f = c p + 2 (1) f = = 4 (2) x A + x B + x C = 1 (3) x A + x B + x Γ = 1 3-1

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "f = c p + 2 (1) f = 3 1 + 2 = 4 (2) x A + x B + x C = 1 (3) x A + x B + x Γ = 1 3-1"

Transcript

1 ΙΣΟΡΡΟΠΙΑ ΦΑΣΕΩΝ ΣΥΣΤΗΜΑΤΟΣ ΠΟΛΛΩΝ ΣΥΣΤΑΤΙΚΩΝ ΑΜΟΙΒΑΙΑ ΙΑΛΥΤΟΤΗΤΑ Θέµα ασκήσεως Προσδιορισµός καµπύλης διαλυτότητας σε διάγραµµα φάσεων συστήµατος τριών υγρών συστατικών που το ένα ζεύγος παρουσιάζει περιορισµένη διαλυτότητα. Θεωρία Σε πολύπλοκα συστήµατα που αποτελούνται από περισσότερα του ενός συστατικά η κατάσταση ισορροπίας καθορίζεται εκτός από την πίεση και την θερµοκρασία και από την σύνθεση του συστήµατος. Παρατηρείται δηλ. η ύπαρξη σχέσεως µεταξύ του αριθµού των συστατικών και του αριθµού των ανεξαρτήτων εντατικών µεταβλητών που καθορίζει την ισορροπία φάσεων σ ένα σύστηµα και η οποία αποτελεί τον κανόνα των φάσεων που εκφράσθηκε από τον Gibbs και γράφεται: f = c p + 2 (1) όπoυ f ο αριθµός των ανεξαρτήτων εντατικών µεταβλητών του συστήµατος που στην ισορροπία ονοµάζονται βαθµοί ελευθερίας, c ο αριθµός των συστατικών, p ο αριθµός των φάσεων που συνυπάρχουν στην ισορροπία. Από την µελέτη των φυσικών µεταβολών των συστηµάτων και την διερεύνηση του κανόνα των φάσεων προκύπτουν τα διαγράµµατα φάσεων τα οποία είναι συνήθως διαγράµµατα στα οποία αποτυπώνεται η θερµοκρασία στην οποία παρατηρείται µια ισορροπία φάσεων συναρτήσει της συνθέσεως. Η εξάρτηση από την πίεση δεν εµφανίζεται στο διάγραµµα δεδοµένου ότι οι περισσότερες µεταβολές πραγµατοποιούνται υπό σταθερή ατµοσφαιρική πίεση. Σε σύστηµα τριών συστατικών (c=3), όταν συνυπάρχουν υπό µία φάση (p=1), εφαρµογή του νόµου των φάσεων δίνει: f = = 4 (2) Οι ανεξάρτητες µεταβλητές είναι εποµένως η πίεση, η θερµοκρασία και η συγκέντρωση των δύο µόνον συστατικών εκφραζόµενη από τα γραµµοµοριακά κλάσµατα δεδοµένου ότι υπάρχει η δεσµευτική σχέση: x A + x B + x C = 1 (3) Εάν η πίεση και η θερµοκρασία διατηρούνται σταθερές, για τον καθορισµό της κατάστασης του συστήµατος απαιτείται µόνον η σύνθεση του µίγµατος. ιάγραµµα φάσεων συστήµατος τριών υγρών συστατικών Το διάγραµµα φάσεων που απεικονίζει τις µεταβολές της συνθέσεως του µίγµατος των τριών συστατικών παριστάνεται σε τριγωνικό σύστηµα συντεταγµένων που ικανοποιεί την δεσµευτική συνθήκη µεταξύ των µεταβλητών του: x A + x B + x Γ = 1 Ένα τέτοιο σύστηµα είναι ένα ισόπλευρο τρίγωνο του οποίου οι κορυφές παριστάνουν τα καθαρά συστατικά και το µήκος των πλευρών του θεωρείται µονάδα. Οι κορυφές του τριγώνου παριστάνουν τα καθαρά συστατικά. Τα σηµεία που βρίσκονται στις πλευρές του τριγώνου παριστάνουν µίγµατα των δύο συστατικών που κατέχουν τις κορυφές της αντίστοιχης πλευράς. Σηµείο στο εσωτερικό του τριγώνου απεικονίζει σύνθεση και από τα τρία συστατικά (Σχήµα 1). Για να προσδιορίσουµε την σύσταση µίγµατος που παριστάνεται από σηµείο Μ στο εσωτερικό του τριγώνου φέροµε τις παράλληλες προς τις τρεις πλευρές του τριγώνου. Αποδεικνύεται γεωµετρικά ότι το άθροισµα ΜΑ, ΜΒ, ΜΓ ισούται προς την µονάδα, δηλ.: 3-1

2 ΜΑ + ΜΒ + ΜΓ = 1 Τα ευθύγραµµα τµήµατα ΜΑ, ΜΒ, ΜΓ παριστάνουν αντίστοιχα τα γραµµοµοριακά κλάσµατα των συστατικών Α, Β, Γ και λόγω των οµοίων τριγώνων, είναι ίσα προς τα τµήµατα ΑΆ, Α Γ, ΒΑ, αντίστοιχα επί της ίδιας πλευράς του τριγώνου (της ΒΓ), x A =ΑΆ, x B =Α Γ, x Γ =ΒΑ. Αντιστρόφως, αν γνωρίζουµε τα γραµµοµοριακά κλάσµατα των τριών συστατικών βρίσκοµε το σηµείο που απεικονίζει την σύνθεση του µίγµατος στο εσωτερικό ισόπλευρου τριγώνου ως εξής. Στην πλευρά ΒΓ, αρχίζοντας από την κορυφή Β ορίζουµε τµήµα ίσο µε το γραµµοµοριακό κλάσµα x Γ, οµοίως στην ίδια πλευρά ΒΓ αρχίζοντας από την κορυφή Γ ορίζουµε τµήµα ίσο προς το γραµµοµοριακό κλάσµα x Β. Το υπόλοιπο τµήµα της ΒΓ (µεσαίο) είναι το γραµµοµοριακό κλάσµα x Α. Σχήµα 1. Τριγωνικό διάγραµµα προς απεικόνιση φάσεων συστήµατος τριών συστατικών Αν από την κορυφή Α φέροµε την ευθεία που διέρχεται από το σηµείο A 1 και καταλήγει στην απέναντι πλευρά στο σηµείο Α 3 παρατηρούµε ότι όλα τα σηµεία της ευθείας αυτής παριστούν συνθέσεις όπου ο λόγος των ποσοτήτων των συστατικών Β, Γ είναι σταθερός, ενώ µεταβάλλεται η ποσότητα του τρίτου συστατικού Α. Το συµπέρασµα αυτό προκύπτει γεωµετρικά από την παραλληλία των πλευρών των οµοίων τριγώνων µε κορυφές Α, Α 1, Α 2, δηλ.: x Γ = ΒΒ 1 = ΒΒ 2, x Β = ΓΓ 1 = ΓΓ 2, x Α = Β 1 Γ 1 = Β 1 Γ 2 Εποµένως, BB1 BB2 BΑ3 xγ = = = ΓΓ ΓΓ ΓΑ x 1 Aπό το σηµείο Α 1 προς το σηµείο Α 3, η αναλογία των γραµµοµοριακών κλασµάτων x Β, x Γ παραµένει σταθερά, ενώ αυξάνεται το γραµµοµοριακό κλάσµα x Α. Αντίθετα κάθε σηµείο της παράλληλης προς την βάση ΒΓ ευθείας απεικονίζει σύστηµα µε σταθερή ποσότητα (περιεκτικότητα) από το συστατικό Α και µεταβλητές ποσότητες από τα δύο άλλα συστατικά. 2 3 Β 3-2

3 Σχήµα 2. Τριγωνικό διάγραµµα φάσεων που παριστά την σταθερή αναλογία των γραµµοµοριακών κλασµάτων x A, x B, x Γ, των συνθέσεων (σηµείων) επί της ΑΑ 3. Τα διαγράµµατα φάσεων τριών υγρών συστατικών έχουν διάφορες µορφές ανάλογα µε την σχετική διαλυτότητα που παρουσιάζουν µεταξύ τους. Ένα ζεύγος υγρών περιορισµένης διαλυτότητας. Θα παρακολουθήσοµε την περίπτωση όπου ένα ζεύγος υγρών (Α, Β) παρουσιάζει περιορισµένη διαλυτότητα, ενώ τα δύο άλλα ζεύγη (Α, Γ) και (Β, Γ) διαλύονται πλήρως. Στην περίπτωση αυτή ανήκει το σύστηµα νερό, φαινόλη, ακετόνη. Τα συστατικά ακετόνη φαινόλη και νερό ακετόνη σχηµατίζουν µία (οµοιογενή) υγρή φάση σε οποιαδήποτε αναλογία, ενώ τα συστατικά φαινόλη νερό παρουσιάζουν περιορισµένη διαλυτότητα και δηµιουργούνται δύο υγρές φάσεις. Τα συστατικά που παρουσιάζουν περιορισµένη διαλυτότητα τοποθετούνται στις κορυφές της βάσεως του τριγώνου και το συστατικό που διαλύεται πλήρως στα δύο άλλα τοποθετείται στην απέναντι της βάσεως κορυφή (σχήµα 2). Κατά την ανάµιξη νερού και φαινόλης σχηµατίζονται δύο συζυγείς φάσεις όπου η µία (φαινολική) είναι κορεσµένη σε νερό και η άλλη (υδατική) είναι κορεσµένη σε φαινόλη, ενώ το όλο σύστηµα χαρακτηρίζεται από την ίδια περιεκτικότητα στα δύο συστατικά, σηµείο α (σχήµα 2). Προσθέτοντας ακετόνη στο διάλυµα αυξάνεται η διαλυτότητα της φαινόλης στην υδατική φάση και η διαλυτότητα του νερού στην φαινόλη, ενώ η ακετόνη κατανέµεται ασύµµετρα στις δύο φάσεις. Με την συνεχή προσθήκη της ακετόνης θα έλθει στιγµή που οι δύο φάσεις εξαφανίζονται και το µίγµα γίνεται οµοιογενές. Ξεκινώντας από διαφορετικές ποσότητες νερού φαινόλης καταναλώνονται διαφορετικές ποσότητες ακετόνης για την µετατροπή του ετερογενούς συστήµατος (δύο φάσεις) σε οµοιογενές (µία φάση). Τα σηµεία (οι συνθέσεις) που οι δύο φάσεις µεταπίπτουν σε µία ορίζουν την καµπύλη διαλυτότητας. Σηµεία εκτός της καµπύλης διαλυτότητας παριστούν συνθέσεις µιάς φάσεως, ενώ σηµεία εντός της καµπύλης παριστούν συνθέσεις δύο φάσεων. 3-3

4 Σχήµα 3. Τριγωνικό διάγραµµα φάσεων συστήµατος τριών συστατικών Η σύνθεση των δύο φάσεων κατά την προσθήκη ακετόνης στο µίγµα συνθέσεως α, µεταβάλλεται κατά την αλληλουχία των ευθειών α n β n (σχήµα 2) που ονοµάζονται συζυγείς ευθείες και οι οποίες δεν είναι παράλληλες εφόσον η ακετόνη κατανέµεται ασύµµετρα στις δύο φάσεις. Αυξανόµενης της θερµοκρασίας το εµβαδόν που περικλείεται από την καµπύλη διαλυτότητας ελαττώνεται και στην θερµοκρασία που τα µερικώς µιγνυόµενα υγρά αναµιγνύονται πλήρως η καµπύλη έχει ένα µόνον κοινό σηµείο µε την αντίστοιχη πλευρά. Σε ακόµη µεγαλύτερες θερµοκρασίες το εµβαδόν µειώνεται σηµαντικά. ύο ζεύγη υγρών περιορισµένης διαλυτότητας. Εάν από τα τρία συστατικά το ζεύγος Β, Γ αναµιγνύεται πλήρως, ενώ τα ζεύγη Α, Β και Β, Γ αναµιγνύονται µερικώς το τριγωνικό διάγραµµα έχει την µορφή του σχήµατος 4. Στις περιοχές που περικλείονται µεταξύ των πλευρών του τριγώνου και των καµπυλών διαλυτότητας Ι 1 και Ι 2 συνυπάρχουν δύο φάσεις. Εκτός των καµπυλών διαλυτότητας τα σηµεία παριστούν συνθέσεις που αποτελούν µία φάση. Αν µειωθεί η θερµοκρασία η διαλυτότητα µειώνεται και οι δύο περιοχές που συνυπάρχουν οι δύο φάσεις διευρυνόµενες σχηµατίζουν µία ενιαία περιοχή Ι. ιαγράµµατα φάσεων της µορφής αυτής εµφανίζει το σύστηµα ηλεκτρικού νιτριλίου (Α), ύδατος (Β), και αιθυλικής αλκοόλης (Γ). Σχήµα 4. Τριγωνικό διάγραµµα φάσεων τριών συστατικών όπου δύο ζεύγη είναι περιορισµένης διαλυτότητας (Α, Β) και (Β, Γ) α) σε θερµοκρασία Τ 1 β) σε θερµοκρασία Τ 2 όπου Τ 1 >Τ

5 Τρία ζεύγη υγρών περιορισµένης διαλυτότητας. Στην περίπτωση όπου και τα τρία υγρά παρουσιάζουν περιορισµένη διαλυτότητα το τριγωνικό διάγραµµα φάσεων παρουσιάζει την µορφή του σχήµατος 5. Στις περιοχές που περικλείονται µεταξύ των πλευρών του τριγώνου και των καµπυλών διαλυτότητας Ι 1, Ι 2, Ι 3, συνυπάρχουν δύο φάσεις. Η περιοχή εκτός των καµπυλών διαλυτότητας αποτελείται από σηµεία που απεικονίζουν συνθέσεις µιάς φάσεως. Αν µειωθεί η θερµοκρασία, τα εµβαδά που περικλείονται από τις καµπύλες διαλυτότητας αυξάνονται λόγω µειώσεως της διαλυτότητας µε αποτέλεσµα τα τρία εµβαδά να τέµνονται και η εσωτερικώς αποκοπτόµενη περιοχή (τρίγωνο abc) να αποτελεί περιοχή υπάρξεως τριών φάσεων. Σχήµα 5. Τριγωνικό διάγραµµα φάσεων τριών συστατικών όπου και τα τρία ζεύγη είναι περιορισµένης α) σε θερµοκρασία Τ 1 β) σε θερµοκρασία Τ 2 όπου Τ 1 >Τ 2. Πείραµα Προσδιορισµός καµπύλης διαλυτότητας µεταξύ τριών µερικώς µιγνυοµένων συστατικών. Στην άσκηση αυτή θα παρακολουθήσοµε την συµπεριφορά συστήµατος τριών υγρών, ένα ζεύγος των οποίων παρουσιάζει περιορισµένη διαλυτότητα, ενώ τα δύο άλλα ζεύγη διαλύονται πλήρως. Τα ακόλουθα συστήµατα περιλαµβάνουν ένα ζεύγος υγρών περιορισµένης διαλυτότητας (Β και Γ συστατικά), ενώ το τρίτο συστατικό Α διαλύεται στα Β και Γ: Α Β Γ i. CH 3 COCH 3 H 2 O C 6 H 5 OH ii. C 2 H 5 OH H 2 O C 6 H 5 CH 3 iii. C 2 H 5 OH H 2 O CH 3 COOC 2 H 5 iv. CH 3 COOH H 2 O CHCl 3 v. CH 3 COOH H 2 O C 6 H 6 ιεξαγωγή πειράµατος. Εντός στεγνής κωνικής φιάλης 300 ml αναµιγνύονται γνωστές ποσότητες των µερικώς µιγνυοµένων συστατικών Β και Γ (5 ml τολουολίου και 0.2 ml νερό-αναλογία µε υψηλή περιεκτικότητα σε τολουόλιο). Λόγω της περιορισµένης διαλυτότητάς τους, εµφανίζονται στο διάλυµα δύο φάσεις. Ακολούθως προστίθεται από προχοΐδα το τρίτο συστατικό Α (το συστατικό που διαλύεται και στα δύο άλλα δηλ. η αιθανόλη) υπό συνεχή ανάδευση µέχρι πλήρους αναµίξεως των φάσεων (εµφάνιση µίας διαυγούς φάσεως). Σηµειώνεται η ποσότητα στην οποία παρατηρήθηκε η πλήρης ανάµιξη των τριών συστατικών. Στο διαυγές διάλυµα προστίθεται νέα ποσότητα του συστατικού Γ 3-5

6 οπότε εµφανίζονται πάλι δύο φάσεις και το σύστηµα διαυγάζεται µε προσθήκη του συστατικού Α από την προχοΐδα. Η διαδικασία επαναλαµβάνεται έως ότου ληφθούν 5-6 σηµεία. Το πείραµα αυτό επαναλαµβάνεται µε διαφορετικές αρχικές ποσότητες. Εντός στεγνής κωνικής φιάλης των 300 ml αναµιγνύονται 20 ml νερού και 2 ml τολουολίου (αναλογία µε υψηλή περιεκτικότητα σε νερό). Στο µίγµα προστίθεται C 2 H 5 OH µέχρι πλήρους ανάµιξης των φάσεων. Ακολουθείται η ίδια διαδικασία έως ότου ληφθούν 5-6 σηµεία. Σηµειώνεται η θερµοκρασία στην οποία πραγµατοποιήθηκαν τα πειράµατα και οι πυκνότητες των αντιδραστηρίων. Υπολογισµοί Αποτελέσµατα Από τους όγκους (V Α, V Β, V Γ ) των συστατικών, (οι οποίοι παριστούν οριακές συνθέσεις που το µίγµα γίνεται οµοιογενές), υπολογίζεται ο αριθµός των γραµµοµορίων (n Α, n Β, n Γ ) µε βάση τις πυκνότητες (ρ Α, ρ Β, ρ Γ ) και τις γραµµοµοριακές µάζες (M Α, M Β, M Γ ) και κατόπιν το γραµµοµοριακό κλάσµα (x Α, x Β, x Γ ) των συστατικών στις συνθέσεις αυτές. Οι τιµές αυτές τοποθετούνται σε πίνακα. Κατασκευάζεται το διάγραµµα φάσεων του µελετηθέντος συστήµατος σε τριγωνικό διάγραµµα µε την απεικόνιση των συνθέσεων και σχεδιάζεται η καµπύλη διαλυτότητας. Το διάγραµµα αυτό περιγράφει την συµπεριφορά του συστήµατος υπό την σταθερή θερµοκρασία και την σταθερή πίεση (ατµοσφαιρική) του πειράµατος. Σηµειώνονται στο διάγραµµα, η περιοχή στην οποία συνυπάρχουν δύο φάσεις και η περιοχή στην οποία εµφανίζεται µία φάση. 3-6

7 ΙΣΟΡΡΟΠΙΑ ΦΑΣΕΩΝ ΣΥΣΤΗΜΑΤΟΣ ΠΟΛΛΩΝ ΣΥΣΤΑΤΙΚΩΝ ΑΜΟΙΒΑΙΑ ΙΑΛΥΤΟΤΗΤΑ Ονοµατεπώνυµο Α.Μ. Ηµεροµηνία Α Β Γ Χηµική ένωση ρ (g/cm 3 ) M (g/mol) Θερµοκρασία πειράµατος θ = C Πίνακας. Συνθέσεις των συστατικών της καµπύλης διαλυτότητας. επί V Α (ml) V Β (ml) V Γ (ml) n Α (mol) n Β (mol) n Γ (mol) x Α x Β x Γ Να γραφεί η σχέση βάσει της οποίας υπολογίζεται ο αριθµός των moles (n Α, n Β, n Γ ) και τα γραµµοµοριακά κλάσµατα x Α, x Β, x Γ. ώσετε παράδειγµα υπολογισµού του αριθµού των moles n Α, n Β, n Γ γραµµοµοριακών κλασµάτων x Α, x Β, x Γ για την πρώτη σειρά µετρήσεων. και των 3-7

8 Στο διάγραµµα που ακολουθεί σχεδιάσετε την καµπύλη διαλυτότητας και σηµειώσετε επ αυτού την περιοχή ύπαρξης δύο φάσεων και την περιοχή πλήρους διαλυτοποιήσεως (ύπαρξης µίας φάσεως) Τριγωνικό διάγραµµα φάσεων. Να χαραχθεί η ευθεία επί της οποίας το γραµµοµοριακό κλάσµα x A του συστατικού Α µεταβάλλεται, ώστε η αναλογία των συνθέσεων των συστατικών Β και Γ να παραµένει σταθερή, όταν η αρχική σύνθεση του µίγµατος είναι x Β = 0.35 και x Γ = Σε ποια τιµή του x A το σύστηµα µεταπίπτει σε µία φάση; 3-8

ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ ΧΗΜΕΙΑΣ ΤΜΗΜΑΤΟΣ ΦΑΡΜΑΚΕΥΤΙΚΗΣ ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ: ΤΡΙΑΔΙΚΑ ΣΥΣΤΗΜΑΤΑ

ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ ΧΗΜΕΙΑΣ ΤΜΗΜΑΤΟΣ ΦΑΡΜΑΚΕΥΤΙΚΗΣ ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ: ΤΡΙΑΔΙΚΑ ΣΥΣΤΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΧΗΜΕΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΟΧΗΜΕΙΑΣ Γραφείο 211 Επίκουρος Καθηγητής: Δ. Τσιπλακίδης Τηλ.: 2310 997766 e mail: dtsiplak@hem.auth.gr url:

Διαβάστε περισσότερα

2). i = n i - n i - n i (2) 9-2

2). i = n i - n i - n i (2) 9-2 ΕΠΙΦΑΝΕΙΑΚΗ ΤΑΣΗ ΙΑΛΥΜΑΤΩΝ Έννοιες που πρέπει να γνωρίζετε: Εξίσωση Gbbs-Duhem, χηµικό δυναµικό συστατικού διαλύµατος Θέµα ασκήσεως: Μελέτη της εξάρτησης της επιφανειακής τάσης διαλυµάτων από την συγκέντρωση,

Διαβάστε περισσότερα

ΜΑΘΗΜΑ - VIII ΙΣΟΡΡΟΠΙΑ ΦΑΣΕΩΝ ΑΣΚΗΣΗ Α1 - Τάση ατµών καθαρού υ

ΜΑΘΗΜΑ - VIII ΙΣΟΡΡΟΠΙΑ ΦΑΣΕΩΝ ΑΣΚΗΣΗ Α1 - Τάση ατµών καθαρού υ ΜΑΘΗΜΑ - VIII ΙΣΟΡΡΟΠΙΑ ΦΑΣΕΩΝ ΑΣΚΗΣΗ Α1 - Τάση ατµών καθαρού υγρού Τµήµα Χηµείας, Πανεπιστήµιο Κρήτης, και Ινστιτούτο Ηλεκτρονικής οµής και Λέιζερ, Ιδρυµα Τεχνολογίας και Ερευνας, Ηράκλειο, Κρήτη http://tccc.iesl.forth.gr/education/local.html

Διαβάστε περισσότερα

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανολόγων Μηχανικών. Χημεία. Ενότητα 15: Διαλύματα

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανολόγων Μηχανικών. Χημεία. Ενότητα 15: Διαλύματα Τμήμα Μηχανολόγων Μηχανικών Χημεία Ενότητα 15: Διαλύματα Αν. Καθηγητής Γεώργιος Μαρνέλλος e-mail: gmarnellos@uowm.gr Τμήμα Μηχανολόγων Μηχανικών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ ΕΥΤΕΡΟ ΘΕΡΜΟ ΥΝΑΜΙΚΗ

ΚΕΦΑΛΑΙΟ ΕΥΤΕΡΟ ΘΕΡΜΟ ΥΝΑΜΙΚΗ ΘΕΡΜΟ ΥΝΑΜΙΚΗ ΚΕΦΑΛΑΙΟ ΕΥΤΕΡΟ ΘΕΡΜΟ ΥΝΑΜΙΚΗ 1. Τι εννοούµε λέγοντας θερµοδυναµικό σύστηµα; Είναι ένα κοµµάτι ύλης που αποµονώνουµε νοητά από το περιβάλλον. Περιβάλλον του συστήµατος είναι το σύνολο των

Διαβάστε περισσότερα

Χημική Τεχνολογία. Ενότητα 4: Ογκομετρική Ανάλυση. Ευάγγελος Φουντουκίδης Τμήμα Μηχανολόγων Μηχανικών Τ.Ε.

Χημική Τεχνολογία. Ενότητα 4: Ογκομετρική Ανάλυση. Ευάγγελος Φουντουκίδης Τμήμα Μηχανολόγων Μηχανικών Τ.Ε. ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Χημική Τεχνολογία Ενότητα 4: Ογκομετρική Ανάλυση Ευάγγελος Φουντουκίδης Τμήμα Μηχανολόγων Μηχανικών Τ.Ε. Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2014 ÊÏÑÕÖÁÉÏ ÅÕÏÓÌÏÓ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2014 ÊÏÑÕÖÁÉÏ ÅÕÏÓÌÏÓ ΤΑΞΗ: ΚΑΤΕΥΘΥΝΣΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ ΧΗΜΕΙΑ Ηµεροµηνία: Τετάρτη 3 Απριλίου 014 ιάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ Για τις ερωτήσεις Α1 έως και Α4 να γράψετε στο τετράδιό σας τον αριθµό

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΧΗΜΕΙΑ ΙΙΙ ΤΜΗΜΑ ΧΗΜΕΙΑΣ ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ: ΕΠΙΔΡΑΣΗ ΘΕΡΜΟΚΡΑΣΙΑΣ ΣΤΗ ΣΤΑΘΕΡΑ ΤΑΧΥΤΗΤΑΣ ΑΝΤΙΔΡΑΣΗΣ

ΦΥΣΙΚΗ ΧΗΜΕΙΑ ΙΙΙ ΤΜΗΜΑ ΧΗΜΕΙΑΣ ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ: ΕΠΙΔΡΑΣΗ ΘΕΡΜΟΚΡΑΣΙΑΣ ΣΤΗ ΣΤΑΘΕΡΑ ΤΑΧΥΤΗΤΑΣ ΑΝΤΙΔΡΑΣΗΣ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΧΗΜΕΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΟΧΗΜΕΙΑΣ Γραφείο 211 Επίκουρος Καθηγητής: Δ. Τσιπλακίδης Τηλ.: 2310 997766 e mail: dtsiplak@chem.auth.gr url:

Διαβάστε περισσότερα

ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΣΥΝΤΕΛΕΣΤΗ ΜΕΤΑΦΟΡΑΣ ΟΞΥΓΟΝΟΥ ΣΤΟ ΝΕΡΟ

ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΣΥΝΤΕΛΕΣΤΗ ΜΕΤΑΦΟΡΑΣ ΟΞΥΓΟΝΟΥ ΣΤΟ ΝΕΡΟ ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΣΥΝΤΕΛΕΣΤΗ ΜΕΤΑΦΟΡΑΣ ΟΞΥΓΟΝΟΥ ΣΤΟ ΝΕΡΟ ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΣΥΝΤΕΛΕΣΤΗ ΜΕΤΑΦΟΡΑΣ ΟΞΥΓΟΝΟΥ ΣΕ ΝΕΡΟ ΓΕΝΙΚΑ Με το πείραμα αυτό μπορούμε να προσδιορίσουμε δύο βασικές παραμέτρους που χαρακτηρίζουν ένα

Διαβάστε περισσότερα

Ατομική μονάδα μάζας (amu) ορίζεται ως το 1/12 της μάζας του ατόμου του άνθρακα 12 6 C.

Ατομική μονάδα μάζας (amu) ορίζεται ως το 1/12 της μάζας του ατόμου του άνθρακα 12 6 C. 4.1 Βασικές έννοιες Ατομική μονάδα μάζας (amu) ορίζεται ως το 1/12 της μάζας του ατόμου του άνθρακα 12 6 C. Σχετική ατομική μάζα ή ατομικό βάρος λέγεται ο αριθμός που δείχνει πόσες φορές είναι μεγαλύτερη

Διαβάστε περισσότερα

CH COOC H H O CH COOH C H OH

CH COOC H H O CH COOH C H OH ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΤΜΗΜΑ ΧΗΜΕΙΑΣ ΤΟΜΕΑΣ ΦΥΣΙΚΟΧΗΜΕΙΑΣ ΠΕΙΡΑΜΑ 2 ΧΗΜΙΚΗΣ ΚΙΝΗΤΙΚΗΣ (ΧΚ2) ΜΑΘΗΜΑ: ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΟΧΗΜΕΙΑΣ ΙΙ ΑΚΑΔ. ΕΤΟΣ: 2013-14 ΤΜΗΜAΤΑ TΡΙΤΗΣ ΚΑΙ ΤΕΤΑΡΤΗΣ Τίτλος Πειράματος: ΚΙΝΗΤΙΚΗ

Διαβάστε περισσότερα

panagiotisathanasopoulos.gr

panagiotisathanasopoulos.gr Χημική Ισορροπία 61 Παναγιώτης Αθανασόπουλος Χημικός, Διδάκτωρ Πανεπιστημίου Πατρών Χημικός Διδάκτωρ Παν. Πατρών 62 Τι ονομάζεται κλειστό χημικό σύστημα; Παναγιώτης Αθανασόπουλος Κλειστό ονομάζεται το

Διαβάστε περισσότερα

ΤΙΤΛΟΔΟΤΗΣΗ ΟΞΕΩΝ ΚΑΙ ΒΑΣΕΩΝ

ΤΙΤΛΟΔΟΤΗΣΗ ΟΞΕΩΝ ΚΑΙ ΒΑΣΕΩΝ ΤΙΤΛΟΔΟΤΗΣΗ ΟΞΕΩΝ ΚΑΙ ΒΑΣΕΩΝ Σκοπός Εργαστηριακής Άσκησης Η εξοικείωση με τις τεχνικές τιτλοδότησης και η κατανόηση των ογκομετρικών μεθόδων ανάλυσης. Θεωρητικό Μέρος Πάρα πολύ συχνά προκύπτει η ανάγκη

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Χημική Τεχνολογία. Εργαστηριακό Μέρος

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Χημική Τεχνολογία. Εργαστηριακό Μέρος ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Χημική Τεχνολογία Εργαστηριακό Μέρος Ενότητα 4: Ογκομετρική Ανάλυση Ευάγγελος Φουντουκίδης Τμήμα Μηχανολόγων Μηχανικών Τ.Ε. Άδειες

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2014 ÓÕÍÅÉÑÌÏÓ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2014 ÓÕÍÅÉÑÌÏÓ ΤΑΞΗ: ΚΑΤΕΥΘΥΝΣΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ ΧΗΜΕΙΑ Ηµεροµηνία: Μ. Τετάρτη 16 Απριλίου 2014 ιάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ Α.1 Ποια από τις παρακάτω τετράδες κβαντικών αριθµών αντιστοιχεί

Διαβάστε περισσότερα

Ποσοτική και Ποιoτική Ανάλυση

Ποσοτική και Ποιoτική Ανάλυση Ποσοτική και Ποιoτική Ανάλυση ιδάσκων: Σπύρος Περγαντής Γραφείο: Α206 Τηλ. 2810 545084 E-mail: spergantis@chemistry.uoc.gr Κεφ. 14 Χημική Ισορροπία Μια υναμική Ισορροπία Χημική ισορροπία είναι η κατάσταση

Διαβάστε περισσότερα

Μαθηματικά Θετικής Τεχνολογικής Κατεύθυνσης Β Λυκείου

Μαθηματικά Θετικής Τεχνολογικής Κατεύθυνσης Β Λυκείου Μαθηματικά Θετικής Τεχνολογικής Κατεύθυνσης Β Λυκείου Κεφάλαιο ο : Κωνικές Τομές Επιμέλεια : Παλαιολόγου Παύλος Μαθηματικός ΚΕΦΑΛΑΙΟ Ο : ΚΩΝΙΚΕΣ ΤΟΜΕΣ. Ο ΚΥΚΛΟΣ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ Ένας κύκλος ορίζεται αν

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2013

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2013 ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2013 Μάθημα: Χημεία Ημερομηνία και ώρα εξέτασης: Παρασκευή, 24 Μαΐου, 2013 7:30 10:30

Διαβάστε περισσότερα

Αρχή της μεθόδου: MAΘΗΜΑ 7 ο MEΘΟ ΟΙ ΙΑΧΩΡΙΣΜΟΥ ΟΡΓΑΝΙΚΩΝ ΕΝΩΣΕΩΝ ΕΚΧΥΛΙΣΗ

Αρχή της μεθόδου: MAΘΗΜΑ 7 ο MEΘΟ ΟΙ ΙΑΧΩΡΙΣΜΟΥ ΟΡΓΑΝΙΚΩΝ ΕΝΩΣΕΩΝ ΕΚΧΥΛΙΣΗ MAΘΗΜΑ 7 ο MEΘΟ ΟΙ ΙΑΧΩΡΙΣΜΟΥ ΟΡΓΑΝΙΚΩΝ ΕΝΩΣΕΩΝ ΕΚΧΥΛΙΣΗ Αρχή της μεθόδου: Η μέθοδος στηρίζεται στις διαφορετικές διαλυτότητες των ουσιών σε δύο μη μιγνυομένους διαλύτες Δρα. Κουκουλίτσα Αικατερίνη Χημικός

Διαβάστε περισσότερα

1 η Εργαστηριακή άσκηση. Παρασκευή Αραίωση. διαλύματος. Δρ. Άρης Γιαννακάς - Ε.ΔΙ.Π.

1 η Εργαστηριακή άσκηση. Παρασκευή Αραίωση. διαλύματος. Δρ. Άρης Γιαννακάς - Ε.ΔΙ.Π. 1 η Εργαστηριακή άσκηση Παρασκευή Αραίωση διαλύματος 1 Θεωρητικό Μέρος Εισαγωγικές έννοιες Όπως είναι γνωστό η ύλη διαχωρίζεται σε δύο βασικές κατηγορίες: Τις καθαρές ουσίες (στοιχεία, χημικές ενώσεις)

Διαβάστε περισσότερα

. ΠΡΩΤΟΣ ΘΕΡΜΟ ΥΝΑΜΙΚΟΣ ΝΟΜΟΣ

. ΠΡΩΤΟΣ ΘΕΡΜΟ ΥΝΑΜΙΚΟΣ ΝΟΜΟΣ . ΠΡΩΤΟΣ ΘΕΡΜΟ ΥΝΑΜΙΚΟΣ ΝΟΜΟΣ 1. Σε µια ισόθερµη µεταβολή : α) Το αέριο µεταβάλλεται µε σταθερή θερµότητα β) Η µεταβολή της εσωτερικής ενέργειας είναι µηδέν V W = PV ln V γ) Το έργο που παράγεται δίνεται

Διαβάστε περισσότερα

2.3 ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ

2.3 ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ.ptetragono.gr Σελίδα. ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ Να βρεθεί το μέτρο των μιγαδικών :..... 0 0. 5 5 6.. 0 0. 5. 5 5 0 0 0 0 0 0 0 0 ΜΕΘΟΔΟΛΟΓΙΑ : ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ Αν τότε. Αν χρειαστεί

Διαβάστε περισσότερα

ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ

ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΕΥΡΙΠΙΔΟΥ 80 ΝΙΚΑΙΑ ΝΕΑΠΟΛΗ ΤΗΛΕΦΩΝΟ 0965897 ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ ΒΡΟΥΤΣΗ ΕΥΑΓΓΕΛΙΑ ΜΠΟΥΡΝΟΥΤΣΟΥ ΚΩΝ/ΝΑ ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ Η έννοια του μιγαδικού

Διαβάστε περισσότερα

Σχέση πυκνότητας και περιεκτικότητας σε αιθανόλη αλκοολούχων διαλυµάτων. Φύλλο εργασίας - αξιολόγησης

Σχέση πυκνότητας και περιεκτικότητας σε αιθανόλη αλκοολούχων διαλυµάτων. Φύλλο εργασίας - αξιολόγησης Σχέση πυκνότητας και περιεκτικότητας σε αιθανόλη αλκοολούχων διαλυµάτων. Φύλλο εργασίας - αξιολόγησης Τάξη B Λυκείου Ονοµατεπώνυµο Μάθηµα Γνωστικό αντικείµενο: Χηµεία (Γενικής Παιδείας) Αλκοόλες........................

Διαβάστε περισσότερα

ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ-ΙΟΥΝΙΟΥ 2015

ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ-ΙΟΥΝΙΟΥ 2015 ΛΥΚΕΙΟ ΑΡΧ. ΜΑΚΑΡΙΟΥ Γ - ΔΑΣΟΥΠΟΛΗ ΣΧΟΛΙΚΟ ΕΤΟΣ 2014-2015 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ-ΙΟΥΝΙΟΥ 2015 ΜΑΘΗΜΑ: ΧΗΜΕΙΑ ΗΜΕΡΟΜΗΝΙΑ: 25/5/2015 ΒΑΘΜΟΣ:... ΤΑΞΗ: Β ΧΡΟΝΟΣ: 2.5 ώρες ΥΠ. ΚΑΘΗΓΗΤΗ:... ΟΝΟΜΑΤΕΠΩΝΥΜΟ:...

Διαβάστε περισσότερα

Πείραμα 2 Αν αντίθετα, στο δοχείο εισαχθούν 20 mol ΗΙ στους 440 ºC, τότε το ΗΙ διασπάται σύμφωνα με τη χημική εξίσωση: 2ΗΙ(g) H 2 (g) + I 2 (g)

Πείραμα 2 Αν αντίθετα, στο δοχείο εισαχθούν 20 mol ΗΙ στους 440 ºC, τότε το ΗΙ διασπάται σύμφωνα με τη χημική εξίσωση: 2ΗΙ(g) H 2 (g) + I 2 (g) Α. Θεωρητικό μέρος Άσκηση 5 η Μελέτη Χημικής Ισορροπίας Αρχή Le Chatelier Μονόδρομες αμφίδρομες αντιδράσεις Πολλές χημικές αντιδράσεις οδηγούνται, κάτω από κατάλληλες συνθήκες, σε κατάσταση ισορροπίας

Διαβάστε περισσότερα

Οι ιδιότητες των αερίων και καταστατικές εξισώσεις. Θεόδωρος Λαζαρίδης Σημειώσεις για τις παραδόσεις του μαθήματος Φυσικοχημεία Ι

Οι ιδιότητες των αερίων και καταστατικές εξισώσεις. Θεόδωρος Λαζαρίδης Σημειώσεις για τις παραδόσεις του μαθήματος Φυσικοχημεία Ι Οι ιδιότητες των αερίων και καταστατικές εξισώσεις Θεόδωρος Λαζαρίδης Σημειώσεις για τις παραδόσεις του μαθήματος Φυσικοχημεία Ι Τι είναι αέριο; Λέμε ότι μία ουσία βρίσκεται στην αέρια κατάσταση όταν αυθόρμητα

Διαβάστε περισσότερα

ÊÏÑÕÖÇ. 1.2 Το ph υδατικού διαλύµατος ασθενούς βάσης Β 0,01Μ είναι : Α. Μεγαλύτερο του 12 Β. 12 Γ. Μικρότερο του 2. Μικρότερο του 12 Μονάδες 5

ÊÏÑÕÖÇ. 1.2 Το ph υδατικού διαλύµατος ασθενούς βάσης Β 0,01Μ είναι : Α. Μεγαλύτερο του 12 Β. 12 Γ. Μικρότερο του 2. Μικρότερο του 12 Μονάδες 5 1 Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΘΕΜΑ 1ο ΧΗΜΕΙΑ Στις ερωτήσεις 1.1 έως 1.3 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση. 1.1 Η ενέργεια ιοντισµού

Διαβάστε περισσότερα

Αυτoϊοντισμός του νερού ph

Αυτoϊοντισμός του νερού ph Αυτoϊοντισμός του νερού ph Το καθαρό νερό είναι ηλεκτρολύτης; Το καθαρό νερό είναι ομοιοπολική ένωση και θα περιμέναμε να είναι μην εμφανίζει ηλεκτρική αγωγιμότητα. Μετρήσεις μεγάλης ακρίβειας όμως έδειξαν

Διαβάστε περισσότερα

ΕΤΕΡΟΓΕΝΗΣ ΚΑΤΑΛΥΤΙΚΗ ΜΕΤΑΤΡΟΠΗ ΕΛΕΥΘΕΡΩΝ ΛΙΠΑΡΩΝ ΟΞΕΩΝ ΟΞΙΝΩΝ ΕΛΑΙΩΝ ΣΕ ΒΙΟΝΤΙΖΕΛ

ΕΤΕΡΟΓΕΝΗΣ ΚΑΤΑΛΥΤΙΚΗ ΜΕΤΑΤΡΟΠΗ ΕΛΕΥΘΕΡΩΝ ΛΙΠΑΡΩΝ ΟΞΕΩΝ ΟΞΙΝΩΝ ΕΛΑΙΩΝ ΣΕ ΒΙΟΝΤΙΖΕΛ Εθνικό Μετσόβιο Πολυτεχνείο (ΕΜΠ) Σχολή Χημικών Μηχανικών Τομέας ΙΙ Μονάδα Μηχανικής Διεργασιών Υδρογονανθράκων και Βιοκαυσίμων ΕΤΕΡΟΓΕΝΗΣ ΚΑΤΑΛΥΤΙΚΗ ΜΕΤΑΤΡΟΠΗ ΕΛΕΥΘΕΡΩΝ ΛΙΠΑΡΩΝ ΟΞΕΩΝ ΟΞΙΝΩΝ ΕΛΑΙΩΝ ΣΕ

Διαβάστε περισσότερα

ΤΕΤΡΑΚΤΥΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Αμυραδάκη 20, Νίκαια (210-4903576) ΝΟΕΜΒΡΙΟΣ 2013 ΤΑΞΗ... Β ΛΥΚΕΙΟΥ... ΜΑΘΗΜΑ...ΓΕΩΜΕΤΡΙΑΣ...

ΤΕΤΡΑΚΤΥΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Αμυραδάκη 20, Νίκαια (210-4903576) ΝΟΕΜΒΡΙΟΣ 2013 ΤΑΞΗ... Β ΛΥΚΕΙΟΥ... ΜΑΘΗΜΑ...ΓΕΩΜΕΤΡΙΑΣ... Αμυραδάκη 0, Νίκαια (10-4903576) ΤΑΞΗ... Β ΛΥΚΕΙΟΥ... ΘΕΜΑ 1 ΝΟΕΜΒΡΙΟΣ 013 Α. Να αποδείξετε ότι σε κάθε ορθογώνιο τρίγωνο, το τετράγωνο του ύψους που αντιστοιχεί στην υποτείνουσα του ισούται με το γινόμενο

Διαβάστε περισσότερα

ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γιώργος Πρέσβης ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΚΕΦΑΛΑΙΟ Ο : ΕΞΙΣΩΣΗ ΕΥΘΕΙΑΣ ΕΠΑΝΑΛΗΨΗ Φροντιστήρια Φροντιστήρια ΜΕΘΟΔΟΛΟΓΙΑ ΑΣΚΗΣΕΩΝ 1η Κατηγορία : Εξίσωση Γραμμής 1.1 Να εξετάσετε

Διαβάστε περισσότερα

Κίνηση σε Ηλεκτρικό Πεδίο.

Κίνηση σε Ηλεκτρικό Πεδίο. Κίνηση σε Ηλεκτρικό Πεδίο. 3.01. Έργο κατά την μετακίνηση φορτίου. Στις κορυφές Β και Γ ενόςισοπλεύρου τριγώνου ΑΒΓ πλευράς α= 2cm, βρίσκονται ακλόνητα δύο σηµειακά ηλεκτρικά φορτία q 1 =2µC και q 2 αντίστοιχα.

Διαβάστε περισσότερα

Τράπεζα Θεμάτων Χημεία Α Λυκείου

Τράπεζα Θεμάτων Χημεία Α Λυκείου Τράπεζα Θεμάτων Χημεία Α Λυκείου ΟΛΑ ΤΑ ΘΕΜΑΤΑ ΣΤΗ ΔΙΑΛΥΤΟΤΗΤΑ ΑΠΟ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ 11 ερωτήσεις με απάντηση Επιμέλεια: Γιάννης Καλαμαράς, Διδάκτωρ Χημικός 1. Σε ορισμένη ποσότητα ζεστού νερού διαλύεται

Διαβάστε περισσότερα

ΓΕΝΙΚΕΣ ΤΕΧΝΙΚΕΣ ΠΟΣΟΤΙΚΟΠΟΙΗΣΗΣ ΣΤΗΝ ΕΝΟΡΓΑΝΗ ΑΝΑΛΥΣΗ ΤΕΧΝΙΚΗ ΚΑΜΠΥΛΗΣ ΑΝΑΦΟΡΑΣ (CALIBRATION CURVE TECHNIQUE)

ΓΕΝΙΚΕΣ ΤΕΧΝΙΚΕΣ ΠΟΣΟΤΙΚΟΠΟΙΗΣΗΣ ΣΤΗΝ ΕΝΟΡΓΑΝΗ ΑΝΑΛΥΣΗ ΤΕΧΝΙΚΗ ΚΑΜΠΥΛΗΣ ΑΝΑΦΟΡΑΣ (CALIBRATION CURVE TECHNIQUE) ΓΕΝΙΚΕΣ ΤΕΧΝΙΚΕΣ ΠΟΣΟΤΙΚΟΠΟΙΗΣΗΣ ΣΤΗΝ ΕΝΟΡΓΑΝΗ ΑΝΑΛΥΣΗ Σχεδόν στο σύνολό τους οι ενόργανες τεχνικές παρέχουν τη μέτρηση μιας φυσικής ή φυσικοχημικής παραμέτρου Ρ η οποία συνδέεται άμεσα η έμμεσα με την

Διαβάστε περισσότερα

Τράπεζα Χημεία Α Λυκείου

Τράπεζα Χημεία Α Λυκείου Τράπεζα Χημεία Α Λυκείου 1 ο Κεφάλαιο Όλα τα θέματα του 1 ου Κεφαλαίου από τη Τράπεζα Θεμάτων 25 ερωτήσεις Σωστού Λάθους 30 ερωτήσεις ανάπτυξης Επιμέλεια: Γιάννης Καλαμαράς, Διδάκτωρ Χημικός Ερωτήσεις

Διαβάστε περισσότερα

1 ο Αχαρνών 197 Αγ. Νικόλαος 210.8651962. 2 ο Αγγ. Σικελιανού 43 Περισσός 210.2718688

1 ο Αχαρνών 197 Αγ. Νικόλαος 210.8651962. 2 ο Αγγ. Σικελιανού 43 Περισσός 210.2718688 1 ο Αχαρνών 197 Αγ. Νικόλαος 10.865196 ο Αγγ. Σικελιανού 4 Περισσός 10.718688 AΣΚΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ 1. Θεωρούμε ορθογώνιο τρίγωνο ΑΒΓ (Α =90Ο ) και Α το ύψος του. Αν Ε και Ζ είναι οι προβολές του

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 3 η ΕΚΑ Α

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 3 η ΕΚΑ Α ΣΚΗΣΕΙΣ ΕΠΝΛΗΨΗΣ η ΕΚ. Έστω οι παραστάσεις = 4 4 + 5, Β = 5 (8 + 0) : (7 5) και Γ = 6 : 5 4 Να υπολογίσετε την τιµή των παραστάσεων ν = 5, Β = 6 και Γ = να βρείτε : i) Το ελάχιστο κοινό πολλαπλάσιο των,

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ ΧΗΜΕΙΑΣ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ ΧΗΜΕΙΑΣ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Εργαστηριακό Κέντρο Φυσικών Επιστηµών Aγίων Αναργύρων Υπεύθυνος Εργ. Κέντρου : Χαρακόπουλος Καλλίνικος Επιµέλεια Παρουσίαση : Καραγιάννης Πέτρος ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ ΧΗΜΕΙΑΣ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

Διαβάστε περισσότερα

Σημειώσεις Χημείας Α Λυκείου - Κεφάλαιο 1 ο

Σημειώσεις Χημείας Α Λυκείου - Κεφάλαιο 1 ο ΔΙΑΛΥΜΑΤΑ ΠΕΡΙΕΚΤΙΚΟΤΗΤΕΣ ΔΙΑΛΥΜΑΤΩΝ ΔΙΑΛΥΤΟΤΗΤΑ - ΜΕΘΟΔΟΛΟΓΙΑ ΑΣΚΗΣΕΩΝ Γενικά για τα διαλύματα Διάλυμα είναι ένα ομογενές μίγμα δύο ή περισσοτέρων ουσιών, οι οποίες αποτελούν τα συστατικά του διαλύματος.

Διαβάστε περισσότερα

Σύντομη περιγραφή του πειράματος

Σύντομη περιγραφή του πειράματος Σύντομη περιγραφή του πειράματος Παρασκευή διαλυμάτων ορισμένης περιεκτικότητας και συγκέντρωσης, καθώς επίσης και παρασκευή διαλυμάτων συγκεκριμένης συγκέντρωσης από διαλύματα μεγαλύτερης συγκέντρωσης

Διαβάστε περισσότερα

Παραδείγµατα συναρτήσεων: f:[0,+ ) IR, f(x)=2+ x f:ir IR: f(x)=

Παραδείγµατα συναρτήσεων: f:[0,+ ) IR, f(x)=2+ x f:ir IR: f(x)= ΣΥΝΑΡΤΗΣΕΙΣ - 9 - ΚΕΦΑΛΑΙ ΚΕΦΑΛΑΙ ο - ΣΥΝΑΡΤΗΣΕΙΣ.. ρισµός Συνάρτηση από ένα σύνολο Α σ ένα σύνολο Β είναι ένας κανόνας µε τον οποίο κάθε στοιχείο του Α απεικονίζεται σε ένα ακριβώς στοιχείο του Β. Το

Διαβάστε περισσότερα

Η συνάρτηση y = αχ 2 + βχ + γ

Η συνάρτηση y = αχ 2 + βχ + γ Η συνάρτηση y αχ + βχ + γ Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd 1 Η συνάρτηση y αx + βx + γ με α 0 Μια συνάρτηση της μορφής y αx + βx + γ με α 0 ονομάζεται τετραγωνική

Διαβάστε περισσότερα

2.6.2 Φυσικές σταθερές των χημικών ουσιών

2.6.2 Φυσικές σταθερές των χημικών ουσιών 1 2.6.2 Φυσικές σταθερές των χημικών ουσιών Ερωτήσεις θεωρίας με απαντήσεις 6-2-1. Ποιες χημικές ουσίες λέγονται καθαρές ή καθορισμένες; Τα χημικά στοιχεία και οι χημικές ενώσεις. 6-2-2. Ποια είναι τα

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γιώργος Πρέσβης ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΚΕΦΑΛΑΙΟ 3 Ο : ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΕΠΑΝΑΛΗΨΗ Φροντιστήρια Φροντιστήρια ΜΕΘΟΔΟΛΟΓΙΑ ΠΑΡΑΔΕΙΓΜΑΤΑ η Κατηγορία : Ο Κύκλος και τα στοιχεία

Διαβάστε περισσότερα

Τράπεζα Θεμάτων Διαβαθμισμένης Δυσκολίας-Μαθηματικά Ομάδας Προσανατολισμού Θετικών Σπουδών ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β Λ Υ Κ Ε Ι Ο Υ

Τράπεζα Θεμάτων Διαβαθμισμένης Δυσκολίας-Μαθηματικά Ομάδας Προσανατολισμού Θετικών Σπουδών ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β Λ Υ Κ Ε Ι Ο Υ Μ Α Θ Η Μ Α Τ Ι Κ Α ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β Λ Υ Κ Ε Ι Ο Υ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΒΑΘΜΙΣΜΕΝΗΣ ΔΥΣΚΟΛΙΑΣ Σχολικό έτος : 04-05 Τα θέματα εμπλουτίζονται με την δημοσιοποίηση και των νέων θεμάτων

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΑ Β ΓΕΛ. ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ. ΚΕΦΑΛΑΙΟ:9 ο

ΓΕΩΜΕΤΡΙΑ Β ΓΕΛ. ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ. ΚΕΦΑΛΑΙΟ:9 ο 14 1 ΓΕΩΜΕΤΡΙΑ Β ΓΕΛ. ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΚΕΦΑΛΑΙΟ:9 ο _18997 ΘΕΜΑ Β Ένας άνθρωπος σπρώχνει ένα κουτί προς τα πάνω στη ράµπα του παρακάτω σχήµατος. α) Να αποδείξετε ότι για το ύψος y, που απέχει το κουτί από

Διαβάστε περισσότερα

και 2, 2 2 είναι κάθετα να βρείτε την τιμή του κ. γ) Αν στο τρίγωνο ΑΒΓ επιπλέον ισχύει Α(3,1), να βρείτε τις συντεταγμένες των κορυφών του Β και Γ.

και 2, 2 2 είναι κάθετα να βρείτε την τιμή του κ. γ) Αν στο τρίγωνο ΑΒΓ επιπλέον ισχύει Α(3,1), να βρείτε τις συντεταγμένες των κορυφών του Β και Γ. Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ (ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ) 8556 ΘΕΜΑ Δίνονται τα διανύσματα και με, και, 3 α) Να βρείτε το εσωτερικό γινόμενο β) Αν τα διανύσματα γ) Να βρείτε το μέτρο του διανύσματος 8558 ΘΕΜΑ

Διαβάστε περισσότερα

ΜΕΛΕΤΗ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ

ΜΕΛΕΤΗ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ 5 ΜΕΛΕΤΗ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ Εισαγωγή Στο κεφάλαιο αυτό θα δούμε πώς, με τη βοήθεια των πληροφοριών που α- ποκτήσαμε μέχρι τώρα, μπορούμε να χαράξουμε με όσο το δυνατόν μεγαλύτερη ακρίβεια τη γραφική παράσταση

Διαβάστε περισσότερα

Κωνικές τομές. Προκύπτουν σαν τομές ορθού κυκλικού κώνου με επίπεδο που δεν διέρχεται από την κορυφή του

Κωνικές τομές. Προκύπτουν σαν τομές ορθού κυκλικού κώνου με επίπεδο που δεν διέρχεται από την κορυφή του Κωνικές τομές Προκύπτουν σαν τομές ορθού κυκλικού κώνου με επίπεδο που δεν διέρχεται από την κορυφή του ΚΥΚΛΟΣ το επίπεδο είναι κάθετο στον άξονα του κώνου ΠΑΡΑΒΟΛΗ το επίπεδο είναι παράλληλο σε μια γενέτειρα

Διαβάστε περισσότερα

1.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ

1.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ . ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ Ασκήσεις σχολικού βιβλίου σελίδας A Οµάδας. = 4 Να λύσετε το σύστηµα + = αλγεβρικά γραφικά = 4 = 4+ + = + = = 4+ 4 + + = = 4+ = = 4+ = = 4 = = = = 4 = 4 παριστάνει ευθεία ε Για = 0

Διαβάστε περισσότερα

ΜΕΡΟΣ Α : Ερωτήσεις 1-6 Να απαντήσετε σε όλες τις ερωτήσεις 1-6. Κάθε ορθή απάντηση βαθμολογείται με 5 μονάδες.

ΜΕΡΟΣ Α : Ερωτήσεις 1-6 Να απαντήσετε σε όλες τις ερωτήσεις 1-6. Κάθε ορθή απάντηση βαθμολογείται με 5 μονάδες. ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙ ΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2011 Μάθημα: ΧΗΜΕΙΑ Ημερομηνία και ώρα εξέτασης: Παρασκευή, 27 Μαΐου, 2011 Ώρα εξέτασης:

Διαβάστε περισσότερα

ΔΙΑΝΥΣΜΑΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ. ΘΕΜΑ 2ο

ΔΙΑΝΥΣΜΑΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ. ΘΕΜΑ 2ο Β ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΝΥΣΜΑΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ ΘΕΜΑ ο ΘΕΜΑ 8603 Δίνεται τρίγωνο και σημεία και του επιπέδου τέτοια, ώστε 5 και 5. α) Να γράψετε το διάνυσμα ως γραμμικό

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2013

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2013 ΧΗΜΕΙΑ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α Για τις ερωτήσεις Α1 έως και Α4 να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. Α1. Πολυμερισμό 1,4 δίνει η ένωση:

Διαβάστε περισσότερα

Ä ÑÁÓÔÇÑÉÏÔÇÔÁ 1ç. Απάντηση Οι γωνίες που σχηµατίζονται είναι: Α. αµβλεία Β. ευθεία Γ. πλήρης. οξεία Ε. ορθή Ζ. αµβλεία Η. οξεία.

Ä ÑÁÓÔÇÑÉÏÔÇÔÁ 1ç. Απάντηση Οι γωνίες που σχηµατίζονται είναι: Α. αµβλεία Β. ευθεία Γ. πλήρης. οξεία Ε. ορθή Ζ. αµβλεία Η. οξεία. Ä ÑÁÓÔÇÑÉÏÔÇÔÁ 1ç Σε όλα τα παρακάτω αντικείµενα σχηµατίζονται διάφορες γωνίες ανάλογα µε τη σχετική θέση, κάθε φορά, δύο ηµιευθειών που έχουν ένα κοινό ση- µείο, όπως π.χ. είναι οι δείκτες του ρολογιού,

Διαβάστε περισσότερα

ΜΕΡΟΣ Α : Ερωτήσεις 1-6

ΜΕΡΟΣ Α : Ερωτήσεις 1-6 Μάθημα: ΧΗΜΕΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2009 Ημερομηνία εξέτασης: Παρασκευή 29 Μαΐου 2009 Ώρα εξέτασης: 07:30

Διαβάστε περισσότερα

Οξέα Βάσεις και ιοντική ισορροπία. Σύνθεση και προσδιορισµός του ph διαλυµάτων αλάτων. Απαιτούµενος χρόνος 2 διδακτικές ώρες Ηµεροµηνία...

Οξέα Βάσεις και ιοντική ισορροπία. Σύνθεση και προσδιορισµός του ph διαλυµάτων αλάτων. Απαιτούµενος χρόνος 2 διδακτικές ώρες Ηµεροµηνία... Σύνθεση και προσδιορισµός του ph διαλυµάτων αλάτων Φύλλο εργασίας Τάξη Γ Λυκείου Ονοµατεπώνυµο Μάθηµα Γνωστικό αντικείµενο ιδακτική ενότητα Χηµεία Οξέα Βάσεις και ιοντική ισορροπία Σύνθεση και προσδιορισµός

Διαβάστε περισσότερα

Γεωμετρία Β Λυκείου ΚΕΦΑΛΑΙΟ 8: ΟΜΟΙΟΤΗΤΑ

Γεωμετρία Β Λυκείου ΚΕΦΑΛΑΙΟ 8: ΟΜΟΙΟΤΗΤΑ ΚΕΦΑΛΑΙΟ 8: ΟΜΟΙΟΤΗΤΑ 36 ΚΕΦΑΛΑΙΟ 9: ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ 37 ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΕ ΤΥΧΑΙΟ ΤΡΙΓΩΝΟ 38 39 40 41 ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΕ ΚΥΚΛΟ 4 43 44 ΚΕΦΑΛΑΙΟ 10:ΕΜΒΑΔΑ ΕΠΙΠΕΔΩΝ ΣΧΗΜΑΤΩΝ 45 46 47 48 49 50 51 5 53

Διαβάστε περισσότερα

4. Να υπολογιστεί η πίεση που χρειάζεται να ασκηθεί για να λιώσει ο πάγος στους -4 ο C. (1.5 β)

4. Να υπολογιστεί η πίεση που χρειάζεται να ασκηθεί για να λιώσει ο πάγος στους -4 ο C. (1.5 β) Α Ε Η Ν Α Ω ΝήΝ Η ΑΝΕ Η Η Ν Ω Ν Ω Ε Ν Ν ανφυ χ εία 29/09/2010 α ε α χ β β ία/ ε α 2έη h πώ υ α ό α ε ε α υ:...... Α.Μ.... 1. αν αν π Ν π Νπ Ν1atm (a) Ν1 kgr H 2 O α α Ν-7 ο C; (b) Ν1 t H 2 O α α Ν+7 ο

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ. 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις)

ΣΥΣΤΗΜΑΤΑ. 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις) 6 ΣΥΣΤΗΜΑΤΑ 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις) Η εξίσωση αx βy γ Στο Γυμνάσιο διαπιστώσαμε με την βοήθεια παραδειγμάτων ότι η εξίσωση αx βy γ, με α 0 ή β 0, που λέγεται γραμμική εξίσωση,

Διαβάστε περισσότερα

ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. Η διαίρεση καλείται Ευκλείδεια και είναι τέλεια όταν το υπόλοιπο είναι μηδέν.

ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. Η διαίρεση καλείται Ευκλείδεια και είναι τέλεια όταν το υπόλοιπο είναι μηδέν. ΑΛΓΕΒΡΑ 1 ο ΚΕΦΑΛΑΙΟ ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ 1. Τι είναι αριθμητική παράσταση; Με ποια σειρά εκτελούμε τις πράξεις σε μια αριθμητική παράσταση ώστε να βρούμε την τιμή της; Αριθμητική παράσταση λέγεται κάθε

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1ο ΝΟΜΟΙ ΑΕΡΙΩΝ - ΘΕΡΜΟ ΥΝΑΜΙΚΗ

ΚΕΦΑΛΑΙΟ 1ο ΝΟΜΟΙ ΑΕΡΙΩΝ - ΘΕΡΜΟ ΥΝΑΜΙΚΗ ΚΕΦΑΛΑΙΟ ο ΝΟΜΟΙ ΑΕΡΙΩΝ -ΚΙΝΗΤΙΚΗ ΘΕΩΡΙΑ ΑΕΡΙΩΝ ΝΟΜΟΙ ΑΕΡΙΩΝ - ΘΕΡΜΟ ΥΝΑΜΙΚΗ Τι γνωρίζετε για την καταστατική εξίσωση των ιδανικών αερίων; Η καταστατική εξίσωση των αερίων είναι µια σχέση που συνδέει µεταξύ

Διαβάστε περισσότερα

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ 5 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑΔΑ ΦΥΣΙΚΗΣ B ΓΥΜΝΑΣΙΟΥ Κυριακή, 17 Μαΐου 2009 Ώρα: 10:00 12:30 Οδηγίες: 1) Το δοκίμιο αποτελείται από οκτώ (8) θέματα. 2) Απαντήστε σε όλα τα θέματα. 3) Επιτρέπεται η χρήση μόνο μη

Διαβάστε περισσότερα

«Ανάπτυξη Ολοκληρωµένων Εκπαιδευτικών Πακέτων»

«Ανάπτυξη Ολοκληρωµένων Εκπαιδευτικών Πακέτων» Ανάπτυξη Εκπαιδευτικού Λογισµικού και Ολοκληρωµένων Εκπαιδευτικών Πακέτων για τα Ελληνικά σχολεία της Πρωτοβάθµιας και ευτεροβάθµιας Εκπαίδευσης & ιάθεση Προϊόντων Εκπαιδευτικού Λογισµικού στα Σχολεία

Διαβάστε περισσότερα

ΓΑΛΒΑΝΙΚΑ ΣΤΟΙΧΕΙΑ Ι Θέμα ασκήσεως Αρχή μεθόδου Θεωρία

ΓΑΛΒΑΝΙΚΑ ΣΤΟΙΧΕΙΑ Ι Θέμα ασκήσεως Αρχή μεθόδου Θεωρία 3-1 ΓΑΛΒΑΝΙΚΑ ΣΤΟΙΧΕΙΑ Ι Θέμα ασκήσεως: Προσδιορισμός κανονικού δυναμικού (Ε) ηλεκτροδίου. Προσδιορισμός του θερμικού συντελεστή ( Ε/ Τ) P. Προσδιορισμός του γινομένου διαλυτότητας του Agl. Αρχή μεθόδου:

Διαβάστε περισσότερα

Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου

Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου Άλγεβρα 1.1 Β : Δυνάμεις πραγματικών αριθμών. 1. Πως ορίζεται η δύναμη ενός πραγματικού αριθμού ; Η δύναμη με βάση έναν πραγματικό αριθμό α και εκθέτη ένα

Διαβάστε περισσότερα

ΦΥΛΛΑ ΙΑ ΣΗΜΕΙΩΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ

ΦΥΛΛΑ ΙΑ ΣΗΜΕΙΩΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΦΥΛΛΑ ΙΑ ΣΗΜΕΙΩΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΦΥΛΛΑ ΙΟ ΑΣΚΗΣΕΩΝ 1 Θέµα: Τα διανύσµατα ❶ ❷ ❸ ❹ ❺ Η έννοια του διανύσµατος Πρόσθεση και αφαίρεση διανυσµάτων Πολλαπλασιασµός αριθµού µε διάνυσµα Συντεταγµένες

Διαβάστε περισσότερα

Συναρτήσεις. 5.1 Η έννοια της συνάρτησης. 1. Να συμπληρώσετε τις τιμές των παρακάτω συναρτήσεων : α) ψ = 2χ + 6 o Για χ = -1,5 : ψ =..=..

Συναρτήσεις. 5.1 Η έννοια της συνάρτησης. 1. Να συμπληρώσετε τις τιμές των παρακάτω συναρτήσεων : α) ψ = 2χ + 6 o Για χ = -1,5 : ψ =..=.. Συναρτήσεις. 5.1 Η έννοια της συνάρτησης. 1. Να συμπληρώσετε τις τιμές των παρακάτω συναρτήσεων : α) ψ = 2χ + 6 o Για χ = 1 : ψ =..=.. = o Για χ = -1 : ψ =..=.. = o Για χ = 0 : ψ =..=.. = o Για χ = 2 :

Διαβάστε περισσότερα

Γενικό Ενιαίο Λύκειο Μαθ. Κατ. Τάξη B

Γενικό Ενιαίο Λύκειο Μαθ. Κατ. Τάξη B 151 Θέματα εξετάσεων περιόδου Μαΐου - Ιουνίου στα Μαθηματικά Κατεύθυνσης Τάξη - B Λυκείου 15 Α. Αν α, β, γ ακέραιοι ώστε α/β και α/γ, να δείξετε ότι α/(β + γ). Μονάδες 13 Β. α. Δώστε τον ορισμό της παραβολής.

Διαβάστε περισσότερα

FeCl 3(aq) + 6NH 4 SCN (aq) (NH 4 ) 3 [Fe(SCN) 6 ] (aq) +3NH 4 Cl (aq) (1) ή FeCl 4

FeCl 3(aq) + 6NH 4 SCN (aq) (NH 4 ) 3 [Fe(SCN) 6 ] (aq) +3NH 4 Cl (aq) (1) ή FeCl 4 ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΧΗΜΕΙΑΣ ΤΟΜΕΑΣ ΓΕΝΙΚΗΣ ΚΑΙ ΑΝΟΡΓΑΝΗΣ ΧΗΜΕΙΑΣ ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΧΗΜΕΙΑ» για τους ΦΟΙΤΗΤΕΣ του ΤΜΗΜΑΤΟΣ ΦΥΣΙΚΗΣ Οι διδάσκοντες Αικατερίνη

Διαβάστε περισσότερα

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ http://www.economics.edu.gr 1 ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΚΕΦΑΛΑΙΟ 1 ο : ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΑΣΚΗΣΕΙΣ ΥΠΟ ΕΙΓΜΑΤΑ ( τρόποι επίλυσης παρατηρήσεις σχόλια ) ΑΣΚΗΣΗ 1 Έστω ο πίνακας παραγωγικών δυνατοτήτων µιας

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ Οι πραγματικοί αριθμοί αποτελούνται από τους ρητούς και τους άρρητους αριθμούς, τους φυσικούς και τους ακέραιους αριθμούς. Δηλαδή είναι το μεγαλύτερο σύνολο αριθμών που μπορούμε

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΑΞΙΟΛΟΓΗΣΗΣ

ΕΡΩΤΗΣΕΙΣ ΑΞΙΟΛΟΓΗΣΗΣ ΙΑΝΥΣΜΑΤΑ ΕΡΩΤΗΣΕΙΣ ΑΞΙΟΛΟΓΗΣΗΣ ΕΡΩΤΗΣΕΙΣ ΑΞΙΟΛΟΓΗΣΗΣ. Να σηµειώσετε το σωστό (Σ) ή το λάθος (Λ) στους παρακάτω ισχυρισµούς:. Αν ΑΒ + ΒΓ = ΑΓ, τότε τα σηµεία Α, Β, Γ είναι συνευθειακά.. Αν α = β, τότε

Διαβάστε περισσότερα

ΧΗΜΕΙΑ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ

ΧΗΜΕΙΑ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ ΧΗΜΕΙΑ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ 1 Για τις ερωτήσεις 1.1-1.4 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. 1.1 Υδατικό διάλυμα NaCl 1M που βρίσκεται

Διαβάστε περισσότερα

ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ. ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ Κεφάλαιο 9ο: Ερωτήσεις του τύπου «Σωστό-Λάθος»

ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ. ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ Κεφάλαιο 9ο: Ερωτήσεις του τύπου «Σωστό-Λάθος» ΕΩΜΕΤΡΙΑ Β ΥΚΕΙΟΥ Κεφάλαιο 9ο: ΜΕΤΡΙΚΕ ΧΕΕΙ Ερωτήσεις του τύπου «ωστό-άθος» Να χαρακτηρίσετε με (σωστό) ή (λάθος) τις παρακάτω προτάσεις. 1. * Αν σε τρίγωνο ΑΒ ισχύει ΑΒ = Α + Β, τότε το τρίγωνο είναι:

Διαβάστε περισσότερα

ιαγώνισµα : ΧΗΜΕΙΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ.Β ΛΥΚΕΙΟΥ

ιαγώνισµα : ΧΗΜΕΙΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ.Β ΛΥΚΕΙΟΥ ιαγώνισµα : ΧΗΜΕΙΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ.Β ΛΥΚΕΙΟΥ ΘΕΜΑ 1 ο Α. Να σηµειώσετε τη σωστή απάντηση : 1. Όταν αυξάνουµε τη θερµοκρασία, η απόδοση µιας αµφίδροµης αντίδρασης : Α. αυξάνεται πάντοτε Β. αυξάνεται,

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΜΙΚΡΟΒΙΟΛΟΓΙΑΣ ΤΡΟΦΙΜΩΝ ΑΣΚΗΣΗ 2 ΤΡΟΦΙΜΑ. ΠΛΕΣΣΑΣ ΣΤΑΥΡΟΣ, PhD

ΕΡΓΑΣΤΗΡΙΟ ΜΙΚΡΟΒΙΟΛΟΓΙΑΣ ΤΡΟΦΙΜΩΝ ΑΣΚΗΣΗ 2 ΤΡΟΦΙΜΑ. ΠΛΕΣΣΑΣ ΣΤΑΥΡΟΣ, PhD ΑΣΚΗΣΗ 2 ΑΝΑΛΥΣΗ ΛΙΠΩΝ & ΕΛΑΙΩΝ ΣΕ ΤΡΟΦΙΜΑ ΠΛΕΣΣΑΣ ΣΤΑΥΡΟΣ, PhD Εργαστήριο Μικροβιολογίας Τροφίµων, Βιοτεχνολογίας και Υγιεινής, Τµήµα Αγροτικής Ανάπτυξης, ηµοκρίτειο Πανεπιστήµιο Θράκης Λίπη & έλαια (Λιπίδια)

Διαβάστε περισσότερα

Κ ε φ α λ ά ( ) ( ) ηµθ + = ( )

Κ ε φ α λ ά ( ) ( ) ηµθ + = ( ) ΑΣΚΗΣΗ ίνονται οι µιγαδικοί αριθµοί z + 0i για τους οποίους ισχύει: z 4 =. z i. Να δείξετε ότι z =. ii. Αν επιπλέον ισχύει Re( z) Im( z) iii. = να υπολογίσετε τους παραπάνω µιγαδικούς αριθµούς. Για τους

Διαβάστε περισσότερα

ΜΕΡΟΣ Α : Ερωτήσεις 1-6 Να απαντήσετε σε όλες τις ερωτήσεις 1-6. Κάθε ορθή απάντηση βαθμολογείται με πέντε (5) μονάδες.

ΜΕΡΟΣ Α : Ερωτήσεις 1-6 Να απαντήσετε σε όλες τις ερωτήσεις 1-6. Κάθε ορθή απάντηση βαθμολογείται με πέντε (5) μονάδες. ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2008-2009 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΔΕΙΓΜΑΤΙΚΟ ΕΞΕΤΑΣΤΙΚΟ ΔΟΚΙΜΙΟ ΜΑΘΗΜΑ: ΧΗΜΕΙΑ ΤΑΞΗ: Β ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΧΡΟΝΟΣ: 2 ώρες και 30 λεπτά Το εξεταστικό δοκίμιο αποτελείται από

Διαβάστε περισσότερα

ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΤΗΣ ΧΗΜΕΙΑΣ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΤΗΣ ΧΗΜΕΙΑΣ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΤΗΣ ΧΗΜΕΙΑΣ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α Α1. γ Α. β Α. δ Α4. β Α5. α. Σύμφωνα με τη θεωρία Arrheius βάσεις είναι οι ενώσεις που όταν διαλυθούν στο νερό απελευθερώνουν ανιόντα

Διαβάστε περισσότερα

Τ.Ε.Ι. ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΤΕΧΝΟΛΟΓΙΑΣ ΑΛΙΕΙΑΣ-ΥΔΑΤΟΚΑΛΛΙΕΡΓΕΙΩΝ ΜΑΘΗΜΑ ΥΔΑΤΟΚΑΛΛΙΕΡΓΕΙΕΣ ΔΙΔΑΣΚΩΝ Δρ. Γεώργιος Χώτος, Καθηγητής

Τ.Ε.Ι. ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΤΕΧΝΟΛΟΓΙΑΣ ΑΛΙΕΙΑΣ-ΥΔΑΤΟΚΑΛΛΙΕΡΓΕΙΩΝ ΜΑΘΗΜΑ ΥΔΑΤΟΚΑΛΛΙΕΡΓΕΙΕΣ ΔΙΔΑΣΚΩΝ Δρ. Γεώργιος Χώτος, Καθηγητής 1 Τ.Ε.Ι. ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΤΕΧΝΟΛΟΓΙΑΣ ΑΛΙΕΙΑΣ-ΥΔΑΤΟΚΑΛΛΙΕΡΓΕΙΩΝ ΜΑΘΗΜΑ ΥΔΑΤΟΚΑΛΛΙΕΡΓΕΙΕΣ ΔΙΔΑΣΚΩΝ Δρ. Γεώργιος Χώτος, Καθηγητής Η χρησιµοποίηση του Υδροµέτρου (Hydrometer) Το υδρόµετρο είναι ένα όργανο

Διαβάστε περισσότερα

Ο αλκοολικός τίτλος % vol είναι % v/v. Η αλκοόλη, % vol, μετράται στους 20 o C. Γίνεται διόρθωση της αλκοόλης όταν η θερμοκρασία είναι διαφορετική

Ο αλκοολικός τίτλος % vol είναι % v/v. Η αλκοόλη, % vol, μετράται στους 20 o C. Γίνεται διόρθωση της αλκοόλης όταν η θερμοκρασία είναι διαφορετική ΟΙΝΟΣ ΑΛΚΟΟΛΗ Με απόσταξη 200 ml οίνου συλλέγονται 133-150 ml αποστάγματος. Για την εξουδετέρωση της οξύτητας του οίνου, για να μη ληφθούν στο απόσταγμα πτητικά οξέα (οξικό, ανθρακικό και θειώδες), στα

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ Διανύσματα Πολλαπλασιασμός αριθμού με διάνυσμα ο Θέμα _8603 Δίνεται τρίγωνο ΑΒΓ και σημεία Δ και Ε του επιπέδου τέτοια, ώστε 5 και

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ Δίνονται: Κ a CH 3 COOH = 10 5, Κ b NH 3 = 10 5 Μονάδες 3 ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 11 ΙΟΥΝΙΟΥ 2015 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ:

Διαβάστε περισσότερα

ΘΕΩΡΗΤΙΚΗ ΑΣΚΗΣΗ Γραφικές παραστάσεις, κλίση καµπύλης Μέθοδος των ελαχίστων τετραγώνων

ΘΕΩΡΗΤΙΚΗ ΑΣΚΗΣΗ Γραφικές παραστάσεις, κλίση καµπύλης Μέθοδος των ελαχίστων τετραγώνων ΘΕ ΘΕΩΡΗΤΙΚΗ ΑΣΚΗΣΗ Γραφικές παραστάσεις, κλίση καµπύλης Μέθοδος των ελαχίστων τετραγώνων 1. Σκοπός Πρόκειται για θεωρητική άσκηση που σκοπό έχει την περιληπτική αναφορά σε θεµατολογίες που αφορούν την

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΒΙΟΧΗΜΕΙΑΣ ΒΙΟΤΕΧΝΟΛΟΓΙΑΣ ΟΓΚΟΜΕΤΡΙΚΗ ΑΝΑΛΥΣΗ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΒΙΟΧΗΜΕΙΑΣ ΒΙΟΤΕΧΝΟΛΟΓΙΑΣ ΟΓΚΟΜΕΤΡΙΚΗ ΑΝΑΛΥΣΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΒΙΟΧΗΜΕΙΑΣ ΒΙΟΤΕΧΝΟΛΟΓΙΑΣ ΟΓΚΟΜΕΤΡΙΚΗ ΑΝΑΛΥΣΗ Ορισμοί, ορολογία, περιγραφή τεχνικής Ογκομετρήσεις Εξουδετέρωσης Ογκομέτρηση ή τιτλοδότηση (titration) είναι η διεργασία του

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4ο ΧΗΜΙΚΗ ΙΣΟΡΡΟΠΙΑ

ΚΕΦΑΛΑΙΟ 4ο ΧΗΜΙΚΗ ΙΣΟΡΡΟΠΙΑ ΚΕΦΑΛΑΙΟ 4ο ΧΗΜΙΚΗ ΙΣΟΡΡΟΠΙΑ 4.1 Ερωτήσεις πολλαπλής επιλογής Στις ερωτήσεις 1-33 βάλτε σε ένα κύκλο το γράµµα που αντιστοιχεί στη σωστή απάντηση. 1. Μία χηµική αντίδραση είναι: i) µονόδροµη όταν: α. πραγµατοποιείται

Διαβάστε περισσότερα

ΟΓΚΟΜΕΤΡΗΣΗ ΑΣΘΕΝΟΥΣ ΟΞΕΟΣ ΜΕ ΙΣΧΥΡΗ ΒΑΣΗ ΣΤΟ ΕΙΚΟΝΙΚΟ ΕΡΓΑΣΤΗΡΙΟ ΤΟΥ ΛΟΓΙΣΜΙΚΟΥ «IrYdium»

ΟΓΚΟΜΕΤΡΗΣΗ ΑΣΘΕΝΟΥΣ ΟΞΕΟΣ ΜΕ ΙΣΧΥΡΗ ΒΑΣΗ ΣΤΟ ΕΙΚΟΝΙΚΟ ΕΡΓΑΣΤΗΡΙΟ ΤΟΥ ΛΟΓΙΣΜΙΚΟΥ «IrYdium» ΟΓΚΟΜΕΤΡΗΣΗ ΑΣΘΕΝΟΥΣ ΟΞΕΟΣ ΜΕ ΙΣΧΥΡΗ ΒΑΣΗ ΣΤΟ ΕΙΚΟΝΙΚΟ ΕΡΓΑΣΤΗΡΙΟ ΤΟΥ ΛΟΓΙΣΜΙΚΟΥ «IrYdium» ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ 1.1 Η ΠΡΟΒΛΕΨΗ Α. Σε 50mL δ/τος CH 3 COOH 0,1M προστίθενται σταγόνα-σταγόνα 50 ml δ/τος ΝαΟΗ 0,2Μ.

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 ΤΑΞΗ: ΚΑΤΕΥΘΥΝΣΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ ΧΗΜΕΙΑ Ηµεροµηνία: Κυριακή 14 Απριλίου 01 ιάρκεια Εξέτασης: ώρες ΕΚΦΩΝΗΣΕΙΣ Για τις ερωτήσεις Α1 έως και Α4 να γράψετε στο τετράδιό σας τον αριθµό

Διαβάστε περισσότερα

Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους

Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ Κεφάλαιο 1 ο ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ 1.1 Πράξεις με πραγματικούς αριθμούς Α. Οι πραγματικοί αριθμοί και οι πράξεις τους 1. Ποιοι αριθμοί ονομάζονται: α) ρητοί β) άρρητοι γ) πραγματικοί;

Διαβάστε περισσότερα

ΚΥΛΙΝ ΡΟΣ 1. ΠΑΡΑΣΤΑΣΗ ΚΥΛΙΝ ΡΟΥ ΠΑΡΑΣΤΑΣΗ - ΕΠΙΠΕ ΕΣ ΤΟΜΕΣ - ΑΝΑΠΤΥΓΜΑ- ΣΚΙΕΣ - ΕΦΑΡΜΟΓΕΣ

ΚΥΛΙΝ ΡΟΣ 1. ΠΑΡΑΣΤΑΣΗ ΚΥΛΙΝ ΡΟΥ ΠΑΡΑΣΤΑΣΗ - ΕΠΙΠΕ ΕΣ ΤΟΜΕΣ - ΑΝΑΠΤΥΓΜΑ- ΣΚΙΕΣ - ΕΦΑΡΜΟΓΕΣ ΚΥΛΙΝ ΡΟΣ ΠΑΡΑΣΤΑΣΗ - ΕΠΙΠΕ ΕΣ ΤΟΜΕΣ - ΑΝΑΠΤΥΓΜΑ- ΣΚΙΕΣ - ΕΦΑΡΜΟΓΕΣ Σχήµα 1 1. ΠΑΡΑΣΤΑΣΗ ΚΥΛΙΝ ΡΟΥ Η κυλινδρική επιφάνεια ή κύλινδρος, προκύπτει από τις διαδοχικές θέσεις µιας ευθείας α, (γενέτειρα) η

Διαβάστε περισσότερα

( α πό τράπεζα θεµάτων) ΚΕΦΑΛΑΙΟ 1 : ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ. 1. Να χαρακτηρίσετε τις επόµενες προτάσεις ως σωστές (Σ) ή λανθασµένες (Λ).

( α πό τράπεζα θεµάτων) ΚΕΦΑΛΑΙΟ 1 : ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ. 1. Να χαρακτηρίσετε τις επόµενες προτάσεις ως σωστές (Σ) ή λανθασµένες (Λ). Χηµεία Α Λυκείου Φωτεινή Ζαχαριάδου 1 από 12 ( α πό τράπεζα θεµάτων) ΚΕΦΑΛΑΙΟ 1 : ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ 1. Να χαρακτηρίσετε τις επόµενες προτάσεις ως σωστές (Σ) ή λανθασµένες (Λ). α) Ένα µείγµα είναι πάντοτε

Διαβάστε περισσότερα

ΕΚΠΑΙΔΕΥΤΙΚΗ ΚΛΙΜΑΚΑ http://edu.klimaka.gr ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ

ΕΚΠΑΙΔΕΥΤΙΚΗ ΚΛΙΜΑΚΑ http://edu.klimaka.gr ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 6 ΙΟΥΛΙΟΥ 2010 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΧΗΜΕΙΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΠΕΝΤΕ (5) ΘΕΜΑ Α Για τις ερωτήσεις

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΟΝΟΜΑΤΕΠΩΝΥΜΟ ΜΑΘΗΤΗ/ΜΑΘΗΤΡΙΑΣ: ΘΕΜΑ Α Εξεταστέα ύλη: ΚΥΚΛΙΚΗ ΚΙΝΗΣΗ ΟΡΜΗ ΑΕΡΙΑ Στις ερωτήσεις Α1 Α4 να επιλέξετε τη σωστή απάντηση. Α1. Όταν η πίεση ορισμένης ποσότητας

Διαβάστε περισσότερα

1.1.3 t. t = t2 - t1 1.1.4 x2 - x1. x = x2 x1 . . 1

1.1.3 t. t = t2 - t1 1.1.4  x2 - x1. x = x2 x1 . . 1 1 1 o Κεφάλαιο: Ευθύγραµµη Κίνηση Πώς θα µπορούσε να περιγραφεί η κίνηση ενός αγωνιστικού αυτοκινήτου; Πόσο γρήγορα κινείται η µπάλα που κλώτσησε ένας ποδοσφαιριστής; Απαντήσεις σε τέτοια ερωτήµατα δίνει

Διαβάστε περισσότερα

9o Γεν. Λύκειο Περιστερίου ( 3.1) ΚΥΚΛΟΣ. ΚΕΦΑΛΑΙΟ 3 ο : KΩΝΙΚΕΣ ΤΟΜΕΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤ/ΝΣΗΣ Β ΛΥΚΕΙΟΥ

9o Γεν. Λύκειο Περιστερίου ( 3.1) ΚΥΚΛΟΣ. ΚΕΦΑΛΑΙΟ 3 ο : KΩΝΙΚΕΣ ΤΟΜΕΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤ/ΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙ 3 ο : KΩΝΙΚΕΣ ΤΜΕΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤ/ΝΣΗΣ Β ΛΥΚΕΙΥ ( 3.) ΚΥΚΛΣ Γνωρίζουµε ότι ένας κύκλος (, ρ) είναι ο γεωµετρικός τόπος των σηµείων του επιπέδου τα οποία απέχουν µια ορισµένη απόσταση ρ από ένα

Διαβάστε περισσότερα