Latent variable models Variational approximations.

Σχετικά έγγραφα
Latent variable models Variational approximations.

CS 1675 Introduction to Machine Learning Lecture 7. Density estimation. Milos Hauskrecht 5329 Sennott Square

Estimators when the Correlation Coefficient. is Negative

Exam Statistics 6 th September 2017 Solution

( )( ) ( ) ( )( ) ( )( ) β = Chapter 5 Exercise Problems EX α So 49 β 199 EX EX EX5.4 EX5.5. (a)

Other Test Constructions: Likelihood Ratio & Bayes Tests

Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Άνοιξη HΥ463 - Συστήματα Ανάκτησης Πληροφοριών Information Retrieval (IR) Systems

Αλγόριθμοι και πολυπλοκότητα Maximum Flow

Derivation of the Filter Coefficients for the Ramp Invariant Method as Applied to Base Excitation of a Single-degree-of-Freedom System Revision B

The Equivalence Theorem in Optimal Design

MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutions to Problems on Matrix Algebra

LAD Estimation for Time Series Models With Finite and Infinite Variance

FREE VIBRATION OF A SINGLE-DEGREE-OF-FREEDOM SYSTEM Revision B

Jordan Form of a Square Matrix

Examples of Cost and Production Functions

Matrices and Determinants

Solution Series 9. i=1 x i and i=1 x i.

Homework 4.1 Solutions Math 5110/6830

Partial Differential Equations in Biology The boundary element method. March 26, 2013

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

1. For each of the following power series, find the interval of convergence and the radius of convergence:

The Simply Typed Lambda Calculus

Inverse trigonometric functions & General Solution of Trigonometric Equations

..,..,.. ! " # $ % #! & %

ECE145a / 218a Tuned Amplifier Design -basic gain relationships

ΗΥ537: Έλεγχος Πόρων και Επίδοση σε Ευρυζωνικά Δίκτυα,

Multi-dimensional Central Limit Theorem

Nonlinear Motion. x M x. x x. cos. 2sin. tan. x x. Sextupoles cause nonlinear dynamics, which can be chaotic and unstable. CHESS & LEPP CHESS & LEPP

Outline. Detection Theory. Background. Background (Cont.)

n r f ( n-r ) () x g () r () x (1.1) = Σ g() x = Σ n f < -n+ r> g () r -n + r dx r dx n + ( -n,m) dx -n n+1 1 -n -1 + ( -n,n+1)


ΔΗΜΟΤΙΚΕΣ ΕΚΛΟΓΕΣ 18/5/2014 ΑΚΥΡΑ

Lecture 17: Minimum Variance Unbiased (MVUB) Estimators

Cytotoxicity of ionic liquids and precursor compounds towards human cell line HeLa

Tridiagonal matrices. Gérard MEURANT. October, 2008

C.S. 430 Assignment 6, Sample Solutions

ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA)

α β

Solve the difference equation

Reminders: linear functions

RG Tutorial xlc3.doc 1/10. To apply the R-G method, the differential equation must be represented in the form:

Statistical Inference I Locally most powerful tests

Multi-dimensional Central Limit Theorem

( ) ( t) ( 0) ( ) dw w. = = β. Then the solution of (1.1) is easily found to. wt = t+ t. We generalize this to the following nonlinear differential

EE512: Error Control Coding

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

MATHEMATICS. 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81

Sample BKC-10 Mn. Sample BKC-23 Mn. BKC-10 grt Path A Path B Path C. garnet resorption. garnet resorption. BKC-23 grt Path A Path B Path C

Homework for 1/27 Due 2/5

Areas and Lengths in Polar Coordinates

Quadratic Expressions

Outline. M/M/1 Queue (infinite buffer) M/M/1/N (finite buffer) Networks of M/M/1 Queues M/G/1 Priority Queue

PARTIAL NOTES for 6.1 Trigonometric Identities

Differential equations

Numerical Analysis FMN011

IIT JEE (2013) (Trigonomtery 1) Solutions

Notes on the Open Economy

αριθμός δοχείου #1# control (-)

ECON 381 SC ASSIGNMENT 2

SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6

Areas and Lengths in Polar Coordinates

Finite Field Problems: Solutions

Modbus basic setup notes for IO-Link AL1xxx Master Block

Estimation of grain boundary segregation enthalpy and its role in stable nanocrystalline alloy design

Last Lecture. Biostatistics Statistical Inference Lecture 19 Likelihood Ratio Test. Example of Hypothesis Testing.

HY380 Αλγόριθμοι και πολυπλοκότητα Hard Problems

INTEGRATION OF THE NORMAL DISTRIBUTION CURVE

EE101: Resonance in RLC circuits

Kaon Weak Matrix Elements in 2+1 Flavor DWF QCD

Μηχανική Μάθηση Hypothesis Testing

HOMEWORK#1. t E(x) = 1 λ = (b) Find the median lifetime of a randomly selected light bulb. Answer:

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

τεύχος #20, Οκτώβριος#Νοέμβριος#Δεκέμβριος 2009, περιοδικό των Μεγάλων Οδηγών

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

6. MAXIMUM LIKELIHOOD ESTIMATION

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.

From the finite to the transfinite: Λµ-terms and streams

SUPPLEMENTAL INFORMATION. Fully Automated Total Metals and Chromium Speciation Single Platform Introduction System for ICP-MS

Parametrized Surfaces

Ed Stanek. c08ed01v6.doc A version of the grant proposal to be submitted for review in 2008.

P AND P. P : actual probability. P : risk neutral probability. Realtionship: mutual absolute continuity P P. For example:

The challenges of non-stable predicates

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-570: Στατιστική Επεξεργασία Σήµατος. ιδάσκων : Α. Μουχτάρης. εύτερη Σειρά Ασκήσεων.

What happens when two or more waves overlap in a certain region of space at the same time?

HW 3 Solutions 1. a) I use the auto.arima R function to search over models using AIC and decide on an ARMA(3,1)

Note: Please use the actual date you accessed this material in your citation.

Second Order RLC Filters

ST5224: Advanced Statistical Theory II

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

( ) 2 and compare to M.

Example Sheet 3 Solutions

An Inventory of Continuous Distributions

Ι Ε Θ Ν Ε Σ Ρ Ο Τ Α Ρ Υ Π Ε Ρ Ι Φ Ε Ρ Ε Ι Α

Sequent Calculi for the Modal µ-calculus over S5. Luca Alberucci, University of Berne. Logic Colloquium Berne, July 4th 2008

Το άτομο του Υδρογόνου

Chap 8 Mapping by Elementary Functions

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΕΣΠΕΡΙΝΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 6 ΙΟΥΝΙΟΥ 2001 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΞΙ (6)

Transcript:

CS 3750 Mache Learg Lectre 9 Latet varable moel Varatoal appromato. Mlo arecht mlo@c.ptt.e 539 Seott Sqare CS 750 Mache Learg Cooperatve vector qatzer Latet varable : meoalty bary var Oberve varable : real vale var meoalty CS 750 Mache Learg

Cooperatve vector qatzer Moel: Latet var : ~ Beroll trbto parameter: Obervable varable : ~ ormal trbto parameter: W Σ W Σ We ame Σ I W CS 750 Mache Learg : bary var : real vale var Jot for oe tace of a : / / ep W W Cooperatve vector qatzer Or obectve: Lear the parameter of the moel W Oe ca e the ata lelhoo or lelhoo a optmze Learg f a are obervable Log lelhoo: : bary var : real vale var Solto: ce a eay W W CS 750 Mache Learg

CS 750 Mache Learg Cooperatve vector qatzer : real vale var : bary var Log lelhoo of ata: Learg f oly are obervable Solto: oe ot let beeft from the ecompoto M: e to or ch cae Or obectve: Lear the parameter of the moel Oe ca e the ata lelhoo or lelhoo a optmze W CS 750 Mache Learg M Let be a et of all varable th he or mg vale ervato Average both e th for Log-lelhoo of ata Log-lelhoo of ata

M algorthm Algorthm geeral formlato Italze parameter Repeat Set. pectato tep. Mamzato tep arg ma tl o or mall mprovemet roblem: poteror probablte efe over CS 750 Mache Learg oteror M algorthm for or moel ach ata pot reqre to calclate probablte If larger the th a bottleec!!! CS 750 Mache Learg

CS 750 Mache Learg Varatoal appromato Let be a et of all varable th he or mg vale ervato Average both e th Log-lelhoo of ata Log-lelhoo of ata CS 750 Mache Learg Varatoal appromato Let be a et of all varable th he or mg vale Appromato: mamze arameter: [ ].

Varatoal M Let be a et of all varable th he or mg vale tep: Optmze M tep Optmze th repect to hle eepg fe th repect to hle eepg ote: f the poteror the the varatoal M rece to the taar M CS 750 Mache Learg Varatoal M So hat the eal? Why hol e e the varatoal M? ope: If e chooe ell the optmzato of both a ll become eay A ell behave choce for Ue mea fel appromato CS 750 Mache Learg

CS 750 Mache Learg Mea el Appromato Ampto: the mea fel appromato. Varable the trbto are epeet varable. completely factorze: or or CV moel e varable are bary orce CS 750 Mache Learg Mea el Appromato ctoal for the mea fel: W W 3

CS 750 Mache Learg Mea el Appromato ctoal. art : δ CS 750 Mache Learg Mea el Appromato ctoal. art : ctoal. art 3:

CS 750 Mache Learg Mea el Appromato ctoal : arameter: W Mea fel parameter: [ ] δ CS 750 Mache Learg Mea el Appromato ctoal for all ata pot: arameter: W Mea fel parameter: [ ] δ

CS 750 Mache Learg Varatoal M: tep Optmzato of the fctoal th repect to : 0 et g e g efe a fe pot eqato Iterate a et fe pot eqato for all ee CS 750 Mache Learg Varatoal M: M tep Optmzato of the fctoal th repect to. Start th : 0 et or ata pot or ata pot Cloe form olto

CS 750 Mache Learg Varatoal M: M tep Optmzato of the fctoal th repect to. arameter : 0 v v v v v v W K W or each varable v: he eqato efe a et of lear eqato that ca be olve CS 750 Mache Learg Mea el appromato Let be a et of all varable th he or mg vale tep: Optmze Appromato: mamze arameter: [ ]. [ ].