University of Illinois at Urbana-Champaign ECE 310: Digital Signal Processing

Σχετικά έγγραφα
ECE 308 SIGNALS AND SYSTEMS FALL 2017 Answers to selected problems on prior years examinations

Section 8.3 Trigonometric Equations

Example Sheet 3 Solutions

2 Composition. Invertible Mappings

Ψηφιακή Επεξεργασία Φωνής

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Second Order RLC Filters

Math221: HW# 1 solutions

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Inverse trigonometric functions & General Solution of Trigonometric Equations

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

EE512: Error Control Coding

Matrices and Determinants

Finite Field Problems: Solutions

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

Areas and Lengths in Polar Coordinates

ΗΜΥ 220: ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Ακαδημαϊκό έτος Εαρινό Εξάμηνο Κατ οίκον εργασία αρ. 2

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Areas and Lengths in Polar Coordinates

Solutions to Exercise Sheet 5

D Alembert s Solution to the Wave Equation

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Section 7.6 Double and Half Angle Formulas

Πανεπιστήµιο Κύπρου Πολυτεχνική Σχολή

Homework 3 Solutions

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Assignment 1 Solutions Complex Sinusoids

6.3 Forecasting ARMA processes

Spectrum Representation (5A) Young Won Lim 11/3/16

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Section 9.2 Polar Equations and Graphs

Probability and Random Processes (Part II)

Uniform Convergence of Fourier Series Michael Taylor

4.6 Autoregressive Moving Average Model ARMA(1,1)

Approximation of distance between locations on earth given by latitude and longitude

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

derivation of the Laplacian from rectangular to spherical coordinates

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

PARTIAL NOTES for 6.1 Trigonometric Identities

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

The challenges of non-stable predicates

1 String with massive end-points

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is

If we restrict the domain of y = sin x to [ π 2, π 2

Trigonometric Formula Sheet

10.7 Performance of Second-Order System (Unit Step Response)

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

ST5224: Advanced Statistical Theory II

w o = R 1 p. (1) R = p =. = 1

Srednicki Chapter 55

ΔΙΑΚΡΙΤΟΣ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER - Discrete Fourier Transform - DFT -

y[n] ay[n 1] = x[n] + βx[n 1] (6)

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

Concrete Mathematics Exercises from 30 September 2016

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Lecture 26: Circular domains

Tables in Signals and Systems

ME 374, System Dynamics Analysis and Design Homework 9: Solution (June 9, 2008) by Jason Frye

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Second Order Partial Differential Equations

{ } x[n]e jωn (1.3) x[n] x [ n ]... x[n] e jk 2π N n

Linear Time Invariant Systems. Ay 1 (t)+by 2 (t) s=a+jb complex exponentials

( ) 2 and compare to M.

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

Σήματα και Συστήματα. Διάλεξη 7: Μετασχηματισμός Fourier. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής

Sampling Basics (1B) Young Won Lim 9/21/13

Strain gauge and rosettes

Forced Pendulum Numerical approach

Problem Set 3: Solutions

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

Reminders: linear functions

2. Μηχανικό Μαύρο Κουτί: κύλινδρος με μια μπάλα μέσα σε αυτόν.

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Numerical Analysis FMN011

Section 8.2 Graphs of Polar Equations

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

Statistical Inference I Locally most powerful tests

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11

Fundamentals of Signals, Systems and Filtering

Bessel functions. ν + 1 ; 1 = 0 for k = 0, 1, 2,..., n 1. Γ( n + k + 1) = ( 1) n J n (z). Γ(n + k + 1) k!

Exercises to Statistics of Material Fatigue No. 5

Finite difference method for 2-D heat equation

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

6.003: Signals and Systems. Modulation

Homework 8 Model Solution Section


Ψηφιακή Επεξεργασία Σημάτων

Trigonometry 1.TRIGONOMETRIC RATIOS

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

*H31123A0228* 1. (a) Find the value of at the point where x = 2 on the curve with equation. y = x 2 (5x 1). (6)

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Transcript:

University of Illinois at Urbana-Champaign ECE : Digital Signal Processing Chandra Radhakrishnan PROBLEM SET : SOLUTIONS Peter Kairouz Problem Solution:. ( 5 ) + (5 6 ) + ( ) cos(5 ) + 5cos( 6 ) + cos( ) + j(sin(5 ) + 5sin( 6 ) + sin( )) ( ) ( ) ( ) ( ( ) ( ) ( )) + 5 + + j + 5 + ( + ) + j.98e j.88. ( +j) 5 +j ( ) 5 e ( jπ )5 e jπ e j5π e jπ e j6π e jπ j. 5 6 j + e jπ j 5/ + j5 / j 5 + 5 ( j j + j ) ( ) + j ) ( 5 5 ( ) + j 5j + 5 + j + j 5.5e j.76. ( ) n +j j + +j j ( ) n ( + j)( + j) + ( + j)( j) ( ) n e jπn ( j)( + j) Problem Sketch the following functions (u[n] is the step function in the discrete time domain):. The function n(u[n] u[n 5]) is shown in Fig.. The function u[n + ]u[n ] is sketched in Fig.. the function u[n ] + nu[n ] is shown in Fig. Problem Assume z re jθ

- Figure : Problem. Figure for Problem (). Figure : Problem. Figure for Problem (). 5 Figure : Problem. Figure for Problem (c).. Consider z +. This can be written as, r e jθ + r e jθ r e jθ e π+kπ θ π + kπ

The values of θ can be found as follows, After this the values of θ repeat. Hence we have,. The polynomial G(z) can be written as, G(z) k, θ π k, θ π k, θ 5π π z ej π, e jπ, e j 5π ( z + ) ( z ) ( ej π z ) ej 5π. G(z) can be written as, ( z + ) ( z z + ) Problem.... 5. (t + 5t + 6)δ(t)dt 6 (t + 5t + 6)δ(t)dt (t + 5t + 6)δ(t)dt 6 (t + 5t + 6)δ(t )dt (t + 5t + 6)δ(t )dt.59 (t + 5t + 6)δ(t /)dt ( 9 + 5 ) + 6 6. [e t u(t)] δ(t ), where is convolution e t u(t) δ(t ) e(t /) u(t /) Problem 5 The facts used here are: δ(t)e jωt

and, e jωt πδ(ω). δ(t ) Using Shifting property of Fourier Transform, (t t ) F (Ω)e jωt δ(t ) e jω/. e αt u(t). u(t) u(t T ) F ( e αu(t)) F (u(t) u(t T )) e αt u(t)e jωt dt e αt e jωt dt e t( α+jω) dt α + jω α + jω T [e t(α+jω)] (u(t) u(t T ))e jωt dt e jωt dt jω ( e jωt ) T e jωt sinc ( ΩT ). sin(ω t + φ) [ e j(ω t+φ) e j(ωt+φ) ] F (sin(ω t + φ)) F j [ e jφ F [e jωt ] e jφ F [e jωt ] ] j jπ [ e jφ δ(ω Ω ) e jφ δ(ω + Ω ) ] jπ [ e jφ δ(ω + Ω ) e jφ δ(ω Ω ) ] Problem 6 Determine whether or not each of the following signals is periodic. If a signal is periodic, determine its fundamental (smallest) period.

. x[n] cos ( ) πn Hence periodic with period N 6 π (n + N) π n + πk π N πk N k 6. x[n] cos ( πn + ) π(n + N) Hence periodic with period N. x[n] sin ( ) πn Hence periodic with period N. x[n] e ( jπn ) + πn + + πk πn N π(n + N) πn N πk k πn + πk πk k Hence periodic with period N 8 5. x[n] sin ( ) n Non-periodic since it has no integer solution 6. x[n] sin (πn) π(n + N) πn N 8 (n + N) πn + πk πk k n + πk π(n + N) πn + πk πn πk Hence periodic with period N 5

7. x[n] e jπn π(n + N) πn + πk πn πk Hence periodic with period N Problem 7 We know that, Consider now, F [ x(t) e t (u(t) u(t )) ], Now consider the given signals,. x(t)e j5t F [ e at] a + jω F [ e t (u(t) u(t )) ] F [ e t u(t) e t u(t ) ] F [ e t u(t) ] F [e t u(t) e (t ) u(t )e 8] + jω e jω + jω e 8, using time shift X(Ω) e 8 jω + jω F [ x(t)e j5t] X(Ω 5) (Frequency Shift) e 8 j(ω 5) + j(ω 5). x(t) + x(t + ) F [x(t) + x(t + )] X(Ω) + X(Ω)e jω ( + e jω )X(Ω) e jω cosωx(ω). x(t)cos(t) [ ( e jt + e jt) ] F [x(t)cos(t)] F x(t). (X(ω ) + X(Ω + )) [ e 8 j(ω ) + ] e 8 j(ω+) + j(ω ) + j(ω + ). tx(t) F [tx(t)] j dx(ω) dω Ωje 8 jω ( + jω) Problem 8 6

G( ) - - - G( ) - Figure : Problem 8. Magnitude and Phase of G(ω). The magnitude and phase is shown in Fig.. Assuming that X(ω) is only defined between ω X(ω) G(ω) ) x(t) sinc ( t However, since we have a rectangular function multiplied with the triangle function, the function value outside of the region [-, ] can be arbitrary. But they will still be suppressed to zero. If this argument is shown, credit will still be given.. Determine g(t) dt. Problem 9 The difference equation for the system is g(t) dt π π π ( G(ω) dω ( + ω) dω + y[n] y[n ] y[n ] ) ( ω) dω 7

Problem. x[n] u[n + ] u[n 5]. X d (ω) 5 n e jωn ejω ( e j8ω) e jω ejω e jω5 e jω ( e jω e jω e jω) e jω/ (e jω/ e jω/ ) jω/ sin (ω) e sin (ω/). x[n] δ[n + ] + δ[n ] X d (ω) e jω + e jω cos(ω). x[n] ( ) n u[n ] X d (ω).e jω e jω. x[n] ( n) n u[n] This does not converge. Hence Fourier Transform is undefined. 5. The magnitude and phase for Part () are shown in Fig 5 and 6 respectively. The magnitude and phase for Part () are shown in Fig 7 and 8 respectively. 8 7 6 5 Figure 5: Problem. Magnitude for Part (). Note: the zero crossing points are ( π, π/, π/, π/, π/, π/, π/, π) Problem. X d (ω) + e jω + e jω e 5jω Using linearity and time-shift properties of the DTFT: X d (ω) + e jω + e jω e jω δ[n] + δ[n ] + δ[n ] δ[n 5] 8

Figure 6: Problem. Phase for Part (). Note: the phase changes at ( π, π/, π/, π/, π/, π/, π/, π).5.5.5.5 Figure 7: Problem. Magnitude for Part (). Note: the zero crossing points are ( 5π/6, π/, π/6, π/6, π/, 5π/6).5.5.5.5 Figure 8: Problem. Phase for Part (). Note:The phase is shown in the interval (, π). The zero crossing points are (π/6, π/, 5π/6). The phase is a odd function.. X d (ω) {, ω ω, ω ω π x[n] π pi π X d ωdω π 9 ω π e jωn dω + π e jωn dω π ω

For n, For n x[] π (π ω ) + π (π ω ) π ω π x[n] jnπ (e jωn e jπn + jnπ (ejπn e jωn ) sin(nω ) nπ Thus, where, x[n] δ[n] ω π sinc(nω ) sinc(n) { sin(n) n, n, n. π x[n] X d ωe jωn dω π π 9π/ e jωn dω + π π 8π/ 9π/ ( 9π/ (e jωn + e jωn )dω + π 8π/ π πn πn 9π 8π/ cos(ωn)dω + π 9π/ e jωn dω + π [( ( ) ( )) 9π 8πn sin n sin [ ( ) ( )] 9π 8π sin n + sin n 9π/ 9π/ 8π/ e jωn dω + (e jωn + e jωn ) cos(ωn)dω, n ( sin (πn) sin π 9π/ ) e jωn dω ( ))] 9πn, n for n Hence, x[n] π X d (ω)dω π π π ( ) 6π x[n] δ[n] 9 ( ) 9π sinc n 8 ( ) 8π sinc n. One way is to follow the procedure in part of () and solve the inverse DTFT integral. But note that convolving two rectangular functions results in a triangle. Hence the given function X d (ω) can be seen as the convolution of Y (ω) with itself, where in the interval [ π, π], X (ω) is given by {, π/ ω π/ Y (ω), otherwise We need to solve for x[n] F [X d (ω)]. We know the following, If y [n] y [n] y[n], F (y [n]y [n]) π [Y (ω) Y (ω)] F (y [n]) [Y (ω) Y (ω)] π

Multiply by and take inverse Fourier transform, y [n] F [ π [Y (ω) Y (ω)] ] or the required time domain signal, x[n] is where, and, x[n] y [n] y[n].5sinc(.5n) x[n].5sinc (.5n) Problem. Evaluate X d (ω) ω X d ω ω n n n x[n] Re{x[n]} + j n Im{x[n]}. Evaluate X d (ω) ωπ X d ω ωπ x[n]( ) n n ( j) ( + j) + ( j) ( + j) + ( j) ( j) j π. Evaluate X d (ω)dω π π π ( π ) π X d (ω)e jω dω πx[] π jπ π π. Determine and sketch the signal whose DTFT is X d ( ω) X d ( ω) is the DTFT of x [n]. The signal x [n] is shown Fig.9, Problem. x[n] δ[n ], n X[k] δ[n ]e j π kn n e j πk X[k] {, j,, j}

e xn [ ] - - - - xn m [ ] - - - - - - - Figure 9: Problem. Magnitude and Phase of X(k) in Part (). x[n] { n n 5 X[k] X[k] X[k] { { n e jπkn/, k else e jπk e jπk/,, k else e jπk/(sin(πk/)) e jπk/6 sin(πk/6),. x[n] cos ( ) πn, n 7 for k, 7 for k, 7 cos( nπ ) ejnπ/ + e jnπ/ X[k] 7 (e jnπ/ + e jnπ/ )e jπn/8 n X[k] X[k] [ ] e jπ(k ) e jπ(k ) + e jπ(k )/ e jπ(k )/

Hence, X[] [8 + ] X[7] [ + 8] X[k] (δ(k ) + δ(k 7)). x[n] { n even, n 6 n odd, n 6 X[k] 5. Sketch the magnitude and phase for parts () and (). X[k] N m N m { N+ e j π N km πk j (e 7 ) m, k e j π 7 k N+ e j 6πk 7, else e j π 7 k e j π 7 The magnitude and phase of () and () are shown in Figs. and respectively. X( k) k Phase Xk [ ] k Figure : Problem. Magnitude and Phase of X(k) in Part ()

X( k) k. Phase Xk [ ] ( rad/s).. k -. -. -. Figure : Problem. Magnitude and Phase of X(k) in Part ()