CP-violation from Non-Unitary Leptonic Mixing

Σχετικά έγγραφα
Homework #6. A circular cylinder of radius R rotates about the long axis with angular velocity

Antonio Pich. IFIC, CSIC Univ. Valencia.

Bridges of Low-E observables with Leptogenesis in mu-tau Reflection Symmetry

Solar Neutrinos: Fluxes

One and two particle density matrices for single determinant HF wavefunctions. (1) = φ 2. )β(1) ( ) ) + β(1)β * β. (1)ρ RHF

Multi-dimensional Central Limit Theorem

Multi-dimensional Central Limit Theorem

General theorems of Optical Imaging systems

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-570: Στατιστική Επεξεργασία Σήµατος. ιδάσκων : Α. Μουχτάρης. εύτερη Σειρά Ασκήσεων.

Pairs of Random Variables

Neutralino contributions to Dark Matter, LHC and future Linear Collider searches

α & β spatial orbitals in

Some Geometric Properties of a Class of Univalent. Functions with Negative Coefficients Defined by. Hadamard Product with Fractional Calculus I

!!" #7 $39 %" (07) ..,..,.. $ 39. ) :. :, «(», «%», «%», «%» «%». & ,. ). & :..,. '.. ( () #*. );..,..'. + (# ).

The Finite Element Method

Convection Derivatives February 17, E+01 1.E-01 1.E-02 1.E-03 1.E-04 1.E-05 1.E-06 1.E-07 1.E-08 1.E-09 1.E-10. Error

5 Haar, R. Haar,. Antonads 994, Dogaru & Carn Kerkyacharan & Pcard 996. : Haar. Haar, y r x f rt xβ r + ε r x β r + mr k β r k ψ kx + ε r x, r,.. x [,

Hadronic Tau Decays at BaBar

8.1 The Nature of Heteroskedasticity 8.2 Using the Least Squares Estimator 8.3 The Generalized Least Squares Estimator 8.

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

8.324 Relativistic Quantum Field Theory II

Statistical Inference I Locally most powerful tests

ELE 3310 Tutorial 11. Reflection of plane waves Wave impedance of the total field

The Standard Model. Antonio Pich. IFIC, CSIC Univ. Valencia

CP Violation in B- and K-Meson Systems

d dx x 2 = 2x d dx x 3 = 3x 2 d dx x n = nx n 1

Section 8.3 Trigonometric Equations

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

16 Electromagnetic induction

Relativsitic Quantum Mechanics. 3.1 Dirac Equation Summary and notation 3.1. DIRAC EQUATION SUMMARY AND NOTATION. April 22, 2015 Lecture XXXIII

α A G C T 國立交通大學生物資訊及系統生物研究所林勇欣老師

Self and Mutual Inductances for Fundamental Harmonic in Synchronous Machine with Round Rotor (Cont.) Double Layer Lap Winding on Stator

Dong Liu State Key Laboratory of Particle Detection and Electronics University of Science and Technology of China

UNIT 13: TRIGONOMETRIC SERIES

Το άτομο του Υδρογόνου

Section 7.6 Double and Half Angle Formulas

derivation of the Laplacian from rectangular to spherical coordinates

Vidyamandir Classes. Solutions to Revision Test Series - 2/ ACEG / IITJEE (Mathematics) = 2 centre = r. a

EGR 544 Communication Theory

i i (3) Derive the fixed-point iteration algorithm and apply it to the data of Example 1.

Faculdade de Engenharia. Transmission Lines ELECTROMAGNETIC ENGINEERING MAP TELE 2008/2009

' ( )* * +,,, ) - ". &!: &/#&$&0& &!& $#/&! 1 2!#&, #/&2!#&3 &"&!3, #&- &2!#&, "#4&#3 $!&$3% 2!% #!.1 & &!" //! &-!!

Finite Field Problems: Solutions

Phasor Diagram of an RC Circuit V R

8.323 Relativistic Quantum Field Theory I

A Class of Orthohomological Triangles

Cable Systems - Postive/Negative Seq Impedance

Quantum ElectroDynamics II

Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.

Formulas of Agrawal s Fiber-Optic Communication Systems NA n 2 ; n n. NA( )=n1 a

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

Durbin-Levinson recursive method

Lifting Entry 2. Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion MARYLAND U N I V E R S I T Y O F

Exam Statistics 6 th September 2017 Solution

Relative Valuation. Relative Valuation. Relative Valuation. Υπολογισµός αξίας επιχείρησης µε βάση τρέχουσες αποτιµήσεις οµοειδών εταιρειών

Example Sheet 3 Solutions

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

Matrices and Determinants

Lifting Entry (continued)

Κύµατα παρουσία βαρύτητας

Affine Weyl Groups. Gabriele Nebe. Summerschool GRK 1632, September Lehrstuhl D für Mathematik



Solutions to the Schrodinger equation atomic orbitals. Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz

ψ(x) ψ (x) =exp[iγ a Θ a ] ψ(x) =1+iΓ a Θ a ψ ±

PARTIAL NOTES for 6.1 Trigonometric Identities

Υπολογιστική Φυσική Στοιχειωδών Σωματιδίων



TMA4115 Matematikk 3

From the finite to the transfinite: Λµ-terms and streams

Second Order Partial Differential Equations

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

TeSys contactors a.c. coils for 3-pole contactors LC1-D

Right Rear Door. Let's now finish the door hinge saga with the right rear door

ΜΕΤΑΣΧΗΜΑΤΙΣΤΕΣ ΜΕΤΑΣΧΗΜΑΤΙΣΤΕΣ ΜΕΤΑΦΟΡΑΣ ΗΛΕΚΤΡΙΚΗΣ ΙΣΧΥΟΣ. Συσκευές οι οποίες μετασχηματίζουν το πλάτος της εναλλασόμενης τάσης

Reminders: linear functions

Unit 3 Lecture Number 16

Αέρια υψηλής Καθαρότητας Ο συνεργάτης σας για Αέρια, Εξοπλισµό και Υπηρεσίες

LIGHT UNFLAVORED MESONS (S = C = B = 0)

A/m

ΗΥ537: Έλεγχος Πόρων και Επίδοση σε Ευρυζωνικά Δίκτυα,

MnZn. MnZn Ferrites with Low Loss and High Flux Density for Power Supply Transformer. Abstract:

ITU-R P (2009/10)

IIT JEE (2013) (Trigonomtery 1) Solutions

Scratch Διδακτική του Προγραμματισμού. Παλαιγεωργίου Γιώργος

CRASH COURSE IN PRECALCULUS

ΜΕΡΟΣ ΙΙI ΜΟΡΙΑΚΟ ΒΑΡΟΣ ΠΟΛΥΜΕΡΩΝ


A NEW FORM OF MULTIVARIATE GENERALIZED DOUBLE EXPONENTIAL FAMILY OF DISTRIBUTIONS OF KIND-2

EE512: Error Control Coding

Derivation of Optical-Bloch Equations

CS348B Lecture 10 Pat Hanrahan, Spring 2002

Φυγόκεντρος αποθήκευσης Κανονική n 1k Αγωγή n 2k

ΠΕΡΙΟΔΙΚΟ ΣΥΣΤΗΜΑ ΤΩΝ ΣΤΟΙΧΕΙΩΝ (1) Ηλία Σκαλτσά ΠΕ ο Γυμνάσιο Αγ. Παρασκευής

ΜΕΛΕΤΗ ΤΗΣ ΜΑΚΡΟΧΡΟΝΙΑΣ ΠΑΡΑΜΟΡΦΩΣΗΣ ΤΟΥ ΦΡΑΓΜΑΤΟΣ ΚΡΕΜΑΣΤΩΝ ΜΕ ΒΑΣΗ ΑΝΑΛΥΣΗ ΓΕΩΔΑΙΤΙΚΩΝ ΔΕΔΟΜΕΝΩΝ ΚΑΙ ΜΕΤΑΒΟΛΩΝ ΣΤΑΘΜΗΣ ΤΑΜΙΕΥΤΗΡΑ

Math 6 SL Probability Distributions Practice Test Mark Scheme

Arithmetical applications of lagrangian interpolation. Tanguy Rivoal. Institut Fourier CNRS and Université de Grenoble 1

! "#" "" $ "%& ' %$(%& % &'(!!")!*!&+ ,! %$( - .$'!"

ΕΝΕΡΓΟΣ ΔΙΑΤΟΜΗ ΤΟΥ ΣΩΜΑΤΙΔΙΟΥ W

Transcript:

CP-volaton from Non-Untary Lptonc Mxng Jacobo Lópz Pavón IFT UAM/CSIC XLIIIrd Rncontrs d MORIOND Elctrowak Ssson La Thul, March 1-8, 008 S. Antusch, C. Bggo, E. Frnándz-Martínz and M.B. Gavla JHEP 0610:084,006 E. Fdz-Martnz, M.B. Gavla and O. Yasuda Phys.Ltt.B 649:47-435,007

Motvatons Nutrno masss and mxng vdnc of Physcs Byond th SM Typcal xplanatons nvolv Nw Physcs at hghr nrgs Ths NP oftn nducs dvatons from untarty of th PMNS at low nrgy W wll analyz th prsnt constrants on th mxng matrx wthout assumng untarty Study of CP volaton n th contxt of non-untarty

Usual Analyss 1 g g L = ( α / α αmαββ hc..) ( Wlαγ PLα hc..) ( Zαγ PLα hc..)... cosθ W l α CC W - α NC Z Dagonalzng α α L 1 g ( ) g ( = ) / m Wlαγ PU L α Zγ PL hc..... cosθ W U α = U Th mxng matrx s untary n th usual analyss wth 3 lght α

Th gnral da W - gγ PU L α l α cc sc s U= s c s s c c c s s s s c ss csc sc css cc δ 13 1 1 13 13 δ δ 1 3 3 13 1 1 3 3 13 1 3 13 δ δ 3 1 3 13 1 3 1 3 13 1 3 13 α β 1 W - l α gγ PN L α N N N N N N N N N N 1 3 = 1 3 1 3

Effctv Lagrangan allowng non-untarty L 3 lght Assum NP at Λ >> Λ EW. In th flavor bass, 1 c g g = ( α / Kαββ αmαββ hc..) ( W lαγ PLα hc..) ( Zαγ PLα hc..)... cosθ W α = N α L 1 g g = ( / m) ( Wlαγ PLNα) ( Zγ PL( N N) j j) hc..... cosθ W unchangd N non-untary = δ j j

Th ffcts of non-untarty appar n th ntractons W - Z l α N α j ( NN) j W can bound untarty wth wak dcays α 1 = N α N α δ β α α β P = L= 0= = αβ β α ( L) ) N N β N α N * α β E N N α m N L * α β N β Zro Dstanc Effct

Constrants on Untarty from wak dcays W l α Z nvsbl unvrsalty tsts rar lpton dcays NN 0.994± 0.005 < 7.1 10 < 1.6 10 < 7.1 10 0.995± 0.005 < 1.0 10 < < ± 5 5 1.6 10 1.0 10 0.995 0.005 90% C.L. N s untary at % lvl

In th futur γ γ TESTS OF UNITARITY RARE LEPTON DECAYS NN < 10 6 NN < 1.6 10 (MEG) (BABAR) γ NN < 1.0 10 (Bll)

In th futur TESTS OF UNITARITY γ γ γ RARE LEPTON DECAYS NN < 10 NN < 1.6 10 6 NN < 1.0 10 (MEG) (BABAR) (Bll) ZERO-DISTANCE EFFECT @ NF 4 ( NN ) <.3 10 3 ( NN ) <.9 10 3 NN <.6 10

In th futur TESTS OF UNITARITY γ γ γ RARE LEPTON DECAYS NN < 10 NN < 1.6 10 6 NN < 1.0 10 (MEG) (BABAR) (Bll) ZERO-DISTANCE EFFECT @ NF 4 ( NN ) <.3 10 3 ( NN ) <.9 10 3 NN <.6 10

In th futur TESTS OF UNITARITY γ γ γ RARE LEPTON DECAYS NN < 10 NN < 1.6 10 6 NN < 1.0 10 (MEG) (BABAR) (Bll) ZERO-DISTANCE EFFECT @ NF 4 ( NN ) <.3 10 3 ( NN ) <.9 10 3 NN <.6 10 PHASES phass apparanc xprmnts: NUFACTs, b-bams

If w paramtrz Can w masur th phass of N? E. Fdz-Martnz, M.B. Gavla, J. Lópz-Pavón and O.Yasuda hp-ph/0703098 ph/0703098 N = (1 η) U whr U U PMNS η η η * η = η η η * * η η η and η = η If Δ E ml Δ<< 1 SM * ( L = A O ) η η α β αβ αβ P αβ only dpnds on ηαβ

Can w masur th phass of N? E. Fdz-Martnz, M.B. Gavla, J. Lópz-Pavón and O.Yasuda hp-ph/0703098 ph/0703098 For nstanc, for two famls: Δ P αβ = sn ( θ)sn 4 η αβ sn( δ αβ )sn( θ)sn Δ 4 η αβ SM CP volatng ntrfrnc Zro dstanc ffct η αβ δ η αβ αβ Nw CP-volaton sgnals Δ =ΔmL E 1 j j

Whch s th bst channl???? < 3.5 10 η 5 < 8.0 10 η 3 < 5.1 10 η 3 Δ sn θ sn 4 η snδ sn θ sn 4 η 31 P 3 3 Δ 31 P Ths s th bst channl to masur nw CP phass: P 8 η snδ sn( θ )sn Δ 3 13

Th CP phas δ can b probd N N 8 η snδ sn( θ )sn Δ 3 13 1. Confuson btwn sgn sgn. Dgnracy δ δ 180º δ Δ 3σ 13 @ a Nutrno Factory wth L = 130 Km

Th CP phas δ can b probd 3σ Prsnt bound from γ Snstvty to η Snstvty to δ For non-trval δ, on ordr of magntud mprovmnt for η

Conclusons Analyz nutrno data wthout assumng untarty. W startd th frst analyss and conclud that, at prsnt: -EW dcays confrms untarty at % lvl -Prsnt bounds on untarty ar strong nough to match th untarty analyss CP-asymmtry s a clan prob of th nw phass. Non-untary ffcts n typcal modls ar too small to b dtctd at prsnt xprmnts. Thy could b szabl n xtnsons/othrs modls wth M~ TV, ). -> kp trackng thm n th futur. Thy ar xcllnt sgnals of nw physcs.

Back-up slds

Constrants on untarty < 3 η < 3.510 5 η < 8.010 3 5 3 η < 5.1 10 3 < 3 < 3 < 3 η 5.510 < 3.510 < 5.010 η 8.0 10 η 5.1 10 η 5.0 10 η η η

Lptonc Mxng Matrx Elmnts From Oscllatons N N N N N N N 1 3 = 1 3 N N N 1 3

CHOOZ: KamLAND: Δ 13 from KK SNO: P 0.1 N 0.9 N N lmnts from oscllatons: -row ( ) 4 ( ) cos( Δ ) ( ) 4 4 4 cos( Δ ) P N N N N N 1 3 1 1 1 P N N N N N N 1 3 1 3 13 KamLANDCHOOZKK Δ j = Δm j L E SNO all N dtrmnd

Pˆ N lmnts from oscllatons: -row Atmosphrc KK: Δ 1 0 Δ j = Δm j L E 4 N N N N N N ( Δ ) 1 3 1 3 cos 3 1. Dgnracy N N 1 3 N UNITARITY. 1, N N cannot b dsntangld

N lmnts from oscllatons only = OSCILLATIONS [ N N 1 N wthout untarty 0.75 0.89? 1/ = 0.45 0.66 0.57 0.86? ] < 0.34 0.57 0.86? 3σ wth untarty OSCILLATIONS U 0.79 0.86 0.50 0.61 < 0.0 = 0.5 0.53 0.47 0.73 0.56 0.79 0.10.51 0.4 0.69 0.610.83 Gonzálz-García, Malton 07

Dcays W - l α ( W l ) Γ α ( NN ) αα ( NN ) ( NN ) l α W - γ Br l l β ( α lβγ ) ( NN ) βα ( NN ) ( NN ) m O MW αα ββ ( NN) j, j Z nvsbl unvrsalty tsts NN NN ( NN ) ( NN ) αα ββ

If w paramtrz Can w masur th phass of N? E. Fdz-Martnz, M.B. Gavla, J. Lópz-Pavón and O.Yasuda hp-ph/0703098 ph/0703098 N Normalzaton factors = (1 η) U whr U U PMNS η η η * η = η η η * * η η η and η = η O( η ) Standard ampltud If Δ E ml Δ<< 1 SM Aαα 1 η SM Aαβ αβ << 1 SM * ( L = A O ) η η α β αβ αβ P αβ only dpnds on ηαβ

Whch s th bst channl???? Constrants on untarty: η 5.5 10 η η < 3.5 10 η < 5.0 10 η 8.0 10 η 5.1 10 η 5.0 10 3 5 3 < η < 3.5 10 η < 8.0 10 5 3 3 η < 5.1 10 3 3 3 < < < 90% C.L. η << η, η

Whch s th bst channl???? P P SM s c η c sn δ δ sn θ Δ η sn θ snδ Δ 4 η 3 13 31 3 13 1 1 Δ =Δ mle<< 1 j j sn θ Δ s supprssd by th small paramtrs Δ 1 and 13 31

Our analyss wll also apply to non-standard or xotc nutrno ntractons. (Grossman, Gonzalz-Garca t al., Hubr t al., Ktazawa t al., Davdson t al. Blnnow t al...) Thy add 4-frmon xotc oprators whch affct producton or dtcton or propagaton n mattr Ψ Ψ Ψ Ψ

NSI nutrno ntractons vs NonUntarty SM Dtcton @ NF: d l u α α d u Producton @ convntonal-bams supr-bams Producton @ NF: Mattr ffcts: α=β=

NSI nutrno ntractons vs NonUntarty Exotc Intractons Add nw ffctv 4-frmon oprators whch affcts to: Producton Dtcton d αd lα u u Mattr ffcts f f

NSI nutrno ntractons vs NonUntarty SM Exotc Intractons Exotc Intractons Non-Untarty

NSI nutrno ntractons vs NonUntarty Exotc Intractons Non-Untarty ε p αβ No rlatonshp btwn and ε d βα η αβ = η * βα If ε = ε p d* αβ βα P EXOTIC = P NON UNITARITY Our constrants apply to Exotc Intractons! If not Idm, barrng xtrm fn tund canclatons

Oscllaton Probablty n Mattr 1 L = Gnγ P Gn γ P nt 0 0 ff F L F n α L α α V CC V NC d dt = N E 0 0 ( N ) 1 * 1 * E ( NN ) ( NN ) ( VCC VNC )( NN ) VNC ( NN ) ( NN ) ( Vcc VNC ) ( NN ) VNC ( NN ) ( NN ) Effctv Evoluton 1. non-dagonal lmnts. NC ffcts do not dsappar

Mattr ffcts n Δ, Δ, AL Kpng only trms to scond ordr n 1 31 and and frst n η (sttng η = 0): αβ sn θ 13 sn θ 10 Δ AL 10 Δ 10 η < ~ 10 1 3.5 13 31 1 αβ

Aproxmat xprsson for P Δ31 Δ1 3 sn θ13 3 sn θ1 P c s Δ1 Δ31 c13 sn θ1 sn θ3 sn θ13 cosδ η c sn θ sn δ δ Δ η sn θ snδ Δ 4 η s c 3 13 31 3 13 1 1 ( ; ; η η ) P = P s c c s 3 3 3 3

Analyss of 3σ 3σ Th zro dstanc ffct domnats ovr CP volatng ntrfrnc trm - No nformaton on δ 3 η 10 - Snstvts to around

Som dtals about th xprmnt @ NF W study a NF bam rsultng from th dcay of 50 GV muons: 10 - Assumng usful dcays/yar - 5 yars runnng wth ach polarty - 5 Kt Opra-lk dtctor -L=130 km 0 5 - snstvts and backgrounds = ( snstvts and backgrounds) hp-ph/0305185

(NN ) and (N N) from dcays NN 1.00 ± 0.005 5 < 7. 10 < 1.6 10 < 7. 10 1.003 ± 0.005 < 1.3 10 5 < 1.6 10 < 1.3 10 1.003± 0.005 90% C.L. N = HV NN = H = 1 ε wth ε = ε N N = 1 V ε V = 1 ε ' ε ' j ε αβ 0. 03 αβ N N 1.00 ± 0.03 < 0.03 < 0.03 < 0.03 1.00 ± 0.03 < 0.03 < 0.03 < 0.03 1.00 ± 0.03 N s untary at % lvl

Low-nrgy thory..... cos.... 1 / = h c P Z g h c P l W g h c M K L L W L c α α α α β αβ α β αβ α γ θ γ Aftr EWSB:..... ) ( cos 1 / = h c N N P Z g N P l W g m L j j L W L c γ θ γ α α M αβ dagonalzd untary transformaton K αβ dagonalzd and normalzd untary transf. rscalng N non-untary

CHOOZ: systmatc rror hp-x\0301017 SNO: n n CC NC Som numbrs 1 N 0.9 N 0.1 Normalzaton flux ~.7% Enrgy ~ 1.1% w lt t vary % OPERA (NF): background: c-dcays / chargd currnt dcays ~ systmatc rror ~ 5% ffcncy ~ 0% hp-ph\0305185 KK: Statstcs hp-x\0411038 10 6 ZERO-DISTANCE EFFECT 40Kt Iron calormtr nar NUFACT 4 ( NN ) <.3 10 4Kt OPERA-lk nar NUFACT 3 ( NN ) <.9 10 NN <.6 10 3

(NN ) from dcays: G F W W dcays Z Invsbl Z Unvrsalty tsts ( NN ) αα l α ( NN ) ( NN ) ( N N ) j j j ( NN ) ( NN ) ( NN ) αα ( NN ) ββ Info on (NN ) aa G F s masurd n -dcay W N j 5 Fm Γ = N N 3 19π j N* j G j G F,xp GF = N N j j

Oscllaton Probablty n Vacuum d H dt = ^ = E δ = I fr j j j Effctv Evoluton E 0 0 E 1 1 0 0 d * * t = U 0 E α α dt 0( * U) 1 N 0 E 0 N α 0 0 E 0 0 E 3 3 = I P = L= 0= = αβ β α ( L) ) N N β N α N * α β E N N α m N L * α β N β Zro Dstanc Effct

Non-untarty from s-saw L = LSM NRdNR -Y L H NR -M NR NR Intgrat out N R L ff = L SM 1 d = 5 1 d = 6 L L MΛ MΛ... T YY/M (L LH H) _ YY/M (L H) d(h L) d=5 oprator t gvs mass to d=6 oprator t rnormalss kntc nrgy Broncano, Gavla, Jnkns 0

masss byond th SM Tr-lvl ralzatons N R N R Havy frmon snglt N R dvatons from untarty (Ssaw I) Havy scalar trplt Δ t R t R Y t Y t M t no dvatons from untarty Havy frmon trplt t R dvatons from untarty Abada, Antusch, Bggo, Bonnt, Hamby, M.B.G.

addng nar dtctors E, 0 = NN Tst of zro-dstanc ffct: αβ αβ P αβ δ MINOS: (NN ) =1±0.05 BUGEY: (NN ) =1±0.04 NOMAD: (NN ) <0.09 (NN ) <0.013 KARMEN: (NN ) <0.05 N = 0.75 0.89 0.00 0.69? 0.45 0.66 0. 0.81? < 0.7 0.57 0.85? also all N dtrmnd

Numbr of vnts n v Φ α d ( E) ~ de P αβ ( E, L) σ β ( E) ε ( E) de producd and dtctd n CC dφ dφ ~ de de SM σ β ~ σ β NN ( NN ) αα SM α α ββ n v SM ( NN ) P ( E, L) ( NN ) ( E) ε SM dφα ( E) ~ de αα αβ ββ σ β E de Excptons: masurd flux lptonc producton mchansm dtcton va NC Pˆ αβ ( E, L) = N * α P L N β

In th futur γ γ TESTS OF UNITARITY RARE LEPTON DECAYS NN < 7.1 10 5 NN < 1.6 10 (MEGA) (BABAR) γ NN < 1.0 10 (Bll)