Strong monogamy of multi-party quantum entanglement

Σχετικά έγγραφα
A study on generalized absolute summability factors for a triangular matrix

SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6

Ψηφιακή Επεξεργασία Εικόνας

Outline. Detection Theory. Background. Background (Cont.)

Outline. M/M/1 Queue (infinite buffer) M/M/1/N (finite buffer) Networks of M/M/1 Queues M/G/1 Priority Queue

Last Lecture. Biostatistics Statistical Inference Lecture 19 Likelihood Ratio Test. Example of Hypothesis Testing.

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

EE512: Error Control Coding

1. Matrix Algebra and Linear Economic Models

On Inclusion Relation of Absolute Summability

Other Test Constructions: Likelihood Ratio & Bayes Tests

p n r

Solve the difference equation

Degenerate Perturbation Theory

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

CE 530 Molecular Simulation

Supplementary Materials: Trading Computation for Communication: Distributed Stochastic Dual Coordinate Ascent

J. of Math. (PRC) Shannon-McMillan, , McMillan [2] Breiman [3] , Algoet Cover [10] AEP. P (X n m = x n m) = p m,n (x n m) > 0, x i X, 0 m i n. (1.

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

arxiv: v1 [quant-ph] 30 Apr 2009

Fractional Colorings and Zykov Products of graphs

P P Ó P. r r t r r r s 1. r r ó t t ó rr r rr r rí st s t s. Pr s t P r s rr. r t r s s s é 3 ñ

Jeux d inondation dans les graphes

g-selberg integrals MV Conjecture An A 2 Selberg integral Summary Long Live the King Ole Warnaar Department of Mathematics Long Live the King

Matrices and Determinants

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Inverse trigonometric functions & General Solution of Trigonometric Equations

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutions to Problems on Matrix Algebra

Apr Vol.26 No.2. Pure and Applied Mathematics O157.5 A (2010) (d(u)d(v)) α, 1, (1969-),,.

Μαθηματικά Πληροφορικής Συνδυαστικά Θεωρήματα σε Πεπερασμένα Σύνολα

Bounding Nonsplitting Enumeration Degrees

On the Galois Group of Linear Difference-Differential Equations

Lecture 17: Minimum Variance Unbiased (MVUB) Estimators

Abstract Storage Devices

1. For each of the following power series, find the interval of convergence and the radius of convergence:

Στα επόμενα θεωρούμε ότι όλα συμβαίνουν σε ένα χώρο πιθανότητας ( Ω,,P) Modes of convergence: Οι τρόποι σύγκλισης μιας ακολουθίας τ.μ.

Presentation of complex number in Cartesian and polar coordinate system

Finite Field Problems: Solutions

Reminders: linear functions


Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

12. Radon-Nikodym Theorem

w o = R 1 p. (1) R = p =. = 1

Μια εισαγωγή στα Μαθηματικά για Οικονομολόγους

Homework 3 Solutions

Access Control Encryption Enforcing Information Flow with Cryptography

Lecture 2. Soundness and completeness of propositional logic

Every set of first-order formulas is equivalent to an independent set

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

ST5224: Advanced Statistical Theory II

4.6 Autoregressive Moving Average Model ARMA(1,1)

Commutative Monoids in Intuitionistic Fuzzy Sets

n r f ( n-r ) () x g () r () x (1.1) = Σ g() x = Σ n f < -n+ r> g () r -n + r dx r dx n + ( -n,m) dx -n n+1 1 -n -1 + ( -n,n+1)

Homework 4.1 Solutions Math 5110/6830

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

Empirical best prediction under area-level Poisson mixed models

Heisenberg Uniqueness pairs

Introduction of Numerical Analysis #03 TAGAMI, Daisuke (IMI, Kyushu University)

( )( ) ( )( ) 2. Chapter 3 Exercise Solutions EX3.1. Transistor biased in the saturation region

HIGH-ACCURACY AB-INITIO ROVIBRATIONAL SPECTROSCOPY

Certain Sequences Involving Product of k-bessel Function

Iterated trilinear fourier integrals with arbitrary symbols

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

Quadratic Expressions

, ορίζουμε deta = ad bc. Πρόταση Ένας πίνακας Α είναι αντιστρέψιμος τότε και μόνο αν deta 0.

The Simply Typed Lambda Calculus

Congruence Classes of Invertible Matrices of Order 3 over F 2

The Jordan Form of Complex Tridiagonal Matrices

A Lambda Model Characterizing Computational Behaviours of Terms

EN40: Dynamics and Vibrations

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint

On Certain Subclass of λ-bazilevič Functions of Type α + iµ

Example Sheet 3 Solutions

Nonlinear Motion. x M x. x x. cos. 2sin. tan. x x. Sextupoles cause nonlinear dynamics, which can be chaotic and unstable. CHESS & LEPP CHESS & LEPP

IIT JEE (2013) (Trigonomtery 1) Solutions

Χαρακτηριστικά της ανάλυσης διασποράς. ΑΝΑΛΥΣΗ ΙΑΣΠΟΡΑΣ (One-way analysis of variance)

!#$%!& '($) *#+,),# - '($) # -.!, '$%!%#$($) # - '& %#$/0#!#%! % '$%!%#$/0#!#%! % '#%3$-0 4 '$%3#-!#, '5&)!,#$-, '65!.#%

Sample BKC-10 Mn. Sample BKC-23 Mn. BKC-10 grt Path A Path B Path C. garnet resorption. garnet resorption. BKC-23 grt Path A Path B Path C

MATHEMATICS. 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81

Sequent Calculi for the Modal µ-calculus over S5. Luca Alberucci, University of Berne. Logic Colloquium Berne, July 4th 2008

Tridiagonal matrices. Gérard MEURANT. October, 2008

Sheet H d-2 3D Pythagoras - Answers

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ

Homomorphism in Intuitionistic Fuzzy Automata

European Human Rights Law

70. Let Y be a metrizable topological space and let A Ď Y. Show that Cl Y A scl Y A.

Homework 8 Model Solution Section

Discrete Fourier Transform { } ( ) sin( ) Discrete Sine Transformation. n, n= 0,1,2,, when the function is odd, f (x) = f ( x) L L L N N.

Diane Hu LDA for Audio Music April 12, 2010

derivation of the Laplacian from rectangular to spherical coordinates

Second Order RLC Filters

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

arxiv: v1 [quant-ph] 31 Oct 2015

Ειδικό πρόγραμμα ελέγχου για τον ιό του Δυτικού Νείλου και την ελονοσία, ενίσχυση της επιτήρησης στην ελληνική επικράτεια (MIS )

Na/K (mole) A/CNK

EE 570: Location and Navigation

Transcript:

Strog oogay of ulti-party quatu etagleet Jeog Sa Ki Departet of pplied Matheatics

Cotets Quatu Etagleet Bipartite quatu etagleet Etagleet Measures Multi-party quatu systes Moogay of ulti-party quatu etagleet Matheatical characterizatio: Moogay iequality Strog oogay of ulti-party etagleet Strog oogay iequality Saturatio of strog oogay iequality Suary

Etagleet No-local Nature of Quatu State Useful pplicatios Quatu Teleportatio Dese Codig Quatu Cryptography (QKD) Etc. Quatificatio ad Qualificatio 3

Etagleet of Foratio (EoF) For bipartite pure state ψ C C d d' Mixed state ( ψ ) = ( ) ( = ( )) E S S f B ( ) = tr ψ ψ, B S ( ) = trlog B ( C d C d' ) E ( ) i pe ( ψ ) = f i f i i i: over all possible pure state decopositios = p ψ ψ i i i i 4

Tagle (Liear etropy) Pure state ψ C d C d' ( ) = ( tr ) = S l ( ) τ ψ Mixed state B ( C d C d' ) ( ) ( ) i p τ = i τ ψi i i: over all possible pure state decopositios = p ψ ψ i i i i 5

Tagle alytic forula for two-qubit syste For a two-qubit state λi : the sigularvalues of C( ) = ax{0, λ λ λ λ }: cocurrece B ( C C ) * ( ) ( ) = σ σ σ σ y y y y 3 4 ( ) C ( ) τ = i decreasig order [ W. K. Wootters, PRL 80 45 (998)] 6

Multi-party quatu etagleet 7

Moogay of etagleet (MoE) Restricted shareability of ulti-party etagleet Three-qubit systes: ψ = ( 0 0 + ) ϕ C B B C B Maxially etagled C No etagleet! Uique characteristic of quatu correlatio with o classical couterpart: classical correlatios ca be shared freely aog differet parties pplicatios i quatu iforatio processig Boud o the aout of iforatio to eveasdropper: security proof of quatu cryptography Characterizatio of ulti-party etagleet 8

Characterizatio of MoE Upper boud o a su of bipartite etagleet easures showig that bipartite sharig of etagleet is bouded. Three-qubit systes: Coffa-Kudu-Wootters iequality Tagle B C ( ψ BC ) B + C τ τ ( ) [V. Coffa, J. Kudu ad W. K. Wootters PR 6. 05306 (000)] ( ) = 4det = C ( ) τ ψ ψ ( ) p ( ) B C τ ( C ) τ = i iτ ψi, = pi ψi ψ i i i 9

Characterizatio of MoE Upper boud o a su of bipartite etagleet easures showig that bipartite sharig of etagleet is bouded. Three-qubit systes: Coffa-Kudu-Wootters iequality 3-Tagle B C ( ψ BC ) B + C τ τ ( ) Geuie three-party etagleet [V. Coffa, J. Kudu ad W. K. Wootters PR 6. 05306 (000)] ( ) = ( ) ( ) C C ( C ) τ ψ τ ψ τ τ B C τ ( C ) 0

Characterizatio of MoE Upper boud o a su of bipartite etagleet easures showig that bipartite sharig of etagleet is bouded. Three-qubit systes: Coffa-Kudu-Wootters iequality B C ( ψ BC ) B + C τ τ ( ) [V. Coffa, J. Kudu ad W. K. Wootters PR 6. 05306 (000)] Geeralizatio of CKW iequality ito ulti-qubit systes ( ) ( ) + + ( ) τ ψ τ τ [T. J. Osbore ad F. Verstraete PRL 96. 0503 (006)] B C τ ( C )

W-class state -qubit geeralized W-class state W = a 0...0 + a 0...0 + + a 00...... with a = i= i Geeralizatio of W state Three-qubit W state: Saturatio of CKW iequality W = + + 3 ( 00 00 00 ) τ = τ + τ + + τ 3 [JSK ad B. C. Saders, J. Phys. 4. 49530 (008)]

Geeral Moogay Iequalities Squashed etagleet { } For, ext : = E tre E = E : = if I ; E : = S + S S S if: over all ext { } ( ) ( ) ( ) ( ) ( ) ( ) sq E BE E E E [M. Christadl ad. Witer, J. Math. Phys. 45, p. 89-840 (004)] I( ; ) I( ; E)

Geeral Moogay Iequalities Squashed etagleet, ext : = { E tre E = } For E I E S S S S { } ( ) : = if ( ; ) : = ( ) + ( ) ( ) ( ) sq E BE E E Etagleet ootoe E ( ) E ( ) Lower boud of, upper boud of f D For ψ ψ, E = E ext B E = ψ ψ E sq ( ψ ) = S( ), = tr ( ψ ψ ) B

Geeral Moogay Iequalities Squashed etagleet, ext : = { E tre E = } For E I E S S S S { } ( ) : = if ( ; ) : = ( ) + ( ) ( ) ( ) sq E BE E E Moogay iequality ( ) ( ) ( ), CE I ; BC E = I ; B E + I ; C BE ( chai rule) ( ( )) ( ) + ( ) S S S sq BC sq sq C ( by iiizig E for I ( ; BC E) ) [M. Koashi ad. Witer, Phys. Rev. 69, 0309 (004)]

Geeral Moogay Iequalities Squashed etagleet, ext : = { E tre E = } For E I E S S S S ( ) : = if ( ; ) : = ( ) + ( ) ( ) ( ) Moogay iequality, CE I ; BC E = I ; B E + I ; C BE ( chai rule) ( ) = 0 iff : separable E sq { } sq E BE E E ( ) ( ) ( ) ( ( )) ( ) + ( ) S S S sq BC sq sq C [M. Koashi ad. Witer, Phys. Rev. 69, 0309 (004)] [F.G.S.L. Bradao, M. Christadl ad Jo Yard, Cou. Math. Phys. 306, 805 (0)]

Polygay Iequality Dual oogay iequality For three-qubit pure state C ( ) ( ) + ( ) τ ψ τ τ ( BC ) a a ψ [G. Gour, D. Meyer ad B. C. Saders PR 7 0439 (005)] τ a ( ) : tagle of assistace ( ) ax p ( ) τ = τ ψ a i i i ax: over all possible pure state decopositios = p ψ ψ i i i i

Geeral Polygay Iequality Etagleet of ssistace ( d d' ) For ay E ( ) ax pe ( ψ ) = a i f i i ax: over all possible pure state decopositios = p ψ ψ i i i i ( d ) d d Ea( ) ( ) Ea( ) + Ea( ) + + Ea( ) 3 [JSK, PR 85, 0630 (0)]

Moo-poly iequality For ay ψ d d d ( ψ ) = ( ) = ( ψ ) ( ) ( ) E S E sq a ( ) + ( ) + + ( ) ( ) E E E S sq sq sq 3 ( ) ( ) ( ) E + E ++ E a a a 3

Strog oogay of etagleet 0

Strog oogay of etagleet CKW-type oogay iequality ( ) E 3 3 + 3 3 + + E( ) E( ) E( ) 3 3

Strog oogay of etagleet Stroger (or fier) oogay iequality? ( ) E 3 3 + 3 3 + + E( ) E( ) E( ) 3 3 + + + 3 3 + E( ) E( 3 ) 3

-tagle 3-Tagle For three-qubit pure state -tagle For -qubit pure state ψ C ( ) = ( ) ( ) C C ( C ) τ ψ τ ψ τ τ ψ,, = : idex vector spas over all (-)-ordered subsets of τ ( ψ ) = τ ( ψ ) τ ( ) = i, = ph h { } ph, ψ h h τ τ ψ / {,3,, } = p ψ ψ h h h h 3

-tagle 3-Tagle For three-qubit pure state -tagle For three-qubit = pure state ψ ( ) = ( ) ( ) C C ( C ) τ ψ τ ψ τ τ ψ ( ) ( ) / τ τ ψ τ ψ τ = i = ph τ { } ψh ph, ψ h h = (,, = ) : idex vector spas over all (-)-ordered subsets of τ ( ) = i ph τ ( ψh ) : two-tagle { p h, ψ h } h τ i, p = h τ ψh { } = p ph, ψ h h h C {,3,, } ψ ψ h h h 4

-tagle 4-tagle For four-qubit pure state ψ CD ( ) = ( ) ( C ) ( D ) CD CD ( CD ) τ ψ τ ψ τ τ τ tr = ψ ψ C D CD ( C ) ph ( h C ) { } 3/ 3/ 3/ ( ) ( C ) ( D ) τ τ τ C = ph ψh ψ C h h h τ = i τ ψ, ph, ψ h ( h ) = ( ) ( ) C C ( C ) τ ψ τ ψ τ τ 5

Strog oogay coecture 4-tagle ssuig o-egativity of 4-tagle ( CD) τ ψ τ B C 0 ( ψ ) τ ( C ) + τ ( BCD D) + τ ( C D ) 3/ 3/ 3/ ( ) + τ ( C ) + τ ( D ) + τ ( ) ( C ) ( D ) τ + τ + τ D [B. Regula, et. al., PRL 3 050 (04)] 6

Strog oogay coecture -tagle τ ( ψ ) = τ ( ψ ) τ = ssuig o-egativity of -tagle / ( ) ( ) τ ψ τ + ( ) = = 3 = τ τ / Strog oogay iequality of ulti-qubit etagleet [B. Regula, et. al., PRL 3 050 (04)] 7

Strog oogay coecture Provig strog oogay coecture? τ ( ψ ) = τ ( ψ ) τ = i, = ph { } h ph, ψ h h τ τ ψ Expoetially ay optiizatio processes w.r.t. / Nuerical test for 4-qubit systes 6 8 0 rado 4-qubit pure states [B. Regula, et. al., PRL 3 050 (04)] 8

Saturatio of ulti-qubit strog oogay iequality 9

Saturatio of CKW iequality -qubit geeralized W-class state W = a 0...0 + a 0...0 + + a 00...... with a = i= i Saturatio of CKW iequality ( W ) = ( ) ( ) ( ) + + + 3 τ τ τ τ [JSK ad B. C. Saders, J. Phys. 4. 49530 (008)] Good cadidate of possible couterexaple for strog oogay iequality 30

W-class state ad strog oogay iequality Strog oogay coecture W-class state τ ψ τ τ ( ) ( ) + = = 3 / ( W ) = ( ) ( ) ( ) + + = τ τ τ τ... Strog oogay coecture for W-class states = W = a 0...0 + a 0...0 + + a 00... = 3 τ / = 0 for W-class states 3

W-class state ad strog oogay iequality Strog oogay coecture Lea ( ) ( ) + = = 3 = 0 Strog oogay coecture for W-class states τ ψ τ τ τ W-class state for all the idex vectors =,, with 3 - - ( W ) = ( ) ( ) ( ) + + = τ τ τ τ ( ) / = for geeralized W-class states W = a 0...0 + a 0...0 + + a 00...... [JSK, PR 90, 06306 (04)] = 3 τ / = 0 for W-class states 3

W-class state ad strog oogay iequality Saturatio of strog oogay iequality For ay geeralized W-class state W = a 0...0 + a 0...0 + + a 00...... ( ) W ( ) τ = τ τ + = = 3 / Moreover, the saturatio strog oogay iequality is also true for ψ = a 00...0 + b 0...0 + b 0...0 + + b 00...... [JSK, PR 90, 06306 (04)] 33

Negativity ad SM iequality i higher-diesioal systes 34

Couterexaples i higher diesio Multi-qubit SM iequality ( ) ( ) τ ψ τ τ + = = 3 / -qubit systes ( BC ) ( ) ( C ) τ ψ τ + τ 3-qubit systes Couterexaples ψ = + + C 6 ( 0 0 0 0 0 0 ) 3 3 3 [Y. Ou, PR 75. 034305 (007)] ψ = ( 00 + 0 ) + ( 00 + 3 C ) 6 6 [JSK ad B. C. Saders, J. Phys. 4. 49530 (008)] 35

Couterexaples i higher diesio Multi-qubit SM iequality ( ) ( ) τ ψ τ τ + = = 3 / -qubit systes ( BC ) ( ) ( C ) τ ψ τ + τ 3-qubit systes Couterexaples ψ = + + C 6 ( 0 0 0 0 0 0 ) ( ) < ( ) + ( C ) τ ψ τ τ BC 3 3 3 [Y. Ou, PR 75. 034305 (007)] ψ = ( 00 + 0 ) + ( 00 + 3 C violatio of SM iequality ) i ters of ta gle 6 6 [JSK ad B. C. Saders, J. Phys. 4. 49530 (008)] 36

Square of covex-roof exteded egativity (SCREN) Negativity Bipartite pure state with Schidt decopositio N ( ψ ) ( ) := ψ ψ Γ = i i< λλ For bipartite pure state with Schidt-rak ψ : Trace or, = Γ : Partial traspositio i λ i ii Negativity: two-tagle: ψ = λ ef + λ ef 0 0 0 ( ψ ) = 4λλ 0 ( ) = ( tr ) = 4 0 ( N ) τ ψ λλ 37

Square of covex-roof exteded egativity (SCREN) Negativity vs. Tagle For bipartite pure state with Schidt-rak ψ λ ef λ ef ( ) = 0 0 0 + ( ψ ) = 4 0 N λλ=τ ( ψ ) For two-qubit state = p ψ ψ i i i i ( ) ( ) i p τ = i τ ψi i ( ) p N ψ SC ( B ) = i i i = N -SCREN 38

Square of covex-roof exteded egativity (SCREN) For -qudit pure state -SCREN ψ d d d N ( ) ( ) SC ψ = N ψ N SC SC = =,, : idex vector spas over all ( -)-subsets of {,,..., } ( ) Mixed state N SC i, = ph N SC h { } ψ ph, ψ h h = p ψ ψ h h h h / [JSK PR 9 04307 (05)] 39

-SCREN vs. -tagle For -qubit states ψ N ( ψ ) = τ ( ψ ) SC -qubit SM iequality ( ) ( ) τ ψ τ τ + = = 3 / ( ) ( ) N ψ N + N SC SC SC = = 3 / 40

-SCREN vs. -tagle Saturatio of SCREN SM iequality For ulti-qubit geeralized W-class state W = a 0...0 + a 0...0 + + a 00...... ( ) = ( ) N W N + N SC SC SC = = 3 / Moreover, the saturatio SCREN SM iequality is also true for ψ = a 00...0 + b 0...0 + b 0...0 + + b 00...... [JSK PR 9 04307 (05)] 4

-SCREN vs. -tagle Couterexaples of tagle SM iequality ψ = + + C 6 ( 0 0 0 0 0 0 ) 3 3 3 ψ = + + + C 6 6 ( 00 0 ) ( 00 ) 3 ( ψ ) ( ) + ( ) N N N SC BC SC B SC C Validity of SCREN SM iequality 4

Beyod ulti-qubit systes Multi-qudit geeralized W-class states d d W = a i + a i + + a i... i= ( i 0...0 i 0...0 i 00... ) d with a = s= i= si For d= [JSK ad B. C. Saders, J. Phys. 4. 49530 (008)] W = a 0...0 + a 0...0 + + a 00...... -qubit geeralized W-class state Saturatio of SM iequality ( ) = ( ) N W N + N SC SC SC = = 3 / [JSK PR 9 04307 (05)] 43

Beyod ulti-qubit systes d Partially coheret superpositio of with vacuu ( ) = pw W + p 0...0 0...0 ( p, λ ) d d......... W... ( ) d d...... + λ p( p) W 0...0 + 0...0 W for 0 p, λ d λ = : pw = + p0 ( coheret superpositio) ( ) d d λ = 0: = pw W + p 0 0 ( icoheret superpositio) 44

Beyod ulti-qubit systes d Partially coheret superpositio of with vacuu ( ) = pw W + p 0...0 0...0 ( p, λ ) d d......... I ters of decoherece W... ( ) d d...... + λ p( p) W 0...0 + 0...0 W for 0 p, λ d For ψ = pw + p0 ( p, λ ) ( ) = Λ ψ ψ where E λ I, 0 + + + 0 ψ ψ 0 ψ ψ ψ ψ = E E + E E + E E = E λ ( I 0 0 ) = ad E = λ 0 0 ( p, λ ): resultig state fro a coheret state ψ by the decoherece pr oe c ss Λ. 45

Beyod ulti-qubit systes d Partially coheret superpositio of with vacuu ( ) = pw W + p 0...0 0...0 ( p, λ ) d d......... Saturatio of SCREN iequalities W... ( ) d d...... + λ p( p) W 0...0 + 0...0 W for 0 p, λ N ( p, λ ) ( ) N ( ) = SC SC i i= N ( p, λ ) ( ) p N ( ψ ) { } = i = 0 h = p SC h SC h p h, ψ h ψ ψ h h h h [JSK i preparatio] 46

Suary Moogay of ulti-party quatu etagleet Matheatical characterizatio: CKW-type iequality Squashed etagleet Geeral polygay iequality Strog oogay coecture i ulti-qudit systes No-egativity of -tagle : strog oogay iequality SCREN SM iequality for qudits Saturatio of SCREN SM oogay iequality Future works alytic proof of strog oogay iequality? SM iequality of etagleet ad other correlatios 47