Introduction to MS-based proteomics and Bioconductor infrastructure

Σχετικά έγγραφα
Proteomics. Laurent Gatto 1 CSAMA 27 June

ΠΡΩΤΕΩΜΙΚΗ : ΤΕΧΝΟΛΟΓΙΕΣ ΚΑΙ ΕΦΑΡΜΟΓΕΣ. Γεώργιος Θ. Τσάγκαρης, PhD Ερευνητική Μονάδα Πρωτεωµικής

encouraged to use the Version of Record that, when published, will replace this version. The most /BCJ BIOCHEMICAL JOURNAL

NOVEL INTEGRAL MEMBRANE PROTEINS OF THE INNER NUCLEAR MEMBRANE

Ενδοκυττάρια ιαµερίσµατα, ιαλογή και µεταφορά πρωτεινών

Πεξηβάιινλ θαη Αλάπηπμε ΔΘΝΙΚΟ ΜΔΣΟΒΙΟ ΠΟΛΤΣΔΥΝΔΙΟ ΓΙΔΠΙΣΗΜΟΝΙΚΟ - ΓΙΑΣΜΗΜΑΣΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΔΣΑΠΣΤΥΙΑΚΧΝ ΠΟΤΓΧΝ (Γ.Π.Μ..) "ΠΔΡΙΒΑΛΛΟΝ ΚΑΙ ΑΝΑΠΣΤΞΗ"

Patrycja Miszczyk, Dorota Wieczorek, Joanna Gałęzowska, Błażej Dziuk, Joanna Wietrzyk and Ewa Chmielewska. 1. Spectroscopic Data.

DATA SHEET Surface mount NTC thermistors. BCcomponents

Scale in the biological world

Electronic Supplementary Information (ESI)

Pyrrolo[2,3-d:5,4-d']bisthiazoles: Alternate Synthetic Routes and a Comparative Study to Analogous Fused-ring Bithiophenes

High mobility group 1 HMG1

chlorostibine Iou-Sheng Ke and François P. Gabbai Department of Chemistry, Texas A&M University, College Station, TX

Sampling Basics (1B) Young Won Lim 9/21/13

Photo-Induced Self-Assembly of Pt(II)-Linked Rings and Cages via the Photolabilization of a Pt(II) Pyridine Bond

Simon et al. Supplemental Data Page 1

Current Status of PF SAXS beamlines. 07/23/2014 Nobutaka Shimizu

Introduction to Bioinformatics

Dipole-Guided Electron Capture Causes Abnormal Dissociations of Phosphorylated Pentapeptides

Η ΠΡΟΣΩΠΙΚΗ ΟΡΙΟΘΕΤΗΣΗ ΤΟΥ ΧΩΡΟΥ Η ΠΕΡΙΠΤΩΣΗ ΤΩΝ CHAT ROOMS

ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΕΡΙΒΑΛΛΟΝΤΟΣ

ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ

Supplementary Information

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

«ΑΓΡΟΤΟΥΡΙΣΜΟΣ ΚΑΙ ΤΟΠΙΚΗ ΑΝΑΠΤΥΞΗ: Ο ΡΟΛΟΣ ΤΩΝ ΝΕΩΝ ΤΕΧΝΟΛΟΓΙΩΝ ΣΤΗΝ ΠΡΟΩΘΗΣΗ ΤΩΝ ΓΥΝΑΙΚΕΙΩΝ ΣΥΝΕΤΑΙΡΙΣΜΩΝ»

Structure-Metabolism-Relationships in the microsomal clearance of. piperazin-1-ylpyridazines

of the methanol-dimethylamine complex

CRASH COURSE IN PRECALCULUS

Supporting Information

Joint Research Centre

CHAPTER 12: PERIMETER, AREA, CIRCUMFERENCE, AND 12.1 INTRODUCTION TO GEOMETRIC 12.2 PERIMETER: SQUARES, RECTANGLES,

ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

IV. ANHANG 179. Anhang 178

Spectrum Representation (5A) Young Won Lim 11/3/16

SUPPORTING INFORMATION

Biostatistics for Health Sciences Review Sheet

Supplementary Information 1.

Areas and Lengths in Polar Coordinates

Digital Signal Octave Codes (0B)

RSDW08 & RDDW08 series

NMBTC.COM /

ΤΕΧΝΙΚΕΣ ΔΙΑΓΝΩΣΗΣ ΤΗΣ ΝΟΣΟΥ ΑΛΤΣΧΑΙΜΕΡ ΜΕ FMRI


ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΑ ΤΜΗΜΑ ΝΑΥΤΙΛΙΑΚΩΝ ΣΠΟΥΔΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗΝ ΝΑΥΤΙΛΙΑ

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Προσομοίωση BP με το Bizagi Modeler

Μελέτη των μεταβολών των χρήσεων γης στο Ζαγόρι Ιωαννίνων 0

2 Composition. Invertible Mappings

Statistical analysis of extreme events in a nonstationary context via a Bayesian framework. Case study with peak-over-threshold data

PARTIAL NOTES for 6.1 Trigonometric Identities

Εργαστήριο Ραδιενέργειας Περιβάλλοντος ΙΠΤΑ ΕΚΕΦΕ Δ. Στοιχειακή ανάλυση ατμοσφαιρικού αερολύματος. Καταμερισμός των πηγών εκπομπής

Supporting information. Influence of Aerosol Acidity on the Chemical Composition of Secondary Organic Aerosol from β caryophyllene

Other Test Constructions: Likelihood Ratio & Bayes Tests

Démographie spatiale/spatial Demography

Aluminum Electrolytic Capacitors

Hadronic Tau Decays at BaBar

[2] T.S.G. Peiris and R.O. Thattil, An Alternative Model to Estimate Solar Radiation

ΠΕΡΙΕΧΟΜΕΝΑ. Κεφάλαιο 1: Κεφάλαιο 2: Κεφάλαιο 3:

Study of urban housing development projects: The general planning of Alexandria City

Statistics 104: Quantitative Methods for Economics Formula and Theorem Review

CORDIC Background (4A)

Nitric oxide (NO) reactivity studies on mononuclear Iron(II) complexes supported by a tetradentate Schiff base Ligand

Areas and Lengths in Polar Coordinates

encouraged to use the Version of Record that, when published, will replace this version. The most /BCJ

Biology Honours Exam 15 Jan 2010 (Dr S Datta)

PE CVVH PE+HP HP+CVVH HP+CVVH+PE CVVH. ENLAV of HCO - 3 ENLAV-HCO ± μmol /L HP+PE HP+CVVH HP+CVVH+PE

Enantioselective Synthesis of the Anti-inflammatory Agent ( )-Acanthoic Acid

VBA Microsoft Excel. J. Comput. Chem. Jpn., Vol. 5, No. 1, pp (2006)

Reminders: linear functions

ΚΛΙΜΑΤΟΛΟΓΙΑ CLIMATOLOGY

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Chapter 6 BLM Answers

The mass and anisotropy profiles of nearby galaxy clusters from the projected phase-space density

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

SUPPLEMENTARY MATERIAL

derivation of the Laplacian from rectangular to spherical coordinates

Multilayer Chip Inductor / CL TYPE

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

Η Α ΕΝΟΫΠΟΦΥΣΗ: OI ΓΟΝΑ ΟΤΡΟΠΙΝΕΣ (FSH, LH) ΚΑΙ Η ΠΡΟΛΑΚΤΙΝΗ (PRL)

High Frequency Chip Inductor / CF TYPE

Written Examination. Antennas and Propagation (AA ) April 26, 2017.

Figure 3 Three observations (Vp, Vs and density isosurfaces) intersecting in the PLF space. Solutions exist at the two indicated points.

Supplementary Materials for. Kinetic and Computational Studies on Pd(I) Dimer- Mediated Halogen Exchange of Aryl Iodides

PHOS π 0 analysis, for production, R AA, and Flow analysis, LHC11h

Smaller. 6.3 to 100 After 1 minute's application of rated voltage at 20 C, leakage current is. not more than 0.03CV or 4 (µa), whichever is greater.

In vitro και in vivo φαρμακοκινητική ανάλυση των παραγώγων ανθρακινόνης σε φυτικά σκευάσματα

Hydroxyapatite chromatography of guanidine denatured proteins 1. Guanidine containing phosphate buffer system

Supporting Information

Si + Al Mg Fe + Mn +Ni Ca rim Ca p.f.u

Enantioselective Organocatalytic Michael Addition of Isorhodanines. to α, β-unsaturated Aldehydes

Supplementary Materials: Detection of 191 Taxifolin Metabolites and Their Distribution in Rats Using HPLC-ESI-IT-TOF-MS n

CORDIC Background (2A)

Power Inductor LVS Series

ΖΩΝΟΠΟΙΗΣΗ ΤΗΣ ΚΑΤΟΛΙΣΘΗΤΙΚΗΣ ΕΠΙΚΙΝΔΥΝΟΤΗΤΑΣ ΣΤΟ ΟΡΟΣ ΠΗΛΙΟ ΜΕ ΤΗ ΣΥΜΒΟΛΗ ΔΕΔΟΜΕΝΩΝ ΣΥΜΒΟΛΟΜΕΤΡΙΑΣ ΜΟΝΙΜΩΝ ΣΚΕΔΑΣΤΩΝ

Partial Trace and Partial Transpose

Computing the Gradient

ΠΡΟΣΚΛΗΣΗ ΕΚΔΗΛΩΣΗΣ ΕΝΔΙΑΦΕΡΟΝΤΟΣ

Hydrologic Process in Wetland

Χαρτογράφηση θορύβου

Supporting Information

Transcript:

Introduction to MS-based proteomics and Bioconductor infrastructure Laurent Gatto lg390@cam.ac.uk @lgatt0 http://cpu.sysbiol.cam.ac.uk CSAMA 17 June 2015

Outline Proteomics and MS data Bioconductor infrastructure Examples Ranges infrastructure Application: spatial proteomics

Mass-spectrometry LC-MS/MS Separation Source Analyser Precursor ions MS1 Detector Fragmented ions MSMS - MS2 Precursor ion dissociation

Chromatogram: total intensity over time Total ion current 0 20 40 60 80 100 TMT_Erwinia_1uLSike_Top10HCD_isol2_45stepped_60min_01 20141210.mzML TIC: 7.22e+09 0 500 1000 1500 2000 2500 3000 3500 Time (sec)

MS1 (and MS2) spectra MS1 scan @ 21:3 min MS2 scan, precursor m/z 460.79 intensity 0.0e+00 5.0e+07 1.0e+08 1.5e+08 2.0e+08 0e+00 2e+06 4e+06 6e+06 8e+06 1e+07 0e+00 1e+06 2e+06 3e+06 4e+06 5e+06 6e+06 200 400 600 800 MS2 scan, precursor m/z 488.8 400 500 600 700 800 m/z 200 400 600 800 1000 m/z

Mass-spectrometry LC-MS/MS Separation Source Analyser Precursor ions MS1 Detector Fragmented ions MSMS - MS2 Precursor ion dissociation

Fragmentation Credit abrg.org

cid <- calculatefragments("aegklrfk", type=c("b", "y"), z=2) ## Modifications used: C=160.030649 ht(cid, n = 3) ## mz ion type pos z seq ## 1 36.52583 b1 b 1 2 A ## 2 101.04713 b2 b 2 2 AE ## 3 129.55786 b3 b 3 2 AEG ##... ## mz ion type pos z seq ## 31 357.7185 y6* y* 6 2 GKLRFK ## 32 422.2398 y7* y* 7 2 EGKLRFK ## 33 457.7583 y8* y* 8 2 AEGKLRFK

MS1 and MS2 spectra MS1 scan @ 21:3 min MS2 scan, precursor m/z 460.79 intensity 0.0e+00 5.0e+07 1.0e+08 1.5e+08 2.0e+08 0e+00 2e+06 4e+06 6e+06 8e+06 1e+07 0e+00 1e+06 2e+06 3e+06 4e+06 5e+06 6e+06 200 400 600 800 MS2 scan, precursor m/z 488.8 400 500 600 700 800 m/z 200 400 600 800 1000 m/z

MS1 and MS2 spectra 2.0e+08 2.0e+08 1.5e+08 1.5e+08 1.0e+08 1.0e+08 5.0e+07 5.0e+07 0.0e+00 0.0e+00 21.35 21.30 21.25 21.20 800 1000 1200 21.11 21.10 21.09 21.08 600 800 1000 1200 21.15 retention time 21.10 400 600 m/z 21.07 retention time 21.06 200 400 m/z

Proteomics data raw data: MS1 and MS2 over retention time identication: MS2 quantitation: MS1 or MS2 protein database (to match MS2 spectra against) Status package Raw (mz*ml) mzr mztab MSnbase mgf MSnbase mzidentml mzid, mzr mzquantml (?mzr)

Bioconductor infrastructure biocviews: Proteomics, MassSpectrometry Number of Bioconductor packages 0 10 20 30 40 50 Proteomics MassSpectrometry MassSpectrometryData Package downloads 0 10000 20000 30000 40000 50000 Proteomics MassSpectrometry 2.6 2.7 2.8 2.9 2.10 2.11 2.12 2.13 2.14 2.6 2.7 2.8 2.9 2.10 2.11 2.12 2.13 2.14 Bioconductor Versions Bioconductor Versions

Learning from Bioconductor genomics proteomics ------------------+------------------------ eset (past?) *MSnSet (present) Ranges (present) *Pbase et al. (future) PPI *localisation (present)

MSnSet

Example library("msnbase") rx <- readmsdata("rawdata.mzml") ## raw data rx <- addidentificationdata(rx, "identification.mzid") rx <- rx[!is.na(fdata(rx)$pepseq)] plot(rx[[10]], reporters = TMT6, full=true)

Example Precursor M/Z 600.36 8e+05 8e+05 6e+05 4e+05 6e+05 2e+05 0e+00 126.080 126.591 127.102 127.613 128.124 128.635 129.146 129.657 130.168 130.679 131.190 Intensity 4e+05 2e+05 0e+00 300 600 900 1200 M/Z

Example library("msnbase") rx <- readmsdata(f, centroided = TRUE) rx <- addidentificationdata(rx, g) rx <- rx[!is.na(fdata(rx)$pepseq)] plot(rx[[10]], reporters = TMT6, full=true) plot(rx[[4730]], rx[[4929]])

Example intensity 1.0 0.5 0.0 0.5 1.0 prec scan: 6975, prec mass: 545.017, prec z: 3, # common: 34 prec scan: 7198, prec mass: 545.017, prec z: 3, # common: 35 0 500 1000 1500 m/z

Example library("msnbase") rx <- readmsdata(f, centroided = TRUE) rx <- addidentificationdata(rx, g) rx <- rx[!is.na(fdata(rx)$pepseq)] plot(rx[[10]], reporters = TMT6, full=true) plot(rx[[4730]], rx[[4929]]) qt <- quantify(rx, reporters = TMT6) ## qt <- readmsnset("quantdata.csv", ecols = 5:11) nqt <- normalise(qt, method = "vsn") boxplot(exprs(nqt)) MAplot(nqt[, 1:2])

Example 10 15 20 25 TMT6.126 TMT6.128 TMT6.130 M 0.15 0.10 0.05 0.00 0.05 0.10 0.15 Median: 0.000187 IQR: 0.013 3.0 3.5 4.0 4.5 A

More RforProteomics package library("rforproteomics") RforProteomics() RProtVis() citation(package = "RforProteomics") Proteomics workow on the Bioc site Lab on Friday

protein database raw data quantitation identication

Ranges infrastructure g s g e G e s i e e i e s i e e i e s i e e i e s i e e i T1 i = 1 i = 2 i = 3 i = 4 T2 i = 1 i = 3 i = 4 T3 i = 1 i = 4 p s j p e j p s j p e j p s j p e j P j = 1 j = 2 j = 3 P 1 L P j = 1 j = 2 j = 3 π s k π e k π s k π e k π s k π e k π s k π e k Π k = 1 k = 2 k = 3 k = 4

Pbase package library("pbase") p <- Proteins("uniprot.fasta") p <- addidentificationdata(p, "identification.mzid") aa(p) ## peptides sequences as a AAStringSet pranges(p) ## peptide ranges as IRangesList i <- which(acols(p)[, "EntryName"] == "EF2_HUMAN") plot(p[i]) plot(p[i], from = 155, to = 185)

Along protein coordinates NH 100 300 500 700 COOH NH 230 250 COOH 200 400 600 800 240 P13639 W A F T L K Q F A E M Y V A K F A A K G E G Q L G P A E R A K K V E peptides peptides

Along genome coordinates... using transcript models as GRangesList and Gviz for plotting. Chromosome 1 156.11 mb 156.12 mb 156.13 mb 156.115 mb 156.125 mb 156.135 mb RATRSGAQASSTPLSPTR DTSRRLLAEKEREMAEMR RATRSGAQASSTPLSPTR ELEKTYSAKLDNAR METPSQRRATR RQNGDDPLLTYRFPPK SYLLGNSSPRTQSPQNCSIM peptides LALDMEIHAYRK LALDMEIHAYR SVGGSGGGSFGDNLVTR SVGGSGGGSFGDNLVTR SVGGSGGGSFGDNLVTR From the Pbase mapping vignette.

Along genome coordinates (with raw data) Chromosome X 78.11 mb 78.12 mb 5' 3' 3' 5' 78.115 mb 78.125 mb ENST00000373316 MS2 spectra From the Pbase mapping vignette.

80 60 40 20 0 With RNA-Seq reads Chromosome 17 30.12 mb 30.14 mb 30.16 mb 30.18 mb 30.13 mb 30.15 mb 30.17 mb AlignmentsTrack ENST00000612959 From https://github.com/computationalproteomicsunit/intro-integ-omics-prot

Spatial proteomics The cellular sub-division allows cells to establish a range of distinct microenvironments, each favouring dierent biochemical reactions and interactions and, therefore, allowing each compartment to full a particular functional role. Localisation and sequestration of proteins within subcellular niches is a fundamental mechanism for the post-translational regulation of protein function. Spatial proteomics is the systematic study of protein localisations.

fraction Cell lysate centrifugation Pure fraction catalogue Subtractive proteomics (enrichment) Figure : Immuno uorescence: ZFPL1, Golgi (left) and FHL2, mainly localized to actin laments and focal adhesion sites. Also detected in the nucleus (right). (from the Human Protein Atlas) label-free MS/MS Invariant rich fraction (clustering) PCP (χ2) itraq MS/MS LOPIT (PCA, PLS-DA) Figure : Mass spectrometry-based approaches based on density gradient subcellular fractionation.

Cell membrane lysis Mechanical or buer-induced lysis of the plasma membrane with minimal disruption to intracellular organelles followed by subcellular fractionation.

Density gradient separation

Quantitation by LC-MSMS

Data Fraction 1 Fraction 2... Fraction m markers p 1 q 1,1 q 1,2... q 1, m unknown p 2 q 2,1 q 2,2... q 2, m loc1 p 3 q 3,1 q 3,2... q 3, m unknown p 4 q 4,1 q 4,2... q 4, m loc k...... p n q n,1 q n,2... q n, m unknown Data analysis MSnbase for data manipulation, proloc for clustering, classication and plotting, and prolocgui for interactive exploration.

Correlation profile ER Correlation profile Golgi Correlation profile mit/plastid 0.2 0.3 0.4 0.5 1 2 4 5 7 8 Fractions 11 12 0.1 0.2 0.3 0.4 1 2 4 5 7 8 Fractions 11 12 0.0 0.1 0.2 0.3 0.4 0.5 0.6 1 2 4 5 7 8 Fractions 11 12 Principal component analysis Correlation profile PM PC2 5 0 5 10 5 0 5 PC1 ER Golgi mit/plastid PM vacuole marker PLS DA unknown 0.15 0.20 0.25 0.30 0.35 0.1 0.2 0.3 0.4 0.5 0.6 11 1 2 4 5 7 8 12 Fractions Correlation profile Vacuole 11 1 2 4 5 7 8 12 Fractions Figure : From Gatto et al. (2010), data from Dunkley et al. (2006).

2009 vs 2013 3 2 1 0 1 2 3 3 2 1 0 1 2 3 PC1 (58.53%) PC2 (29.96%) ER/Golgi mitochondrion PM unknown 3 2 1 0 1 2 3 3 2 1 0 1 2 3 PC1 (58.53%) PC2 (29.96%) Cytoskeleton ER Golgi Lysosome mitochondrion Nucleus Peroxisome PM Proteasome Ribosome 40S Ribosome 60S Figure : Semi-supervised approach Breckels et al. (2013). Data from Tan et al (2009).

6 4 2 0 2 4 4 2 0 2 4 PC1 (50.05%) PC2 (24.61%) Actin cytoskeleton Cytosol Endosome ER/GA Extracellular matrix Lysosome Mitochondria Nucleus Chromatin Nucleus Nucleolus Peroxisome Plasma Membrane Proteasome Ribosome 40S Ribosome 60S unknown 1 11 1 1 1 2 2 222 3 3 3 3 4 4 444 4 44 5 5 5 5 5 5 5 6 6 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 8 8 8 8 8 8 8 9 99 9 9 9 9 9 1 Dynein 2 Vesicles Clathrin 3 13S condensin 4 T complex 5 Nucleus lamina 6 Vesicles COPI/II 7 eif3 complex 8 ARP2/3 complex 9 COP9 signalosome From Betschinger et al. (2013) 6 4 2 0 2 4 4 2 0 2 4 Mouse ESC (E14TG2a) in serum LIF PC1 (50.05%) PC2 (24.61%) Actin cytoskeleton Cytosol Endosome ER/GA Extracellular matrix Lysosome Mitochondria Nucleus Chromatin Nucleus Nucleolus Peroxisome Plasma Membrane Proteasome Ribosome 40S Ribosome 60S unknown Tfe3

Acknowledgement Lisa Breckels Sebastien Gibb Kathryn Lilley (CCP) ## R version 3.2.0 Patched (2015-04-22 r68234) ## Platform: x86_64-unknown-linux-gnu (64-bit) ## Running under: Ubuntu 14.04.2 LTS ## ## attached base packages: ## [1] stats graphics grdevices utils datasets methods base ## ## loaded via a namespace (and not attached): ## [1] Biobase_2.29.1 vsn_3.37.1 ## [3] splines_3.2.0 foreach_1.4.2 ## [5] Formula_1.2-1 affy_1.47.1 ## [7] Pbase_0.9.0 highr_0.5 ## [9] stats4_3.2.0 latticeextra_0.6-26 ## [11] BSgenome_1.37.1 Rsamtools_1.21.8 ## [13] impute_1.43.0 RSQLite_1.0.0 ## [15] lattice_0.20-31 biovizbase_1.17.1 ## [17] limma_3.25.9 chron_2.3-45 ## [19] digest_0.6.8 GenomicRanges_1.21.15 ## [21] RColorBrewer_1.1-2 XVector_0.9.1 ## [23] colorspace_1.2-6 preprocesscore_1.31.0 ## [25] plyr_1.8.2 MALDIquant_1.12 ## [27] XML_3.98-1.2 biomart_2.25.1 ## [29] zlibbioc_1.15.0 scales_0.2.4 ## [31] affyio_1.37.0 cleaver_1.7.0 ## [33] BiocParallel_1.3.25 IRanges_2.3.11 ## [35] ggplot2_1.0.1 SummarizedExperiment_0.1.5 ## [37] GenomicFeatures_1.21.13 nnet_7.3-9 ## [39] Gviz_1.13.2 BiocGenerics_0.15.2 ## [41] proto_0.3-10 survival_2.38-1 ## [43] magrittr_1.5 evaluate_0.7 ## [45] doparallel_1.0.8 MASS_7.3-40 ## [47] foreign_0.8-63 mzr_2.3.1