Παραδείγματα σχεδίασης με μηχανές πεπερασμένων καταστάσεων

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Παραδείγματα σχεδίασης με μηχανές πεπερασμένων καταστάσεων"

Transcript

1 Παραδείγματα σχεδίασης με μηχανές πεπερασμένων καταστάσεων Γιώργος Δημητρακόπουλος 1 Αποκωδικοποιητής κώδικα Huffman συμπίεση δεδομένων Ξέρουμε ότι με n bits μπορούμε να κωδικοποιήσουμε 2 n διαφορετικά σύμβολα. Σε αυτή την περίπτωση οι κώδικες είναι σταθερού μήκους (ή πλάτους), διότι κωδικοποιούν όλα τα σύμβολα με το ίδιο πλήθος bits, το καθένα. Οι κώδικες σταθερού πλάτους βολεύουν όταν τα σύμβολα αποθηκεύονται σε μνήμες και όταν μεταφέρουμε τα bits τους όλα μαζί, εν παραλλήλω (π.χ. μέσα στο datapath επεξεργαστών). Όταν τα bits της κωδικοποίησης μεταδίδονται σειριακά, το ένα μετά το άλλο, μέσα από ένα κανάλι επικοινωνίας, χρησιμοποιούνται και κώδικες μεταβλητού μήκους (variable length), όταν αυτοί μπορούν να επιτύχουν μετάδοση της πληροφορίας με λιγότερα συνολικά bits. Αυτοί πήραν το όνομά τους από τον Huffman ο οποίος τους μελέτησε. Για παράδειγμα, θεωρήστε ότι θέλουμε να στέλνουμε μηνύματα αποτελούμενα από μακρές ακολουθίες τεσσάρων (4) συμβόλων, των A, B, C, και D δηλαδή το αλφάβητό μας έχει αυτά τα 4 γράμματα (σύμβολα). Ξέρουμε ότι αυτά μπορούμε να τα παραστήσουμε μ ένα κώδικα σταθερού μήκους 2 bits ανά σύμβολο: 00, 01, 10, και 11. Έστω τώρα ότι στα μηνύματά μας η συχνότητα με την οποία εμφανίζονται τα διάφορα σύμβολα δεν είναι η ίδια: υπάρχουν σύμβολα πολύ συχνά και άλλα πολύ σπάνια. Σ αυτή την περίπτωση, ένας κώδικας μεταβλητού μήκους μπορεί να μεταδώσει τα μηνύματά μας με λιγότερα bits συνολικά και κατά μέσον όρο. Ας πούμε, στο παραπάνω παράδειγμα, ότι στα μηνύματά μας το 50% των εμφανιζομένων συμβόλων είναι A, το 25% είναι B, το 12.5% είναι C, και το 12.5% είναι D, και ας θεωρήσουμε τον κώδικα μεταβλητού μήκους: A: 0, B: 10, C: 110, D: 111. Τότε, για κάθε π.χ σύμβολα που μεταδίδονται, χρειάζονται περίπου 500 bits για τη μετάδοση των περίπου 500 A που υπάρχουν κατά μέσον όρο εκεί (1 bit ανά A), συν άλλα 500 bits για τα 250 B (2 bits ανά B), συν 375 bits για τα 125 C (3 bits ανά C), συν 375 bits για τα D. Το σύνολο είναι 1750 bits γιά κάθε 1000 μεταδιδόμενα σύμβολα, ή 1.75 bits/σύμβολο κατά μέσον όρο, πράγμα σημαντικά χαμηλότερο από τα 2 bits/σύμβολο του κώδικα σταθερού πλάτους. Το κλειδί γιά την επίτευξη αυτής της οικονομίας είναι το να αφιερώνουμε τους (λίγους) κώδικες μικρού μήκους στα σύμβολα εκείνα που εμφανίζονται περισσότερο συχνά, σε βάρος των σπανιότερων συμβόλων που παρίστανται με περισσότερα bits. Ο γνωστός μας από παλιά κώδικας Μορς είναι φτιαγμένος με παρόμοιο τρόπο, εκμεταλλευόμενος το γεγονός ότι στις ανθρώπινες γλώσσες ορισμένα γράμματα είναι πολύ συχνότερα από άλλα. Ο παραπάνω κώδικας έχει φτιαχτεί προσεκτικά ούτως ώστε να είναι εφικτή η κατ ευθείαν αναγνώριση του κάθε σύμβολου αμέσως μόλις φτάσει το τελευταίο bit της κωδικοποιημένης μορφής του, χωρίς διφορούμενα και χωρίς την ανάγκη να περιμένουμε πρώτα να δούμε τα επόμενα bits του μηνύματος. Η ιδιότητα αυτή υπάρχει επειδή ο κώδικας κάθε βραχύτερου σύμβολου δεν αποτελεί πρόθεμα του κώδικα κανενός από τα μακρύτερα σύμβολα. Την ιδιότητα αυτή δεν θα την είχε π.χ. ο κώδικας A=0, B=1, C=10, D=11: με αυτόν τον κώδικα, το μήνυμα 110 όταν λαμβάνεται σειριακά μπορεί να σημαίνει είτε BC είτε DA. 1

2 Σκοπός του παραδείγματος είναι σχεδιάσουμε ένα κύκλωμα αποκωδικοποίησης του παραπάνω κώδικα Huffman για την περιπτωση των τεσσάρων συμβόλων A: 0, B: 10, C: 110 A B και D: 111. Υποθέτουμε ότι τα bits των κωδικοποιημένων συμβόλων έρχονται σειριακά, ένα-ένα, από μια εί- D N1 σοδο in, και ότι υπάρχει ένα ρολόϊ clk που σημαδεύει, με την ενεργή ακμή του, το τέλος του κάθε bit εισόδου N2 in. To κύκλωμα έχει 4 εξόδους, A, B, C, D όπου κάθε μιά τους ανάβει όποτε παραλαμβάνουμε ένα αντίστοιχο σύμβολο, γιά διάρκεια ακρι- C βώς ενός κύκλου ρολογιού, και συγκεκριμένα κατά τον κύκλο ρολογιού Σχήμα 1: FSM αποκωδικοποίησης κώδικα Huffman. παραλαβής του τελευταίου bit του αντίστοιχου συμβόλου. Η λειτουργία του κυκλώματος αρχικοποιείται με την ενεργοποίηση ενός επιπλέον σήματος εισόδου reset. Στην περίπτωση της FSM τύπου Μoore μπορούμε να αποφανθούμε για την αποκωδικοποίηση του κάθε συμβόλου μόνο ανάλογα με την κατάσταση στην οποία βρισκόμαστε. H FSM αποτελείται από 4 βασικές καταστάσεις, Α, Β, C, D όσα δηλαδή και τα σύμβολα και από δύο βοηθητικές Ν1 και Ν2. Οι βασικές καταστάσεις ανταποκρίνονται στην εύρεση ενός συμβόλου από το αλβάβητο της μετάδοσης ενώ οι βοηθητικές καταστάσεις υποδηλώνουν κάποιες ενδιάμεσες μεταβάσεις. Για παράδειγμα η κατάσταση D ανταποκρίνεται στην περίπτωση που η είσοδος μας είναι ίση με 111 για τρεις διαδοχικούς /out=a κύκλους ρολογιού. Η φυσική σημα- σία των Ν1 και Ν2 είναι πως βρέθηκε ο πρώτος άσσος των πιθανών συμβόλων και πως βρέθηκαν 2 άσσοι των πιθανών συμβόλων S0 /out=b αντίστοιχα. Έτσι μετά την εύρεση του B στην περίπτωση που η είσοδος είναι S1 /out=c /out=d 0 ξαναγυρνάμε στην αρχική κατάσταση Α (σύμβολο 0) ενώ αν είναι 1 πηγαίνουμε στη Ν1 που σημαίνει πως ξεκινά ένα σύμβολο με πρώτο ψηφίο το 1 δηλαδή το Β, ή S2 το C ή το D. Σχήμα 2: FSM τύπου Mealy για την αποκωδικοποιήση Στην περίπτωση της μηχανής τύπου του κώδικα Huffman. Mealy η κύρια διαφορά είναι ότι δεν περιμένουμε να παράγουμε την έξοδο ανάλογα με την κατάσταση στην οποία βρισκόμααστε αλλά μπορούμε να το πράξουμε κατά τη μετάβαση από τη μια κατάσταση στην άλλη. Επομένως, εφόσον το μήκος του μεγαλύτερου συμβόλου είναι 3 δυαδικά ψηφία μπορούμε να αποκωδικοποίησουμε όλα τα σύμβολα χρησιμοποιώντας το πολύ 3 καταστάσεις. Αυτό φαίνεται στο διπλανό σχήμα. Η κατάσταση εκκίνησης είναι η S0, οπότε και περιμένουμε να μας έλθει ένα νέο σύμβολο, με όλα του τα bits από την αρχή. Στην ίδια κατάσταση επιστρέφουμε κάθε φορά που τελειώνουν όλα τα bits του προηγούμενου σύμβολου, και επομένως περιμένουμε ένα νέο σύμβολο από την αρχή. Εάν είμαστε στην κατάσταση S0 και μας έλθει είσοδος 0, σημαίνει ότι βλέπουμε ένα σύμβολο A (το μοναδικό άρα και το τελευταίο του bit), επομένως πρέπει να ανάψει η έξοδος A και η επόμενη κατάσταση να είναι πάλι η S0, αφού στον επόμενο κύκλο περιμένουμε το πρώτο bit του επομένου 2

3 συμβόλου. Εάν τώρα είμαστε στην S0 και έλθει είσοδος 1, τότε ξέρουμε ότι βλέπουμε το πρώτο bit ενός συμβόλου B ή C ή D, αλλά δεν ξέρουμε ακόμα τίνος από τα τρία έτσι, μεταβαίνουμε στην κατάσταση S1 που σημαίνει ότι έχουμε δεί μέχρι στιγμής ένα 1. Τον επόμενο κύκλο, όντας στην S1, αν δούμε είσοδο 0 σημαίνει ότι βλέπουμε το τέλος ενός συμβόλου B, άρα ανάβουμε την έξοδο B και μεταβαίνουμε στην S0. Αν αντιθέτως δούμε είσοδο 1 σημαίνει ότι βλέπουμε το δεύτερο bit ενός συμβόλου C ή D, αλλά δεν ξέρουμε ακόμα τίνος από τα δύο έτσι, μεταβαίνουμε στην κατάσταση S2. Τον επόμενο κύκλο, όντας στην S2, είσοδος 0 σημαίνει ότι βλέπουμε το τέλος ενός συμβόλου C, ενώ είσοδος 1 υποδεικνύει το τέλος ενός συμβόλου D. Εφόσον μπορούμε να αποφανθούμε για το σύμβολο που έχουμε λάβει κατά τη διάρκεια των μεταβάσεων μπορούμε να αποκωδικοποιήσουμε τα σύμβολα με λειγότερες καταστάσεις. Αυτή η μηχανή τύπου Mealy υλοποιείται ενώποιόντας το κομμάτι της αλλαγής καταστάσεων μαζί με αυτό του υπολογισμού της εξόδου. 2 Σύστημα ελέγχου ασανσέρ τριών ορόφων Η λειτουργία ενός συστήματος ασανσέρ είναι γνωστή σε όλους σας. Στην άσκηση αυτή θα μελετήσουμε τη σχεδίαση και την υλοποίηση ενός τέτοιου συστηματος για 3 ορόφους. Σε κάθε όροφο, έξω από κάθε πόρτα του ασανσέρ υπάρχει ένα κουμπί κλήσης για την επάνω κατεύθυνση (U) και ένα κουμπί κλήσης για την κάτω κατεύθυνση (D). Φυσικά στον 1ο όροφο υπάρχει ένα μόνο τέτοιο κουμπί κλήσης προς τα πάνω και στον 3ο όροφο υπάρχει μόνο ένα κουμπί κλήσης προς τα κάτω. Μέσα στο θάλαμο του ασανσέρ υπάρχουν αριθμητικες ενδείξεις για τον όροφο στον οποίο ο χρήστης θέλει να πάει. Κάθε φορά που το ασανσέρ φτάνει σε έναν όροφο ανοίγουν οι πόρτες του. Αν πρόκειται να κινηθεί προς ένα άλλο όροφο οι πόρτες κλείνουν. Το άνοιγμα ή το κλείσιμο κάθε πόρτας πρέπει να το ελέγχει το κύκλωμα μας. Συνολικά το κύκλωμα μας αποτελείται από τις παρακάτω εισόδους και εξόδους. Eίσοδοι clk και reset Σήμα ρολογιού και αρχικοποίησης F1, F2, F3 Τα κουμπιά για κάθε όροφο μέσα στο θάλαμο του ασανσέρ UP[1], UP[2], DN[2], DN[3] Τα κουμπιά κλήσης σε κάθε όροφο AF1, AF2, AF3 Αισθητήρες οι οποίοι ενεργοποιούνται όταν ο θάλαμος του ασανσέρ φτάνει στο συγκεκριμένο όροφο. OpenDoor#{1,2,3} Έξοδοι Τα σήματα αυτα ανοίγουν την πόρτα σε κάθε όροφο όταν παίρουν την τιμή 1. Στην αντίθετη περίπτωση η πόρτα παραμένει κλειστή. Μπορείτε να κάνετε οποιαδήποτε παραδοχή για τη λειτουργία του συστήματος σας, αρκεί να οδηγεί σε μια λογικη συμπεριφορά. Για παράδειγμα αν πατηθεί το κουμπί F2 όσο το ασανσέρ βρίσκεται στον 2ο όροφο με ανοιχτή την πόρτα του, τότε είναι λογικό το σύστημα να μην αντιδράσει παραμένοντας στην ίδια κατάσταση. Επίσης, αν το ασανσέρ κινειται από το 2ο στον 3ο όροφο και πατηθεί μέσα στον θάλαμο το κουμπί F1 τότε αυτό δε θα έπρεπε να είχε καμμιά επίδραση στη λειτουργια του ανελκυστήρα. H λειτουργία του κυκλώματος θα βασιστεί στην FSM που θα σχεδιάσουμε. Με μια πρώτη σκέψη αποφασίζουμε πως η FSM μας θα αποτελείται από 3 τουλάχιστον καταστασεις. Η κάθε κατάσταση συμβολίζει ότι το ασανσέρ βρίσκεται στον 1ο, στον 2ο ή στον 3ο όροφο, αντίστοιχα. Με την άφιξη σε μια από αυτές τις καταστάσεις η πόρτα του αντίστοιχου ορόφου πρέπει να ανοίξει. 3

4 Στη συνέχεια θα πρέπει να ορίσουμε κάποιες επιπλέον καταστάσεις που θα μας βοηθούν να καταλάβουμε προς πια κατεύθυνση κινούμαστε. Για να το πετύχουμε αυτό έχουμε πολλές εναλλακτικές. Μια επιλογή που απλοποιεί τη σχεδίαση είναι να χρησιμοποιήσουμε 3 επιπλέον καταστάσεις. Η φυσική σημασία της κάθε νέας κατάστασης είναι να συμβολίζει προς πιο όροφο κινούμαστε. Έτσι για παράδειγμα η κατάσταση Moving to FL#1 σημαίνει πως κινούμαστε προς τον όροφο 1 είτε γιατί κάποιος που βρίσκεται μέσα από το ασανσέρ ζήτησε να πάει στον όροφο 1 είτε γιατί κάποιος που βρίσκεται έξω από το ασανσέρ το κάλεσε να έρθει στον όροφο 1. Η FSM που προκύπτει από αυτές τις 6 καταστάσεις φαίνεται στο παρακάτω σχήμα. AF[1] F[1] AF[2] F[2] At FL#2 F[3] DN[3] F[1] UP[3] F[3] F[1] UP[1] Moving to FL#1 At FL#1 F[2] UP[2] DN[2] Moving to FL#2 F[3] DN[3] F[2] UP[2] DN[2] Moving to FL#3 AF[3] At FL#3 Σχήμα 3: FSM ελέγχου του ανελκυστήρα 3 ορόφων. Παρατηρούμε πως το κύκλωμα ελέγχου αποτελείται συνολικά από 6 καταστάσεις. Οι 3 από αυτές At FL#{1,2,3} συμβολίζουν ότι βρισκόμαστε στον αντίστοιχο όροφο. Για να φτάσουμε στις καταστάσεις αυτές περνάμε αναγκαστικά πρώτα από τις αντίστοιχες καταστάσεις Moving to FL#{1,2,3}. Το γεγονός ότι σταματήσαμε να κινούμαστε και ότι έχουμε φτάσει σε έναν από τους ορόφους μας το επιβεβαιώνει ο αντίστοιχος αισθητήρας AF1, AF2 ή AF3. Παρατηρείστε πως η τιμή αυτών των αισθητήρων ελέγχει τις ακμές των μεταβάσεων από τις καταστάσεις Moving to FL#X σε At FL#Χ. Αντίθετα, για να φύγουμε από κάποιο όροφο και να μεταβουμε σε μια κατάσταση Moving to FL#X πρέπει πρώτα να πατηθεί κάποιο από τα πλήκτρα εισόδου του κυκλώματος μας. Για παράδειγμα, η μετάβαση από την κατάσταση At FL#1 Moving to FL#2 πραγματοποιείται είτε όταν πατηθεί το κουμπί F3 μέσα από τον ανελκυστήρα είτε όταν πατηθεί το κουμπί DN[3] έξω από το ασανσέρ του 3ου ορόφου. Η συνθήκη αυτη αναπαρίσταται με τη λογική σχέση F3 DN3] πάνω στην αντίστοιχη ακμή. Με την ίδια λογική συμπληρώνουμε και τις συνθήκες που προκαλούν τις υπόλοιπες μεταβάσεις. Τέλος αν είμαστε σε κάποιο όροφο και πατηθεί το κουμπί του ίδιου ορόφου δεν αλλάζουμε κατάσταση και το ασανσέρ παραμένει στη θέση του με ανοιχτή την πόρτα. Σημειώνουμε πως στο βασικό κύκλωμα ελέγχου μπορούμε να προσθέσουμε πολλές επιπλέον λειτουργίες κάνοντας το σύστημα μας πιο ρεαλιστικό. Οι όποιες επιπλέον λειτουργίες μπορούν απλά να προστεθούν στη βασική FSM που έχουμε μέχρι τώρα σχεδιάσει. 3 Kώδικας Manchester σειριακή μετάδοση πληροφοριας Ο κώδικας Manchester χρησιμοποιείται για να αναπαραστήσει με ένα διαφορετικό τρόπο τα προς μετάδοση σε ένα καλώδιο δυαδικά δεδομένα, επιτρέποντας στον δέκτη να αντιληφθεί εύκολα ποιό είναι το δυαδικό ψηφίο που μεταδόθηκε αλλά και ποια χρονικη στιγμή συνέβει αυτό. Το δεύτερο χαραστηριστικό ονομάζεται συνήθως διαδικασία εξαγωγής ρολογιου από τα δεδομένα (clock recovery), δηλαδή ο δέκτης μπορεί να αντιληφθεί έμμεσα τις ακμές ρολογιού του αποστολέα ορίζοντας έτσι με σαφήνεια τη χρονική απόσταση μεταξύ δύο διαδοχικών δεδομένων. Για παράδειγμα, όταν ο δέκτης λάβει την ακολουθία από δυαδικά δεδομένα που παρουσιάζεται στο σχήμα 4, έχει πολλούς τρόπους να την αποκωδικοποιήσει αν δε γνωρίζει την αρχή και το τέλος κάθε δυαδικού ψηφί ου. Αν θεωρήσει ότι τα δεδομένα στάλθηκαν σύμφωνα με το ρολόι CLK1 4

5 Σχήμα 4: Παράδειγμα μιας σειριακής ακολουθίας δυαδικών ψηφίων. τότε τα δεδομένα αναπαριστούν τα δυαδοχικά δυαδικά ψηφία Αντίθετα αν τα δεδομένα στάλθηκαν με το ρολόι CLK2 τότε η πληροφορία που στάλθηκε είναι η Αυτές οι παρεξήγήσεις μπορούν να αποφευχθούν με τη χρήση του κώδικα Manchester. Στην περίπτωση αυτη, το δυαδικό ψηφίο 0 αναπαρίσταται από μια μετάβαση από 0 σε 1 όπου στο μισό χρόνο της μετάδοσης του ψηφίου η τιμή στο σύρμα είναι 0 και στο άλλο μισό 1. Με την ίδια λογικη το δυαδικό ψηφιο 1 αναπαρίσταται από μια μετάβαση από το 1 στο 0, δηλαδή η τιμή στο σύρμα είναι το μισό χρόνο στο 1 και τον υπόλοιπο μισό στο 0. Ένα παράδειγμα κωδικοποίησης των δυαδικων ψηφίων με τον κώδικα Manchester φαίνεται στο σχήμα 5. Σχήμα 5: Manchester κώδικας. Για να σχεδιάσουμε το κύκλωμα κωδικοποίησης του κώδικα Manchester πρέπει να λάβουμε υπόψιν μας το ρυθμό με τον οποίο θέλουμε να μεταδόσουμε και τη συχνότητα ρολογιού του κυκλώματος του κωδικοποιητή. Για παράδειγμα αν η ζητούμενη συχνότητα μετάδοσης είναι ίση με 1 ΜΗz τότε κάθε ψηφίο που θα στέλναμε θα διαρκούσε 1 μsec. Έτσι για να στείλουμε ένα 0 θα έπρεπε να οδηγούσαμε τη γραμμή στο λογικό 0 για 1/2 μsec και στο λογικό 1 για το υπόλοιπο 1/2 μsec. Επομένως αν το ρολόι του κυκλώματος μας ήταν 10 ΜΗz (περίοδος 0.1 μsec) η σωστή μετάδοση ενός 0 διάρκειας 1 μsec σύμφωνα με τον κώδικα Manchester θα απαιτούσε να στείλουμε λογικό 0 για 5 κύκλους του δικού μας γρηγορότερου ρολογιου (0.5 μsec) και το λογικο 1 και για τους επόμενους 5 κύκλους ρολογιού. Για να απλοποιήσουμε τη σχεδίαση θα θεωρήσουμε πως το ρολόι που έχουμε στη διάθεση μας είναι πάντα διπλάσιο της συχνότητας μετάδοσης. Επομένως για κάθε δυαδικό ψηφίου που θέλουμε να στείλουμε θα πρέπει να εμφανίσουμε στη γραμμή 2 δυαδικά ψηφία (αντί για τα 10 του προηγούμενου παραδείγματος). Έτσι, για το 0 στέλνουμε το 01 σε 2 κύκλους ρολογιού, ενώ για το 1 στέλνουμε το 10. Το κύκλωμα μας δέχεται μια είσοδο δεδομένων προς μετάδοση d του ενός δυαδικού ψηφίου και μια είσοδο v που όταν είναι ίση με 1 σημαίνει πως τα δεδομένα στη γραμμή του d είναι έγκυρα. Τα δυαδικά ψηφία που θα εμφανιστούν σε διαδοχικούς κύκλους ρολογιού στη γραμμή d θα πρέπει να μετραφραστούν σε μεταβάσεις (2 συνεχόμενα δυαδικά ψηφία) σύμφωνα με τον κώδικα Manchester. Αν σε κάποιο κύκλο ρολογιου δεν υπάρχουν νέα προς μετάδοση δεδομένα, v=0, τότε η έξοδος του κυκλώματος πρέπει να μένει μόνιμα στο 0. Αυτή η απουσία μετάβασης στη γραμμή θα ενημερώσει έμμεσα το δέκτη για την απουσία νέων δεδομένων. Η FSΜ που υλοποιεί την κωδικοποίηση σύμφωνα με τον κώδικα Manchester φαίνεται στο σχήμα 6. Αποτελείται από 5 καταστάσεις. Στην αρχική κατάσταση IDLE μεταβαίνουμε με την αρχικοποίηση του κυκλώματος και όσο δεν υπάρχουν νέα δεδομένα προς μετάδοση v=0. Όταν το v ανάψει τότε η FSM ξεκινά την κωδικοποίηση. Αν το d=0 τότε ακολουθεί τις καταστάσεις s0a και s0b σε δύο διαδοχικούς κύκλους ρολογιού δίνοντας στην έξοδο πρώτα το λογικό 0 και έπειτα το λογικό 1. Αντίθετα αν το d=1 τότε η έξοδος υπολογίζεται μέσω των καταστάσεων s1a και s1b. 5

6 Σε κάθε περίπτωση, όταν η FSM φτάσει στις τελικές καταστάσεις s0b ή s1b του κάθε δυαδικού ψηφίου, ελέγχει την τιμή του σήματος v. Αν το v δείξει ότι ένα νέο δυαδικό ψηφίο είναι έτοιμο προς μετάδοση τότε δεν επιστρέφει στην αρχική κατάσταση και μεταβαίνει στις καταστάσεις s0a ή s1a αντίστοιχα ξεκινώντας την κωδικοποίηση ενός νέου ψηφίου σύμφωνα με τον κώδικα Manchester. Σχήμα 6: Η FSM του αποκωδικοποιητή του manchester κώδικα. 6

ΗΥ220: Εργαστήριο ψηφιακών κυκλωμάτων

ΗΥ220: Εργαστήριο ψηφιακών κυκλωμάτων Πανεπιστήμιο Κρήτης Τμήμα Επιστήμης Υπολογιστών ΗΥ220: Εργαστήριο ψηφιακών κυκλωμάτων Γιώργος Δημητρακόπουλος Μονάδες επεξεργασίας δεδομένων και ο έλεγχος τους Δόμηση σύνθετων κυκλωμάτων 1. Γενική περιγραφή

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Εργαστήριο 10: Μηχανές Πεπερασμένων Καταστάσεων (Finite State Machines - FSM)

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Εργαστήριο 10: Μηχανές Πεπερασμένων Καταστάσεων (Finite State Machines - FSM) ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Σχεδίαση Εργαστήριο 10: Μηχανές Πεπερασμένων Καταστάσεων (Finite State Machines - FSM) Μανόλης Γ.Η. Κατεβαίνης Τμήμα Επιστήμης Υπολογιστών Άδειες Χρήσης

Διαβάστε περισσότερα

Δομές Δεδομένων και Αλγόριθμοι

Δομές Δεδομένων και Αλγόριθμοι Δομές Δεδομένων και Αλγόριθμοι Χρήστος Γκόγκος ΤΕΙ Ηπείρου Χειμερινό Εξάμηνο 2014-2015 Παρουσίαση 20 Huffman codes 1 / 12 Κωδικοποίηση σταθερού μήκους Αν χρησιμοποιηθεί κωδικοποίηση σταθερού μήκους δηλαδή

Διαβάστε περισσότερα

Συνδυαστικά Κυκλώματα

Συνδυαστικά Κυκλώματα 3 Συνδυαστικά Κυκλώματα 3.1. ΣΥΝΔΥΑΣΤΙΚΗ Λ ΟΓΙΚΗ Συνδυαστικά κυκλώματα ονομάζονται τα ψηφιακά κυκλώματα των οποίων οι τιμές της εξόδου ή των εξόδων τους διαμορφώνονται αποκλειστικά, οποιαδήποτε στιγμή,

Διαβάστε περισσότερα

5.1 Θεωρητική εισαγωγή

5.1 Θεωρητική εισαγωγή ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ - ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 5 ΚΩ ΙΚΟΠΟΙΗΣΗ BCD Σκοπός: Η κατανόηση της µετατροπής ενός τύπου δυαδικής πληροφορίας σε άλλον (κωδικοποίηση/αποκωδικοποίηση) µε τη µελέτη της κωδικοποίησης BCD

Διαβάστε περισσότερα

Αρχές Δικτύων Επικοινωνιών. Επικοινωνίες Δεδομένων Μάθημα 4 ο

Αρχές Δικτύων Επικοινωνιών. Επικοινωνίες Δεδομένων Μάθημα 4 ο Αρχές Δικτύων Επικοινωνιών Επικοινωνίες Δεδομένων Μάθημα 4 ο Τα επικοινωνιακά δίκτυα και οι ανάγκες που εξυπηρετούν Για την επικοινωνία δύο συσκευών απαιτείται να υπάρχει μεταξύ τους σύνδεση από σημείο

Διαβάστε περισσότερα

Δεύτερη Σειρά Ασκήσεων

Δεύτερη Σειρά Ασκήσεων Δεύτερη Σειρά Ασκήσεων ΑΣΚΗΣΗ 1 Από ένα αθόρυβο κανάλι 4 khz παίρνουμε δείγματα κάθε 1 msec. - Ποιος είναι ο μέγιστος ρυθμός μετάδοσης δεδομένων; - Πώς μεταβάλλεται ο μέγιστος ρυθμός μετάδοσης δεδομένων

Διαβάστε περισσότερα

Τετάρτη 5-12/11/2014. ΣΗΜΕΙΩΣΕΙΣ 3 ου και 4 ου ΜΑΘΗΜΑΤΟΣ ΕΙΔΙΚΟΤΗΤΑ: ΤΕΧΝΙΚΟΣ ΕΦΑΡΜΟΓΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ: ΑΡΧΙΤΕΚΤΟΝΙΚΗ Η/Υ Α ΕΞΑΜΗΝΟ

Τετάρτη 5-12/11/2014. ΣΗΜΕΙΩΣΕΙΣ 3 ου και 4 ου ΜΑΘΗΜΑΤΟΣ ΕΙΔΙΚΟΤΗΤΑ: ΤΕΧΝΙΚΟΣ ΕΦΑΡΜΟΓΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ: ΑΡΧΙΤΕΚΤΟΝΙΚΗ Η/Υ Α ΕΞΑΜΗΝΟ Τετάρτη 5-12/11/2014 ΣΗΜΕΙΩΣΕΙΣ 3 ου και 4 ου ΜΑΘΗΜΑΤΟΣ ΕΙΔΙΚΟΤΗΤΑ: ΤΕΧΝΙΚΟΣ ΕΦΑΡΜΟΓΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ: ΑΡΧΙΤΕΚΤΟΝΙΚΗ Η/Υ Α ΕΞΑΜΗΝΟ ΕΚΠΑΙΔΕΥΤΗΣ: ΤΡΟΧΙΔΗΣ ΠΑΝΑΓΙΩΤΗΣ 1. Παράσταση και οργάνωση δεδομένων

Διαβάστε περισσότερα

Κεφάλαιο 1 Ε Π Α Ν Α Λ Η Ψ Η. Αρχές Δικτύων Επικοινωνιών

Κεφάλαιο 1 Ε Π Α Ν Α Λ Η Ψ Η. Αρχές Δικτύων Επικοινωνιών Κεφάλαιο 1 Ε Π Α Ν Α Λ Η Ψ Η Αρχές Δικτύων Επικοινωνιών Τι είναι επικοινωνία; Είναι η διαδικασία αποστολής πληροφοριών από ένα πομπό σε κάποιο δέκτη. Η Τηλεπικοινωνία είναι η επικοινωνία από απόσταση (τηλε-).

Διαβάστε περισσότερα

Ολοκληρωμένα Κυκλώματα - Φθινόπωρο 2014 Γ. Δημητρακόπουλος. Εργαστηριακή άσκηση 2

Ολοκληρωμένα Κυκλώματα - Φθινόπωρο 2014 Γ. Δημητρακόπουλος. Εργαστηριακή άσκηση 2 Ολοκληρωμένα Κυκλώματα - Φθινόπωρο 2014 Γ. Δημητρακόπουλος Εργαστηριακή άσκηση 2 Σκοπός αυτής της εργαστηριακής άσκησης είναι να σας θυμίσει (ή να σας δείξει ανάλογα με το βαθμό εξοικίωσης σας) τον τρόπο

Διαβάστε περισσότερα

Γενικά Στοιχεία Ηλεκτρονικού Υπολογιστή

Γενικά Στοιχεία Ηλεκτρονικού Υπολογιστή Γενικά Στοιχεία Ηλεκτρονικού Υπολογιστή 1. Ηλεκτρονικός Υπολογιστής Ο Ηλεκτρονικός Υπολογιστής είναι μια συσκευή, μεγάλη ή μικρή, που επεξεργάζεται δεδομένα και εκτελεί την εργασία του σύμφωνα με τα παρακάτω

Διαβάστε περισσότερα

Ασύγχρονοι Απαριθμητές. Διάλεξη 7

Ασύγχρονοι Απαριθμητές. Διάλεξη 7 Ασύγχρονοι Απαριθμητές Διάλεξη 7 Δομή της διάλεξης Εισαγωγή στους Απαριθμητές Ασύγχρονος Δυαδικός Απαριθμητής Ασύγχρονος Δεκαδικός Απαριθμητής Ασύγχρονος Δεκαδικός Απαριθμητής με Latch Ασκήσεις 2 Ασύγχρονοι

Διαβάστε περισσότερα

100 ΕΡΩΤΗΣΕΙΣ ΜΕ ΤΙΣ ΑΝΤΙΣΤΟΙΧΕΣ ΑΠΑΝΤΗΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ

100 ΕΡΩΤΗΣΕΙΣ ΜΕ ΤΙΣ ΑΝΤΙΣΤΟΙΧΕΣ ΑΠΑΝΤΗΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ 100 ΕΡΩΤΗΣΕΙΣ ΜΕ ΤΙΣ ΑΝΤΙΣΤΟΙΧΕΣ ΑΠΑΝΤΗΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ 1) Να μετατρέψετε τον δεκαδικό αριθμό (60,25) 10, στον αντίστοιχο δυαδικό 11111,11 111001,01 111100,01 100111,1 111100,01 2)

Διαβάστε περισσότερα

Συνδυαστικά Λογικά Κυκλώματα

Συνδυαστικά Λογικά Κυκλώματα Συνδυαστικά Λογικά Κυκλώματα Ένα συνδυαστικό λογικό κύκλωμα συντίθεται από λογικές πύλες, δέχεται εισόδους και παράγει μία ή περισσότερες εξόδους. Στα συνδυαστικά λογικά κυκλώματα οι έξοδοι σε κάθε χρονική

Διαβάστε περισσότερα

ΕΠΙΚΟΙΝΩΝΙΕΣ ΔΕΔΟΜΕΝΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΕΣ INTERNET

ΕΠΙΚΟΙΝΩΝΙΕΣ ΔΕΔΟΜΕΝΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΕΣ INTERNET ΕΠΙΚΟΙΝΩΝΙΕΣ ΔΕΔΟΜΕΝΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΕΣ INTERNET Κεφάλαιο 4: Τεχνικές Μετάδοσης ΜΕΤΑΓΩΓΗ Τεχνική µεταγωγής ονομάζεται ο τρόπος µε τον οποίο αποκαθίσταται η επικοινωνία ανάµεσα σε δύο κόµβους με σκοπό την

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΗΛΕΚΤΡΟΝΙΚΩΝ ΕΦΑΡΜΟΓΩΝ

ΕΡΓΑΣΤΗΡΙΟ ΗΛΕΚΤΡΟΝΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΕΡΓΑΣΤΗΡΙΟ ΗΛΕΚΤΡΟΝΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΨΗΦΙΑΚΑ ΟΛΟΚΛΗΡΩΜΕΝΑ ΗΛΕΚΤΡΟΝΙΚΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ ΟΜΑ Α Α Αριθµητική Λογική Μονάδα των 8-bit 1. Εισαγωγή Γενικά µια αριθµητική λογική µονάδα (ALU, Arithmetic Logic Unit)

Διαβάστε περισσότερα

Κινητές επικοινωνίες. Κεφάλαιο 6 Τεχνικές πoλυπλεξίας - CDMA

Κινητές επικοινωνίες. Κεφάλαιο 6 Τεχνικές πoλυπλεξίας - CDMA Κινητές επικοινωνίες Κεφάλαιο 6 Τεχνικές πoλυπλεξίας - CDMA 1 Πολυπλεξία Η πολυπλεξία επιτρέπει την παράλληλη μετάδοση δεδομένων από διαφορετικές πηγές χωρίς αλληλοπαρεμβολές. Τρία βασικά είδη TDM/TDMA

Διαβάστε περισσότερα

ΗΥ220: Εργαστήριο ψηφιακών κυκλωμάτων

ΗΥ220: Εργαστήριο ψηφιακών κυκλωμάτων Πανεπιστήμιο Κρήτης Τμήμα Επιστήμης Υπολογιστών ΗΥ220: Εργαστήριο ψηφιακών κυκλωμάτων Γιώργος Δημητρακόπουλος Ελεγκτής VGA οθόνης και αντιμετώπιση μεγαλύτερων κυκλωμάτων Συνεχίζοντας από την 3 η άσκηση,

Διαβάστε περισσότερα

Κωδικοποίηση Πηγής. Η λειτουργία ενός συστήματος επικοινωνίας (γενικό διάγραμμα):

Κωδικοποίηση Πηγής. Η λειτουργία ενός συστήματος επικοινωνίας (γενικό διάγραμμα): Κωδικοποίηση Πηγής Η λειτουργία ενός συστήματος επικοινωνίας (γενικό διάγραμμα): Coder Decoder Μεταξύ πομπού-καναλιού παρεμβάλλεται ο κωδικοποιητής (coder). Έργο του: η αντικατάσταση των συμβόλων πληροφορίας

Διαβάστε περισσότερα

Εισαγωγή στους Η/Υ. Ενότητα 8: Μετάδοση Δεδομένων. Δημήτρης Σαραβάνος, Καθηγητής Πολυτεχνική Σχολή Τμήμα Μηχανολόγων & Αεροναυπηγών Μηχανικών

Εισαγωγή στους Η/Υ. Ενότητα 8: Μετάδοση Δεδομένων. Δημήτρης Σαραβάνος, Καθηγητής Πολυτεχνική Σχολή Τμήμα Μηχανολόγων & Αεροναυπηγών Μηχανικών Εισαγωγή στους Η/Υ Ενότητα 8: Δημήτρης Σαραβάνος, Καθηγητής Πολυτεχνική Σχολή Τμήμα Μηχανολόγων & Αεροναυπηγών Μηχανικών Σκοποί ενότητας Κατανόηση του τρόπου με τον οποίο στέλνεται ένα πακέτο δεδομένων

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Θεµατική Ενότητα ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Ακαδηµαϊκό Έτος 2006 2007 Γραπτή Εργασία #2 Ηµεροµηνία Παράδοσης 28-0 - 2007 ΠΛΗ 2: Ψηφιακά Συστήµατα ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΛΥΣΕΙΣ Άσκηση : [5 µονάδες] Έχετε στη

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 9 ΑΣΥΓΧΡΟΝΟΙ ΜΕΤΡΗΤΕΣ (COUNTERS)

ΑΣΚΗΣΗ 9 ΑΣΥΓΧΡΟΝΟΙ ΜΕΤΡΗΤΕΣ (COUNTERS) ΑΣΚΗΣΗ 9 ΑΣΥΓΧΡΟΝΟΙ ΜΕΤΡΗΤΕΣ (COUNTERS) Αντικείμενο της άσκησης: H σχεδίαση και η χρήση ασύγχρονων απαριθμητών γεγονότων. Με τον όρο απαριθμητές ή μετρητές εννοούμε ένα ακολουθιακό κύκλωμα με FF, οι καταστάσεις

Διαβάστε περισσότερα

Ανάκτηση θερμοκρασιακού πεδίου σε περιστρεφόμενο (εν κινήσει)

Ανάκτηση θερμοκρασιακού πεδίου σε περιστρεφόμενο (εν κινήσει) Κεφάλαιο 6 Ανάκτηση θερμοκρασιακού πεδίου σε περιστρεφόμενο (εν κινήσει) ρότορα Η σύνδεση του στρεφόμενου τμήματος της μηχανής με την μετρολογική διάταξη (αναλογικά όργανα μέτρησης ή υπολογιστή) παρουσιάζει

Διαβάστε περισσότερα

ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ. Κεφάλαιο 3

ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ. Κεφάλαιο 3 ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ Κεφάλαιο 3 Κεντρική Μονάδα Επεξεργασίας Κεντρική Μονάδα Επεξεργασίας Μονάδα επεξεργασίας δεδομένων Μονάδα ελέγχου Μονάδα επεξεργασίας δεδομένων Δομή Αριθμητικής Λογικής Μονάδας

Διαβάστε περισσότερα

8.1 Θεωρητική εισαγωγή

8.1 Θεωρητική εισαγωγή ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ - ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 8 ΣΤΟΙΧΕΙΑ ΜΝΗΜΗΣ ΚΑΤΑΧΩΡΗΤΕΣ Σκοπός: Η µελέτη της λειτουργίας των καταχωρητών. Θα υλοποιηθεί ένας απλός στατικός καταχωρητής 4-bit µε Flip-Flop τύπου D και θα µελετηθεί

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΟΥΣ ΥΠΟΛΟΓΙΣΤΕΣ. ΜΑΘΗΜΑ 2 ο. ΑΛΓΕΒΡΑ Boole ΛΟΓΙΚΑ ΚΥΚΛΩΜΑΤΑ

ΕΙΣΑΓΩΓΗ ΣΤΟΥΣ ΥΠΟΛΟΓΙΣΤΕΣ. ΜΑΘΗΜΑ 2 ο. ΑΛΓΕΒΡΑ Boole ΛΟΓΙΚΑ ΚΥΚΛΩΜΑΤΑ ΕΙΣΑΓΩΓΗ ΣΤΟΥΣ ΥΠΟΛΟΓΙΣΤΕΣ ΜΑΘΗΜΑ 2 ο ΑΛΓΕΒΡΑ Boole ΛΟΓΙΚΑ ΚΥΚΛΩΜΑΤΑ 2009-10 ΕΙΣΑΓΩΓΗ ΣΤΟΥΣ ΥΠΟΛΟΓΙΣΤΕΣ 1 Άλγεβρα Βοοle η θεωρητική βάση των λογικών κυκλωμάτων Η άλγεβρα Βοοle ορίζεται επάνω στο σύνολο

Διαβάστε περισσότερα

ΘΕΜΑ : ΨΗΦΙΑΚΑ ΗΛΕΚΤΡΟΝΙΚΑ DIGITAL ELECTRONICS

ΘΕΜΑ : ΨΗΦΙΑΚΑ ΗΛΕΚΤΡΟΝΙΚΑ DIGITAL ELECTRONICS ΘΕΜΑ : ΨΗΦΙΑΚΑ ΗΛΕΚΤΡΟΝΙΚΑ DIGITAL ELECTRONICS ΔΙΑΡΚΕΙΑ: 1 περιόδους 16/11/2011 10:31 (31) καθ. Τεχνολογίας ΚΑΤΗΓΟΡΙΕΣ ΜΕΓΕΘΩΝ ΑΝΑΛΟΓΙΚΟ (ANALOGUE) ΨΗΦΙΑΚΟ (DIGITAL) 16/11/2011 10:38 (38) ΕΙΣΑΓΩΓΗ ΣΤΑ

Διαβάστε περισσότερα

ΗΜΥ-210: Σχεδιασμός Ψηφιακών Συστημάτων

ΗΜΥ-210: Σχεδιασμός Ψηφιακών Συστημάτων ΗΜΥ-2: Σχεδιασμός Ψηφιακών Συστημάτων Χειμερινό Μετρητές Διδάσκουσα: Μαρία Κ. Μιχαήλ Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Περίληψη Μετρητής Ριπής Σύγχρονος υαδικός

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 10 ΣΥΓΧΡΟΝΟΙ ΑΠΑΡΙΘΜΗΤΕΣ

ΑΣΚΗΣΗ 10 ΣΥΓΧΡΟΝΟΙ ΑΠΑΡΙΘΜΗΤΕΣ ΑΣΚΗΣΗ ΣΥΓΧΡΟΝΟΙ ΑΠΑΡΙΘΜΗΤΕΣ Στόχος της άσκησης: Η διαδικασία σχεδίασης σύγχρονων ακολουθιακών κυκλωμάτων. Χαρακτηριστικό παράδειγμα σύγχρονων ακολουθιακών κυκλωμάτων είναι οι σύγχρονοι μετρητές. Τις αδυναμίες

Διαβάστε περισσότερα

Άσκηση 3 Ένα νέο είδος flip flop έχει τον ακόλουθο πίνακα αληθείας : I 1 I 0 Q (t+1) Q (t) 1 0 ~Q (t) Κατασκευάστε τον πίνακα

Άσκηση 3 Ένα νέο είδος flip flop έχει τον ακόλουθο πίνακα αληθείας : I 1 I 0 Q (t+1) Q (t) 1 0 ~Q (t) Κατασκευάστε τον πίνακα Άσκηση Δίδονται οι ακόλουθες κυματομορφές ρολογιού και εισόδου D που είναι κοινή σε ένα D latch και ένα D flip flop. Το latch είναι θετικά ενεργό, ενώ το ff θετικά ακμοπυροδοτούμενο. Σχεδιάστε τις κυματομορφές

Διαβάστε περισσότερα

Κεφάλαιο 4 ο. Ο Προσωπικός Υπολογιστής

Κεφάλαιο 4 ο. Ο Προσωπικός Υπολογιστής Κεφάλαιο 4 ο Ο Προσωπικός Υπολογιστής Μάθημα 4.3 Ο Επεξεργαστής - Εισαγωγή - Συχνότητα λειτουργίας - Εύρος διαδρόμου δεδομένων - Εύρος διαδρόμου διευθύνσεων - Εύρος καταχωρητών Όταν ολοκληρώσεις το μάθημα

Διαβάστε περισσότερα

ΗΜΥ 210: Σχεδιασμός Ψηφιακών Συστημάτων. Μετρητές 1

ΗΜΥ 210: Σχεδιασμός Ψηφιακών Συστημάτων. Μετρητές 1 ΗΜΥ-210: Σχεδιασμός Ψηφιακών Συστημάτων Μετρητές Διδάσκουσα: Μαρία Κ. Μιχαήλ Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Περίληψη Μετρητής Ριπής Σύγχρονος υαδικός Μετρητής

Διαβάστε περισσότερα

Behavioral & Mixed VHDL Architectures Finite State Machines in VHDL

Behavioral & Mixed VHDL Architectures Finite State Machines in VHDL ΗΜΥ211 Εργαστήριο Ψηφιακών Συστημάτων Behavioral & Mixed VHDL Architectures Finite State Machines in VHDL Διδάσκoντες: Δρ. Γιώργος Ζάγγουλοςκαι Δρ. Παναγιώτα Δημοσθένους Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων

Διαβάστε περισσότερα

EE728 (22Α004) - Προχωρημένα Θέματα Θεωρίας Πληροφορίας 3η σειρά ασκήσεων Διακριτά και Συνεχή Κανάλια. Παράδοση: Έως 22/6/2015

EE728 (22Α004) - Προχωρημένα Θέματα Θεωρίας Πληροφορίας 3η σειρά ασκήσεων Διακριτά και Συνεχή Κανάλια. Παράδοση: Έως 22/6/2015 EE728 (22Α004) - Προχωρημένα Θέματα Θεωρίας Πληροφορίας Φυλλάδιο 13 Δ. Τουμπακάρης 30 Μαΐου 2015 EE728 (22Α004) - Προχωρημένα Θέματα Θεωρίας Πληροφορίας 3η σειρά ασκήσεων Διακριτά και Συνεχή Κανάλια Παράδοση:

Διαβάστε περισσότερα

Μετρητής Ριπής ΛΟΓΙΚΗ ΣΧΕΔΙΑΣΗ. Αναφορά 9 ης. εργαστηριακής άσκησης: ΑΦΡΟΔΙΤΗ ΤΟΥΦΑ Α.Μ.:2024201100032

Μετρητής Ριπής ΛΟΓΙΚΗ ΣΧΕΔΙΑΣΗ. Αναφορά 9 ης. εργαστηριακής άσκησης: ΑΦΡΟΔΙΤΗ ΤΟΥΦΑ Α.Μ.:2024201100032 ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΣΧΟΛΗ ΟΙΚΟΝΟΜΙΑΣ, ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΛΟΓΙΚΗ ΣΧΕΔΙΑΣΗ Αναφορά 9 ης εργαστηριακής άσκησης: Μετρητής Ριπής ΑΦΡΟΔΙΤΗ

Διαβάστε περισσότερα

Κεφάλαιο 1 Ε Π Α Ν Α Λ Η Ψ Η

Κεφάλαιο 1 Ε Π Α Ν Α Λ Η Ψ Η Κεφάλαιο 1 Ε Π Α Ν Α Λ Η Ψ Η Αρχές Δικτύων Επικοινωνιών Σελ. 9-50 Γεώργιος Γιαννόπουλος ΠΕ19, ggiannop (at) sch.gr http://diktya-epal-b.ggia.info/ Creative Commons License 3.0 Share-Alike Σύνδεση από σημείο

Διαβάστε περισσότερα

ΘΕΜΑΤΑ & ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ

ΘΕΜΑΤΑ & ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Θεματική Ενότητα Ακαδημαϊκό Έτος 2010 2011 Ημερομηνία Εξέτασης Κυριακή 26.6.2011 Ώρα Έναρξης Εξέτασης

Διαβάστε περισσότερα

Λογική Σχεδίαση Ι - Εξεταστική Φεβρουαρίου 2013 Διάρκεια εξέτασης : 160 Ονοματεπώνυμο : Α. Μ. Έτος σπουδών:

Λογική Σχεδίαση Ι - Εξεταστική Φεβρουαρίου 2013 Διάρκεια εξέτασης : 160 Ονοματεπώνυμο : Α. Μ. Έτος σπουδών: Λογική Σχεδίαση Ι - Εξεταστική Φεβρουαρίου 23 Διάρκεια εξέτασης : 6 Ονοματεπώνυμο : Α. Μ. Έτος σπουδών: Θέμα (,5 μονάδες) Στις εισόδους του ακόλουθου κυκλώματος c b a εφαρμόζονται οι κάτωθι κυματομορφές.

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΕΙΣ ΘΕΩΡΙΑΣ MIDI

ΣΗΜΕΙΩΣΕΙΣ ΘΕΩΡΙΑΣ MIDI ΣΗΜΕΙΩΣΕΙΣ ΘΕΩΡΙΑΣ MIDI Τί είναι το MIDI; Το MIDI (Musical Instrument Digital Interface) είναι ένα πρωτόκολλο επικοινωνίας μεταξύ 2 ή περισσοτέρων ηλεκτρονικών μουσικών οργάνων. Μέσω του πρωτοκόλλου αυτού

Διαβάστε περισσότερα

Α. ΣΚΟΔΡΑΣ ΠΛΗ21 ΟΣΣ#2. 14 Δεκ 2008 ΠΑΤΡΑ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ 2008 Α. ΣΚΟΔΡΑΣ ΧΡΟΝΟΔΙΑΓΡΑΜΜΑ ΜΕΛΕΤΗΣ

Α. ΣΚΟΔΡΑΣ ΠΛΗ21 ΟΣΣ#2. 14 Δεκ 2008 ΠΑΤΡΑ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ 2008 Α. ΣΚΟΔΡΑΣ ΧΡΟΝΟΔΙΑΓΡΑΜΜΑ ΜΕΛΕΤΗΣ ΠΛΗ21 ΟΣΣ#2 14 Δεκ 2008 ΠΑΤΡΑ ΧΡΟΝΟΔΙΑΓΡΑΜΜΑ ΜΕΛΕΤΗΣ 7-segment display 7-segment display 7-segment display Αποκωδικοποιητής των 7 στοιχείων (τμημάτων) (7-segment decoder) Κύκλωμα αποκωδικοποίησης του στοιχείου

Διαβάστε περισσότερα

Παλμοκωδική Διαμόρφωση. Pulse Code Modulation (PCM)

Παλμοκωδική Διαμόρφωση. Pulse Code Modulation (PCM) Παλμοκωδική Διαμόρφωση Pulse Code Modulation (PCM) Pulse-code modulation (PCM) Η PCM είναι ένας στοιχειώδης τρόπος διαμόρφωσης που δεν χρησιμοποιεί φέρον! Το μεταδιδόμενο (διαμορφωμένο) σήμα PCM είναι

Διαβάστε περισσότερα

7.1 Θεωρητική εισαγωγή

7.1 Θεωρητική εισαγωγή ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ - ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 7 ΑΚΟΛΟΥΘΙΑΚΑ ΚΥΚΛΩΜΑΤΑ ΜΑΝ ΑΛΩΤΕΣ FLIP FLOP Σκοπός: Η κατανόηση της λειτουργίας των βασικών ακολουθιακών κυκλωµάτων. Θα µελετηθούν συγκεκριµένα: ο µανδαλωτής (latch)

Διαβάστε περισσότερα

Δυαδικό Σύστημα Αρίθμησης

Δυαδικό Σύστημα Αρίθμησης Δυαδικό Σύστημα Αρίθμησης Το δυαδικό σύστημα αρίθμησης χρησιμοποιεί δύο ψηφία. Το 0 και το 1. Τα ψηφία ενός αριθμού στο δυαδικό σύστημα αρίθμησης αντιστοιχίζονται σε δυνάμεις του 2. Μονάδες, δυάδες, τετράδες,

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ ΠΕΡΙΕΧΟΜΕΝΑ.3 ΑΣΥΓΧΡΟΝΟΣ ΔYΑΔΙΚΟΣ ΑΠΑΡΙΘΜΗΤΗΣ.5 ΑΣΥΓΧΡΟΝΟΣ ΔΕΚΑΔΙΚΟΣ ΑΠΑΡΙΘΜΗΤΗΣ.7 ΑΣΥΓΧΡΟΝΟΣ ΔΕΚΑΔΙΚΟΣ ΑΠΑΡΙΘΜΗΤΗΣ ΜΕ LATCH.

ΠΕΡΙΕΧΟΜΕΝΑ ΠΕΡΙΕΧΟΜΕΝΑ.3 ΑΣΥΓΧΡΟΝΟΣ ΔYΑΔΙΚΟΣ ΑΠΑΡΙΘΜΗΤΗΣ.5 ΑΣΥΓΧΡΟΝΟΣ ΔΕΚΑΔΙΚΟΣ ΑΠΑΡΙΘΜΗΤΗΣ.7 ΑΣΥΓΧΡΟΝΟΣ ΔΕΚΑΔΙΚΟΣ ΑΠΑΡΙΘΜΗΤΗΣ ΜΕ LATCH. ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΗΛΕΚΤΡΟΝΙΚΗΣ & ΥΠΟΛΟΓΙΣΤΩΝ ΨΗΦΙΑΚΑ ΟΛΟΚΛΗΡΩΜΕΝΑ ΚΥΚΛΩΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ ΣΗΜΕΙΩΣΕΙΣ ΑΠΑΡΙΘΜΗΤΕΣ Κ. ΕΥΣΤΑΘΙΟΥ, Γ. ΠΑΠΑΔΟΠΟΥΛΟΣ

Διαβάστε περισσότερα

Ψηφιακή Λογική Σχεδίαση

Ψηφιακή Λογική Σχεδίαση Ψηφιακή Λογική Σχεδίαση Επιμέλεια: Γεώργιος Θεοδωρίδης, Επίκουρος Καθηγητής Ανδρέας Εμερετλής, Υποψήφιος Διδάκτορας Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σημείωμα Αδειοδότησης Το παρόν

Διαβάστε περισσότερα

Επίλυση Προβληµάτων µε Greedy Αλγόριθµους

Επίλυση Προβληµάτων µε Greedy Αλγόριθµους Επίλυση Προβληµάτων µε Greedy Αλγόριθµους Περίληψη Επίλυση προβληµάτων χρησιµοποιώντας Greedy Αλγόριθµους Ελάχιστα Δέντρα Επικάλυψης Αλγόριθµος του Prim Αλγόριθµος του Kruskal Πρόβληµα Ελάχιστης Απόστασης

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2007

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2007 ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2007 Μάθημα : Ψηφιακά Ηλεκτρονικά Τεχνολογία ΙΙ Τεχνικών Σχολών, Θεωρητικής Κατεύθυνσης

Διαβάστε περισσότερα

Ενότητα 7 ΑΠΟΚΩΔΙΚΟΠΟΙΗΤΕΣ - ΚΩΔΙΚΟΠΟΙΗΤΕΣ ΑΠΟΠΛΕΚΤΕΣ - ΠΟΛΥΠΛΕΚΤΕΣ

Ενότητα 7 ΑΠΟΚΩΔΙΚΟΠΟΙΗΤΕΣ - ΚΩΔΙΚΟΠΟΙΗΤΕΣ ΑΠΟΠΛΕΚΤΕΣ - ΠΟΛΥΠΛΕΚΤΕΣ Ενότητα 7 ΑΠΟΚΩΔΙΚΟΠΟΙΗΤΕΣ - ΚΩΔΙΚΟΠΟΙΗΤΕΣ ΑΠΟΠΛΕΚΤΕΣ - ΠΟΛΥΠΛΕΚΤΕΣ Γενικές Γραμμές Δυαδικοί Αριθμοί έναντι Δυαδικών Κωδίκων Δυαδικοί Αποκωδικοποιητές Υλοποίηση Συνδυαστικής Λογικής με Δυαδικό Αποκωδικοποιητή

Διαβάστε περισσότερα

Αποκωδικοποιητές Μνημών

Αποκωδικοποιητές Μνημών Αποκωδικοποιητές Μνημών Φθινόπωρο 2008 Γιώργος Δημητρακόπουλος Τμήμα Επιστήμης Υπολογιστών Πανεπιστήμιο Κρήτης Γ. Δημητρακόπουλος ΗΥ422 1 Η χρήση των αποκωδικοποιητών Η δομή της μνήμης (για λόγους πυκνότητας)

Διαβάστε περισσότερα

Σελίδα 1 από 11. Απαντήσεις στο φυλλάδιο 57 Ερώτηση: 1 η : Οι ακροδέκτες αυτοί χρησιµοποιούνται για:

Σελίδα 1 από 11. Απαντήσεις στο φυλλάδιο 57 Ερώτηση: 1 η : Οι ακροδέκτες αυτοί χρησιµοποιούνται για: Σελίδα 1 από 11 Απαντήσεις στο φυλλάδιο 57 Ερώτηση: 1 η : Οι ακροδέκτες αυτοί χρησιµοποιούνται για: την επικοινωνία, µε τα υπόλοιπα ολοκληρωµένα κυκλώµατα του υπολογιστικού συστήµατος. την παροχή τροφοδοσίας

Διαβάστε περισσότερα

Αναπαραγωγή με αρχεία ήχου

Αναπαραγωγή με αρχεία ήχου Αναπαραγωγή με αρχεία ήχου Ανοίγει η παρουσίαση και εμφανίζεται η διαφάνεια τίτλου, "Πειράματα με αρχεία ήχου". Άσκηση 1: Εισαγωγή ήχου για συνεχή αναπαραγωγή Βήμα 1: Εισαγωγή ήχου Στη διαφάνεια 1, με

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 6 ΒΑΣΙΚΑ ΑΚΟΛΟΥΘΙΑΚΑ ΚΥΚΛΩΜΑΤΑ. 6.1 Εισαγωγή

ΚΕΦΑΛΑΙΟ 6 ΒΑΣΙΚΑ ΑΚΟΛΟΥΘΙΑΚΑ ΚΥΚΛΩΜΑΤΑ. 6.1 Εισαγωγή ΚΕΦΑΛΑΙΟ 6 ΒΑΣΙΚΑ ΑΚΟΛΟΥΘΙΑΚΑ ΚΥΚΛΩΜΑΤΑ 6. Εισαγωγή Τα ψηφιακά κυκλώματα διακρίνονται σε συνδυαστικά και ακολουθιακά. Τα κυκλώματα που εξετάσαμε στα προηγούμενα κεφάλαια ήταν συνδυαστικά. Οι τιμές των

Διαβάστε περισσότερα

Θέματα Συστημάτων Πολυμέσων

Θέματα Συστημάτων Πολυμέσων Θέματα Συστημάτων Πολυμέσων Ενότητα # 6: Στοιχεία Θεωρίας Πληροφορίας Διδάσκων: Γεώργιος K. Πολύζος Τμήμα: Μεταπτυχιακό Πρόγραμμα Σπουδών Επιστήμη των Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

ΣΧΕΔΙΑΣΗ ΚΑΙ ΚΑΤΑΣΚΕΥΗ ΗΛΕΚΤΡΟΝΙΚΩΝ ΚΥΚΛΩΜΑΤΩΝ. Δρ. Δ. Λαμπάκης (1 η σειρά διαφανειών)

ΣΧΕΔΙΑΣΗ ΚΑΙ ΚΑΤΑΣΚΕΥΗ ΗΛΕΚΤΡΟΝΙΚΩΝ ΚΥΚΛΩΜΑΤΩΝ. Δρ. Δ. Λαμπάκης (1 η σειρά διαφανειών) ΣΧΕΔΙΑΣΗ ΚΑΙ ΚΑΤΑΣΚΕΥΗ ΗΛΕΚΤΡΟΝΙΚΩΝ ΚΥΚΛΩΜΑΤΩΝ Δρ. Δ. Λαμπάκης (1 η σειρά διαφανειών) Τα ηλεκτρονικά κυκλώματα, ιδιαίτερα τα ψηφιακά χρησιμοποιούνται για την υλοποίηση λογικών συναρτήσεων και την αποθήκευση

Διαβάστε περισσότερα

Εργαστηριακή Άσκηση 4: Ιεραρχική σχεδίαση και προσχεδιασμένοι πυρήνες

Εργαστηριακή Άσκηση 4: Ιεραρχική σχεδίαση και προσχεδιασμένοι πυρήνες Εργαστηριακή Άσκηση 4: Ιεραρχική σχεδίαση και προσχεδιασμένοι πυρήνες Στην 4 η εργαστηριακή άσκηση θα ασχοληθούμε με την ιεραρχική σχεδίαση. Συγκεκριμένα θα μάθουμε να σχεδιάζουμε απλές οντότητες τις οποίες

Διαβάστε περισσότερα

K15 Ψηφιακή Λογική Σχεδίαση 7-8: Ανάλυση και σύνθεση συνδυαστικών λογικών κυκλωμάτων

K15 Ψηφιακή Λογική Σχεδίαση 7-8: Ανάλυση και σύνθεση συνδυαστικών λογικών κυκλωμάτων K15 Ψηφιακή Λογική Σχεδίαση 7-8: Ανάλυση και σύνθεση συνδυαστικών λογικών κυκλωμάτων Γιάννης Λιαπέρδος TEI Πελοποννήσου Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής ΤΕ Η έννοια του συνδυαστικού

Διαβάστε περισσότερα

Η συχνότητα f των παλµών 0 και 1 στην έξοδο Q n είναι. f Qn = 1/(T cl x 2 n+1 )

Η συχνότητα f των παλµών 0 και 1 στην έξοδο Q n είναι. f Qn = 1/(T cl x 2 n+1 ) ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ - ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 9 ΥΑ ΙΚΟΙ ΑΠΑΡΙΘΜΗΤΕΣ Σκοπός: Η µελέτη της λειτουργίας των απαριθµητών. Υλοποίηση ασύγχρονου απαριθµητή 4-bit µε χρήση JK Flip-Flop. Κατανόηση της αλλαγής του υπολοίπου

Διαβάστε περισσότερα

Πανεπιστήµιο Θεσσαλίας

Πανεπιστήµιο Θεσσαλίας Πανεπιστήµιο Θεσσαλίας Τµήµα Πληροφορικής Ενότητα 8η: Συσκευές Ε/Ε - Αρτηρίες Άσκηση 1: Υπολογίστε το µέσο χρόνο ανάγνωσης ενός τµήµατος των 512 bytes σε µια µονάδα σκληρού δίσκου µε ταχύτητα περιστροφής

Διαβάστε περισσότερα

Μοντέλο Επικοινωνίας Δεδομένων. Επικοινωνίες Δεδομένων Μάθημα 6 ο

Μοντέλο Επικοινωνίας Δεδομένων. Επικοινωνίες Δεδομένων Μάθημα 6 ο Μοντέλο Επικοινωνίας Δεδομένων Επικοινωνίες Δεδομένων Μάθημα 6 ο Εισαγωγή Με τη βοήθεια επικοινωνιακού σήματος, κάθε μορφή πληροφορίας (κείμενο, μορφή, εικόνα) είναι δυνατόν να μεταδοθεί σε απόσταση. Ανάλογα

Διαβάστε περισσότερα

Ασκήσεις Φροντιστηρίου «Υπολογιστική Νοημοσύνη Ι» 5 o Φροντιστήριο

Ασκήσεις Φροντιστηρίου «Υπολογιστική Νοημοσύνη Ι» 5 o Φροντιστήριο Πρόβλημα ο Ασκήσεις Φροντιστηρίου 5 o Φροντιστήριο Δίνεται το παρακάτω σύνολο εκπαίδευσης: # Είσοδος Κατηγορία 0 0 0 Α 2 0 0 Α 0 Β 4 0 0 Α 5 0 Β 6 0 0 Α 7 0 Β 8 Β α) Στον παρακάτω κύβο τοποθετείστε τα

Διαβάστε περισσότερα

Χρ. Καβουσιανός Επίκουρος Καθηγητής

Χρ. Καβουσιανός Επίκουρος Καθηγητής Είσοδος - Έξοδος Χρ. Καβουσιανός Επίκουρος Καθηγητής Συσκευές Εισόδου/Εξόδου Θερµοκρασία Τα ψηφιακά συστήµατα επικοινωνούν µε το περιβάλλον µε µορφοτροπείς (transducers-sensors). Πίεση Φως Ηχος Κίνηση

Διαβάστε περισσότερα

ΗΜΥ 210 ΣΧΕΔΙΑΣΜΟΣ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ. Χειµερινό Εξάµηνο 2016 ΔΙΑΛΕΞΗ 16: Μετρητές (Counters)

ΗΜΥ 210 ΣΧΕΔΙΑΣΜΟΣ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ. Χειµερινό Εξάµηνο 2016 ΔΙΑΛΕΞΗ 16: Μετρητές (Counters) ΗΜΥ 210 ΣΧΕΔΙΑΣΜΟΣ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Χειµερινό Εξάµηνο 2016 ΔΙΑΛΕΞΗ 16: Μετρητές (Counters) ΧΑΡΗΣ ΘΕΟΧΑΡΙΔΗΣ Επίκουρος Καθηγητής, ΗΜΜΥ (ttheocharides@ucy.ac.cy) Περίληψη q Μετρητής Ριπής q Σύγχρονος

Διαβάστε περισσότερα

Κεφάλαιο 1: Κίνηση και γεωμετρικά σχήματα

Κεφάλαιο 1: Κίνηση και γεωμετρικά σχήματα Ασκήσεις της Ενότητας 2 : Ζωγραφίζοντας με το ΒΥΟΒ -1- α. Η χρήση της πένας Κεφάλαιο 1: Κίνηση και γεωμετρικά σχήματα Υπάρχουν εντολές που μας επιτρέπουν να επιλέξουμε το χρώμα της πένας, καθώς και το

Διαβάστε περισσότερα

Ψηφιακή Μετάδοση Αναλογικών Σηµάτων

Ψηφιακή Μετάδοση Αναλογικών Σηµάτων Ψηφιακή Μετάδοση Αναλογικών Σηµάτων Τα σύγχρονα συστήµατα επικοινωνίας σε πολύ µεγάλο ποσοστό διαχειρίζονται σήµατα ψηφιακής µορφής, δηλαδή, σήµατα που δηµιουργούνται από ακολουθίες δυαδικών ψηφίων. Τα

Διαβάστε περισσότερα

Εισαγωγή στην επιστήμη των υπολογιστών

Εισαγωγή στην επιστήμη των υπολογιστών Εισαγωγή στην επιστήμη των υπολογιστών Υπολογιστές και Δεδομένα Κεφάλαιο 3ο Αναπαράσταση Αριθμών www.di.uoa.gr/~organosi 1 Δεκαδικό και Δυαδικό Δεκαδικό σύστημα 2 3 Δεκαδικό και Δυαδικό Δυαδικό Σύστημα

Διαβάστε περισσότερα

Τμήμα Λογιστικής. Εισαγωγή στους Ηλεκτρονικούς Υπολογιστές. Μαθήματα 6 και 7 Αναπαράσταση της Πληροφορίας στον Υπολογιστή. 1 Στέργιος Παλαμάς

Τμήμα Λογιστικής. Εισαγωγή στους Ηλεκτρονικούς Υπολογιστές. Μαθήματα 6 και 7 Αναπαράσταση της Πληροφορίας στον Υπολογιστή. 1 Στέργιος Παλαμάς ΤΕΙ Ηπείρου Παράρτημα Πρέβεζας Τμήμα Λογιστικής Εισαγωγή στους Ηλεκτρονικούς Υπολογιστές Μαθήματα 6 και 7 Αναπαράσταση της Πληροφορίας στον Υπολογιστή 1 1. Αριθμοί: Το Δυαδικό Σύστημα Οι ηλεκτρονικοί υπολογιστές

Διαβάστε περισσότερα

Σχήμα 1: TCP αποστολέας με παράθυρο αποστολέα = 1

Σχήμα 1: TCP αποστολέας με παράθυρο αποστολέα = 1 I. Παράδειγμα 1: Απόδοση TCP με παράθυρο αποστολέα = 1 a. Ο μηχανισμός όπως έχει περιγραφεί ως τώρα στέλνει μόνο ένα πακέτο και σταματάει να μεταδίδει έως ότου πάρει το ack του πακέτου αυτού (λειτουργία

Διαβάστε περισσότερα

Μία μέθοδος προσομοίωσης ψηφιακών κυκλωμάτων Εξελικτικής Υπολογιστικής

Μία μέθοδος προσομοίωσης ψηφιακών κυκλωμάτων Εξελικτικής Υπολογιστικής Μία μέθοδος προσομοίωσης ψηφιακών κυκλωμάτων Εξελικτικής Υπολογιστικής Βασισμένο σε μια εργασία των Καζαρλή, Καλόμοιρου, Μαστοροκώστα, Μπαλουκτσή, Καλαϊτζή, Βαλαή, Πετρίδη Εισαγωγή Η Εξελικτική Υπολογιστική

Διαβάστε περισσότερα

ΔΙΚΤΥΑ ΕΠΙΚΟΙΝΩΝΙΩΝ Ασκήσεις για το φυσικό στρώμα

ΔΙΚΤΥΑ ΕΠΙΚΟΙΝΩΝΙΩΝ Ασκήσεις για το φυσικό στρώμα ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧ/ΚΩΝ ΚΑΙ ΜΗΧ. ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΕΠΙΚΟΙΝΩΝΙΩΝ, ΗΛΕΚΤΡΟΝΙΚΗΣ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΔΙΚΤΥΑ ΕΠΙΚΟΙΝΩΝΙΩΝ Ασκήσεις για το φυσικό στρώμα 1. Μήνυμα μήκους

Διαβάστε περισσότερα

Παλμοκωδική Διαμόρφωση. Pulse Code Modulation (PCM)

Παλμοκωδική Διαμόρφωση. Pulse Code Modulation (PCM) Παλμοκωδική Διαμόρφωση Pulse Code Modulation (PCM) Pulse-code modulation (PCM) Η PCM είναι ένας στοιχειώδης τρόπος διαμόρφωσης που δεν χρησιμοποιεί φέρον! Το μεταδιδόμενο (διαμορφωμένο) σήμα PCM είναι

Διαβάστε περισσότερα

Κωδικοποίηση Πηγής. Δρ. Α. Πολίτης

Κωδικοποίηση Πηγής. Δρ. Α. Πολίτης Κωδικοποίηση Πηγής Coder Decoder Μεταξύ πομπού και καναλιού παρεμβάλλεται ο κωδικοποιητής (coder). Έργο του: η αντικατάσταση των συμβόλων πληροφορίας της πηγής με εναλλακτικά σύμβολα ή λέξεις. Κωδικοποίηση

Διαβάστε περισσότερα

Συστήματα Αρίθμησης. Συστήματα Αρίθμησης 1. PDF created with FinePrint pdffactory Pro trial version

Συστήματα Αρίθμησης. Συστήματα Αρίθμησης 1. PDF created with FinePrint pdffactory Pro trial version Συστήματα Αρίθμησης Στην καθημερινή μας ζωή χρησιμοποιούμε το δεκαδικό σύστημα αρίθμησης. Στο σύστημα αυτό χρησιμοποιούμε δέκα διαφορετικά σύμβολα τα :,, 2, 3, 4, 5, 6,7 8, 9. Για τον αριθμό 32 θα χρειαστούμε

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ - ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ 131: ΑΡΧΕΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ I ΕΡΓΑΣΙΑ 2

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ - ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ 131: ΑΡΧΕΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ I ΕΡΓΑΣΙΑ 2 ΕΡΓΑΣΙΑ Διδάσκων: Γιώργος Χρυσάνθου Υπεύθυνος Άσκησης: Πύρρος Μπράτσκας Ημερομηνία Ανάθεσης: 3/10/015 Ημερομηνία Παράδοσης: 09/11/015 09:00 π.μ. I.Στόχος Στόχος αυτής της εργασίας είναι η χρησιμοποίηση

Διαβάστε περισσότερα

e-book ΛΟΓΙΚΗ ΣΧΕΔΙΑΣΗ ΑΣΚΗΣΕΙΣ

e-book ΛΟΓΙΚΗ ΣΧΕΔΙΑΣΗ ΑΣΚΗΣΕΙΣ e-book ΛΟΓΙΚΗ ΣΧΕΔΙΑΣΗ ΑΣΚΗΣΕΙΣ 1. Να μετατρέψετε τον δεκαδικό 16.25 σε δυαδικό. 2. Να μετατρέψετε τον δεκαδικό 18.75 σε δυαδικό και τον δεκαδικό 268 σε δεκαεξαδικό. 3. Να βρεθεί η βάση εκείνου του αριθμητικού

Διαβάστε περισσότερα

Σελίδα.1/1 www.1999.gr

Σελίδα.1/1 www.1999.gr Σελίδα.1/1 LXT-4 WATCH GPS GSM TRACKER ΟΔΗΓΙΕΣ ΧΡΗΣΗΣ Κεφάλαιο 1 γενική εισαγωγή 1.1 Εμφάνιση 1.2 Λειτουργίες Ο κάθε επιλεγμένος αριθμός μπορεί να πάρει τις πληροφορίες θέσης άμεσα μέσω της ερώτησης SMS,

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2006

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2006 ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2006 Μάθημα: Τεχνολογία Αναλογικών και Ψηφιακών Ηλεκτρονικών Τεχνολογία Τεχνικών Σχολών

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 8 ΠΟΛΥΠΛΕΚΤΕΣ ( MULTIPLEXERS - MUX) ΑΠΟΠΛΕΚΤΕΣ (DEMULTIPLEXERS - DEMUX)

ΑΣΚΗΣΗ 8 ΠΟΛΥΠΛΕΚΤΕΣ ( MULTIPLEXERS - MUX) ΑΠΟΠΛΕΚΤΕΣ (DEMULTIPLEXERS - DEMUX) ΑΣΚΗΣΗ 8 ΠΟΛΥΠΛΕΚΤΕΣ ( MULTIPLEXERS - MUX) ΑΠΟΠΛΕΚΤΕΣ (DEMULTIPLEXERS - DEMUX) 8.1. ΣΚΟΠΟΣ Η κατανόηση της λειτουργίας των πολυπλεκτών και αποπλεκτών και της χρήσης αυτών των ολοκληρωμένων κυκλωμάτων (Ο.Κ.)

Διαβάστε περισσότερα

Συμπίεση Δεδομένων

Συμπίεση Δεδομένων Συμπίεση Δεδομένων 2014-2015 Ρυθμός κωδικοποίησης Ένας κώδικας που απαιτεί L bits για την κωδικοποίηση μίας συμβολοσειράς N συμβόλων που εκπέμπει μία πηγή έχει ρυθμό κωδικοποίησης (μέσο μήκος λέξης) L

Διαβάστε περισσότερα

Εισαγωγή. Λύση: Λύση:

Εισαγωγή. Λύση: Λύση: Εισαγωγή 1. Μία συλλογή πέντε δρομολογητών πρόκειται να συνδεθεί με ένα υποδίκτυο σημείου προς σημείο. Μεταξύ κάθε ζεύγους δρομολογητών, οι σχεδιαστές μπορούν να τοποθετήσουν είτε μια γραμμή υψηλής ταχύτητας

Διαβάστε περισσότερα

ΣΥΓΧΡΟΝΑ ΑΚΟΛΟΥΘΙΑΚΑ ΚΥΚΛΩΜΑΤΑ

ΣΥΓΧΡΟΝΑ ΑΚΟΛΟΥΘΙΑΚΑ ΚΥΚΛΩΜΑΤΑ ΣΥΓΧΡΟΝΑ ΑΚΟΛΟΥΘΙΑΚΑ ΚΥΚΛΩΜΑΤΑ Σύγχρονο ακολουθιακό κύκλωμα είναι εκείνο του οποίου όλα τα FFs χρονίζονταιμετοίδιο ρολόι (clock). Ανάλυση Σύγχρονων Ακολουθιακών Κυκλωμάτων Σχεδίαση Σύγχρονων Ακολουθιακών

Διαβάστε περισσότερα

Καροτοκυνηγός. Αντικείμενα

Καροτοκυνηγός. Αντικείμενα Καροτοκυνηγός Το παιχνίδι λαμβάνει χώρα σε ένα κτήμα, όπου στη δεξιά του πλευρά του υπάρχει ένα χωράφι με καρότα τα οποία οριοθετούνται από μια λευκή ευθεία γραμμή αριστερά τους (βλ. επόμενη εικόνα). Το

Διαβάστε περισσότερα

Τρίτη Σειρά Ασκήσεων ΑΣΚΗΣΗ 1 ΑΣΚΗΣΗ 1 ΛΥΣΗ ΑΣΚΗΣΗ 2

Τρίτη Σειρά Ασκήσεων ΑΣΚΗΣΗ 1 ΑΣΚΗΣΗ 1 ΛΥΣΗ ΑΣΚΗΣΗ 2 Τρίτη Σειρά Ασκήσεων ΑΣΚΗΣΗ 1 o Ένα πακέτο ανώτερου επιπέδου τεμαχίζεται σε 10 πλαίσια, κάθε ένα από τα οποία έχει πιθανότητα 80 τοις εκατό να φτάσει χωρίς σφάλμα. Αν το πρωτόκολλο συνδέσου μετάδοσης δεδομένων

Διαβάστε περισσότερα

Εισαγωγή στην πληροφορική

Εισαγωγή στην πληροφορική Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Εισαγωγή στην πληροφορική Ενότητα 4: Ψηφιακή Λογική, Άλγεβρα Boole, Πίνακες Αλήθειας (Μέρος B) Αγγελίδης Παντελής Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών

Διαβάστε περισσότερα

Ακολουθιακά Κυκλώματα Flip-Flops

Ακολουθιακά Κυκλώματα Flip-Flops Ακολουθιακά Κυκλώματα Flip-Flops . Συνδυαστικα κυκλωματα Ακολουθιακα κυκλωματα x x 2 x n Συνδυαστικο κυκλωμα z z 2 z m z i =f i (x,x 2,,x n ) i =,2,,m 2. Ακολουθιακα κυκλωματα: x n Συνδυαστικο m z y κυκλωμα

Διαβάστε περισσότερα

Επίπεδο Ψηφιακής Λογικής (The Digital Logic Level)

Επίπεδο Ψηφιακής Λογικής (The Digital Logic Level) Επίπεδο Ψηφιακής Λογικής (The Digital Logic Level) Απαντήσεις 1. Η παραγγελία είναι σάντουιτς ή ένα σουβλάκι και τηγανητές πατάτες η οποία μπορεί να αναλυθεί ως σάντουιτς ή (σουβλάκι και τηγανητές πατάτες)

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2007

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2007 ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2007 Μάθημα : Ψηφιακά Ηλεκτρονικά Τεχνολογία ΙΙ Τεχνικών Σχολών, Θεωρητικής Κατεύθυνσης

Διαβάστε περισσότερα

21. ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ 4 - ΔΗΜΙΟΥΡΓΩΝΤΑΣ ΜΕ ΤΟ BYOB BYOB. Αλγόριθμος Διαδικασία Παράμετροι

21. ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ 4 - ΔΗΜΙΟΥΡΓΩΝΤΑΣ ΜΕ ΤΟ BYOB BYOB. Αλγόριθμος Διαδικασία Παράμετροι 21. ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ 4 - ΔΗΜΙΟΥΡΓΩΝΤΑΣ ΜΕ ΤΟ BYOB BYOB Αλγόριθμος Διαδικασία Παράμετροι Τι είναι Αλγόριθμος; Οι οδηγίες που δίνουμε με λογική σειρά, ώστε να εκτελέσουμε μια διαδικασία ή να επιλύσουμε ένα

Διαβάστε περισσότερα

Υπάρχουν δύο τύποι μνήμης, η μνήμη τυχαίας προσπέλασης (Random Access Memory RAM) και η μνήμη ανάγνωσης-μόνο (Read-Only Memory ROM).

Υπάρχουν δύο τύποι μνήμης, η μνήμη τυχαίας προσπέλασης (Random Access Memory RAM) και η μνήμη ανάγνωσης-μόνο (Read-Only Memory ROM). Μνήμες Ένα από τα βασικά πλεονεκτήματα των ψηφιακών συστημάτων σε σχέση με τα αναλογικά, είναι η ευκολία αποθήκευσης μεγάλων ποσοτήτων πληροφοριών, είτε προσωρινά είτε μόνιμα Οι πληροφορίες αποθηκεύονται

Διαβάστε περισσότερα

Λύση: Λύση: Λύση: Λύση:

Λύση: Λύση: Λύση: Λύση: 1. Ένας δίαυλος έχει ρυθµό δεδοµένων 4 kbps και καθυστέρηση διάδοσης 20 msec. Για ποια περιοχή µηκών των πλαισίων µπορεί η µέθοδος παύσης και αναµονής να έχει απόδοση τουλάχιστον 50%; Η απόδοση θα είναι

Διαβάστε περισσότερα

ΕΙΔΙΚΟΤΗΤΑ: ΤΕΧΝΙΚΟΣ ΕΦΑΡΜΟΓΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ: ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ

ΕΙΔΙΚΟΤΗΤΑ: ΤΕΧΝΙΚΟΣ ΕΦΑΡΜΟΓΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ: ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΕΙΔΙΚΟΤΗΤΑ: ΤΕΧΝΙΚΟΣ ΕΦΑΡΜΟΓΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ: ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ (Τμήματα Υπολογιστή) ΕΚΠΑΙΔΕΥΤΗΣ:ΠΟΖΟΥΚΙΔΗΣ ΚΩΝΣΤΑΝΤΙΝΟΣ ΤΜΗΜΑΤΑ ΗΛΕΚΤΡΟΝΙΚΟΥ ΥΠΟΛΟΓΙΣΤΗ Κάθε ηλεκτρονικός υπολογιστής αποτελείται

Διαβάστε περισσότερα

Σύγχρονοι Απαριθμητές. Διάλεξη 8

Σύγχρονοι Απαριθμητές. Διάλεξη 8 Σύγχρονοι Απαριθμητές Διάλεξη 8 Δομή της διάλεξης Εισαγωγή Σύγχρονος Δυαδικός Απαριθμητής Σύγχρονος Δεκαδικός Απαριθμητής Προγραμματιζόμενοι Απαριθμητές Ασκήσεις 2 Σύγχρονοι Απαριθμητές Εισαγωγή 3 Εισαγωγή

Διαβάστε περισσότερα

Οδηγίες για το CABRI - GEOMETRY II Μωυσιάδης Πολυχρόνης - Δόρτσιος Κώστας

Οδηγίες για το CABRI - GEOMETRY II Μωυσιάδης Πολυχρόνης - Δόρτσιος Κώστας Οδηγίες για το CABRI - GEOMETRY II Μωυσιάδης Πολυχρόνης - Δόρτσιος Κώστας Εκτελώντας το πρόγραμμα παίρνουμε ένα παράθυρο εργασίας Γεωμετρικών εφαρμογών. Τα βασικά κουμπιά και τα μενού έχουν την παρακάτω

Διαβάστε περισσότερα

Δυναμικός Κατακερματισμός. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1

Δυναμικός Κατακερματισμός. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1 Δυναμικός Κατακερματισμός Βάσεις Δεδομένων 2013-2014 Ευαγγελία Πιτουρά 1 Κατακερματισμός Τι αποθηκεύουμε στους κάδους; Στα παραδείγματα δείχνουμε μόνο την τιμή του πεδίου κατακερματισμού Την ίδια την εγγραφή

Διαβάστε περισσότερα

ΜΑΘΗΜΑ: ΕΠΙΚΟΙΝΩΝΙΕΣ Ε ΟΜΕΝΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΕΣ INTERNET

ΜΑΘΗΜΑ: ΕΠΙΚΟΙΝΩΝΙΕΣ Ε ΟΜΕΝΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΕΣ INTERNET ΥΠΕΠΘ ΟΡΓΑΝΙΣΜΟΣ ΕΠΑΓΓΕΛΜΑΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΚΑΙ ΚΑΤΑΡΤΙΣΗΣ ΙΕΚ ΧΑΝΙΩΝ ΚΡΗΤΗΣ ΕΙΔΙΚΟΤΗΤΑ : ΤΕΧΝΙΚΟΣ ΣΧΕΔΙΑΣΗΣ ΚΑΙ ΑΝΑΠΤΥΞΗΣ ΙΣΤΟΣΕΛΙΔΩΝ ΕΞΑΜΗΝΟ : Α ΜΑΘΗΜΑ: ΕΠΙΚΟΙΝΩΝΙΕΣ Ε ΟΜΕΝΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΕΣ INTERNET

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2016

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2016 ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2016 ΤΕΧΝΟΛΟΓΙΑ (ΙΙ) ΤΕΧΝΙΚΩΝ ΣΧΟΛΩΝ ΘΕΩΡΗΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Μάθημα : Ψηφιακά Ηλεκτρονικά

Διαβάστε περισσότερα

Πρόγραμμα Επικαιροποίησης Γνώσεων Αποφοίτων ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ

Πρόγραμμα Επικαιροποίησης Γνώσεων Αποφοίτων ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ Πρόγραμμα Επικαιροποίησης Γνώσεων Αποφοίτων ΕΝΟΤΗΤΑ Μ1 ΨΗΦΙΑΚΑ ΗΛΕΚΤΡΟΝΙΚΑ Εκπαιδευτής: Γ. Π. ΠΑΤΣΗΣ, Επικ. Καθηγητής, Τμήμα Ηλεκτρονικών Μηχανικών, ΤΕΙ Αθήνας ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ 1. Ποια είναι η βάση

Διαβάστε περισσότερα

Ένα αναλογικό σήμα περιέχει άπειρες πιθανές τιμές. Για παράδειγμα ένας απλός ήχος αν τον βλέπαμε σε ένα παλμογράφο θα έμοιαζε με το παρακάτω:

Ένα αναλογικό σήμα περιέχει άπειρες πιθανές τιμές. Για παράδειγμα ένας απλός ήχος αν τον βλέπαμε σε ένα παλμογράφο θα έμοιαζε με το παρακάτω: Σημειώσεις Δικτύων Αναλογικά και ψηφιακά σήματα Ένα αναλογικό σήμα περιέχει άπειρες πιθανές τιμές. Για παράδειγμα ένας απλός ήχος αν τον βλέπαμε σε ένα παλμογράφο θα έμοιαζε με το παρακάτω: Χαρακτηριστικά

Διαβάστε περισσότερα

Σχεδίαση κυκλωμάτων ακολουθιακής λογικής

Σχεδίαση κυκλωμάτων ακολουθιακής λογικής Σχεδίαση κυκλωμάτων ακολουθιακής λογικής Βασικές αρχές Σχεδίαση Latches και flip-flops Γιώργος Δημητρακόπουλος Δημοκρίτειο Πανεπιστήμιο Θράκης Φθινόπωρο 2013 Ψηφιακά ολοκληρωμένα κυκλώματα 1 Ακολουθιακή

Διαβάστε περισσότερα

Τμήμα Χρηματοοικονομικής & Ελεγκτικής ΤΕΙ Ηπείρου Παράρτημα Πρέβεζας. Πληροφορική Ι. Μάθημα 4 ο Πράξεις με bits. Δρ.

Τμήμα Χρηματοοικονομικής & Ελεγκτικής ΤΕΙ Ηπείρου Παράρτημα Πρέβεζας. Πληροφορική Ι. Μάθημα 4 ο Πράξεις με bits. Δρ. Τμήμα Χρηματοοικονομικής & Ελεγκτικής ΤΕΙ Ηπείρου Παράρτημα Πρέβεζας Πληροφορική Ι Μάθημα 4 ο Πράξεις με bits Δρ. Γκόγκος Χρήστος Κατηγορίες πράξεων με bits Πράξεις με δυαδικά ψηφία Αριθμητικές πράξεις

Διαβάστε περισσότερα

ΡΟΜΠΟΤΙΚΗ. ΕΡΓΑΣΙΑ ΠΑΝΩ ΣΤΗΝ ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΝΧΤ ΚΑΙ ΤΑ ΠΡΩΤΟΚΟΛΛΑ ΕΠΙΚΟΙΝΩΝΙΑΣ BLUETOOTH, I2C και serial communication

ΡΟΜΠΟΤΙΚΗ. ΕΡΓΑΣΙΑ ΠΑΝΩ ΣΤΗΝ ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΝΧΤ ΚΑΙ ΤΑ ΠΡΩΤΟΚΟΛΛΑ ΕΠΙΚΟΙΝΩΝΙΑΣ BLUETOOTH, I2C και serial communication ΡΟΜΠΟΤΙΚΗ ΕΡΓΑΣΙΑ ΠΑΝΩ ΣΤΗΝ ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΝΧΤ ΚΑΙ ΤΑ ΠΡΩΤΟΚΟΛΛΑ ΕΠΙΚΟΙΝΩΝΙΑΣ BLUETOOTH, I2C και serial communication ΜΠΑΝΤΗΣ ΑΝΤΩΝΙΟΣ 533 ΤΣΙΚΤΣΙΡΗΣ ΔΗΜΗΤΡΙΟΣ 551 ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΤΟΥ ΡΟΜΠΟΤ LEGO NXT Το ρομπότ

Διαβάστε περισσότερα