P AND P. P : actual probability. P : risk neutral probability. Realtionship: mutual absolute continuity P P. For example:

Σχετικά έγγραφα
Credit Risk. Finance and Insurance - Stochastic Analysis and Practical Methods Spring School Jena, March 2009

ST5224: Advanced Statistical Theory II

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Part III - Pricing A Down-And-Out Call Option

Statistical Inference I Locally most powerful tests

(1) P(Ω) = 1. i=1 A i) = i=1 P(A i)

: Ω F F 0 t T P F 0 t T F 0 P Q. Merton 1974 XT T X T XT. T t. V t t X d T = XT [V t/t ]. τ 0 < τ < X d T = XT I {V τ T } δt XT I {V τ<t } I A

Solution Series 9. i=1 x i and i=1 x i.

C.S. 430 Assignment 6, Sample Solutions

Homework 8 Model Solution Section

Other Test Constructions: Likelihood Ratio & Bayes Tests

Teor imov r. ta matem. statist. Vip. 94, 2016, stor

Probability and Random Processes (Part II)

2 Composition. Invertible Mappings

Problem Set 3: Solutions

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Uniform Convergence of Fourier Series Michael Taylor

ECE598: Information-theoretic methods in high-dimensional statistics Spring 2016

D Alembert s Solution to the Wave Equation

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Fractional Colorings and Zykov Products of graphs

4.6 Autoregressive Moving Average Model ARMA(1,1)

A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Lecture 7: Overdispersion in Poisson regression

F19MC2 Solutions 9 Complex Analysis

EE512: Error Control Coding

Vol. 34 ( 2014 ) No. 4. J. of Math. (PRC) : A : (2014) XJ130246).

12. Radon-Nikodym Theorem

Example Sheet 3 Solutions

Estimation for ARMA Processes with Stable Noise. Matt Calder & Richard A. Davis Colorado State University

Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.

On the Galois Group of Linear Difference-Differential Equations

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

HOMEWORK#1. t E(x) = 1 λ = (b) Find the median lifetime of a randomly selected light bulb. Answer:

Statistics 104: Quantitative Methods for Economics Formula and Theorem Review

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Forced Pendulum Numerical approach

The Probabilistic Method - Probabilistic Techniques. Lecture 7: The Janson Inequality

MA 342N Assignment 1 Due 24 February 2016

Mean-Variance Hedging on uncertain time horizon in a market with a jump

Math221: HW# 1 solutions

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

6.3 Forecasting ARMA processes

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 10η: Basics of Game Theory part 2 Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

Heisenberg Uniqueness pairs

Multi-dimensional Central Limit Theorem

Lecture 21: Properties and robustness of LSE

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

An Inventory of Continuous Distributions

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Every set of first-order formulas is equivalent to an independent set

Limit theorems under sublinear expectations and probabilities

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

Overview. Transition Semantics. Configurations and the transition relation. Executions and computation

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Financial Risk Management

Theorem 8 Let φ be the most powerful size α test of H

Bayes Rule and its Applications

5. Choice under Uncertainty

Mean-Variance Analysis

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

Section 8.3 Trigonometric Equations

Multi-dimensional Central Limit Theorem

The Simply Typed Lambda Calculus

The challenges of non-stable predicates

Dynamic types, Lambda calculus machines Section and Practice Problems Apr 21 22, 2016

Lifting Entry 2. Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion MARYLAND U N I V E R S I T Y O F

Solutions to Exercise Sheet 5

Second Order RLC Filters

Elements of Information Theory

DISTRIBUTIONS OF OCCUPATION TIMES OF BROWNIAN MOTION WITH DRIFT

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

5.4 The Poisson Distribution.

ECE 308 SIGNALS AND SYSTEMS FALL 2017 Answers to selected problems on prior years examinations

Commutative Monoids in Intuitionistic Fuzzy Sets

ON NEGATIVE MOMENTS OF CERTAIN DISCRETE DISTRIBUTIONS

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Survival Analysis: One-Sample Problem /Two-Sample Problem/Regression. Lu Tian and Richard Olshen Stanford University

Arithmetical applications of lagrangian interpolation. Tanguy Rivoal. Institut Fourier CNRS and Université de Grenoble 1

Major Concepts. Multiphase Equilibrium Stability Applications to Phase Equilibrium. Two-Phase Coexistence

Calculating the propagation delay of coaxial cable

Last Lecture. Biostatistics Statistical Inference Lecture 19 Likelihood Ratio Test. Example of Hypothesis Testing.

Integrals in cylindrical, spherical coordinates (Sect. 15.7)

Homework for 1/27 Due 2/5

Lifting Entry (continued)

PARTIAL NOTES for 6.1 Trigonometric Identities

Affine Weyl Groups. Gabriele Nebe. Summerschool GRK 1632, September Lehrstuhl D für Mathematik

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

Μηχανική Μάθηση Hypothesis Testing

wave energy Superposition of linear plane progressive waves Marine Hydrodynamics Lecture Oblique Plane Waves:

Outline Analog Communications. Lecture 05 Angle Modulation. Instantaneous Frequency and Frequency Deviation. Angle Modulation. Pierluigi SALVO ROSSI

6.4 Superposition of Linear Plane Progressive Waves

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

The circle theorem and related theorems for Gauss-type quadrature rules

Transcript:

(B t, S (t) t P AND P,..., S (p) t ): securities P : actual probability P : risk neutral probability Realtionship: mutual absolute continuity P P For example: P : ds t = µ t S t dt + σ t S t dw t P : ds t = µ t S t dt + σ t S t dw t Money market bond numeraire: µ t = r t Q : σ t =?? A : σ 2 t = σ 2 t. Why? Autumn 25 1 Per A. Mykland

CONTINUOUS CASE: σ t AND σ t P : P : ds t = µ t S t dt + σ t S t dw t ds t = µ t S t dt + σ t S t dw t P : d log S t =... dt + σ t dw t >: (d log S t ) 2 2 = σt (dw t ) 2 = σt 2 dt d[log S, log S] t P : same argument : d[log S, log S] t = σt 2 dt Process same under P, P : σt 2 dt = d[log S, log S] t = σt 2 dt >: σ 2 t In particular: if σ is constant: σ = σ = σ 2 t If numeraire = Money Market Bond: ds t = r t S t dt + σ t S t dw t d S t = σ t S t dw t Autumn 25 2 Per A. Mykland

CONTINUOUS CASE: THE MARKET PRICE OF RISK ds t = µ t S t dt + σ t S t dw t ds t = µ t S t dt + σ t S t dw t µ t S t dt + σ t S t dw t = µ t S t dt + σ t S t dw t >: µ t dt + σ t dw t = µ t dt + σ t dw t >: µ t µ t dt + dw t = dwt σ }{{ t } λ t Change from P to P : Market price of risk dw t P BM = dw t P BM +λ t dt Autumn 25 3 Per A. Mykland

OTHER NUMERAIRE ] d log S t =... dt + σ t dw t P, P d log Λ t =... dt + γ t dv t S t = S t Λ t log S t = log S t log Λ t (d log S t ) 2 = (d log S t ) 2 + (d log Λ t ) 2 2(d log S t )(d log Λ t ) = σ 2 t (dw t ) 2 + γ 2 t (dv t ) 2 2σ t γ t (dw t )(dv t ) ρ t dt = (σ 2 t + γ 2 t 2σ t γ t ρ t )dt ρ t = 1 dt d[w, V ] t = correlation (dw, dv ) (can be random) σ 2 t = σ 2 t + γ 2 t 2σ t γ t ρ t P, P σ 2 t ex γ t = : MONEY MARKET BOND Autumn 25 4 Per A. Mykland

OTHER NUMERAIRE d log S t =... dt + σ t dw t d log Λ t =... dt + γ t dv t so d log S t =... dt + σ t + σ t dw t γ t dv t =... dt + σ t d W t ] previous page or d S t =... S t dt + σ t S t d W t = if P for numeraire Λ or σ t d W t = σ t dw t γ t dv t d W t = σ t σ t dw t γ t σ t dv t Yet another Brownian motion Autumn 25 5 Per A. Mykland

P DEPENDS ON NUMERAIRE Λ t, B t : NUMERAIRES, SUPPOSE P SAME d 1 M t dmg NEED d[m, M] t dt term M t = Λ t B t = P MG 1 M t = B t Λ t = P MG = 1 Mt 2 dm t + 1 M 3 d[m, M] t t dmg dmg?? = dmg UNIQUENESS OF DOOB-MEYER [M, M] t = M t constant if continuous Λ, B are the same Autumn 25 6 Per A. Mykland

THE RADON-NIKODYM THEOREM Theorem. Let P, Q be probabilities, Q P. Then r.v. dq dp : if E Q X <, then E Q X = E P ( X dq dp ). dq dp is unique P a.s. Proof and elaborations: Billingsley, Section 32. Uniqueness: Suppose both Y, Z satisfy conditions on dq dp. Set A = {ω : Y (ω) > Z(ω)}. Then unless P (A) =. Q(A) = E P Y I A > E P ZI A = Q(A) The finite case: F = σ(p): when ω A P dq dp (ω) = Q(A) P (A) Autumn 25 7 Per A. Mykland

CONTINUOUS DISTRIBUTIONS P (Z A) = f(z)dz Q(Z A) = Then: A dq g(z) (ω) = dp f(z). A g(z)dz. Proof: g(z) E P I(Z A) = f(z) = g(z) I(z A)f(z)dz f(z) I(z A)g(z)dz Generally: Z 1,..., Z p P (A) = Q(A) = A A = Q(A). f(z 1,..., z p )dz 1... dz p g(z 1,..., z p )dz 1... dz p dq dp (ω) = g(z 1,..., Z p ) f(z 1,..., Z p ). Autumn 25 8 Per A. Mykland

NORMAL PROCESSES WITH DRIFT P θ : X t+1 = X t + θ t + σɛ t+1 ɛ t+1 N(, 1), F t. 1 f θ (x t+1 F t ) = exp { (x t+1 X t θ t ) 2 } 2π σ 2σ 2 { } f θ (x 1,..., x t ) = (2πσ 2 ) t 2 exp 1 t 1 2σ 2 (x u+1 x u θ u ) 2 u= dp θ = f θ(x 1,..., X t ) dp f (X 1,..., X t ) { = exp 1 t 1 2σ 2 (X u+1 X u θ u ) 2 + 1 t 1 2σ 2 (X u+1 X u= u= { } 1 t 1 = exp θ σ 2 u (X u+1 X u ) 1 t 1 θ 2σ 2 u 2 u= u= { = exp Y t 1 } 2 [Y, Y ] t where: Y t = 1 σ 2 t θ udx u and θ u = θ t for t < u t + 1 Autumn 25 9 Per A. Mykland

GIRSANOV S THEOREM dx t = dw t +θ t dt P BM Q BM dq dp = exp(m T 1 2 [M, M] T ) where M t = t dp dq = exp( M T + 1 2 [M, M] T ) = exp( = exp( T T θ u dx u = P MG θ u [dw u + 1 2 θ udu] + 1 2 θ u dw u 1 2 T θ 2 udu) T = exp( M T 1 2 [ M, M] T ) where M t = Q MG as function of T θ 2 udu) t θ u dw u Autumn 25 1 Per A. Mykland

SMALL INCREMENTS, θ CONSTANT P θ : X t+ = X t + θ + σ(b t+ B t ) θ replaced by θ σ replaced by σ { dp θ θ = exp dp = exp σ 2 X N 1 2 { θ σ 2 X T 1 2 θ 2 σ 2 T θ 2 2 σ 2 } } N T = N If T fixed, N, : P θ : X t = θt + σb t BROWNIAN MOTION WITH DRIFT Form of dp θ dp : simplest case of Girsanov s Theorem. Autumn 25 11 Per A. Mykland

APPLICATION: EVALUATION OF THE EURO-RUSSIAN OPTION Recall: V = e rt E [payoff] V = e rt E f( max S t) t T ( ) = e rt E f exp( max log S t) t T ( ) = e rt E f exp( max log S t) t T ( ( )) = e rt E f exp log S + σ max (νt + t T B t ) σν = r 1 2 σ2 ( ) dp = e rt E Q f exp(log S + σ max X t) t T dq P : X t = νt + B t Q : X t is Brownian motion. dp dq = exp{νx T 1 2 ν2 T }. Problem reduced to one involving maxima of Brownian motion. Autumn 25 12 Per A. Mykland

M T = max t T X t V = e rt E Q f (S exp(σm T )) exp ( νx T 1 ) 2 ν2 T f X,M (a, b) = { } 2(2b a) exp (2b a)2 2πT 3 2T b a, (Lecture 7 p. 16 from Autumn) V = e rt f(s exp(σb)) ( exp νa 1 ) 2 ν2 T f X,M (a, b) dadb Autumn 25 13 Per A. Mykland

ADDITIVE AND MULTIPLICATIVE MARTINGALES M t IS A MARTINGALE Itô: Z t = exp(m t 1 2 [M, M] t) X t = f(x t ) dz t = f (X t )dx t + 1 2 f (X t )d[x, X] t = exp(x t ) [dx t + 1 2 d[x, X] t] dm t = Z t dm t = MG Since dx t + 1 2 d[x, X] t {}}{ = dm t 1 {}}{ 2 d[m, M] 1 t + 2 d[m, M] t = dm t In particular: EZ T = EZ = E1 = 1 Autumn 25 14 Per A. Mykland

THE DISTRIBUTION OF HITTING TIMES P : X t = νt + σw t and Q : X t = σwt dp { ν = exp dq σ 2 X t 1 ν 2 } 2 σ 2 t. t Martingale property: dp dq A special case = exp τ { ν σ 2 X τ 1 2 ν 2 } σ 2 τ. τ =inf {t : X t = b}. P (τ u) = E I {τ u} { ν = E Q I {τ u} exp σ 2 X τ u 1 ν 2 } (τ u) 2 σ2 { ν = E Q I{τ u} exp σ b 1 ν 2 } 2 2 σ τ 2 u ( ν = exp σ b 1 ν 2 ) 2 2 σ t f 2 Q,τ (t) dt Autumn 25 15 Per A. Mykland

or: P (τ u) = u f P,τ (t) = exp exp ( ν σ 2 b 1 2 ( ν σ 2 b 1 2 ν 2 ) σ 2 t f Q,τ (t) dt ν 2 ) σ 2 t f Q,τ (t). From distribution of maximum: { } b f Q,τ (t) = 2πσ2 t exp b2 3 2σ 2, t t EXAMPLE: DOWN AND IN OPTIONS { (ST K) + of min S t K t T η = otherwise X t = log S t log S b = log K log S price = E e rt η = E E [e rt η F τ ]I (τ T ) = E e rτ E [ e r(t τ) η F τ ] I (τ T ) = E e rτ BS(T τ)i (τ T ) = T e rt BS(T t)f P,τ (t) dt Autumn 25 16 Per A. Mykland