Course Reader for CHEN 7100/7106. Transport Phenomena I

Σχετικά έγγραφα
Fundamental Equations of Fluid Mechanics

e t e r Cylindrical and Spherical Coordinate Representation of grad, div, curl and 2

Laplace s Equation in Spherical Polar Coördinates

Curvilinear Systems of Coordinates

Space Physics (I) [AP-3044] Lecture 1 by Ling-Hsiao Lyu Oct Lecture 1. Dipole Magnetic Field and Equations of Magnetic Field Lines

ANTENNAS and WAVE PROPAGATION. Solution Manual

The Laplacian in Spherical Polar Coordinates

Homework 8 Model Solution Section

Matrix Hartree-Fock Equations for a Closed Shell System

21. Stresses Around a Hole (I) 21. Stresses Around a Hole (I) I Main Topics

Analytical Expression for Hessian

r = x 2 + y 2 and h = z y = r sin sin ϕ

VEKTORANALYS. CURVILINEAR COORDINATES (kroklinjiga koordinatsytem) Kursvecka 4. Kapitel 10 Sidor

Oscillating dipole system Suppose we have two small spheres separated by a distance s. The charge on one sphere changes with time and is described by

Tutorial Note - Week 09 - Solution

Equations. BSU Math 275 sec 002,003 Fall 2018 (Ultman) Final Exam Notes 1. du dv. FTLI : f (B) f (A) = f dr. F dr = Green s Theorem : y da

Problems in curvilinear coordinates

dx x ψ, we should find a similar expression for rθφ L ψ. From L = R P and our knowledge of momentum operators, it follows that + e y z d

Chapter 7a. Elements of Elasticity, Thermal Stresses

(a,b) Let s review the general definitions of trig functions first. (See back cover of your book) sin θ = b/r cos θ = a/r tan θ = b/a, a 0

Second Order Partial Differential Equations

Section 8.3 Trigonometric Equations

Example 1: THE ELECTRIC DIPOLE

4.2 Differential Equations in Polar Coordinates

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Spherical Coordinates

derivation of the Laplacian from rectangular to spherical coordinates

Solutions Ph 236a Week 2

2 Composition. Invertible Mappings

Solutions to Exercise Sheet 5

( ) ( ) ( ) ( ) ( ) λ = 1 + t t. θ = t ε t. Continuum Mechanics. Chapter 1. Description of Motion dt t. Chapter 2. Deformation and Strain

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Example Sheet 3 Solutions

Areas and Lengths in Polar Coordinates

Srednicki Chapter 55

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

CHAPTER 70 DOUBLE AND TRIPLE INTEGRALS. 2 is integrated with respect to x between x = 2 and x = 4, with y regarded as a constant

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

Strain and stress tensors in spherical coordinates

MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutions to Problems on Matrix Algebra

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Approximation of distance between locations on earth given by latitude and longitude

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

The Simply Typed Lambda Calculus

EE512: Error Control Coding

Chapter 6 BLM Answers

The Friction Stir Welding Process

Orbital angular momentum and the spherical harmonics

Reminders: linear functions

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Areas and Lengths in Polar Coordinates

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

CRASH COURSE IN PRECALCULUS

1 String with massive end-points

C.S. 430 Assignment 6, Sample Solutions

1 3D Helmholtz Equation

General Relativity (225A) Fall 2013 Assignment 5 Solutions

3.7 Governing Equations and Boundary Conditions for P-Flow

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Differential equations

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

STEADY, INVISCID ( potential flow, irrotational) INCOMPRESSIBLE + V Φ + i x. Ψ y = Φ. and. Ψ x

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

F19MC2 Solutions 9 Complex Analysis

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

1. If log x 2 y 2 = a, then dy / dx = x 2 + y 2 1] xy 2] y / x. 3] x / y 4] none of these

Other Test Constructions: Likelihood Ratio & Bayes Tests

Inverse trigonometric functions & General Solution of Trigonometric Equations

Physics 401 Final Exam Cheat Sheet, 17 April t = 0 = 1 c 2 ε 0. = 4π 10 7 c = SI (mks) units. = SI (mks) units H + M

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

PARTIAL NOTES for 6.1 Trigonometric Identities

Lecture 26: Circular domains

Matrices and Determinants

Section 7.6 Double and Half Angle Formulas

If we restrict the domain of y = sin x to [ π 2, π 2

D Alembert s Solution to the Wave Equation

Geodesic Equations for the Wormhole Metric

4.6 Autoregressive Moving Average Model ARMA(1,1)

Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3

SPECIAL FUNCTIONS and POLYNOMIALS

On the Galois Group of Linear Difference-Differential Equations

Numerical Analysis FMN011

九十七學年第一學期 PHYS2310 電磁學期中考試題 ( 共兩頁 )

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11

6.3 Forecasting ARMA processes

Lifting Entry 2. Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion MARYLAND U N I V E R S I T Y O F

Written Examination. Antennas and Propagation (AA ) April 26, 2017.

wave energy Superposition of linear plane progressive waves Marine Hydrodynamics Lecture Oblique Plane Waves:

Finite Field Problems: Solutions

Orbital angular momentum and the spherical harmonics

Advanced Subsidiary Unit 1: Understanding and Written Response

Section 9.2 Polar Equations and Graphs

Slide 1 of 18 Tensors in Mathematica 9: Built-In Capabilities. George E. Hrabovsky MAST

Math221: HW# 1 solutions

Transcript:

Couse Reade fo CHEN 7100/7106 Tanspot Phenomena I Pof. W. R. Ashust Aubun Univesity Depatment of Chemical Engineeing c 2012 Name:

Contents Peface i 0.1 Nomenclatue........................................ i 0.2 About this Document................................... i Rules fo Witten Student Wok on Exams Academic Honesty and Syllabus Acknowledgment Foms ii iv 1 Vecto and Tenso Mathematics 1 1.1 The Dot Poduct...................................... 1 1.2 The Coss Poduct..................................... 1 1.3 The Double Dot Poduct................................. 2 1.4 The Opeato...................................... 2 1.4.1 Catesian Coodinates............................... 2 1.4.2 Cylindical Coodinates.............................. 2 1.4.3 Spheical Coodinates............................... 2 2 Cuvilinea Coodinates 3 2.1 Cylindical:, θ, z..................................... 3 2.1.1 Coodinate Convesion............................... 3 2.1.2 Diffeential Opeatos............................... 3 2.1.3 Unit Vecto Convesions.............................. 3 2.1.4 Spatial Deivatives of the Unit Cylindical Coodinate Vectos........ 3 2.2 Spheical:, θ, φ...................................... 4 2.2.1 Coodinate Convesion............................... 4 2.2.2 Diffeential Opeatos............................... 4 2.2.3 Unit Vecto Convesions.............................. 4 2.2.4 Spatial Deivatives of the Unit Spheical Coodinate Vectos......... 4 3 The Reynolds Tanspot Theoem 5 4 Equation of Continuity 6 4.1 Catesian Coodinates................................... 6 4.2 Cylindical Coodinates.................................. 6 4.3 Spheical Coodinates................................... 6 1

CONTENTS 2 5 Equation of Motion 7 5.1 Catesian Coodinates fo a Newtonian Fluid with constant and µ......... 7 5.2 Cylindical Coodinates fo a Newtonian Fluid with constant and µ........ 7 5.3 Spheical Coodinates fo a Newtonian Fluid with constant and µ......... 8 5.4 Catesian Coodinates in tems of τ........................... 8 5.5 Cylindical Coodinates in tems of τ.......................... 9 5.6 Spheical Coodinates in tems of τ........................... 9 5.7 The Dissipation Function (Φ v fo Newtonian Fluids.................. 10 6 Newton s Law of Viscosity 11 6.1 Catesian Coodinates................................... 11 6.2 Cylindical Coodinates.................................. 11 6.3 Spheical Coodinates................................... 12 7 Fouie s Law of Heat Conduction 13 7.1 Catesian Coodinates................................... 13 7.2 Cylindical Coodinates.................................. 13 7.3 Spheical Coodinates................................... 13 8 Fick s Law of Binay Diffusion 14 8.1 Catesian Coodinates................................... 14 8.2 Cylindical Coodinates.................................. 14 8.3 Spheical Coodinates................................... 14 9 Equation of Enegy 15 9.1 Catesian Coodinates................................... 15 9.2 Cylindical Coodinates.................................. 15 9.3 Spheical Coodinates................................... 15 10 Equation of Continuity fo Component α in tems of j α 17 10.1 Catesian Coodinates................................... 17 10.2 Cylindical Coodinates.................................. 17 10.3 Spheical Coodinates................................... 17 11 Mathematics 18 11.1 Abbeviated List of Odinay Diffeential Equations and Thei Solutions....... 18 11.2 Leibniz Integal Rule.................................... 18 11.3 Hypebolic Functions.................................... 18 11.4 Taxonomy of Vecto Fields................................ 19

Peface 0.1 Nomenclatue This couse eade follows the notation convention of Bid, Stewat and Lightfoot. Specifically, the following notation is maintained: 0.2 About this Document s = scala (nomal text v = vecto (bold τ = tenso (bold, Geek This couse eade is designed to be the only efeence document fo CHEN 7100/7106. Duing Exams, this is the only mateial you ae allowed to have in you possession. It is to be tuned in along with you exam and will be etuned to you with you gaded exam. Document vesion 1.1.5 updated August 21, 2017. i

Rules fo Witten Student Wok on Exams The following ules ae in effect fo handwitten wok on exams in CHEN 7100/7106. Failue to adhee to these ules may esult in total loss of cedit on an offending poblem, even if that poblem is coectly solved! 1. All wok is to be done on pape supplied by the instucto. 2. Wite on one side only. Any makings on the back of pages will be ignoed. 3. Wite neatly and lage enough to be easily ead. 4. Obseve easonable magins. Do not wite within one inch of any edge of the pape. The next page shows an empty box fo you to use as a guide duing exams. When supeimposed on you exam wok, all you witing should fit within this box. 5. Leave oom at the top fo a staple. No witing should be coveed up by the staple. Whateve is coveed will be ignoed. 6. Put you name on each page. Numbe pages n/n, whee N is the total numbe of pages and n is the cuent page. (Same as HW fomat 7. Wok only one poblem pe page. Even if the solution is one line! 8. Clealy mak you answes. Many poblems in CHEN 7100 will have multiple components to answes. Box each component of you answe, and make sue the boxed answes ae linked with the poblem numbe. 9. Befoe handing in you wok, aange the pages in ode, face up. 10. Staple all wok togethe, with exam pape on top, in the uppe left cone. ii

RULES FOR WRITTEN STUDENT WORK ON EXAMS iii

Academic Honesty and Syllabus Acknowledgment Foms Syllabus Acknowledgment Fom Syllabus Acknowledgment Fom: By affixing my signatue below, I cetify that I have eceived, ead and undestood the couse syllabus fo CHEN 7100/7106 pepaed by D. Radich fo the Fall semeste 2017. Signatue: Date: Pint Name: iv

ACADEMIC HONESTY AND SYLLABUS ACKNOWLEDGMENT FORMS v CHEN 7100/7106 Academic Honesty Statement - Exam I Academic Honesty Statement: By affixing my signatue below, I acknowledge I am awae of the Aubun Univesity policy concening academic honesty, plagiaism, and cheating. This policy is defined in the cuent Tige Cub Student Handbook, Code of Laws, Title XII, Student Academic Honesty Code, Chaptes 1200-1203. I futhe attest that the wok I submit with exams and quizzes is solely my own and was developed duing the exam o quiz. I have used no notes, mateials, o othe aids except those pemitted by the instucto. Signatue: Date: Pint Name: Instucto Veification: Signatue: Date:

ACADEMIC HONESTY AND SYLLABUS ACKNOWLEDGMENT FORMS vi CHEN 7100/7106 Academic Honesty Statement - Exam II Academic Honesty Statement: By affixing my signatue below, I acknowledge I am awae of the Aubun Univesity policy concening academic honesty, plagiaism, and cheating. This policy is defined in the cuent Tige Cub Student Handbook, Code of Laws, Title XII, Student Academic Honesty Code, Chaptes 1200-1203. I futhe attest that the wok I submit with exams and quizzes is solely my own and was developed duing the exam o quiz. I have used no notes, mateials, o othe aids except those pemitted by the instucto. Signatue: Date: Pint Name: Instucto Veification: Signatue: Date:

ACADEMIC HONESTY AND SYLLABUS ACKNOWLEDGMENT FORMS vii CHEN 7100/7106 Academic Honesty Statement - Final Exam Academic Honesty Statement: By affixing my signatue below, I acknowledge I am awae of the Aubun Univesity policy concening academic honesty, plagiaism, and cheating. This policy is defined in the cuent Tige Cub Student Handbook, Code of Laws, Title XII, Student Academic Honesty Code, Chaptes 1200-1203. I futhe attest that the wok I submit with exams and quizzes is solely my own and was developed duing the exam o quiz. I have used no notes, mateials, o othe aids except those pemitted by the instucto. Signatue: Date: Pint Name: Instucto Veification: Signatue: Date:

Chapte 1 Vecto and Tenso Mathematics 1.1 The Dot Poduct Fo two vectos, ( a b = δ i a i i j δ j b j = i (δ i δ j a i b j = j k a k b k (1.1 Fo two tensos, σ τ = ( δ i δ j σ ij δ k δ l τ kl = i j i k l = i (δ i δ j δ k δ l σ ij τ kl δ i δ jk δ l σ ij τ kl = j i k l j ( δ i δ l m l σ im τ ml (1.2 Fo a vecto and a tenso, τ v = δ i δ j τ ij δ k v k = i j i k δ i δ jk τ ij v k = j i k δ i ( l τ il v l (1.3 1.2 The Coss Poduct Fo two vectos, v w = i δ i v i j δ j w j = i δ i δ j v i w j = j i ɛ ijk δ k v i w j (1.4 j k Fo a vecto and a tenso, τ v = δ i δ j τ ij i j k δ k v k = i δ i ɛ jkl δ l τ ij v k j k l = i δ i δ l j l ɛ jkl τ ij v k (1.5 k 1

CHAPTER 1. VECTOR AND TENSOR MATHEMATICS 2 1.3 The Double Dot Poduct Fo two tensos, σ : τ = i ( δ i δ j σ ij : δ k δ l τ kl = (δ i δ j : δ k δ l σ ij τ kl j k l i j = δ il δ jk σ ij τ kl = i j m k l (σ mn τ nm (1.6 n 1.4 The Opeato = i δ i (1.7 x i 1.4.1 Catesian Coodinates = δ x x δ y y δ z z 1.4.2 Cylindical Coodinates 1.4.3 Spheical Coodinates = δ δ 1 θ θ δ z z = δ δ 1 θ θ δ 1 φ sin θ φ (1.8 (1.9 (1.10

Chapte 2 Cuvilinea Coodinates Tanslation between Catesian (x,y,z and cuvilinea coodinates. 2.1 Cylindical:, θ, z 2.1.1 Coodinate Convesion x = cos θ (2.1 y = sin θ (2.2 = x 2 y 2 (2.3 θ = actan(y/x (2.4 z = z (2.5 2.1.2 Diffeential Opeatos x = (cos θ sin θ θ = (sin θ y cos θ θ = z z (2.6 (2.7 (2.8 2.1.3 Unit Vecto Convesions δ = (cos θδ x (sin θδ y (2.9 δ θ = (sin θδ x (cos θδ y (2.10 δ x = (cos θδ (sin θδ θ (2.11 δ y = (sin θδ (cos θδ θ (2.12 δ z = δ z (2.13 2.1.4 Spatial Deivatives of the Unit Cylindical Coodinate Vectos δ = 0 δ θ = 0 δ z = 0 (2.14 3

CHAPTER 2. CURVILINEAR COORDINATES 4 θ δ = δ θ z δ = 0 θ δ θ = δ z δ θ = 0 θ δ z = 0 (2.15 z δ z = 0 (2.16 2.2 Spheical:, θ, φ 2.2.1 Coodinate Convesion x = sin θ cos φ (2.17 y = sin θ sin φ (2.18 z = cos θ (2.19 = x 2 y 2 z 2 (2.20 ( x θ = actan y 2 (2.21 z φ = actan(y/x (2.22 2.2.2 Diffeential Opeatos x = (sin θ cos φ cos θ cos φ θ sin φ sin θ φ = (sin θ sin φ ( cos θ sin φ cos φ y θ sin θ φ = cos θ ( sin θ z θ (2.23 (2.24 (2.25 2.2.3 Unit Vecto Convesions δ = (sin θ cos φδ x (sin θ sin φδ y cos θδ z (2.26 δ θ = (cos θ cos φδ x (cos θ sin φδ y sin θδ z (2.27 δ φ = (sin φδ x (cos φδ y (2.28 δ x = (sin θ cos φδ (cos θ cos φδ θ sin φδ φ (2.29 δ y = (sin θ sin φδ (cos θ sin φδ θ cos φδ φ (2.30 δ z = cos θδ sin θδ θ (2.31 2.2.4 Spatial Deivatives of the Unit Spheical Coodinate Vectos φ δ = δ φ sin θ δ = 0 θ δ = δ θ δ θ = 0 θ δ θ = δ φ δ θ = δ φ cos θ δ φ = 0 (2.32 θ δ φ = 0 (2.33 φ δ φ = δ sin θ δ θ cos θ (2.34

Chapte 3 The Reynolds Tanspot Theoem Basic foms: D α dv = Dt V D α dv = Dt V D α dv = Dt V V V V [ α t (αv dv [ Dα α( v dv Dt dv [αv n ds [ α t Note that α can be a scala o vecto function. S 5

Chapte 4 Equation of Continuity Basic foms If is constant: [ t v = 0 [ v = 0 4.1 Catesian Coodinates 4.2 Cylindical Coodinates t x (v x y (v y z (v z = 0 (4.1 t 1 v = v x x v y y v z z = 0 (4.2 (v 1 v = 1 4.3 Spheical Coodinates t 1 2 (2 v 1 sin θ θ (v θ z (v z = 0 (4.3 (v 1 v θ θ v z z = 0 (4.4 θ (v θ sin θ 1 sin θ φ (v φ = 0 (4.5 v = 1 2 (2 v 1 sin θ θ (v θ sin θ 1 v φ sin θ φ = 0 (4.6 6

Chapte 5 Equation of Motion Basic foms [ Dv Dt = p µ 2 v g [ Dv = p [ τ g Dt 5.1 Catesian Coodinates fo a Newtonian Fluid with constant and µ ( vx t v v x x x v v x y y v z ( vy t v v y x x v v y y y v z v x z v y z = p [ 2 x µ v x x 2 2 v x y 2 2 v x z 2 = p [ 2 y µ v y x 2 2 v y y 2 2 v y z 2 g x (5.1 g y (5.2 ( vz t v v z x x v v z y y v z v z z = p z [ 2 v z µ x 2 2 v z y 2 2 v z z 2 g z (5.3 5.2 Cylindical Coodinates fo a Newtonian Fluid with constant and µ ( v t v v v θ v θ v v z ( vθ t v v θ v θ v θ θ v v θ z z v2 θ = p [ ( 1 µ (v z v v θ = 1 p θ [ ( 1 µ (v θ 1 2 2 v θ 2 1 2 2 v θ θ 2 2 v z 2 2 v θ z 2 2 v θ 2 g (5.4 θ 2 v 2 g θ (5.5 θ 7

CHAPTER 5. EQUATION OF MOTION 8 ( vz t v v z v θ v z θ v z v z = p [ 1 z z µ ( v z 1 2 v z 2 θ 2 2 v z z 2 g z (5.6 5.3 Spheical Coodinates fo a Newtonian Fluid with constant and µ ( v t v v v θ v θ µ v φ v φ v2 θ v2 φ sin θ [ 1 2 2 2 (2 v 1 2 sin θ = p θ ( sin θ v θ 1 2 sin 2 θ 2 v φ 2 g (5.7 ( v θ t v v θ v θ µ [ 1 2 v θ θ v φ v θ sin θ φ v v θ vφ 2 cot θ = 1 p θ ( 2 v θ 1 ( 1 2 θ sin θ θ (v θ sin θ 1 2 v θ 2 sin 2 θ φ 2 2 v 2 θ v φ φ 2 cot θ 2 sin θ g θ (5.8 ( vφ t v µ v φ v θ v φ θ [ ( 1 2 2 v φ v φ v φ sin θ 1 2 θ φ v φv v θ v φ cot θ ( 1 sin θ θ (v φ sin θ 5.4 Catesian Coodinates in tems of τ ( vx t v v x x x v v x y y v z ( vy t v v y x x v v y y y v z ( vz t v v z x x v v z y y v z v x z = p x = 1 p sin θ φ 1 2 v φ 2 sin 2 θ φ 2 2 2 cot θ 2 sin θ [ x τ xx y τ yx z τ zx 2 sin θ v θ φ v φ g φ (5.9 g x (5.10 v y = p [ z y x τ xy y τ yy z τ zy g y (5.11 v z = p [ z z x τ xz y τ yz z τ zz g z (5.12

CHAPTER 5. EQUATION OF MOTION 9 5.5 Cylindical Coodinates in tems of τ ( v t v v v θ v θ v v z z v2 θ = p [ 1 (τ 1 θ τ θ z τ z τ θθ g (5.13 ( vθ t v v θ v θ v θ θ v v θ z z v v θ = 1 p θ [ 1 2 (2 τ θ 1 θ τ θθ z τ zθ τ θ τ θ g θ (5.14 ( vz t v v z v θ v z θ v z v z z = p [ 1 z (τ z 1 θ τ θz z τ zz g z (5.15 5.6 Spheical Coodinates in tems of τ ( v t v v v θ v θ v φ v sin θ φ v2 θ v2 φ [ 1 2 (2 τ 1 sin θ = p θ (τ θ sin θ 1 sin θ φ τ φ τ θθ τ φφ g (5.16 ( v θ t v v θ v θ v θ θ v φ v θ sin θ φ v v θ vφ 2 cot θ [ 1 3 (3 τ θ 1 sin θ = 1 p θ θ (τ θθ sin θ 1 φ τ φθ sin θ (τ θ τ θ τ φφ cot θ g θ (5.17 ( vφ t v v φ v θ v φ θ v φ v φ sin θ φ v φv v θ v φ cot θ = 1 p sin θ φ [ 1 3 (3 τ φ 1 sin θ θ (τ θφ sin θ 1 φ τ φφ sin θ (τ φ τ φ τ φθ cot θ g φ (5.18

CHAPTER 5. EQUATION OF MOTION 10 5.7 The Dissipation Function (Φ v fo Newtonian Fluids Catesian Coodinates [ (vx 2 Φ v = 2 x Cylindical Coodinates [ (v 2 Φ v = 2 Spheical Coodinates [ (v 2 ( 1 Φ v = 2 [ sin θ ( 2 vy y ( 1 v θ θ v 2 ( 2 [ vz vy z x v x y ( 2 vz z [ vx z v z x [ [ v z v z v θ θ v 2 ( 1 v φ sin θ ( vφ 1 θ sin θ 2 3 2 [ vz y v y z 2 2 3 ( vθ 1 2 2 [ 1 3 2 [ vx x v y y v z z v 2 θ (v 1 φ v v θ cot θ 2 2 [ 1 v sin θ φ v θ φ sin θ [ 1 ( 2 1 2 v sin θ [ ( vφ [ 1 v z 2 (5.19 2 θ v θ z v θ θ v 2 z (5.20 z 2 θ (v θ sin θ 1 sin θ ( vθ 1 v 2 θ v 2 φ (5.21 φ

Chapte 6 Newton s Law of Viscosity Basic Fom: [ ( τ = µ v ( v ( 3 2 µ κ ( v δ 6.1 Catesian Coodinates 6.2 Cylindical Coodinates [ τ xx = µ 2 v ( x 2µ x 3 κ ( v (6.1 [ τ yy = µ 2 v ( y 2µ y 3 κ ( v (6.2 [ τ zz = µ 2 v ( z 2µ z 3 κ ( v (6.3 [ vy τ xy = τ yx = µ x v x (6.4 y [ vy τ yz = τ zy = µ z v z (6.5 y [ vz τ zx = τ xz = µ x v x (6.6 z [ τ = µ 2 v ( 2µ 3 κ ( v (6.7 [ ( 1 v θ τ θθ = µ 2 θ v ( 2µ 3 κ ( v (6.8 [ τ zz = µ 2 v ( z 2µ z 3 κ ( v (6.9 [ τ θ = τ θ = µ ( vθ 1 v (6.10 θ [ 1 v z τ θz = τ zθ = µ θ v θ (6.11 z [ vz τ z = τ z = µ v (6.12 z 11

CHAPTER 6. NEWTON S LAW OF VISCOSITY 12 6.3 Spheical Coodinates [ τ = µ 2 v ( 2µ 3 κ ( v (6.13 [ ( 1 v θ τ θθ = µ 2 θ v ( 2µ 3 κ ( v (6.14 [ ( 1 v φ τ φφ = µ 2 sin θ φ v ( v θ cot θ 2µ 3 κ ( v (6.15 [ τ θ = τ θ = µ ( vθ 1 v (6.16 θ [ sin θ ( vφ τ θφ = τ φθ = µ 1 v θ (6.17 θ sin θ sin θ φ [ 1 v τ φ = τ φ = µ sin θ φ ( vφ (6.18

Chapte 7 Fouie s Law of Heat Conduction Basic Fom: [q = k T 7.1 Catesian Coodinates q x = k T x q y = k T y q z = k T z (7.1 (7.2 (7.3 7.2 Cylindical Coodinates q = k T q θ = k T θ q z = k T z (7.4 (7.5 (7.6 7.3 Spheical Coodinates q = k T q θ = k T θ 1 T q φ = k sin θ φ (7.7 (7.8 (7.9 13

Chapte 8 Fick s Law of Binay Diffusion Basic Fom: [j A = D AB ω A 8.1 Catesian Coodinates j Ax = D AB ω A x j Ay = D AB ω A y j Az = D AB ω A z (8.1 (8.2 (8.3 8.2 Cylindical Coodinates ω A j A = D AB j Aθ = D ω A AB θ j Az = D AB ω A z (8.4 (8.5 (8.6 8.3 Spheical Coodinates ω A j A = D AB j Aθ = D ω A AB θ j Aφ = sin θ D AB ω A φ (8.7 (8.8 (8.9 14

Chapte 9 Equation of Enegy Basic Foms [ Ĉp DT Dt = q [ Ĉp 9.1 Catesian Coodinates Ĉp ( ln Dp ln T p DT Dt = k 2 T µφ v Dt τ : v ( [ T t v T x x v T y y v T qx z = z x q y y q ( z ln Dp (τ : v (9.1 z ln T p Dt Ĉp ( [ T t v T x x v T y y v T 2 T z = k z x 2 2 T y 2 2 T z 2 µφ v (9.2 9.2 Cylindical Coodinates ( T Ĉp t v T v [ θ T θ v T 1 z = z (q 1 q θ θ q z z ( ln ln T Ĉp ( T t v T v [ θ T θ v T 1 z = k z 9.3 Spheical Coodinates ( T Ĉp t v T v θ = T θ [ 1 2 (2 q 1 sin θ v φ T sin θ φ θ (q θ sin θ 1 sin θ p Dp (τ : v (9.3 Dt ( T 1 2 T 2 θ 2 2 T z 2 µφ v (9.4 q φ φ ( ln Dp (τ : v (9.5 ln T p Dt 15

CHAPTER 9. EQUATION OF ENERGY 16 Ĉp ( T t v T v θ T = k θ v φ T sin θ φ [ ( 1 2 2 T 1 2 sin θ ( sin θ T θ θ 1 2 T 2 sin 2 θ φ 2 µφ v (9.6

Chapte 10 Equation of Continuity fo Component α in tems of j α Basic Foms [ Dω α Dt 10.1 Catesian Coodinates ( ωα t ω α v x x v ω α y y v z = ( j α α [ ω α jαx = z x j αy y j αz α (10.1 z 10.2 Cylindical Coodinates ( ωα t ω α v v θ ω α θ v z ω α z [ 1 = (j α 1 j αθ θ j αz α (10.2 z 10.3 Spheical Coodinates ( ωα ω α v t v θ ω α θ = v φ sin θ ω α φ [ 1 2 (2 j α 1 sin θ θ (j αθ sin θ 1 sin θ j αφ α (10.3 φ 17

Chapte 11 Mathematics 11.1 Abbeviated List of Odinay Diffeential Equations and Thei Solutions 1 x 2 1 x 2 ( d dx d dx Equation dy dx = f(x g(y dy f(xy = g(x dx e ( Solution gdy = ( fdx fdx C 1 (11.1 e ( fdx gdx C 1 (11.2 d 2 y dx 2 a2 y = 0 C 1 cos(ax C 2 sin(ax (11.3 d 2 y dx 2 a2 y = 0 C 1 e ax C 2 e ax (11.4 x 2 dy a 2 y = 0 dx ( x 2 dy a 2 y = 0 dx 11.2 Leibniz Integal Rule C 1 x cos(ax C 2 sin(ax x (11.5 C 1 x eax C 2 x e ax (11.6 Let then di(t dt = d dt β(t α(t I(t = f(x, tdx = β(t α(t β(t α(t f(x, tdx (11.7 f(x, tdx f(β, tdβ f(α, tdα t dt dt (11.8 11.3 Hypebolic Functions cosh(x = ex e x 2 sinh(x = ex e x 2 (11.9 (11.10 18

CHAPTER 11. MATHEMATICS 19 11.4 Taxonomy of Vecto Fields Assume a vecto a. tanh(x = sinh(x cosh(x = ex e x e x e x (11.11 Name o Designation Defining o Chaacteistic Popety Solenoidal a = 0 Iotational a = 0 Laplacian a = a = 0 Beltami a ( a = 0 Consevative a = φ, whee φ is a scala field.