Supplementary Information for

Σχετικά έγγραφα
Table of Contents 1 Supplementary Data MCD

Computational study of the structure, UV-vis absorption spectra and conductivity of biphenylene-based polymers and their boron nitride analogues

Supporting Information. Crown Ether Complexes of Actinyls: A Computational Assessment of

Supplementary materials

Electronic Supplementary Information:

Supporting Information

Electronic Supplementary Information DFT Characterization on the Mechanism of Water Splitting Catalyzed by Single-Ru-substituted Polyoxometalates

Photo-Induced Self-Assembly of Pt(II)-Linked Rings and Cages via the Photolabilization of a Pt(II) Pyridine Bond

Supporting Information for Substituent Effects on the Properties of Borafluorenes

Supporting Information To. Microhydration of caesium compounds: Journal of Molecular Modeling

10-π-electron arenes à la carte: Structure. Sr, Ba; n = 6-8) complexes

LP N to BD* C-C = BD C-C to BD* O-H = LP* C to LP* B =5.

Fused Bis-Benzothiadiazoles as Electron Acceptors

Supporting information. An unusual bifunctional Tb-MOF for highly sensing of Ba 2+ ions and remarkable selectivities of CO 2 /N 2 and CO 2 /CH 4

Engineering Tunable Single and Dual Optical. Emission from Ru(II)-Polypyridyl Complexes. Through Excited State Design

of the methanol-dimethylamine complex

ELECTRONIC SUPPORTING INFORMATION

Butadiene as a Ligand in Open Sandwich Compounds

ELECTRONIC SUPPLEMENTARY MATERIAL-RSC Adv.

Supporting Information. Generation Response. Physics & Chemistry of CAS, 40-1 South Beijing Road, Urumqi , China. China , USA

Supporting Information. A Combined Crossed Molecular Beams and ab Initio Investigation on the Formation of Vinylsulfidoboron (C 2 H

stability and aromaticity in the benzonitrile H 2 O complex with Na+ or Cl

Department of Chemical Organic Technology and Petrochemistry, Silesian University of Technology, Krzywoustego 4, Gliwice, Poland

Supporting Information

Supporting Information for. Department of Chemistry, Vanderbilt University, Nashville, TN 37235

Electronic supplementary information (ESI) Bodipy functionalized ortho-carborane dyads for low-energy photosensitization

Electronic Supplementary Information (ESI)

Carbohydrates in the gas phase: conformational preference of D-ribose and 2-deoxy-D-ribose

Nitric oxide (NO) reactivity studies on mononuclear Iron(II) complexes supported by a tetradentate Schiff base Ligand

Supporting Information. Research Center for Marine Drugs, Department of Pharmacy, State Key Laboratory

Hydrogen Sorption Efficiency of Titanium Decorated Calix[4]pyrroles

Electronic Supplementary Information for Dalton Transactions. Supplementary Data

Supporting Information

Manuscript submitted to the Journal of the American Society for Mass Spectrometry, September 2011.

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2006

An experimental and theoretical study of the gas phase kinetics of atomic chlorine reactions with CH 3 NH 2, (CH 3 ) 2 NH, and (CH 3 ) 3 N

Enhancing σ/π-type Copper(I) thiophene Interactions by Metal Doping (Metal = Li, Na, K, Ca, Sc)

C H Activation of Cp* Ligand Coordinated to Ruthenium. Center: Synthesis and Reactivity of a Thiolate-Bridged

Supplementary Materials for. Kinetic and Computational Studies on Pd(I) Dimer- Mediated Halogen Exchange of Aryl Iodides

Zebra reaction or the recipe for heterodimeric zinc complexes synthesis

Supplementary Information. Living Ring-Opening Polymerization of Lactones by N-Heterocyclic Olefin/Al(C 6 F 5 ) 3

Supporting Information

Supporting Information. Evaluation of spin-orbit couplings with. linear-response TDDFT, TDA, and TD-DFTB

Electronic, Crystal Chemistry, and Nonlinear Optical Property Relationships. or W, and D = P or V)

IV. ANHANG 179. Anhang 178

Solvent effects on structures and vibrations of zwitterionic dipeptides: L-diglycine and L-dialanine

Uncovering the impact of capsule shaped amine-type ligands on. Am(III)/Eu(III) separation

Electronic Supplementary Information (ESI)

Table S1. Summary of data collections and structure refinements for crystals 1Rb-1h, 1Rb-2h, and 1Rb-4h.

Dipole-Guided Electron Capture Causes Abnormal Dissociations of Phosphorylated Pentapeptides

Switching of the Photophysical Properties of. Bodipy-derived Trans Bis(tributylphosphine) Pt(II) bisacetylide Complexes with Rhodamine

Supporting Information

Supporting Information

Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical

The Role of Imidoselenium(II) Chlorides in the Formation of Cyclic Selenium

Supporting Information

Patrycja Miszczyk, Dorota Wieczorek, Joanna Gałęzowska, Błażej Dziuk, Joanna Wietrzyk and Ewa Chmielewska. 1. Spectroscopic Data.

Electronic Supplementary Information (ESI)

Nickel and Platinum PCP Pincer Complexes Incorporating an Acyclic Diaminoalkyl Central Moiety Connecting Imidazole or Pyrazole Rings

Cycloaddition of Homochiral Dihydroimidazoles: A 1,3-Dipolar Cycloaddition Route to Optically Active Pyrrolo[1,2-a]imidazoles

Supporting Information

Experimental and Theoretical Investigations of Structural Trends for Selenium(IV)

Supporting Information for: electron ligands: Complex formation, oxidation and

Supporting Information

January 22, University of Minnesota, Minneapolis, Minnesota , USA

Alkyl-functionalization of 3,5-bis(2-pyridyl)-1,2,4,6- thiatriazine

chlorostibine Iou-Sheng Ke and François P. Gabbai Department of Chemistry, Texas A&M University, College Station, TX

Supplementary materials. Mode Analysis. Matthias M. N. Wolf, Christian Schumann, Ruth Groß, Tatiana Domratcheva 1 and Rolf. Diller

Molecular structure, spectral analysis and hydrogen bonding analysis of ampicillin trihydrate: A combined DFT and AIM approach

Electronic Supplementary Information

Heavier chalcogenone complexes of bismuth(iii)trihalides: Potential catalysts for acylative cleavage of cyclic ethers. Supporting Information

difluoroboranyls derived from amides carrying donor group Supporting Information

Enantioselective Organocatalytic Michael Addition of Isorhodanines. to α, β-unsaturated Aldehydes

Supporting Information

Supplementary Information. Unveiling the complex vibronic structure of canonical adenine cation

A facile and general route to 3-((trifluoromethyl)thio)benzofurans and 3-((trifluoromethyl)thio)benzothiophenes

Supporting Information

vibrational Supplementary density of the Beyer-

SUPPLEMENTARY INFORMATION

DuPont Suva 95 Refrigerant

College of Life Science, Dalian Nationalities University, Dalian , PR China.

Optimizing Microwave-assisted Extraction Process for Paprika Red Pigments Using Response Surface Methodology


The toxicity of three chitin synthesis inhibitors to Calliptamus italicus Othoptera Acridoidea

Stereochemistry and mechanistic insight in the [2 k +2 i +2 i ] annulations of ketenes and imines

Supporting Information

Copper-catalyzed formal O-H insertion reaction of α-diazo-1,3-dicarb- onyl compounds to carboxylic acids with the assistance of isocyanide

Supporting Information. Asymmetric Binary-acid Catalysis with Chiral. Phosphoric Acid and MgF 2 : Catalytic

CorV CVAC. CorV TU317. 1

Supporting Information

Supporting Information

Electronic Supplementary Information

Supplementary Information Chemical Partition of the Radiative Decay Rate of Luminescence of Europium Complexes

DuPont Suva. DuPont. Thermodynamic Properties of. Refrigerant (R-410A) Technical Information. refrigerants T-410A ENG


SUPPORTING INFORMATION TO. On Two Alizarin Polymorphs

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2008

The effect of curcumin on the stability of Aβ. dimers

Supporting Information

Supporting Information

Transcript:

Supplentary Information for Aggregation induced blue-shifted ission molecular picture from QM/MM study Qunyan Wu, a Tian Zhang, a Qian Peng,* b Dong Wang, a and Zhigang Shuai* a a Key Loratory of Organic OptoElectronics and Molecular Engineering, Department of Chistry, Tsinghua University, Beijing 100084, P. R. China. Email: zgshuai@tsinghua.edu.cn b Key Loratory of Organic Solids, Beijing National Loratory for Molecular Science (BNLMS), Institute of Chistry, Chinese Acady of Sciences, Beijing 100190, P. R. China. Email: qpeng@iccas.ac.cn, These authors contributed equally.

Contents: Fig. S1-S3 Setup of the QM/MM models for DSA, DCDPP and TPBD Fig. S4 Electron density contours of HOMOs and LUMOs for DSA, DCDPP and TPBD at the PBE0-D3(bj)/6-31G* level Fig. S5 Diagrammatic illustrations of the selected normal modes with large decrease in HR factor from tion to egate for DSA and TPBD Tle S1-S6 Selected main geometrical parameters of DSA, DCDPP and TPBD optimized at the (TD)-PBE0-D3(bj)/6-31G* and (TD)-B3LYP-D3(bj)/6-31G* level Tle S7-S8 Electronic energies and ZPE at crucial points (a, b, c and d) of the adiatic potential energy surfaces for DSA, DCDPP and TPBD at the (TD)-PBE0-D3(bj)/6-31G* and (TD)-B3LYP-D3(bj)/6-31G* level Tle S9-S10 Oscillator strengths and dominant assignments for S 1 of DSA, DCDPP and TPBD at the (TD)-PBE0-D3(bj)/6-31G* and (TD)-B3LYP-D3(bj)/6-31G* level Tle S11-S16 Electronic vertical transition energies, calculated vertical transition energies considering ZPE, reorganization energies, and adiatic excitation energies for DSA, DCDPP and TPBD at the (TD)-PBE0-D3(bj)/6-31G* and (TD)-B3LYP-D3(bj)/6-31G* level Tle S17-S22 Electronic vertical transition energies and reorganization energies for DSA, DCDPP and TPBD predicted by using long-range corrected functional (CAM-B3LYP) and larger basis sets (TZVP and 6-31+G*) Tle S23-S34 The predicted harmonic vibrational frequencies at the minima of S 0 and S 1 for DSA, DCDPP and TPBD at the (TD)-PBE0-D3(bj)/6-31G* level S1

Fig. S1 (a) Setup of the QM/MM model for DSA (a cluster of 65 molecules consisting of 52 QM atoms and 3328 MM atoms). (b) and (c) Side views of the residues within 7.50 Å of QM centroid. The nearest intermolecular π-π interaction distance is 5.25 Å. Fig. S2 (a) Setup of the QM/MM model for DCDPP (a cluster of 50 molecules consisting of 32 QM atoms and 1568 MM atoms). (b) and (c) Side views of the residues within 7.50 Å of QM centroid. The nearest intermolecular π-π interaction distance is 7.10 Å. S2

Fig. S3 (a) Setup of the QM/MM model for TPBD (a cluster of 65 molecules consisting of 50 QM atoms and 3200 MM atoms). (b) and (c) Side views of the residues within 7.50 Å of QM centroid. The nearest intermolecular π-π interaction distance is 5.79 Å. Fig. S4 Electron density contours of HOMOs and LUMOs for DSA, DCDPP and TPBD in egate (isovalue = 0.02 a.u.) at the PBE0-D3(bj)/6-31G* level. The shapes of the frontier orbitals in egate are almost the same as those in tion. S3

(a) 14 cm -1 mode 3 (b) 105 cm -1 mode 9 22 cm -1 mode 2 39 cm -1 mode 4 Fig. S5 Diagrammatic illustrations of the selected normal modes in tion with evidently decreased HR factor from tion to egate for DSA (a) and TPBD (b). S4

Tle S1 Selected bond lengths (in Å), bond angles (in deg) and torsion angles (in deg) for DSA in egate and in THF tion. The minimum of the S 0 (S 1 ) was optimized at the (TD)-PBE0-D3(bj)/6-31G* level. DSA in egate DSA in tion Crystal a S 0 S 1 (S 0 -S 1 ) S 0 S 1 (S 0 -S 1 ) C31-C32 1.4744 1.4387 0.0357 1.4694 1.4147 0.0547 1.49 C5-C6 1.4744 1.4386 0.0358 1.4694 1.4302 0.0392 1.49 C28-C32 1.3425 1.3626 0.0201 1.3444 1.3796 0.0352 1.30 C6-C2 1.3425 1.3626 0.0201 1.3444 1.3692 0.0248 1.30 C28-C38 1.4630 1.4458 0.0172 1.4627 1.4354 0.0273 1.47 C2-C12 1.4629 1.4458 0.0171 1.4627 1.4438 0.0189 1.47 C31-C32-C28 123.16 124.80 1.64 125.02 128.12 3.10 124.36 C5-C6-C2 123.15 124.82 1.67 125.02 129.02 4.00 124.35 C32-C28-C38 127.51 127.31 0.20 126.68 125.66 1.02 128.86 C6-C2-C12 127.50 127.28 0.22 126.68 125.59 1.09 128.86 C8-C4-C1-C10-2.59-4.51 1.92-1.64-10.17 8.53-3.13 C36-C27-C30-C34 2.61 4.54 1.93 1.64 3.42 1.78 3.13 C31-C4-C1-C5-1.65-4.91 3.26-1.01-10.90 9.89-1.69 C31-C27-C30-C5 1.67 4.94 3.27 1.01 4.64 3.63 1.68 C27-C31-C32-C28-63.14-41.96 21.18-53.00-15.65 37.35-74.95 C1-C5-C6-C2 63.24 41.93 21.31 53.00 33.75 19.25 74.93 C32-C28-C38-C45-6.54-20.04 13.50-9.69-9.95 0.26 4.64 C6-C2-C12-C19 6.45 20.10 13.65 9.68 13.36 3.68-4.68 C31-C32-C28-C38 177.49 178.36 0.87-179.26-179.29 0.03 177.28 C5-C6-C2-C12-177.58-178.51 0.93 179.26-178.51 2.23-177.21 a Ref. 14 S5

Tle S2 Selected bond lengths (in Å), bond angles (in deg) and torsion angles (in deg) for DSA in egate and in THF tion. The minimum of the S 0 (S 1 ) was optimized at the (TD)-B3LYP-D3(bj)/6-31G* level. DSA in egate DSA in tion Crystal a S 0 S 1 (S 0 -S 1 ) S 0 S 1 (S 0 -S 1 ) C31-C32 1.4792 1.4437 0.0355 1.4735 1.4189 0.0546 1.49 C5-C6 1.4792 1.4437 0.0355 1.4735 1.4340 0.0395 1.49 C28-C32 1.3447 1.3650 0.0203 1.3466 1.3820 0.0354 1.30 C6-C2 1.3446 1.3650 0.0204 1.3466 1.3720 0.0254 1.30 C28-C38 1.4666 1.4491 0.0175 1.4658 1.4384 0.0274 1.47 C2-C12 1.4665 1.4491 0.0174 1.4658 1.4463 0.0195 1.47 C31-C32-C28 123.28 124.91 1.63 125.27 128.35 3.08 124.36 C5-C6-C2 123.27 124.93 1.66 125.27 129.18 3.91 124.35 C32-C28-C38 127.56 127.42 0.14 126.84 125.73 1.11 128.86 C6-C2-C12 127.56 127.40 0.16 126.84 125.76 1.08 128.86 C8-C4-C1-C10-2.55-4.38 1.83-1.69-9.96 8.27-3.13 C36-C27-C30-C34 2.57 4.41 1.84 1.69 3.34 1.65 3.13 C31-C4-C1-C5-1.64-4.73 3.09-1.04-10.78 9.74-1.69 C31-C27-C30-C5 1.67 4.76 3.09 1.04 4.40 3.36 1.68 C27-C31-C32-C28-62.89-42.46 20.43-52.51-15.99 36.52-74.95 C1-C5-C6-C2 62.98 42.42 20.56 52.52 33.62 18.90 74.93 C32-C28-C38-C45-6.23-19.23 13.00-7.43-9.77 2.34 4.64 C6-C2-C12-C19 6.13 19.28 13.15 7.43 12.26 4.83-4.68 C31-C32-C28-C38 177.42 178.14 0.72-179.25-179.32 0.07 177.28 C5-C6-C2-C12-177.51-178.29 0.78 179.25-178.48 2.27-177.21 a Ref. 14 S6

Tle S3 Selected bond lengths (in Å), bond angles (in deg) and torsion angles (in deg) for DCDPP in egate and in THF tion. The minimum of the S 0 (S 1 ) was optimized at the (TD)-PBE0-D3(bj)/6-31G* level. DCDPP in egate DCDPP in tion Crystal a S 0 S 1 (S 0 -S 1 ) S 0 S 1 (S 0 -S 1 ) C1-C2 1.4289 1.4402 0.0113 1.4303 1.4633 0.0330 1.43 C2-C3 1.4738 1.4505 0.0233 1.4743 1.4424 0.0319 1.48 C2-N9 1.3283 1.3426 0.0143 1.3317 1.3317 0.0000 1.33 N9-C11 1.3331 1.3144 0.0187 1.3307 1.3251 0.0056 1.33 C11-C13 1.4331 1.4256 0.0075 1.4344 1.4197 0.0147 1.45 C1-C2-C3 122.50 121.39 1.11 124.32 121.66 2.66 122.11 C1-C2-C3-C4-45.20-31.20 14.00 38.26 22.21 16.05-46.55 C2-C1-C5-C6-42.73-33.53 9.20 38.26 22.21 16.05-43.80 N10-C1-C2-C3 175.02 174.58 0.44-166.84-161.15 5.69 174.01 N9-C2-C1-C5 171.12 168.54 2.58-166.84-161.15 5.69 170.60 C11-N9-C2-C3-177.85-175.41 2.44 172.24 168.84 3.40-177.30 C12-N10-C1-C5-174.03-172.58 1.45 172.25 168.84 3.41-173.74 C3-C2-C1-C5-7.23-10.65 3.42 14.63 20.74 6.11-8.12 a Ref. 16 Tle S4 Selected bond lengths (in Å), bond angles (in deg) and torsion angles (in deg) for DSA in egate and in THF tion. The minimum of the S 0 (S 1 ) was optimized at the (TD)-B3LYP-D3(bj)/6-31G* level. DCDPP in egate DCDPP in tion Crystal a S 0 S 1 (S 0 -S 1 ) S 0 S 1 (S 0 -S 1 ) C1-C2 1.4333 1.4314 0.0019 1.4346 1.4663 0.0317 1.43 C2-C3 1.4780 1.4606 0.0174 1.4780 1.4520 0.0260 1.48 C2-N9 1.3337 1.3570 0.0233 1.3370 1.3335 0.0035 1.33 N9-C11 1.3388 1.3154 0.0234 1.3361 1.3332 0.0029 1.33 C11-C13 1.4356 1.4322 0.0034 1.4365 1.4188 0.0177 1.45 C1-C2-C3 122.53 122.00 0.53 124.22 121.88 2.34 122.11 C1-C2-C3-C4-45.19-34.83 10.36 38.30 24.92 13.38-46.55 C2-C1-C5-C6-42.81-37.59 5.22 38.30 24.91 13.39-43.80 N10-C1-C2-C3 175.10 175.83 0.73-166.71-161.85 4.86 174.01 N9-C2-C1-C5 171.12 168.96 2.16-166.72-161.85 4.87 170.60 C11-N9-C2-C3-177.91-176.48 1.43 172.12 169.26 2.86-177.30 C12-N10-C1-C5-173.98-173.16 0.82 172.13 169.26 2.87-173.74 C3-C2-C1-C5-7.22-9.25 2.03 14.88 20.51 5.63-8.12 a Ref. 16 S7

Tle S5 Selected bond lengths (in Å) and torsion angles (in deg) for TPBD in egate and in acetone tion. The minimum of the S 0 (S 1 ) was optimized at the (TD)-PBE0-D3(bj)/6-31G* level. TPBD in egate TPBD in tion Crystal a S 0 S 1 (S 0 -S 1 ) S 0 S 1 (S 0 -S 1 ) C1-C2 1.3564 1.4117 0.0553 1.3570 1.4195 0.0625 1.36 C4-C5 1.3564 1.4117 0.0553 1.3570 1.4195 0.0625 1.36 C4-C2 1.4761 1.4327 0.0434 1.4739 1.4177 0.0562 1.48 C1-C29 1.4664 1.4235 0.0429 1.4625 1.4163 0.0462 1.47 C5-C40 1.4664 1.4235 0.0429 1.4625 1.4163 0.0462 1.47 C2-C7 1.4922 1.4851 0.0071 1.4862 1.4743 0.0119 1.50 C4-C18 1.4922 1.4851 0.0071 1.4862 1.4743 0.0119 1.50 C1-C2-C4-C5 180.00 180.00 0.00-164.81-153.78 11.03 180.00 C1-C2-C7-C9-69.07-61.11 7.96 64.35 41.27 23.08-70.02 C5-C4-C18-C20 69.08 61.13 7.95 64.33 41.24 23.09 69.95 C4-C5-C40-C42 33.47 17.89 15.58 25.71 13.96 11.75 32.10 C2-C1-C29-C31-33.46-17.88 15.58 25.69 13.97 11.72-31.96 a Ref. 30 Tle S6 Selected bond lengths (in Å) and torsion angles (in deg) for TPBD in egate and in acetone tion. The minimum of the S 0 (S 1 ) was optimized at the (TD)-B3LYP-D3(bj)/6-31G* level. TPBD in egate TPBD in tion Crystal a S 0 S 1 (S 0 -S 1 ) S 0 S 1 (S 0 -S 1 ) C1-C2 1.3589 1.4140 0.0551 1.3596 1.4219 0.0623 1.36 C4-C5 1.3590 1.4140 0.0550 1.3596 1.4219 0.0623 1.36 C4-C2 1.4804 1.4385 0.0419 1.4777 1.4223 0.0554 1.48 C1-C29 1.4701 1.4274 0.0427 1.4657 1.4193 0.0464 1.47 C5-C40 1.4701 1.4274 0.0427 1.4657 1.4193 0.0464 1.47 C2-C7 1.4972 1.4900 0.0072 1.4907 1.4783 0.0124 1.50 C4-C18 1.4972 1.4900 0.0072 1.4907 1.4783 0.0124 1.50 C1-C2-C4-C5 180 180 0.00-165.15-153.26 11.89 180.00 C1-C2-C7-C9-69.08-61.02 8.06 64.88 41.52 23.36-70.02 C5-C4-C18-C20 69.09 61.04 8.05 64.84 41.52 23.32 69.95 C4-C5-C40-C42 33.16 18.14 15.02 24.85 13.96 10.89 32.10 C2-C1-C29-C31-33.15-18.14 15.01 24.74 13.97 10.77-31.96 a Ref. 30 S8

Tle S7 Electronic energies (E) and ZPE (V) at crucial points (a, b, c and d) of the adiatic potential energy surfaces (PES) for DSA, DCDPP and TPBD in egate (E, V ) and in tion (E, V ) at the (TD)-PBE0-D3(bj)/6-31G* level. molecule E /a.u. E /a.u. V /a.u. V /a.u. a -1155.129022-1155.139345 0.435144 0.427125 DSA b -1155.020265-1155.036915 0.430202 0.425820 c -1155.034540-1155.048160 0.430202 0.425820 d -1155.119710-1155.123381 0.435144 0.427125 a -909.893883-909.899216 0.242449 0.237389 DCDPP b -909.765718-909.776488 0.237845 0.233793 c -909.778311-909.793601 0.237845 0.233793 d -909.876043-909.877830 0.242449 0.237389 a -1078.987343-1079.000461 0.420520 0.414462 TPBD b -1078.846687-1078.867469 0.416482 0.411865 c -1078.860329-1078.886379 0.416482 0.411865 d -1078.973956-1078.981213 0.420520 0.414462 Tle S8 Electronic energies (E) and ZPE (V) at crucial points (a, b, c and d) of the adiatic PES for DSA, DCDPP and TPBD in egate (E, V ) and in tion (E, V ) at the (TD)-B3LYP-D3(bj)/6-31G* level. molecule E /a.u. E /a.u. V /a.u. V /a.u. a -1155.805302-1156.568656 0.431971 0.424414 DSA b -1155.700131-1156.469721 0.427019 0.423137 c -1155.713719-1156.480146 0.427019 0.423137 d -1155.796769-1156.553813 0.431971 0.424414 a -910.440695-910.993866 0.240044 0.235431 DCDPP b -910.318894-910.877540 0.235564 0.231502 c -910.330364-910.894225 0.235564 0.231502 d -910.427048-910.978986 0.240044 0.235431 a -1079.621850-1080.342287 0.417761 0.411746 TPBD b -1079.485246-1080.213025 0.413946 0.409263 c -1079.498015-1080.231138 0.413946 0.409263 d -1079.609346-1080.324070 0.417761 0.411746 S9

Tle S9 Oscillator strengths and dominant assignments for S 1 of DSA, DCDPP and TPBD in egate and in tion at the TD-PBE0-D3(bj)/6-31G* level. f ( ) denotes the sorption oscillator strength, and f is the ission oscillator ( ) strength. H (L) denotes HOMO (LUMO), the contributions respect to egate and tion are in the parentheses, respectively. Absorption Emission S 1 state f f Assignment f f Assignment DSA 0.44 0.59 H L(98.1%, 99.3%) 0.67 0.79 H L(98.7%, 98.4%) DCDPP 0.11 0.15 H L(92.2%, 97.5%) 0.05 0.04 H L(98.0%, 98.2%) TPBD 1.12 1.06 H L(98.0%, 99.1%) 1.19 0.76 H L(98.3%, 98.0%) Tle S10 Oscillator strengths and dominant assignments for S 1 of DSA, DCDPP and TPBD in egate and in tion at the TD-B3LYP-D3(bj)/6-31G* level. f denotes to the sorption oscillator strength, and ( ) oscillator strength. H (L) denotes HOMO (LUMO). f is the ission ( ) Absorption Emission S 1 state f f Assignment f f Assignment DSA 0.42 0.58 H L(97.7%, 99.3%) 0.64 0.78 H L(98.7%, 98.3%) DCDPP 0.09 0.13 H L(91.3%, 96.5%) 0.05 0.04 H L(97.4%, 97.7%) TPBD 1.08 1.03 H L(97.6%, 98.9%) 1.16 0.74 H L(98.0%, 97.8%) S10

Tle S11 Calculated electronic vertical transition energies considering ZPE correction for DSA, DCDPP and TPBD in egate and in tion at the TD-PBE0-D3(bj)/6-31G* level. The availle experimental values are presented in the parentheses. E Absorption Emission E E E E E DSA 2.82 (2.99) 2.75 (3.05) 0.07 (-0.06) 2.18 (2.39) 2.01 (2.03) 0.17 (0.36) DCDPP 3.36 (3.65) 3.24 (3.65) 0.12 (0.00) 2.53 (3.00) 2.19 (2.93) 0.34 (0.07) TPBD 3.72 (3.60) 3.55 (3.71) 0.17 (-0.11) 2.98 (3.18) 2.51 (3.04) 0.47 (0.14) Tle S12 Reorganization energies for DSA, DCDPP and TPBD in egate and in tion at the (TD)-PBE0-D3(bj)/6-31G* level. λ gs Aggregate Solution Difference λ es λ λ gs λ es λ λ - DSA 0.25 0.39 0.64 0.43 0.31 0.74 0.10 DCDPP 0.49 0.34 0.83 0.58 0.47 1.05 0.22 TPBD 0.36 0.37 0.73 0.52 0.51 1.03 0.30 Tle S13 The electronic vertical transition energies corresponding to sorption and ission peaks for DSA, DCDPP and TPBD in egate and in tion at the level of TD-B3LYP-D3(bj)/6-31G*. The availle experimental values are presented in the parentheses. E Absorption Emission E E E E E DSA 2.86 (2.99) 2.69 (3.05) 0.17 (-0.06) 2.26 (2.39) 2.00 (2.03) 0.26 (0.36) DCDPP 3.31 (3.65) 3.17 (3.65) 0.14 (0.00) 2.63 (3.00) 2.31 (2.93) 0.32 (0.07) TPBD 3.72(3.60) 3.52 (3.71) 0.20 (-0.11) 3.03 (3.18) 2.53 (3.04) 0.50 (0.14) S11

Tle S14 Calculated electronic vertical transition energies considering ZPE correction for DSA, DCDPP and TPBD in egate and in tion, respectively at the level of TD-B3LYP-D3(bj)/6-31G*. The availle experimental values are presented in the parentheses. E Absorption Emission E E E E E DSA 2.73 (2.99) 2.66 (3.05) 0.07 (-0.06) 2.13 (2.39) 1.97 (2.03) 0.16 (0.36) DCDPP 3.19 (3.65) 3.06 (3.65) 0.13 (0.00) 2.51 (3.00) 2.20 (2.93) 0.31 (0.07) TPBD 3.61 (3.60) 3.45 (3.71) 0.16 (-0.11) 2.92 (3.18) 2.46 (3.04) 0.46 (0.14) Tle S15 Reorganization energies for DSA, DCDPP and TPBD in egate and in tion at the (TD)-B3LYP-D3(bj)/6-31G* level. Aggregate Solution Difference λ gs λ es λ λ gs λ es λ λ - DSA 0.23 0.37 0.60 0.40 0.28 0.68 0.08 DCDPP 0.37 0.31 0.68 0.40 0.45 0.85 0.17 TPBD 0.34 0.35 0.69 0.50 0.49 0.99 0.30 Tle S16 Adiatic excitation energies for DSA, DCDPP and TPBD at the (TD)-PBE0-D3(bj)/6-31G* and (TD)-B3LYP-D3(bj)/6-31G* level. E ( ) ad corresponds to the electronic energy in egate and tion, and related to the values taking ZPE into account. E is ( ) adzpe Functional Aggregate Solution Ead EadZPE Ead EadZPE PBE0-D3(bj) 2.57 2.44 2.48 2.46 DSA B3LYP-D3(bj) 2.49 2.35 2.41 2.37 PBE0-D3(bj) 3.14 3.02 2.87 2.78 DCDPP B3LYP-D3(bj) 3.00 2.88 2.71 2.60 PBE0-D3(bj) 3.46 3.35 3.10 3.03 TPBD B3LYP-D3(bj) 3.37 3.27 3.02 2.96 S12

Tle S17 The electronic vertical transition energies corresponding to sorption and ission peaks for DSA, DCDPP and TPBD in egate and in tion at the level of TD-CAM-B3lYP-D3(bj)/6-31G*//(TD)-PBE0-D3(bj)/6-31G*. The availle experimental values are presented in the parentheses. E Absorption Emission E E E E E DSA 3.25 (2.99) 3.07 (3.05) 0.18 (-0.06) 2.52 (2.39) 2.18 (2.03) 0.34 (0.36) DCDPP 4.03 (3.65) 3.88 (3.65) 0.15 (0.00) 3.14 (3.00) 2.71 (2.93) 0.43 (0.07) TPBD 4.12 (3.60) 3.90 (3.71) 0.22 (-0.11) 3.25 (3.18) 2.74 (3.04) 0.51 (0.14) Tle S18 Reorganization energies for DSA, DCDPP and TPBD in egate and in tion at the (TD)-CAM-B3lYP-D3(bj)/6-31G*//(TD)-PBE0-D3(bj)/6-31G* level. λ gs Aggregate Solution Difference λ es λ λ gs λ es λ λ - DSA 0.37 0.36 0.73 0.60 0.29 0.89 0.16 DCDPP 0.58 0.31 0.89 0.71 0.45 1.16 0.27 TPBD 0.48 0.39 0.87 0.68 0.49 1.17 0.30 Tle S19 The electronic vertical transition energies corresponding to sorption and ission peaks for DSA, DCDPP and TPBD in egate and in tion at the level of TD-PBE0-D3(bj)/TZVP//(TD)-PBE0-D3(bj)/6-31G*. The availle experimental values are presented in the parentheses. E Absorption Emission E E E E E DSA 2.90 (2.99) 2.74 (3.05) 0.16 (-0.06) 2.27 (2.39) 2.00 (2.03) 0.27 (0.36) DCDPP 3.46 (3.65) 3.31 (3.65) 0.15 (0.00) 2.64 (3.00) 2.27 (2.93) 0.37 (0.07) TPBD 3.75 (3.60) 3.54 (3.71) 0.21 (-0.11) 3.02 (3.18) 2.49 (3.04) 0.53 (0.14) Tle S20 The electronic vertical transition energies corresponding to sorption and ission peaks for DSA, DCDPP and TPBD in egate and in tion at the level of TD-PBE0-D3(bj)/6-31+G*//(TD)-PBE0-D3(bj)/6-31G*. The availle experimental values are presented in the parentheses. S13

E Absorption Emission E E E E E DSA 2.91 (2.99) 2.74 (3.05) 0.17 (-0.06) 2.28 (2.39) 2.00 (2.03) 0.28 (0.36) DCDPP 3.45 (3.65) 3.29 (3.65) 0.16 (0.00) 2.63 (3.00) 2.26 (2.93) 0.37 (0.07) TPBD 3.75 (3.60) 3.54 (3.71) 0.21 (-0.11) 3.02 (3.18) 2.49 (3.04) 0.53 (0.14) Tle S21. Reorganization energies for DSA, DCDPP and TPBD in egate and in tion at the (TD)-PBE0-D3(bj)/TZVP//(TD)-PBE0-D3(bj)/6-31G* level. Aggregate Solution Difference λ gs λ es λ λ gs λ es λ λ - DSA 0.28 0.35 0.63 0.45 0.29 0.74 0.11 DCDPP 0.53 0.29 0.82 0.62 0.43 1.05 0.23 TPBD 0.40 0.33 0.73 0.58 0.47 1.05 0.32 Tle S22. Reorganization energies for DSA, DCDPP and TPBD in egate and in tion at the (TD)-PBE0-D3(bj)/6-31+G*//(TD)-PBE0-D3(bj)/6-31G* level. λ gs Aggregate Solution Difference λ es λ λ gs λ es λ λ - DSA 0.26 0.37 0.63 0.44 0.30 0.74 0.11 DCDPP 0.50 0.32 0.82 0.59 0.45 1.04 0.22 TPBD 0.37 0.36 0.73 0.53 0.51 1.04 0.31 Tle S23. The predicted harmonic vibrational frequencies at the minimum of S 0 for DSA in THF tion at the PBE0-D3(bj)/6-31G* level. 11 12 14 25 46 55 74 83 105 125 131 150 159 189 237 255 264 305 309 349 366 403 407 412 413 433 447 460 488 505 511 513 537 571 607 621 622 628 632 633 666 680 707 707 724 754 765 769 778 782 803 817 851 857 859 870 876 877 894 896 930 934 943 957 978 980 981 981 1003 1005 1008 1008 1018 1019 1024 1025 1067 1068 1073 1075 1081 1119 1121 1134 1149 1189 1189 1189 1203 1211 S14

1214 1215 1252 1252 1259 1284 1311 1314 1338 1343 1350 1354 1372 1375 1393 1394 1423 1431 1439 1484 1498 1500 1504 1505 1548 1553 1555 1600 1601 1635 1657 1657 1684 1684 1693 1706 1723 1725 3179 3179 3187 3187 3208 3208 3215 3215 3218 3218 3224 3224 3231 3231 3232 3232 3241 3242 3246 3246 3259 3260 Tle S24. The predicted harmonic vibrational frequencies at the minimum of S 1 for DSA in THF tion at the TD-PBE0-D3(bj)/6-31G* level. 11 28 36 40 48 51 74 99 119 138 146 158 173 213 229 246 292 309 316 322 380 388 413 414 420 433 440 462 486 500 507 522 542 576 606 613 625 626 629 630 661 672 696 700 722 737 759 764 768 773 785 814 843 848 854 866 872 883 889 899 921 925 945 947 955 957 973 975 979 980 994 999 1003 1005 1010 1014 1062 1064 1092 1096 1106 1121 1124 1135 1165 1188 1188 1192 1194 1199 1211 1212 1257 1263 1265 1292 1306 1312 1333 1348 1356 1361 1377 1383 1394 1400 1404 1409 1421 1447 1490 1493 1500 1506 1517 1544 1548 1558 1588 1611 1621 1632 1633 1636 1644 1670 1676 1680 3179 3203 3205 3208 3208 3214 3215 3219 3222 3223 3224 3225 3232 3233 3235 3236 3241 3242 3246 3248 3252 3261 Tle S25. The predicted harmonic vibrational frequencies at the minimum of S 0 for DCDPP in THF tion at the PBE0-D3(bj)/6-31G* level. 27 47 49 62 79 90 110 151 162 192 236 259 277 325 332 405 412 418 444 459 490 510 545 558 596 605 628 630 686 700 707 713 715 728 768 790 792 842 866 867 952 953 965 990 992 1018 1018 1021 1023 1062 1069 1112 1123 1127 1173 1192 1193 1215 1216 1284 1306 1350 1354 1366 1386 1391 1439 1460 1499 1504 1551 1554 1577 1604 1660 1660 1682 1685 2388 2391 3223 3223 3232 3232 3239 3239 3246 3246 3251 3251 S15

Tle S26. The predicted harmonic vibrational frequencies at the minimum of S 1 for DCDPP in THF tion at the TD-PBE0-D3(bj)/6-31G* level. 31 58 59 77 77 99 111 153 160 203 226 252 283 290 330 385 406 410 423 427 484 498 501 536 549 598 611 615 650 664 690 695 702 708 741 773 775 794 842 864 907 937 948 985 992 1003 1004 1013 1014 1043 1048 1082 1108 1120 1141 1191 1193 1196 1198 1214 1286 1290 1330 1349 1385 1404 1411 1416 1470 1484 1497 1499 1531 1546 1595 1609 1626 1647 2319 2325 3233 3234 3239 3240 3247 3247 3255 3256 3260 3261 Tle S27. The predicted harmonic vibrational frequencies at the minimum of S 0 for TPBD in acetone tion at the PBE0-D3(bj)/6-31G* level. 13 22 27 39 40 53 57 66 67 115 132 178 192 196 201 241 266 267 318 338 412 412 416 417 452 486 494 517 527 560 584 612 623 627 631 634 641 689 710 710 711 716 720 741 773 776 786 807 808 863 863 867 867 888 905 905 926 940 945 945 956 983 983 985 985 1009 1009 1010 1011 1018 1018 1022 1022 1062 1066 1069 1069 1109 1114 1115 1123 1137 1187 1187 1187 1187 1207 1207 1214 1215 1217 1260 1261 1298 1342 1345 1352 1364 1378 1379 1384 1388 1413 1449 1494 1494 1499 1500 1546 1548 1552 1553 1646 1650 1656 1657 1669 1680 1682 1684 1691 1692 3196 3196 3207 3207 3213 3213 3216 3216 3218 3218 3226 3226 3226 3226 3233 3233 3239 3239 3242 3242 3253 3253 Tle S28. The predicted harmonic vibrational frequencies at the minimum of S 1 for TPBD in acetone tion at the TD-PBE0-D3(bj)/6-31G* level. S16

15 21 37 47 47 60 61 71 85 129 130 172 185 207 209 256 274 278 310 322 413 414 418 421 454 462 481 507 524 543 545 604 616 622 624 629 643 661 685 686 699 713 716 743 745 764 782 798 801 826 830 848 852 863 864 885 895 910 912 941 942 977 978 983 984 997 997 998 1004 1007 1007 1017 1018 1055 1055 1060 1064 1111 1114 1115 1124 1139 1183 1184 1186 1186 1188 1203 1207 1209 1212 1266 1270 1325 1338 1342 1358 1363 1383 1384 1389 1408 1409 1443 1463 1487 1493 1501 1518 1523 1530 1543 1549 1579 1604 1604 1639 1640 1653 1666 1669 1674 3188 3188 3206 3206 3214 3214 3214 3215 3221 3221 3224 3224 3230 3230 3236 3236 3239 3239 3242 3243 3256 3256 Tle S29. The predicted harmonic vibrational frequencies at the minimum of S 0 for DSA in egate at the PBE0-D3(bj)/6-31G* level. 67 77 91 106 109 143 156 158 160 168 173 183 195 212 264 314 320 323 330 379 383 407 429 446 464 465 466 476 522 522 536 547 552 578 618 628 636 637 639 639 672 702 729 744 747 772 805 808 821 822 825 825 872 882 902 903 907 910 912 918 953 966 974 975 1000 1001 1014 1015 1022 1023 1023 1024 1037 1039 1050 1051 1073 1074 1080 1081 1081 1129 1132 1140 1149 1204 1209 1210 1215 1219 1230 1231 1261 1261 1275 1301 1317 1327 1347 1349 1351 1365 1383 1386 1416 1418 1421 1447 1448 1499 1500 1504 1510 1510 1550 1560 1561 1604 1615 1647 1667 1667 1693 1694 1702 1713 1736 1737 3200 3200 3206 3206 3223 3223 3229 3229 3229 3230 3244 3245 3245 3245 3249 3253 3254 3255 3271 3271 3278 3282 Tle S30. The predicted harmonic vibrational frequencies at the minimum of S 1 for S17

DSA in egate at the TD-PBE0-D3(bj)/6-31G* level. 71 74 80 91 102 121 122 134 137 153 161 170 170 212 259 297 299 303 323 357 390 402 417 433 439 439 459 468 485 524 526 531 536 578 605 618 620 626 634 635 663 675 721 722 722 728 764 776 784 790 795 816 863 872 877 878 879 884 895 898 938 939 949 950 958 964 972 979 992 996 1000 1000 1019 1019 1023 1023 1073 1074 1091 1098 1109 1127 1129 1138 1158 1199 1206 1211 1211 1211 1221 1222 1260 1261 1278 1294 1309 1316 1334 1340 1361 1368 1383 1385 1408 1411 1414 1416 1423 1438 1492 1495 1506 1509 1518 1549 1552 1563 1604 1618 1620 1626 1647 1651 1665 1670 1686 1686 3182 3183 3213 3214 3217 3218 3225 3226 3230 3230 3240 3241 3247 3247 3248 3249 3251 3256 3262 3264 3273 3274 Tle S31. The predicted harmonic vibrational frequencies at the minimum of S 0 for DCDPP in egate at the PBE0-D3(bj)/6-31G* level. 94 111 114 127 142 147 149 189 200 213 263 274 289 333 358 420 440 446 468 481 498 530 562 582 611 616 636 639 693 703 719 727 745 755 782 802 814 862 894 907 973 976 978 1011 1017 1026 1029 1037 1045 1072 1082 1121 1132 1134 1185 1209 1210 1232 1234 1293 1319 1355 1361 1374 1405 1413 1448 1469 1511 1513 1557 1561 1592 1614 1668 1668 1694 1696 2388 2398 3239 3244 3247 3250 3252 3266 3274 3281 3283 3294 Tle S32. The predicted harmonic vibrational frequencies at the minimum of S 1 for DCDPP in egate at the TD-PBE0-D3(bj)/6-31G* level. 92 101 109 123 130 145 147 167 195 214 S18

255 263 291 324 331 413 417 429 438 475 498 508 526 547 561 607 611 624 661 671 693 696 714 733 766 779 791 809 874 893 925 944 961 997 1008 1009 1017 1025 1031 1052 1060 1084 1100 1124 1128 1180 1196 1205 1209 1213 1281 1309 1342 1349 1382 1398 1413 1425 1486 1491 1508 1530 1553 1589 1612 1627 1637 1645 2305 2349 3235 3241 3248 3254 3262 3262 3273 3276 3289 3294 Tle S33. The predicted harmonic vibrational frequencies at the minimum of S 0 for TPBD in egate at the PBE0-D3(bj)/6-31G* level. 73 82 93 97 101 128 129 134 140 140 163 186 204 209 221 247 281 286 334 365 437 438 442 444 462 492 503 535 547 571 599 619 627 633 637 643 643 702 704 726 727 735 749 760 788 798 798 818 823 882 883 892 894 896 907 927 940 961 963 965 971 996 997 1002 1002 1020 1020 1023 1024 1026 1026 1027 1027 1065 1070 1080 1081 1116 1124 1125 1136 1145 1197 1197 1207 1207 1216 1219 1220 1234 1236 1262 1265 1301 1349 1350 1357 1372 1392 1392 1396 1407 1413 1446 1497 1497 1507 1507 1552 1553 1557 1558 1654 1657 1662 1663 1677 1685 1690 1690 1695 1695 3210 3210 3216 3216 3217 3217 3231 3231 3232 3232 3244 3244 3248 3248 3253 3253 3259 3259 3263 3263 3284 3284 Tle S34. The predicted harmonic vibrational frequencies at the minimum of S 1 for TPBD in egate at the TD-PBE0-D3(bj)/6-31G* level. 70 72 93 97 101 110 113 123 128 136 165 183 204 210 216 246 280 283 288 300 425 428 430 435 450 483 495 511 515 537 563 606 615 625 628 637 639 665 685 692 698 730 744 755 760 775 792 811 815 832 834 858 868 890 893 895 898 916 920 961 S19

964 979 980 998 999 999 1000 1004 1009 1020 1020 1024 1025 1064 1065 1067 1070 1117 1122 1122 1134 1146 1191 1197 1197 1200 1200 1216 1217 1226 1232 1269 1275 1322 1337 1346 1364 1367 1375 1392 1392 1417 1418 1443 1475 1491 1498 1502 1525 1528 1533 1550 1552 1580 1601 1601 1652 1652 1662 1677 1678 1690 3214 3215 3216 3216 3217 3218 3228 3228 3231 3231 3243 3243 3247 3248 3248 3248 3263 3264 3267 3268 3279 3280 S20