k II k [ Fe [( Fe O O Fe) ] + k 1 4+ ] : #<+ ; 9 L 5,/,. & 7 /8/8/+ 67 76498 7 B*4&876 : K, ##+ K [ Fe ] [ H O] III 4 6 ' = 4+ II + [( Fe O O Fe) ][ Fe ] [ H 3O ] 4 : #&+ /8/8/+ 67 [( Fe O O Fe) 4+ ] = [ Fe III K'[ Fe II 4 ] [ H ] [ H O] 3 6 O+ ] 4 : #9+ #9+#<+)+'. II III 4 6 k1[ Fe ][ O ] k [ Fe ] [ H O] r = k 1[ FeII ][ O ] k 1 + II II II + ( k [ Fe ] + k 1) ( k [ Fe ] + k 1) K'[ Fe ] [ H 3O ] 4 : #6+ ;D#B#O/#D&B&O/&, K, %+DBD#D&DN'K, #6+. >)9))

A II kk1[ Fe ] [ O ] r = (1 q) : #5+ II 1+ ( k / k )[ Fe ] 1 q = K [ Fe C III [ Fe 4 ] [ H II O] 4 ] [ H O 3 6 + ] 4 : #*+ #B&D#BR /KN#O" &B#BS /KN&O" K, #5+ II a1[ Fe ] [ O ] r = (1 q) : #%+ II 1+ ( a / a )[ Fe ] 1 K, #*+D,= <' #O& ; K, #%+. II ] [ Fe [ O ] E / RT e II α r = 1+ ( α / β )[ Fe ] : #)+ >)6))

##+$7?C-!$+ 0.9 0.7 0.5 R =0.96 Oxygen T=77 oc [Fe]T, mol/l 0.3 0.1 0.19 0.17 0.15 0 50 100 150 00 50 time, mins Experimental Model Fit 0.095 [Fe]T, mol/l 0.09 0.085 0.08 R =0.90 Oxygen T=77 oc 0.075 0.07 0 50 100 150 00 50 300 time, mins Experimental Model Fit >)5))

0.165 Oxygen 0.16 R =0.90 T=55 C 0.155 0.15 0.145 0.14 0 50 100 150 00 time, mins 50 300 Experimental Model Fit 0.75 0.7 Air 0.65 R =0.91 T=77 o C 0.6 0.55 0.5 0.45 0.4 0 50 100 150 00 50 300 350 time, mins Experimental Model Fit!$,"? K [Fe]T, mol/l [Fe]T, mol/l >)*))

0.0895 0.089 [Fe]T, mol/l 0.0885 0.088 0.0875 0.087 0.0865 0.086 0.0855 Air T=77 o C R =0.94 0 50 100 150 00 50 300 time, mins Experimental Model Fit 0.5 0.45 [Fe]T, mol/l 0.4 0.35 0.3 0.5 0. 0.15 0.1 0.05 R =0.96 Oxygen T= 55 o C 0. 0 50 100 150 00 50 300 350 time, mins Experimental Model Fit!$,"? ( >)%))

##+$7@C,!=$,&&$- +$, The program for the estimation of the parameters is quite long to include them all, therefore sample of it is presented here as an illustration. Experimenta Data C Fexp ( 0.345341 0.331543 0.3185644 0.308615 0.76861 0.67861 0.566 0.43984 0.4009 ) T t ( 0 1.0833 43 60 17 151 03 50 300 ) T parameters to be estimated A 1 5.4. 10 9 A 9.0. 10 9 E 58900 R 8.314 T ( 73 77 ) starting ferrous concn. saturated oxygen concn C Feo 0.345341 C O 0.00070386 A 1 = 0.6 A E 8.314 = 7.084. 10 3 C Fe 0.3 Given 1 A 1. ln C Fe C Fe A 1 A 1. ln C Feo A. 1 C. E O exp. t C Feo A R. T C Fe A 1, A, t Minerr C Fe Calculates the ferrous concentrations for the given n 0.. 8 parametrs C Fe C n Fe A 1, A, t n calculates the sum of residual square error by comparing the experimental and calculated values of the ferrous concns. SSE1 n SSE1 = 3.804. 10 4 C Fexp n C Fe n C Fe = n 0.345341 0.33943015 0.308938913 0.31087339 0.81348543 0.716591518 0.56740536 0.375364964 0.3006897 0.345 C Fexp C Fen 0.3 0.3 0.5 0. 0 100 00 300 0 t, t 300 n >))))