On the existence of ground state of massless ϕ 4 model with cutoffs for all values of coupling constants

Σχετικά έγγραφα
Takeaki Yamazaki (Toyo Univ.) 山崎丈明 ( 東洋大学 ) Oct. 24, RIMS

. (1) 2c Bahri- Bahri-Coron u = u 4/(N 2) u

Diderot (Paris VII) les caractères des groupes de Lie résolubles

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5

arxiv:math/ v1 [math.rt] 30 Oct 2006

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Βιογραφικό Σημείωμα. Γεωργίου Κ. Ελευθεράκη ΓΕΝΙΚΑ ΣΤΟΙΧΕΙΑ EKΠΑΙΔΕΥΣΗ

Fundamentals of Signals, Systems and Filtering

IUTeich. [Pano] (2) IUTeich

AN ESTIMATE OF QUASI-ARITHMETIC MEAN FOR CONVEX FUNCTIONS. Received March 25, 2011

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

u = g(u) in R N, u > 0 in R N, u H 1 (R N ).. (1), u 2 dx G(u) dx : H 1 (R N ) R

Partial Differential Equations in Biology The boundary element method. March 26, 2013

PROPERTIES OF CERTAIN INTEGRAL OPERATORS. a n z n (1.1)

Notations. Primary definition. Specific values. General characteristics. Series representations. Traditional name. Traditional notation

Lecture 16 - Weyl s Character Formula I: The Weyl Function and the Kostant Partition Function

Space-Time Symmetries

ΠΡΟΓΡΑΜΜΑ / PROGRAM ΠΑΡΑΣΚΕΥΗ, 29 ΜΑΪΟΥ. Αίθουσα Α31 πρώτου ορόφου

Wishart α-determinant, α-hafnian

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

The Spiral of Theodorus, Numerical Analysis, and Special Functions

EE512: Error Control Coding

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

General 2 2 PT -Symmetric Matrices and Jordan Blocks 1

1. 3. ([12], Matsumura[13], Kikuchi[10] ) [12], [13], [10] ( [12], [13], [10]

5. Choice under Uncertainty

arxiv: v1 [math.ra] 19 Dec 2017

Riemannian metrics on positive definite matrices related to means (joint work with Dénes Petz)

Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Solutions to Exercise Sheet 5

Lecture Notes Introduction to Cluster Algebra

Areas and Lengths in Polar Coordinates

Min-max Theory, Willmore conjecture, and Energy of links

Single-value extension property for anti-diagonal operator matrices and their square

Congruence Classes of Invertible Matrices of Order 3 over F 2

THE BIGRADED RUMIN COMPLEX. 1. Introduction

derivation of the Laplacian from rectangular to spherical coordinates

J. of Math. (PRC) 6 n (nt ) + n V = 0, (1.1) n t + div. div(n T ) = n τ (T L(x) T ), (1.2) n)xx (nt ) x + nv x = J 0, (1.4) n. 6 n

Lecture 10 - Representation Theory III: Theory of Weights

The Pohozaev identity for the fractional Laplacian

Areas and Lengths in Polar Coordinates

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

On a four-dimensional hyperbolic manifold with finite volume

D Alembert s Solution to the Wave Equation

Parametrized Surfaces

Maxima SCORM. Algebraic Manipulations and Visualizing Graphs in SCORM contents by Maxima and Mashup Approach. Jia Yunpeng, 1 Takayuki Nagai, 2, 1

The Jordan Form of Complex Tridiagonal Matrices

Cyclic or elementary abelian Covers of K 4

L p approach to free boundary problems of the Navier-Stokes equation

Reminders: linear functions

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

Affine Weyl Groups. Gabriele Nebe. Summerschool GRK 1632, September Lehrstuhl D für Mathematik

Distances in Sierpiński Triangle Graphs

Βιογραφικό Σημείωμα. Γεωργίου Κ. Ελευθεράκη ΓΕΝΙΚΑ ΣΤΟΙΧΕΙΑ EKΠΑΙΔΕΥΣΗ

Table 1. morphism U P 1 dominant (MMP) 2. dim = 3 (MMP) 3. (cf. [Ii77], [Miy01]) (Table 1) 3.

ΑΠΟΣΠΑΣΜΑ Π Ρ Α Κ Τ Ι Κ ΟΥ 3 ΤΟΥ ΣΥΜΒΟΥΛΙΟΥ ΣΧΟΛΗΣ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ

If we restrict the domain of y = sin x to [ π 2, π 2

Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3

Variational Wavefunction for the Helium Atom

Dr. D. Dinev, Department of Structural Mechanics, UACEG

Computer No.53 (1992) IBM 650. Bacon TSS JRR-2.[1] free inductin decay IBM 7044 FACOM

w o = R 1 p. (1) R = p =. = 1

11 Drinfeld. k( ) = A/( ) A K. [Hat1, Hat2] k M > 0. Γ 1 (M) = γ SL 2 (Z) f : H C. ( ) az + b = (cz + d) k f(z) ( z H, γ = cz + d Γ 1 (M))

Approximation of distance between locations on earth given by latitude and longitude

Lecture 13 - Root Space Decomposition II

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O

High-resolution seismic reflection profiling across the Senya fault at Hanaoka, northern Honshu, Japan: Data acquisition and processing

A Lambda Model Characterizing Computational Behaviours of Terms

Boundary value problems in complex analysis II

Hartree-Fock Theory. Solving electronic structure problem on computers

Stabilization of stock price prediction by cross entropy optimization

Τεχνική Έκθεση Συνοπτική παρουσίαση... 3

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

g-selberg integrals MV Conjecture An A 2 Selberg integral Summary Long Live the King Ole Warnaar Department of Mathematics Long Live the King

Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Τμήμα Μαθηματικών - Τομέας Γεωμετρίας. 12 ο Πανελλήνιο Συνέδριο Γεωμετρίας Θεσσαλονίκη, Μαΐου 2015

PHASE TRANSITIONS IN QED THROUGH THE SCHWINGER DYSON FORMALISM

Trigonometry Functions (5B) Young Won Lim 7/24/14

Global nonlinear stability of steady solutions of the 3-D incompressible Euler equations with helical symmetry and with no swirl

1 What is CFT? 1. 3 Strange duality conjecture (G) Geometric strange duality conjecture... 5

2.1

Second Order RLC Filters

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Statistical Inference I Locally most powerful tests

Wavelet based matrix compression for boundary integral equations on complex geometries

Supplementary Materials for Evolutionary Multiobjective Optimization Based Multimodal Optimization: Fitness Landscape Approximation and Peak Detection

Contents Introduction to Filter Concepts All-Pole Approximations

Laplace Expansion. Peter McCullagh. WHOA-PSI, St Louis August, Department of Statistics University of Chicago

: 1. 10:20 12:40. 12:50 13:50 14:00 14:50 15:00 16:30 Selberg ( ) 18:45 20:00 20:15 21:45 Selberg ( ) 7:00 9:00

High order interpolation function for surface contact problem

([28] Bao-Feng Feng (UTP-TX), ( ), [20], [16], [24]. 1 ([3], [17]) p t = 1 2 κ2 T + κ s N -259-

Markov chains model reduction

Discretization of Generalized Convection-Diffusion

Non-Hermitian Type Uncertainty Relation and its Application

VBA Microsoft Excel. J. Comput. Chem. Jpn., Vol. 5, No. 1, pp (2006)

A Summary Of Linear Continuum Mechanics 1. a b = a i b i = a b cos θ. det A = ɛ ijk A 1i A 2j A 3k. e 1 e 2 e 3 a b = ɛ ijk a j b k e i =

12. Radon-Nikodym Theorem

Transcript:

1 (: PC, : ),.,,. 3 15 9:30 11:50 07-01-0013 1 d- 10 Kazuo Takemura (Nihon Univ.) The best constants of discrete Sobolev inequalities on the finite d-regular weighted graph 07-01-0030 2 d 15 Akito Suzuki (Shinshu Univ.) Spectra of graphs obtained from the d-dimensional lattice by periodically adding pendant vertices 07-01-0008 3 ( ) ( ) ( ) Hiroyuki Yamagishi ( ) Kohtaro Watanabe (Nat. Defense Acad. of Japan) Yoshinori Kametaka (Osaka Univ. ) ( 1) M (d/dx) 2M L p 10 The best constant of L p Sobolev inequality corresponding to Dirichlet Neumann boundary value problem 07-01-0009 4 ( ) 10 ( ) Hiroyuki Yamagishi ( ) Atsushi Nagai (Nihon Univ.) Yoshinori Kametaka (Osaka Univ. ) The best constant of discrete Sobolev inequality corresponding to a bending problem of a string 07-01-0025 5 massless ϕ 4 15 Toshimitsu Takaesu (Gunma Univ.) On the existence of ground state of massless ϕ 4 model with cutoffs for all values of coupling constants 07-01-0026 6 15 Toshimitsu Takaesu (Gunma Univ.) On the existence of ground state of relativistic quantum electrodynamics with cutoffs for all values of coupling constants 07-01-0028 7 ( ) 15 Takuya Mine (Kyoto Inst. Tech.) Computation of the scattering amplitude in the elliptic coordinate 07-01-0003 8 ( ) On inverse problem for the Schrödinger equation with a repulsive potential 15 Atsuhide Ishida ( ) On inverse problem for the Schrödinger equation with a repulsive potential

2 07-01-0038 9 ( ) 15 ( ) Kohei Umeta (Hokkaido Univ.) Naofumi Honda (Hokkaido Univ.) The global sections of the sheaf of Laplace hyperfunctions and Laplace transforms 14:15 15:15 07-02-0002 ( ) Kenichi Ito (Univ. of Tsukuba) Schrödinger Classification of threshold properties of one-dimensional discrete Schrödinger operators 3 16 10:00 11:50 07-01-0017 10 2 15 Kazufumi Kimoto (Univ. of Ryukyus) Two-parameter deformation of the determinant and formulas for rectangular characters 07-01-0032 11 Hecke Clifford 15 Masaki Mori (Univ. of Tokyo) Cellular structure on the Hecke Clifford superalgebra and construction of its irreducible representations 07-01-0039 12 15 Akihito Wachi (Hokkaido Univ. of Edu.) The strong Lefschetz property of the coinvariant algebras of complex reflection groups 07-01-0029 13 Geometry of multiplicity-free representations of SO(N) and visible actions 15 Yuichiro Tanaka (Univ. of Tokyo) Geometry of multiplicity-free representations of SO(N) and visible actions 07-01-0031 14 The Dynkin index and parabolic subalgebras of Heisenberg type 15 Toshihisa Kubo (Univ. of Tokyo) The Dynkin index and parabolic subalgebras of Heisenberg type 07-01-0040 15 ( ) Scattering theory for the Laplacian on symmetric spaces of noncompact type 15 Koichi Kaizuka (Univ. of Tsukuba) Scattering theory for the Laplacian on symmetric spaces of noncompact type 13:15 14:15 07-02-0003 Deligne Simpson Kazuki Hiroe (Josai Univ.) Additive Deligne Simpson problem and root systems 3 17 9:30 12:00 07-01-0036 16 Dynkin connection flat part 15 Satoshi Goto (Sophia Univ.) Computation of flat parts of inter-dynkin connections

3 07-01-0005 17 (Univ. of Copenhagen) U. Haagerup (Univ. Copenhagen) C. Winsløw (Univ. Copenhagen) Hiroshi Ando (Univ. of Copenhagen) Uffe Haagerup (Univ. Copenhagen) Carl Winsløw (Univ. Copenhagen) Ultraproducts, QWEP von Neumann algebras and the Effros Maréchal topology 15 Ultraproducts, QWEP von Neumann algebras and the Effros Maréchal topology 07-01-0016 18 Rohlin 15 Koichi Shimada (Univ. of Tokyo) Actions of locally compact abelian groups with the Rohlin property on factors 07-01-0010 19 Haagerup approximation property for arbitrary von Neumann algebras 15 Rui Okayasu (Osaka Kyoiku Univ.) Haagerup approximation property for arbitrary von Neumann algebras 07-01-0015 20 ( ) Schlichting completion of Hecke pairs 15 ( ) Hisashi Aoi (Ritsumeikan Univ.) Takehiko Yamanouchi ( ) Schlichting completion of Hecke pairs 07-01-0037 21, : 15 Masato Mimura (Tohoku Univ.) Hiroki Sako (Tokai Univ.) Group approximation in Cayley topology and coarse geometry, Part II: fibered coarse embedding 07-01-0012 22 Finite group actions on certain stably projectionless C -algebras with the Rohlin property 15 Norio Nawata (Chiba Univ.) Finite group actions on certain stably projectionless C -algebras with the Rohlin property 07-01-0019 23 ( ) C 15 Takahiro Sudo (Univ. of Ryukyus) The Euler characteristic and the Euler Poincaré formula for C -algebras 14:15 15:00 07-01-0020 24 C*- K- 15 Tsuyoshi Kajiwara (Okayama Univ.) Yasuo Watatani (Kyushu Univ.) Matrix representations and K-groups of the cores of C*-algebras assoiated with self-similar maps 07-01-0034 25 ( I M I) C 15 Hiroyasu Hamada (Kyushu Univ.) 07-01-0011 26 Kei Ji Izuchi (Niigata Univ.) Yuko Izuchi Shûichi Ohno (Nippon Inst. of Tech.) 15:15 16:15 2013 ( 12 ) 07-02-0001 Singularities in operator algebras Yasuo Watatani (Kyushu Univ.) C -algebras generated by composition operators induced by rational functions Path connected components in the space of weighted composition operators on the disk algebra 15 Path connected components in the space of weighted composition operators on the disk algebra Singularities in operator algebras

4 16:30 17:30 07-02-0004 Bargmann Fock Sei-Ichiro Ueki (Ibaraki Univ.) Composition and Integral operators on Bargmann Fock spaces 3 18 07-01-0002 10:00 11:40 27 15 Wataru Ichinose (Shinshu Univ.) Kanako Iwashita (Shinshu Univ.) On the uniqueness of the polar decomposition of bounded operators in Hilbert spaces 07-01-0018 28 ( ) C - Buzano 10 Yuki Seo (Osaka Kyoiku Univ.) Buzano inequality in inner product C -modules via the operator geometric mean 07-01-0006 29 Karcher equation 15 Junichi Fujii (Osaka Kyoiku Univ.) Reproducing property of interpolational operator means in a Karcher equation 07-01-0014 30 ( ) Interpolation classes and matrix means 15 Dinh Trung Hoa (Duy Tan Univ.) Toan M. Ho (Mathematical Inst., Hanoi) Hiroyuki Osaka (Ritsumeikan Univ.) Dinh Trung Hoa (Duy Tan Univ.) Toan M. Ho (Mathematical Inst., Hanoi) Interpolation classes and matrix means 07-01-0021 31 ( ) 10 Masaru Nagisa (Chiba Univ.) Haruka Watanabe (Chiba Univ.) Order of operators determined by derivatives 07-01-0035 32 ( ) Szabó 10 ( ) Masaru Nagisa (Chiba Univ.) Shuhei Wada ( ) Operator monotonicity of Szabó s function 14:15 15:15 07-01-0024 33 Generalized Ando Hiai inequality for matrix power mean 10 Takeaki Yamazaki (Toyo Univ.) Generalized Ando Hiai inequality for matrix power mean

5 07-01-0027 34 Hiroshi Isa (Maebashi Inst. of Tech.) Masatoshi Ito (Maebashi Inst. of Tech.) Eizaburo Kamei Hiroaki Tohyama (Maebashi Inst. of Tech.) Masayuki Watanabe (Maebashi Inst. of Tech.) On relations between operator valued α-divergence and relative operator entropies 15 On relations between operator valued α-divergence and relative operator entropies 07-01-0004 35 15 Shigeru Furuichi (Nihon Univ.) Unitarily invariant norm inequalities for some means 07-01-0007 36 15 Kenjiro Yanagi (Yamaguchi Univ.) Non-hermitian extension of generalized skew information and uncertainty relation