ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Εργαστήριο 10: Μηχανές Πεπερασμένων Καταστάσεων (Finite State Machines - FSM)

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Εργαστήριο 10: Μηχανές Πεπερασμένων Καταστάσεων (Finite State Machines - FSM)"

Transcript

1 ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Σχεδίαση Εργαστήριο 10: Μηχανές Πεπερασμένων Καταστάσεων (Finite State Machines - FSM) Μανόλης Γ.Η. Κατεβαίνης Τμήμα Επιστήμης Υπολογιστών

2 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται στην άδεια χρήσης Creative Commons και ειδικότερα Αναφορά Μη εμπορική Χρήση Όχι Παράγωγο Έργο 3.0 Ελλάδα (Attribution Non Commercial Non-derivatives 3.0 Greece). CC BY-NC-ND 3.0 GR Εξαιρείται από την ως άνω άδεια υλικό που περιλαμβάνεται στις διαφάνειες του μαθήματος, και υπόκειται σε άλλου τύπου άδεια χρήσης. Η άδεια χρήσης στην οποία υπόκειται το υλικό αυτό αναφέρεται ρητώς. Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου του διδάσκοντα. Το έργο «Ανοικτά Ακαδημαϊκά Μαθήματα στο Πανεπιστήμιο Κρήτης» έχει χρηματοδοτήσει μόνο τη αναδιαμόρφωση του εκπαιδευτικού υλικού. Το έργο υλοποιείται στο πλαίσιο του Επιχειρησιακού Προγράμματος «Εκπαίδευση και Δια Βίου Μάθηση» και συγχρηματοδοτείται από την Ευρωπαϊκή Ένωση (Ευρωπαϊκό Κοινωνικό Ταμείο) και από εθνικούς πόρους.

3 Ψηφιακή Σχεδίαση Εργαστήριο 10: Μηχανές Πεπερασμένων Καταστάσεων (Finite State Machines - FSM) [Βιβλία: προαιρετικά μπορείτε να διαβάσετε: Wakerly: "στα γρήγορα" τις 7.3 έως και 7.7 (σελ ), και ανάμεσά τους "κανονικά" τις σελ , σελ , σελ , σελ , και 7.7 (σελ ) Mano (4η έκδοση): σελ (από 5.5) και σελ (από 5.7, 5.8).] 10.1 Ακολουθιακά Κυκλώματα: Έχουμε πει ( 7.6) ότι "συνδυαστικά" (combinational) κυκλώματα λέμε αυτά που δεν έχουν μνήμη, άρα οι τιμές εξόδου τους εξαρτώνται μόνο από τις παρούσες τιμές των εισόδων τους και όχι από το παρελθόν. Αντίθετα, "ακολουθιακά" (sequential) κυκλώματα λέμε αυτά που έχουν μνήμη, κι έτσι η συμπεριφορά τους εξαρτάται όχι μόνο από το τι "βλέπουν" τώρα στις εισδους τους, αλλά και από την "κατάσταση" (state) στην οποία βρίσκονται, και στην οποία κατάσταση έχουν περιέλθει λόγω του παρελθόντος --στα ακολουθιακά κυκλώματα συνηθίζουμε να ονομάζουμε "κατάσταση" τις δυαδικές τιμές που είναι αποθηκευμένες στο σύνολο των στοιχείων μνήμης του κυκλώματος. Στο σχήμα δεξιά φαίνεται μιά γενική αναπαράσταση ενός ακολουθιακού κυκλώματος, η οποία δείχνει ότι αυτό αποτελείται (α) από τα στοιχεία μνήμης (flip-flops) που αποθηκεύουν την κατάσταση του κυκλώματος, και (β) από ένα συνδυαστικό κύκλωμα το οποίο προσδιορίζει: (β1) τις εξόδους σαν συναρτήσεις των εισόδων και της κατάστασης, και (β2) την επόμενη κατάσταση, πάλι σαν συνάρτηση των εισόδων και της παρούσας κατάστασης. Η κατάσταση αποτελεί, τρόπον τινά, μιά "περίληψη" όλου του παρελθόντος --σε κάθε σύστημα, γιά κάθε εφαρμογή, ο σχεδιαστής αποφασίζει πόσο μεγάλη και λεπτομερή τέτοια "περίληψη" χρειάζεται να κρατάμε. Εδώ θα μελετήσουμε τις "Μηχανές Πεπερασμένων Καταστάσεων (Finite State Machines - FSM). Από μιάν άποψη, όλα τα ακολουθιακά κυκλώματα είναι μηχανές πεπερασμένων καταστάσεων, διότι, αν έχουν n bits μνήμης (κατάστασης), τότε βρίσκονται ανά πάσα στιγμή σε μιάν από τις 2 n διαφορετικές καταστάσεις τις οποίες διαθέτουν --οι οποίες και είναι πάντα πεπερασμένες. Όμως, συνηθίζουμε να αναφερόμαστε με τον όρο "FSM" κυρίως σε εκείνα τα ακολουθιακά κυκλώματα τα οποία έχουν σχετικά λίγες καταστάσεις, και των οποίων τη λειτουργία μπορούμε να περιγράψουμε και να καταλάβουμε καλύτερα αν μιλήσουμε γιά το πώς η κάθε μιά κατάστασή τους, σε συνδυασμό με τις τιμές εισόδου, καθορίζει τις εξόδους και την επόμενη κατάσταση συνήθως, η περιγραφή αυτή γίνεται με ένα "Διάγραμμα (Μετάβασης) Καταστάσεων" (State (Transition) Diagram), όπως θα δούμε αμέσως παρακάτω. Μεγαλύτερα ακολουθιακά κυκλώματα, με πολλά bits μνήμης, συνήθως τα μελετάμε και τα σχεδιάζουμε κόβοντάς τα σε υποκυκλώματα, μερικά από τα οποία τα περιγράφουμε σαν FSM's ενώ άλλα τα περιγράφουμε και τα μελετάμε με άλλους τρόπους (μνήμες RAM, datapaths --που θα πούμε αργότερα-- κλπ).

4 10.2 Μετρητές, και το Διάγραμμα Καταστάσεών τους: Στην παράγραφο 8.2 είδαμε ένα κύκλωμα μετρητή με χρήση αθροιστή. Στο παρακάτω σχήμα φαίνεται μιά παραλλαγή αυτού του κυκλώματος: είναι τρίμπιτο αντί τετράμπιτο, γιά απλότητα του σχεδίου, και αντί παράλληλης φόρτωσης (αρχικοποίησης) με αυθαίρετο αριθμό υπάρχει μόνο η δυνατότητα μηδενισμού, μέσω της εισόδου reset'. Επίσης, αντί δύο μανταλωτών σε σειρά, φυσικά, εδώ χρησιμοποιούμε έναν ακμοπυροδότητο καταχωρητή. Το ακολουθιακό αυτό κύκλωμα μετρητή αποτελείται από έναν τρίμπιτο καταχωρητή, που κρατά την κατάσταση του κυκλώματος, και από ένα συνδυαστικό κύκλωμα που αποτελείται από τον πολυπλέκτη, τον αθροιστή, και τις πύλες AND. Η μία πύλη AND στο σχήμα παριστάνει στην πραγματικότητα 3 πύλες, με κοινή πρώτη είσοδο reset' και με δεύτερη είσοδο από ένα από τα bits του αθροίσματος, καθεμία. Όταν reset'=1, οι 3 έξοδοι των πυλών AND ταυτίζονται με το άθροισμα, ενώ όταν reset'=0, οι 3 αυτές έξοδοι είναι 000. Κάτω από το κύκλωμα φαίνεται το διάγραμμα καταστάσεων αυτού του μετρητή. Οι 8 κύκλοι παριστάνουν τις 8 διαφορετικές καταστάσεις στις οποίες αυτός μπορεί να βρίσκεται, αφού έχει 3 bits κατάστασης. Ονομάσαμε κάθε κατάσταση με το δεκαδικό ισοδύναμο του αριθμού που σχηματίζουν τα 3 bits κατάστασης. Τα βέλη παριστάνουν τις μεταβάσεις καταστάσεων: εάν σε δεδομένο κύκλο ρολογιού το κύκλωμα βρίσκεται σε δεδομένη κατάσταση, και είναι δεδομένες οι τιμές των εισόδων του, τότε το αντίστοιχο βέλος δείχνει σε ποιάν επόμενη κατάσταση θα πάει το κύκλωμα στον επόμενο κύκλο ρολογιού. Τα μπλέ βέλη, που σημειώνονται με u (από "up", δηλ. μέτρηση προς τα επάνω), αντιστοιχούν στην τιμή εισόδου ελέγχου του πολυπλέκτη που επιλέγει την είσοδο +1 (και ενώ ταυτόχρονα η είσοδος reset' είναι 1) υπ' αυτές τις συνθήκες, η επόμενη κατάσταση είναι εκείνη με κωδικό κατά 1 μεγαλύτερο από την παρούσα. Τα κόκκινα βέλη, που σημειώνονται με d (down - κάτω), αντιστοιχούν στην είσοδο που επιλέγει το -1, και μας μεταφέρουν στην κατάσταση με κωδικό κατά 1 μικρότερο της παρούσας. Τα βέλη που σημειώνονται με n (noop - καμιά πράξη) αντιστοιχούν στην είσοδο που επιλέγει το 0, και γι' αυτό η επόμενη κατάσταση ταυτίζεται με την παρούσα. Κάθε ακολουθιακό κύκλωμα πρέπει να έχει έναν τρόπο αρχικοποίησης (reset) όταν του πρωτοδίνουμε τάση τροφοδοσίας, ή σε περίπτωση (έκτακτης) "ανάγκης" --όταν "χάνουμε το λογαριασμό" σε ποιά κατάσταση βρίσκεται, ή όταν πάει και "κολλάει" σε μιά κατάσταση και δεν ξέρουμε πώς αλλιώς να το βγάλουμε από εκεί. Όπως έχουμε πει, όταν πρωτοανάβουμε την τροφοδοσία ενός flip-flop, αυτό πηγαίνει τυχαία σε μιάν από τις δύο σταθερές καταστάσεις του, 0 ή 1, και δεν υπάρχει τρόπος να προβλεφθεί σε ποιάν από τις δυό θα πάει (σαν να ρίχνεις ένα κέρμα "κορώναγράμματα"). Έτσι, η κατάσταση εκκίνησης ενός ακολουθιακού κυκλώματος είναι τυχαία, και πρέπει να υπάρχει τρόπος, στη συνέχεια, αυτό να έλθει σε γνωστή και επιθυμητή αρχική κατάσταση. Στο παραπάνω κύκλωμα, η αρχικοποίηση γίνεται ενεργοποιώντας το σήμα "reset", δηλαδή reset'=0, οπότε η επόμενη κατάσταση είναι πάντα η 0, ανεξαρτήτως προηγούμενης κατάστασης και των άλλων εισόδων. Στο διάγραμμα καταστάσεων, αυτό παριστάνεται με τα μάυρα βέλη που σημειώνονται με

5 "r'" (έχει παραληφθεί ένα ακόμα τέτοιο βέλος, από την κατάσταση 0 στον εαυτό της, που έπρεπε να υπάρχει αλλά δεν χωρούσε στο σχήμα) Παράδειγμα FSM: Φώτα Κυκλοφορίας σε Διασταύρωση Οδών Το πρώτο μας παράδειγμα μηχανής πεπερασμένων καταστάσεων (FSM) θα έχει να κάνει με τον χρονοπρογραμματισμό (scheduling) κοινόχρηστων πόρων. Θα χρησιμοποιήσουμε σαν παράδειγμα μιά διασταύρωση δρόμων, αλλά οι ιδέες είναι ίδιες π.χ. με δρομολόγηση πακέτων πληροφοριών σε δίκτυα υπολογιστών, ή με την εναλλάξ εκτέλεση διεργασιών (προγραμμάτων) σ' έναν υπολογιστή που χρησιμοποιεί πολυπρογραμματισμό. Ας φανταστούμε δύο μονόδρομους, A και B, οι οποίοι συμβάλουν, όπως δείχνει το σχήμα ο A είναι κεντρικός, ενώ ο B είναι πάροδος. Στη διασταύρωσή τους υπάρχουν φώτα κυκλοφορίας, Ago και Bgo (1=πράσινο, 0=κόκκινο). Θέλουμε να σχεδιάσουμε το κύκλωμα ελέγχου των φαναριών. Στις πιό εξελιγμένες παραλλαγές του, το κύκλωμα αυτό θα χρησιμοποιεί σαν εισόδους του δύο ανιχνευτές αυτοκινήτων (car detectors), Ad και Bd: όταν υπάρχει αυτοκίνητο που περιμένει να περάσει από το φανάρι A, τότε Ad=1, αλλιώς Ad=0, και ομοίως γιά το δρόμο B. Γιά απλοποίηση της συζήτησής μας θα θεωρήσουμε ότι υπάρχει ένα ρολόϊ, ck, που κάθε περίοδος του επαρκεί γιά τη διέλευση ακριβώς ενός αυτοκινήτου από τη διασταύρωση στην αρχή της περιόδου, η FSM ελέγχου λαμβάνει τις εισόδους Ad και Bd που την ενημερώνουν γιά την ύπαρξη ή μη αυτοκινήτων στον κάθε δρόμο, αμέσως μετά ανάβει πράσινο στο κατάλληλο φανάρι, Ago ή Bgo, και κατά την υπόλοιπη περίοδο του ρολογιού περνάει το αυτοκίνητο που έχει πράσινο. Θα μελετήσουμε πέντε παραλλαγές του κυκλώματος ελέγχου, με σταδιακή βελτίωση των χαρακτηριστικών του Κλασσικά φανάρια, χωρίς ανιχνευτές, με αναλογία 1 προς 1: Τα συνηθισμένα φώτα κυκλοφορίας δεν έχουν ανιχνευτές αυτοκινήτων, κι έτσι δεν μπορούν να προσαρμοστούν στις πραγματικές συνθήκες κυκλοφορίας --απλώς αναβοσβήνουν περιοδικά το κόκκινο και το πράσινο με συγκεκριμένη διάρκεια γιά τον κάθε δρόμο. Στην απλούστερη περίπτωση, στο παραπάνω παράδειγμα, το πράσινο θα ανάβει εναλλάξ στους δύο δρόμους, γιά διάστημα ενός κύκλου ρολογιού --δηλαδή επαρκές γιά ένα αυτοκίνητο-- κάθε φορά. Το κύκλωμα ελέγχου σε αυτή την περίπτωση θα είναι η απλούστατη FSM τύπου μετρητή με 2 καταστάσεις που φαίνεται στο σχήμα. Η FSM αυτή δεν έχει εισόδους, και οι μεταβάσεις καταστάσεων γίνονται πάντα με τον ίδιο τρόπο, χωρίς συνθήκη γιά το λόγο αυτό, στα βέλη σημειώνουμε "1" (πάντα αληθές), δηλαδή η αντίστοιχη μετάβαση γίνεται πάντα. Προφανώς, η FSM αυτή εναλλάσσει συνεχώς κατάσταση μεταξύ της "Ago" (πράσινο στον A) και της "Bgo" (πράσινο στον B). Το απλούστατο αυτό κύκλωμα ελέγχου έχει μιά σειρά από μειονεκτήματα: Περιττές καθυστερήσεις υπό ελαφρύ φορτίο: λέμε ότι το σύστημα λειτουργεί υπό ελαφρύ φορτίο όταν περνάνε πολύ λίγα αυτοκίνητα, "αραιά και πού". Υπ' αυτές τις συνθήκες, όταν ένα αυτοκίνητο φτάνει στη διασταύρωση, συνήθως δεν θα υπάρχει αυτοκίνητο στον άλλο δρόμο, άρα θα μπορούσε να περάσει αμέσως. Παρ' όλα αυτά, το φανάρι με το κύκλωμα ελέγχου που μόλις

6 σχεδιάσαμε μπορεί να τύχει να είναι κόκκινο (με πιθανότητα 50%), οπότε αυτό προκαλεί καθυστέρηση χωρίς λόγο. Έλλειψη δικαιοσύνης υπό βαρύ φορτίο: λέμε ότι το σύστημα λειτουργεί υπό βαρύ φορτίο όταν υπάρχει πολλή κίνηση, άρα σχηματίζεται ουρά πίσω από τα φανάρια, και στους δύο δρόμους. Υπ' αυτές τις συνθήκες, το κύκλωμα ελέγχου που μόλις σχεδιάσαμε αφήνει να περνούν τα αυτοκίνητα A και τα αυτοκίνητα B με αναλογία 1 προς 1 όμως, δεδομένου ότι ο A είναι κεντρικός δρόμος ενώ ο B είναι πάροδος, η αναλογία αυτή δεν είναι δίκαια. Ανεπαρκής αξιοποίηση πόρων υπό ασύμμετρο φορτίο: λέμε ότι το σύστημα λειτουργεί υπό ασύμμετρο φορτίο όταν ο ένας δρόμος έχει πολλή κίνηση και ο άλλος λίγη. Υπ' αυτές τις συνθήκες, το κύκλωμα ελέγχου που μόλις σχεδιάσαμε αφήνει να περνά μόνο ένα αυτοκίνητο κάθε 2 χρόνους από τον βεβαρυμένο δρόμο, δηλαδή ρυθμός ροής μόνο 50 % της μέγιστης εφικτής παροχής, ακόμα και όταν στον άλλο δρόμο δεν υπάρχει κανένα αυτοκίνητο Κλασσικά φανάρια, χωρίς ανιχνευτές, με αναλογία 2 προς 1: Την αδικία προς τον κεντρικό δρόμο υπό βαρύ φορτίο, λόγω αναλογίας 1:1 στη διάρκεια του πράσινου στους δύο δρόμους, μπορούμε να την διορθώσουμε προσθέτοντας καταστάσεις στον παραπάνω μετρητή, όπως φαίνεται στο διάγραμμα καταστάσεων της νέας FSM, δίπλα. Εδώ, το πράσινο στον δρομο A ανάβει σε δύο από τις τρείς καταστάσεις, ενώ στον δρόμο B μόνο σε μία έτσι, υπό βαρύ φορτίο, η αναλογία παροχής A:B είναι 2:1, και η μέγιστη παροχή A έχει αυξηθεί στα 2/3 ενώ η μέγιστη παροχή B έχει μειωθεί στο 1/3. Φυσικά, συνεχίζουν να υπάρχουν περιττές καθυστερήσεις υπό ελαφρύ φορτίο και ανεπαρκής αξιοποίηση υπό ασύμμετρο φορτίο --τώρα μάλιστα οι καθυστερήσεις στο δρόμο B έχουν αυξηθεί και η μέγιστη παροχή του έχει μειωθεί Συνδυαστικό κύκλωμα σταθερής προτεραιότητας (απλό "STOP"): Οι περιττές καθυστερήσεις υπό ελαφρύ φορτίο και η ανεπαρκής αξιοποίηση υπό ασύμμετρο φορτίο είναι αδύνατον να διορθωθούν χωρίς ανιχνευτές αυτοκινήτων, διότι χωρίς αυτούς το κύκλωμα ελέγχου είναι "τυφλό": δεν έχει τρόπο να ξέρει τις πραγματικές συνθήκες κυκλοφορίας. Έστω τώρα ότι έχουμε τις εισόδους Ad και Bd από τους ανιχνευτές. Ας προσπαθήσουμε κατ' αρχήν να φτιάξουμε το κύκλωμα ελέγχου σαν σκέτο συνδυαστικό κύκλωμα, χωρίς μνήμη. Φυσικά, όταν υπάρχει αυτοκίνητο μόνο σε έναν από τους δύο δρόμους, πρέπει να το αφήνουμε να περνάει, τώρα που ξέρουμε τι γίνεται σε κάθε δρόμο την κάθε στιγμή. Το πρόβλημα είναι όταν Ad=1 και Bd=1, δηλαδή υπάρχουν αυτοκίνητα και στους δύο δρόμους. Αφού δεν θυμόμαστε τίποτα από το παρελθόν (συνδυαστικό κύκλωμα), και αφού ο δρόμος A είναι κεντρικός ενώ ο B είναι πάροδος, λογικό είναι να δώσουμε προτεραιότητα στον A, άρα: Ago = Ad, και Bgo = (Ad') (Bd) --δηλαδή αν υπάρχει αυτοκίνητο στον A του ανάβουμε πράσινο και το αφήνουμε να περάσει, ενώ αν δεν υπάρχει αυτοκίνητο στον A και υπάρχει στον B τότε ανάβουμε πράσινο στον B. Σαν συνδυαστικό που είναι το κύκλωμα αυτό αποφασίζει χρησιμοποιώντας μόνο τα δεδομένα της στιγμής --χωρίς καμία γνώση από το παρελθόν-- άρα στην πράξη υλοποιείται χωρίς φανάρια, με μιά σκέτη πινακίδα "STOP" στο δευτερεύοντα δρόμο B. Το κύκλωμα ελέγχου αυτό δεν εισάγει περιττές καθυστερήσεις υπό ελαφρύ φορτίο, διότι κάθε αυτοκίνητο περνάει αμέσως μόλις έρθει αν δεν υπάρχει αυτοκίνητο στον άλλο δρόμο (ελαφρύ φορτίο). Επίσης, υπό ασύμμετρο φορτίο, προσφέρει πλήρη αξιοποίηση πόρων: όποτε υπάρχει αυτοκίνητο σε κάποιο δρόμο εισόδου, περνάει κάποιο από αυτά στην έξοδο, άρα η έξοδος ποτέ δεν μένει ανεκμετάλλευτη τη στιγμή

7 που υπάρχουν αυτοκίνητα που θέλουν να περάσουν. Όμως, το κύκλωμα αυτό πάσχει από μεγάλη έλλειψη δικαιοσύνης προς τα αυτοκίνητα B: μόνο όποτε και εάν δεν υπάρχει κανένα αυτοκίνητο A μπορεί να περάσει ένα αυτοκίνητο B. Η αδικία αυτή δεν αποκλείεται να φτάσει στην ακραία μορφή του λεγόμενου φαινόμενου "λιμοκτονίας" (starvation): εάν συνεχώς υπάρχουν αυτοκίνητα A, ένα αυτοκίνητο B δεν θα εξυπηρετηθεί ποτέ Προσαρμοστικός Έλεγχος (με αναλογία 1 προς 1): Η αδικία της τελευταίας λύσης προέρχεται από την έλλειψη μνήμης στο κύκλωμα: όσο πολλά αυτοκίνητα A και να έχουν περάσει πρόσφατα, ο ελεγκτής δεν το ξέρει, κι έτσι αφήνει ακόμα ένα να περάσει. Η έλλειψη αυτή διορθώνεται με την απλή FSM που φαίνεται στο σχήμα δίπλα. Εδώ έχουμε 1 bit μνήμης (μόνο), μέσω του οποίου θυμόμαστε από ποιόν δρόμο ήλθε το τελευταίο αυτοκίνητο που πέρασε. Εάν το τελευταίο ήταν από τον A και τώρα υπάρχει αυτοκίνητο στον B, το αφήνουμε να περάσει αντίθετα, αν το τελευταίο ήταν από τον B, τώρα δίνουμε προτεραιότητα στον A: προτεραιότητα θα έχει ο άλλος δρόμος από αυτόν που εξυπηρετήθηκε την τελευταία φορά. Φυσικά, εάν δεν υπάρχει αυτοκίνητο στο δρόμο με την προτεραιότητα, αφήνουμε να περάσει το αυτοκίνητο από τον άλλο δρόμο, εάν υπάρχει. Η επόμενη κατάσταση είναι ανάλογη με το ποιός τελικά πέρασε, ενώ αν δεν πέρασε κανείς (διότι δεν υπήρχε κανείς) η κατάσταση παραμένει αμετάβλητη. Πάνω στα βέλη του διαγράμματος καταστάσεων σημειώνουμε τη συνθήκη μετάβασης (μαύρο), αλλά και την έξοδο που πρέπει να ενεργοποιηθεί (μπλέ). Ας δούμε τώρα πώς συνθέτουμε το κύκλωμα μιάς FSM από το διάγραμμα καταστάσεών της. Πρώτα πρέπει να αποφασίσουμε πόσα bits κατάστασης θα χρειαστούμε, και με ποιό συνδυασμό τιμών τους θα παραστήσουμε την κάθε κατάσταση του διαγράμματος. Φυσικά, υπάρχουν πολλές δυνατές επιλογές η επιλογή μας δεν θα επηρεάσει την εξωτερική συμπεριφορά της FSM, αλλά είναι πολύ πιθανό να επηρεάσει την πολυπλοκότητα του κυκλώματος υλοποίησης --εδώ, πάντως, δεν υπάρχει εύκολος κανόνας γιά τον τρόπο που συμφέρει να γίνει η κωδικοποίηση των καταστάσεων. Στο παρόν παράδειγμά μας, οι καταστάσεις είναι δύο, άρα αρκεί ένα bit γιά την κωδικοποίησή τους ας το ονομάσουμε S, και ας θεωρήσουμε ότι S=0 σημαίνει ότι "το τελευταίο ήταν A", ενώ S=1 σημαίνει ότι "το τελευταίο ήταν B". Εάν ονομάσουμε ns την επόμενη κατάσταση, τότε ο πίνακας αληθείας του συνδυαστικού κυκλώματος μέσα στην FSM είναι ο παρακάτω (αριστερά), από τον οποίον προκύπτουν οι έξοδοι του κυκλώματος σαν συναρτήσεις των εισόδων του (δεξιά): S Ad Bd Ago Bgo ns Ago = Ad [ S + (S') (Bd') ] Bgo = Bd [ S' + (S) (Ad') ] ns = S Ad' + S' Bd Στην FSM αυτή, ειδική αρχικοποίηση δεν απαιτείται, διότι οιαδήποτε αρχική κατάσταση είναι έγκυρη και αποδεκτή Προσαρμοστικός έλεγχος με αναλογία 2 προς 1:

8 Η τελευταία FSM διατηρεί όλες τις καλές ιδιότητες του προσαρμοστικού ελέγχου (adaptive control), δηλαδή του ελέγχου που παρακολουθεί το φορτίο του συστήματος και προσαρμόζεται σε αυτό: υπό ελαφρύ φορτίο ποτέ δεν προκαλεί περιττές καθυστερήσεις, και υπό ασύμμετρο φορτίο προσφέρει πλήρη χρήση πόρων. Επίσης, αίρει την κατάφορη αδικία στο δρόμο B, δίνοντάς του ισότιμη μεταχείριση με τον δρόμο A. Μένει τώρα να διορθώσουμε την αναλογία παροχής υπό βαρύ φορτίο από 1:1 σε κάτι ορθότερο, δεδομένου ότι η A είναι κύρια οδός και η B είναι πάροδος αυτό μπορεί να επιτευχθεί με την τροποποιημένη FSM που φαίνεται δίπλα. Εδώ, ξεχωρίζουμε την περίπτωση (κατάσταση) όπου το ένα τελευταίο αυτοκίνητο ήταν A ενώ το προηγούμενό του ήταν B από την περίπτωση που και τα δύο τελευταία αυτοκίνητα ήταν A στην πρώτη περίπτωση αφήνουμε να περάσει και δεύτερο A κατά προτεραιότητα, ενώ στη δεύτερη περίπτωση δίνουμε προτεραιότητα στο B. Υπό βαρύ φορτίο η FSM αυτή εξυπηρετεί τους δρόμους A και B με αναλογία 2:1, ενώ επίσης διατηρεί και όλα τα άλλα πλεονεκτήματα των δύο τελευταίων λύσεων, δηλαδή τελικά λύνει όλα τα παραπάνω μειονεκτήματα της λύσης της Άσκηση 10.4: Οδών Σχεδίαση της FSM (5) γιά τη Διασταύρωση των Σχεδιάστε την τελευταία παραπάνω FSM της (προσαρμοστικός έλεγχος με αναλογία 2 προς 1), όπως σχεδιάσαμε και την FSM της , δηλαδή εκφράστε όλες τις εξόδους του συνδυαστικού κυκλώματος σαν συναρτήσεις των εισόδων του. Κωδικοποιήστε τις 3 καταστάσεις της FSM με δύο bits κατάστασης, S1-S0, ως εξής: 00 = "το ένα τελευταίο ήταν A", 01 = "τα δύο τελευταία ήταν A", 10 = "το τελευταίο ήταν B". Μεταφράστε το διάγραμμα καταστάσεων στον πίνακα αληθείας των εξόδων Ago, Bgo, ns1, και ns0 σαν συναρτήσεις των εισόδων S1, S0, Ad, και Bd. Παρατηρήστε ότι οι γραμμές του πίνακα με S1-S0 = 11 δεν καλύπτονται από το διάγραμμα καταστάσεων, δεδομένου ότι η 11 είναι αχρησιμοποίητη κατάσταση. Αρχικά, αφήστε τις εξόδους, στις γραμμές αυτές, σαν συνθήκες αδιαφορίας ( 4.4), γιά να διευκολυνθεί η απλοποίηση των συναρτήσεων των εξόδων. Στη συνέχεια όμως, ελέγξτε ποιά σας προέκυψε σαν επόμενη κατάσταση μετά την 11 γιά τις διάφορες τιμές των εισόδων: το κύκλωμα πρέπει να εγκαταλείπει αυτή την "παράνομη" κατάσταση όσο πιό γρήγορα γίνεται, αν τύχει να βρεθεί εκεί όταν πρωτοανάβει η τροφοδοσία. Γιά να είστε εντελώς εντάξει, πρέπει και να σιγουρευτείτε και ότι δεν θα ανάψουν ποτέ και τα δύο πράσινα μαζί (Ago=Bgo=1), ακόμα και όταν το κύκλωμα βρεθεί στην "παράνομη" κατάσταση Κώδικες Μεταβλητού Μήκους: Κωδικοποίηση Huffman Το επόμενο παράδειγμα FSM που θα δούμε είναι από μιάν άλλη ενδιαφέρουσα περιοχή, τους κώδικες μεταβλητού μήκους, οι οποίοι έχουν σημαντικές εφαρμογές στις ψηφιακές επικοινωνίες και ομοιότητες με την αναγνώριση γραμματικών από τους μεταφραστές (compilers). Ξέρουμε ότι με n bits μπορούμε να κωδικοποιήσουμε 2 n διαφορετικά σύμβολα ( 2.8) οι κώδικες εκείνοι είναι σταθερού μήκους (ή πλάτους), διότι κωδικοποιούν όλα τα σύμβολα με το ίδιο πλήθος bits, καθένα. Οι κώδικες σταθερού πλάτους βολεύουν όταν τα σύμβολα αποθηκεύονται σε μνήμες και όταν μεταφέρουμε τα bits τους όλα μαζί, εν παραλλήλω (π.χ. μέσα στο datapath επεξεργαστών). Όμως, όταν τα bits της κωδικοποίησης μεταδίδονται σειριακά, το ένα μετά το άλλο, μέσα από ένα κανάλι επικοινωνίας, χρησιμοποιούνται και κώδικες μεταβλητού μήκους (variable length), όταν αυτοί μπορούν να επιτύχουν μετάδοση της πληροφορίας με λιγότερα συνολικά bits. Αυτοί πήραν το όνομά τους από τον Huffman ο οποίος τους μελέτησε.

9 Γιά παράδειγμα, θεωρήστε ότι θέλουμε να στέλνουμε μηνύματα αποτελούμενα από μακρές ακολουθίες τεσσάρων (4) συμβόλων, των A, B, C, και D --δηλαδή το αλφάβητό μας έχει αυτά τα 4 γράμματα/σύμβολα. Ξέρουμε ότι αυτά μπορούμε να τα παραστήσουμε μ' ένα κώδικα σταθερού μήκους 2 bits ανά σύμβολο: 00, 01, 10, και 11. Έστω τώρα ότι στα μηνύματά μας η συχνότητα με την οποία εμφανίζονται τα διάφορα σύμβολα δεν είναι η ίδια: υπάρχουν σύμβολα πολύ συχνά και άλλα πολύ σπάνια. Σ' αυτή την περίπτωση, ένας κώδικας μεταβλητού μήκους μπορεί να μεταδώσει τα μηνύματά μας με λιγότερα bits συνολικά και κατά μέσον όρο. Ας πούμε, στο παραπάνω παράδειγμα, ότι στα μηνύματά μας το 50 % των εμφανιζομένων συμβόλων είναι A, το 25 % είναι B, το 12.5 % είναι C, και το 12.5 % είναι D, και ας θεωρήσουμε τον κώδικα μεταβλητού μήκους: A: 0, B: 10, C: 110, D: 111. Τότε, γιά κάθε π.χ σύμβολα που μεταδίδονται, χρειάζονται περίπου 500 bits γιά τη μετάδοση των περίπου 500 A που υπάρχουν κατά μέσον όρο εκεί (1 bit ανά A), συν άλλα 500 bits γιά τα 250 B (2 bits ανά B), σύν 375 bits γιά τα 125 C (3 bits ανά C), σύν 375 bits γιά τα D. Το σύνολο είναι 1750 bits γιά κάθε 1000 μεταδιδόμενα σύμβολα, ή 1.75 bits/σύμβολο κατά μέσον όρο, πράγμα σημαντικά χαμηλότερο από τα 2 bits/σύμβολο του κώδικα σταθερού πλάτους. Το κλειδί γιά την επίτευξη αυτής της οικονομίας είναι το να αφιερώνουμε τους (λίγους) κώδικες μικρού μήκους στα σύμβολα εκείνα που εμφανίζονται περισσότερο συχνά, σε βάρος των σπανιότερων συμβόλων που παρίστανται με περισσότερα bits. Ο γνωστός μας από παλιά κώδικας Μορς είναι φτιαγμένος με παρόμοιο τρόπο, εκμεταλλευόμενος το γεγονός ότι στις ανθρώπινες γλώσσες ορισμένα γράμματα είναι πολύ συχνότερα από άλλα. Ο παραπάνω κώδικας έχει φτιαχτεί προσεκτικά ούτως ώστε να είναι εφικτή η κατ' ευθείαν αναγνώριση του κάθε σύμβολου αμέσως μόλις φτάσει το τελευταίο bit της κωδικοποιημένης μορφής του, χωρίς διφορούμενα και χωρίς την ανάγκη να περιμένουμε πρώτα να δούμε τα επόμενα bits του μηνύματος. Η ιδιότητα αυτή υπάρχει επειδή ο κώδικας κάθε βραχύτερου σύμβολου δεν αποτελεί πρόθεμα του κώδικα κανενός από τα μακρύτερα σύμβολα. Παρόμοια ιδιότητα έχουν και οι αριθμοί τηλεφώνου, όπου τα πρώτα ψηφία (πρόθεμα) καθορίζουν μονοσήμαντα το συνολικό μήκος και το είδος του αριθμού. Την ιδιότητα αυτή δεν θα την είχε π.χ. ο κώδικας A=0, B=1, C=10, D=11: με αυτόν τον κώδικα, το μήνυμα 110 μπορεί να σημαίνει είτε BC είτε DA. Παρόμοιο "διφορούμενο" (ambiguous) κώδικα είχε χρησιμοποιήσει και το Μαντείο των Δελφών στον περίφημο εκείνο χρησμό του "ίξεις αφίξεις ουκ εν τω πολέμω θνήξεις", που μπορούσε να ερμηνευτεί είτε σαν "ίξεις, αφίξεις, ουκ εν τω πολέμω θνήξεις" (θα πας, θα γυρίσεις, δεν θα πεθάνεις στον πόλεμο), είτε σαν "ίξεις, αφίξεις ουκ, εν τω πολέμω θνήξεις" (θα πας, δεν θα γυρίσεις, στον πόλεμο θα πεθάνεις) FSM Αποκωδικοποίησης Huffman: Ο παραπάνω κώδικας μεταβλητού μήκους γιά τα 4 σύμβολα A, B, C, D αποκωδικοποιείται με την FSM που φαίνεται δεξιά. Υποθέτουμε ότι τα bits των κωδικοποιημένων συμβόλων έρχονται σειριακά, ένα-ένα, από μιάν είσοδο in, και ότι υπάρχει ένα ρολόϊ ck που σημαδεύει, με την ενεργή ακμή του, το τέλος του κάθε bit εισόδου in. Η FSM έχει 4 εξόδους, A, B, C, D κάθε μιά τους ανάβει όποτε παραλαμβάνουμε ένα αντίστοιχο σύμβολο, γιά διάρκεια ακριβώς ενός κύκλου ρολογιού, και συγκεκριμένα κατά τον κύκλο ρολογιού παραλαβής του τελευταίου bit του αντίστοιχου συμβόλου. Η κατάσταση εκκίνησης είναι η S0, οπότε και περιμένουμε να μας έλθει ένα νέο

10 σύμβολο, με όλα του τα bits από την αρχή. Στην ίδια κατάσταση επιστρέφουμε κάθε φορά που τελειώνουν όλα τα bits του προηγούμενου σύμβολου, και επομένως περιμένουμε ένα νέο σύμβολο από την αρχή. Εάν είμαστε στην κατάσταση S0 και μας έλθει είσοδος 0 (in' αληθές), σημαίνει ότι βλέπουμε ένα σύμβολο A (το μοναδικό άρα και το τελευταίο του bit), επομένως πρέπει να ανάψει η έξοδος A και η επόμενη κατάσταση να είναι πάλι η S0, αφού στον επόμενο κύκλο περιμένουμε το πρώτο bit του επομένου συμβόλου. Εάν τώρα είμαστε στην S0 και έλθει είσοδος 1 (in αληθές), τότε ξέρουμε ότι βλέπουμε το πρώτο bit ενός συμβόλου B ή C ή D, αλλά δεν ξέρουμε ακόμα τίνος από τα τρία έτσι, μεταβαίνουμε στην κατάσταση S1 που σημαίνει ότι έχουμε δεί μέχρι στιγμής ένα "1". Τον επόμενο κύκλο, όντας στην S1, αν δούμε είσοδο 0 σημαίνει ότι βλέπουμε το τέλος ενός συμβόλου B, άρα ανάβουμε την έξοδο B και μεταβαίνουμε στην S0. Αν αντιθέτως δούμε είσοδο 1 σημαίνει ότι βλέπουμε το δεύτερο bit ενός συμβόλου C ή D, αλλά δεν ξέρουμε ακόμα τίνος από τα δύο έτσι, μεταβαίνουμε στην κατάσταση S2. Τον επόμενο κύκλο, όντας στην S2, είσοδος 0 σημαίνει ότι βλέπουμε το τέλος ενός συμβόλου C, ενώ είσοδος 1 υποδεικνύει το τέλος ενός συμβόλου D Κωδικοποίηση Καταστάσεων One-Hot: Στο εργαστήριο θα κατασκευάσετε την παραπάνω FSM λήψης του κώδικα μεταβλητού μήκους, χρησιμοποιώντας ένα στύλ κωδικοποίησης των καταστάσεών της που λέγεται "one-hot" (ένα "ζεστό"): όπως φαίνεται στο επόμενο σχήμα, χρησιμοποιούμε τόσα flip-flops κατάστασης όσες και οι καταστάσεις (αντί όσος ο δυαδικός λογάριθμος του πλήθους των καταστάσεων, που θα αρκούσαν), και θα φροντίσουμε ένα και μόνον ένα από αυτά να είναι αναμένο σε κάθε μιά από τις έγκυρες καταστάσεις της FSM. Το στυλ αυτό είναι σπάταλο σε flip-flops, αλλά συχνά δίνει απλούστερη συνδυαστική λογική γιά την FSM: είναι σαν να είχαμε μιά πιό πυκνά κωδικοποιημένη κατάσταση, και μετά να είχαμε κι έναν συνδυαστικό αποκωδικοποιητή που μας δίνει μία και μόνο μία αναμένη έξοδο, αυτήν που αντιστοιχεί στην παρούσα κατάσταση. Φυσικά, με το να έχουμε 3 (εν προκειμένω) flip-flops κατάστασης, σημαίνει ότι το κύκλωμα στην πραγματικότητα έχει 8 καταστάσεις, από τις οποίες μόνο 3 είναι οι έγκυρες γιά μας, και πρέπει να σιγουρευτούμε ότι το σήμα αρχικοποίησης reset θα φέρνει πάντα την FSM στην επιθυμητή έγκυρη αρχική κατάσταση S0, ανεξαρτήτως σε ποιάν από τις 8 υπαρκτές καταστάσεις (όχι μόνο τις 3 έγκυρες) αυτή ήταν πρίν. Εδώ λοιπόν, την κατάσταση "S0" θα την κωδικοποιούμε με S0=1 και S1=S2=0 την "S1" θα την κωδικοποιούμε με S1=1 και S0=S2=0 και η "S2" θα είναι η S2=1 και S0=S1=0. Με αυτή την κωδικοποίηση καταστάσεων, οι έξοδοι της FSM εκφράζονται πολύ απλά: A = (S0) (in'), B=(S1) (in'), C=(S2) (in'), D=(S2) (in) διότι (S0) είναι αληθές όταν και μόνον όταν βρισκόμαστε στην κατάσταση S0, κ.ο.κ. γιά κάθε κατάσταση. Στη συνέχεια, εκφράζουμε τις εξόδους επόμενης κατάστασης. Η έξοδος ns1 πρέπει πάντα να έχει την τιμή που πρέπει να πάρει το flip-flop S1 κατά τον επόμενο κύκλο ρολογιού άρα το ns1 πρέπει να είναι αληθές τότε και μόνο τότε όταν στον επόμενο κύκλο ρολογιού η FSM πρέπει να μεταβεί στην κατάσταση S1. Από το διάγραμμα καταστάσεων της 10.6 βλέπουμε ότι η επόμενη κατάσταση είναι η S1 μόνο σε μία περίπτωση (μόνο ένα βέλος μπαίνει στην S1): όταν τώρα είμαστε στην S0 και in=1 άρα, το ns1 πρέπει να είναι αληθές όταν και μόνον όταν (S0) (in). Ομοίως, η S2 είναι επόμενη κατάσταση μόνο όταν S1=1 και in=1, άρα τότε και μόνο τότε πρέπει να ανάβει το ns2. Τώρα, η S0 είναι επόμενη κατάσταση σε πέντε διαφορετικές περιπτώσεις: όταν είμαστε στην S0 και in=0, ή στην S1 και in=0, ή είμαστε στην S2 (με οιαδήποτε είσοδο in), ή όταν reset=1. Έτσι, προκύπτουν οι εξής

11 σχέσεις γιά τις εξόδους επόμενης κατάστασης: ns1 = (S0) (in) (reset'), ns2 = (S1) (in) (reset'), ns0 = (S0) (in') + (S1) (in') + (S2) + (reset) = in' + S2 + reset Βλέπουμε ότι η έκφραση γιά το ns0 απλοποιήθηκε ως εξής: όποτε in=0 επόμενη κατάσταση είναι πάντα η S0, και αυτό καλύπτει τα τρία επάνω βέλη στο διάγραμμα καταστάσεων το βέλος γιά S2 και in=1 μπορούμε να το καλύψουμε με τον όρο S2 (που επίσης καλύπτει την περίπτωση S2 και in=0 που ήδη καλύψαμε με τον όρο in') έτσι, το μόνο άλλο βέλος προς S0 που έμεινε είναι το reset, άρα συνολικά ns0 = in' + S2 + reset. Όσον αφορά, τώρα, τη συνολική δράση του reset, αυτή πρέπει να σχεδιαστεί προσεκτικά: όταν reset=1, πρέπει η επόμενη κατάσταση να είναι η S0 ανεξαρτήτως του πού βρισκόμασταν, είτε σε μιάν από τις έγκυρες καταστάσεις S0, S1, S2, είτε σε κάποιαν από τις υπόλοιπες 5 "παράνομες" καταστάσεις (000, 011, 101, 110, 111). Με τον τρόπο που περιελήφθη το reset στις παραπάνω συναρτήσεις, αυτό εξασφαλίζεται: οιαδήποτε τιμή και αν έχουν τα S0, S1, S2, και in, όταν reset=1, ο όρος "AND (reset')" στις εξόδους ns1 και ns2 εξασφαλίζει ότι αυτές θα είναι 0, και ο όρος "OR (reset)" στην έξοδο ns0 εξασφαλίζει ότι αυτή θα είναι 1. Πείραμα 10.8: Huffman FSM Κατασκευάστε στο εργαστήριο την παραπάνω FSM λήψης του κώδικα μεταβλητού μήκους, σύμφωνα με το κύκλωμα του τελευταίου σχήματος και τις παραπάνω εξισώσεις που περιγράφουν το συνδυαστικό του κομάτι. Όπως δείχνει το σχήμα, μπορείτε να πάρετε και τις δύο πολικότητες, in και in', της εισόδου π.χ. από το κουμπί Μ της πλακέτας εισόδων/εξόδων. Εάν θέλετε, μπορείτε να παραλείψετε τον όρο (reset') από τα ns1 και ns2, αρκεί να θυμάστε πάντα όταν κάνετε reset να έχετε ταυτόχρονα και in=0. Χρησιμοποιήστε π.χ. το κουμπί D γιά το σήμα reset. Γιά το συνδυαστικό κομάτι του κυκλώματος θα χρειαστείτε 2 chips 7408 (πύλες AND) και 1 chip 7432 (πύλες OR). Γιά την κατάσταση, χρησιμοποιήστε 3 από τα 8 ακμοπυροδότητα flip-flops ενός chip Γιά το ρολόϊ, χρησιμοποιήστε π.χ. τον διακόπτη A. Η είσοδος in πρέπει να έχει σταθεροποιηθεί πριν την ενεργή ακμή του ρολογιού (πριν πατηθεί ο A) και να παραμένει σταθερή κατά το πάτημα αλλάζετε την τιμή της εισόδου in μετά το πάτημα του A. Γιά να παρακολουθείτε την παρούσα κατάσταση της FSM, καθώς και την υπό προετοιμασία επόμενη κατάσταση, χρησιμοποιήστε αντίστοιχα τις 3 αριστερές και τις 3 δεξιές LED, όπως δείχνει στο σχήμα. Γιά να βλέπετε τις τέσσερις εξόδους της FSM, χρησιμοποιήστε αντίστοιχα τα 4 ψηφία της οθόνης LCD (αρκεί π.χ. το LS bit κάθε

12 ψηφίου, δηλαδή ένα κάθε 4 bits της καλωδιοταινίας). Παρατηρήστε ότι τα σήματα εξόδου της FSM παίρνουν τη σωστή τους τιμή μόνο αφού η είσοδος in πάρει τη δική της σωστή τιμή, μετά την προηγούμενη ακμή (πάτημα) ρολογιού και πριν την επόμενη: η σωστή τιμή εισόδων και εξόδων είναι αμέσως πριν την ακμή (πάτημα) ρολογιού, τότε δηλαδή που τα ακμοπυροδότητα flip-flops "κοιτάζουν" τις εισόδους τους. Κάντε ένα πλήρες σχεδιάγραμμα συνδεσμολογίας. Επίσης, γράψτε στο χαρτί σας την κωδικοποίηση του μηνύματος "ABACADACABADACAC" σύμφωνα με τον κώδικά μας μεταβλητού μήκους. Επίσης, αποκωδικοποιήστε το μήνυμα που περιέχουν τα bits " " σύμφωνα πάντα με τον ίδιο κώδικα. Κατασκευάστε το κύκλωμα, αρχικοποιήστε το σωστά (reset=1 και in=0 και ακμή ρολογιού), και στη συνέχεια ελέγξτε τη σωστή λειτουργία του στέλνοντάς του τα δύο παραπάνω μηνύματα και βλέποντας αν τα λαμβάνει σωστά, δηλαδή αν ανάβει η σωστή LED μία φορά γιά κάθε γράμμα-σύμβολο.

Εργαστήριο 10: Μηχανές Πεπερασµένων Καταστάσεων (Finite State Machines - FSM)

Εργαστήριο 10: Μηχανές Πεπερασµένων Καταστάσεων (Finite State Machines - FSM) 1 of 6 16/12/2003 9:23 µµ ΗΥ-120: Ψηφιακή Σχεδίαση Φθινόπωρο 2003 Τµ. Επ. Υπολογιστών Πανεπιστήµιο Κρήτης Εργαστήριο 10: Μηχανές Πεπερασµένων Καταστάσεων (Finite State Machines - FSM) 12-15 Ιανουαρίου

Διαβάστε περισσότερα

Παραδείγματα σχεδίασης με μηχανές πεπερασμένων καταστάσεων

Παραδείγματα σχεδίασης με μηχανές πεπερασμένων καταστάσεων Παραδείγματα σχεδίασης με μηχανές πεπερασμένων καταστάσεων Γιώργος Δημητρακόπουλος 1 Αποκωδικοποιητής κώδικα Huffman συμπίεση δεδομένων Ξέρουμε ότι με n bits μπορούμε να κωδικοποιήσουμε 2 n διαφορετικά

Διαβάστε περισσότερα

6.1 Καταχωρητές. Ένας καταχωρητής είναι μια ομάδα από f/f αλλά μπορεί να περιέχει και πύλες. Καταχωρητής των n ψηφίων αποτελείται από n f/f.

6.1 Καταχωρητές. Ένας καταχωρητής είναι μια ομάδα από f/f αλλά μπορεί να περιέχει και πύλες. Καταχωρητής των n ψηφίων αποτελείται από n f/f. 6. Καταχωρητές Ένας καταχωρητής είναι μια ομάδα από f/f αλλά μπορεί να περιέχει και πύλες. Καταχωρητής των n ψηφίων αποτελείται από n f/f. Καταχωρητής 4 ψηφίων Καταχωρητής με παράλληλη φόρτωση Η εισαγωγή

Διαβάστε περισσότερα

Σχεδίαση Ψηφιακών Συστημάτων

Σχεδίαση Ψηφιακών Συστημάτων ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Σχεδίαση Ψηφιακών Συστημάτων Ενότητα 6: Σύγχρονα Ακολουθιακά Κυκλώματα Κυριάκης Μπιτζάρος Ευστάθιος Τμήμα Ηλεκτρονικών Μηχανικών

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Εργαστήριο 7: Μανταλωτές (Latches), Καταχωρητές, και Διφασικά Ρολόγια

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Εργαστήριο 7: Μανταλωτές (Latches), Καταχωρητές, και Διφασικά Ρολόγια ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Σχεδίαση Εργαστήριο 7: Μανταλωτές (Latches), Καταχωρητές, και Διφασικά Ρολόγια Μανόλης Γ.Η. Κατεβαίνης Τμήμα Επιστήμης Υπολογιστών Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

100 ΕΡΩΤΗΣΕΙΣ ΜΕ ΤΙΣ ΑΝΤΙΣΤΟΙΧΕΣ ΑΠΑΝΤΗΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ

100 ΕΡΩΤΗΣΕΙΣ ΜΕ ΤΙΣ ΑΝΤΙΣΤΟΙΧΕΣ ΑΠΑΝΤΗΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ 100 ΕΡΩΤΗΣΕΙΣ ΜΕ ΤΙΣ ΑΝΤΙΣΤΟΙΧΕΣ ΑΠΑΝΤΗΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ 1) Να μετατρέψετε τον δεκαδικό αριθμό (60,25) 10, στον αντίστοιχο δυαδικό 11111,11 111001,01 111100,01 100111,1 111100,01 2)

Διαβάστε περισσότερα

Ηλεκτρολόγοι Μηχανικοί ΕΜΠ Λογική Σχεδίαση Ψηφιακών Συστημάτων Διαγώνισμα κανονικής εξέτασης 2017

Ηλεκτρολόγοι Μηχανικοί ΕΜΠ Λογική Σχεδίαση Ψηφιακών Συστημάτων Διαγώνισμα κανονικής εξέτασης 2017 Ηλεκτρολόγοι Μηχανικοί ΕΜΠ Λογική Σχεδίαση Ψηφιακών Συστημάτων Διαγώνισμα κανονικής εξέτασης 2017 Θέμα 1ο (3 μονάδες) Υλοποιήστε το ακoλουθιακό κύκλωμα που περιγράφεται από το κατωτέρω διάγραμμα καταστάσεων,

Διαβάστε περισσότερα

Συνδυαστικά Λογικά Κυκλώματα

Συνδυαστικά Λογικά Κυκλώματα Συνδυαστικά Λογικά Κυκλώματα Ένα συνδυαστικό λογικό κύκλωμα συντίθεται από λογικές πύλες, δέχεται εισόδους και παράγει μία ή περισσότερες εξόδους. Στα συνδυαστικά λογικά κυκλώματα οι έξοδοι σε κάθε χρονική

Διαβάστε περισσότερα

Εισαγωγή στην πληροφορική

Εισαγωγή στην πληροφορική Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Εισαγωγή στην πληροφορική Ενότητα 4: Ψηφιακή Λογική, Άλγεβρα Boole, Πίνακες Αλήθειας (Μέρος B) Αγγελίδης Παντελής Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών

Διαβάστε περισσότερα

Ηλεκτρολόγοι Μηχανικοί ΕΜΠ Λογική Σχεδίαση Ψηφιακών Συστημάτων Διαγώνισμα κανονικής εξέτασης Θέμα 1ο (3 μονάδες)

Ηλεκτρολόγοι Μηχανικοί ΕΜΠ Λογική Σχεδίαση Ψηφιακών Συστημάτων Διαγώνισμα κανονικής εξέτασης Θέμα 1ο (3 μονάδες) Ηλεκτρολόγοι Μηχανικοί ΕΜΠ Λογική Σχεδίαση Ψηφιακών Συστημάτων Διαγώνισμα κανονικής εξέτασης 2016 Θέμα 1ο (3 μονάδες) Υλοποιήστε το ακoλουθιακό κύκλωμα που περιγράφεται από το ανωτέρω διάγραμμα καταστάσεων,

Διαβάστε περισσότερα

Εργαστήριο Ψηφιακής Σχεδίασης

Εργαστήριο Ψηφιακής Σχεδίασης ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ Εργαστήριο Ψηφιακής Σχεδίασης 8 Εργαστηριακές Ασκήσεις Χρ. Καβουσιανός Επίκουρος Καθηγητής 2014 Εργαστηριακές Ασκήσεις Ψηφιακής Σχεδίασης 2 Εργαστηριακές Ασκήσεις

Διαβάστε περισσότερα

Υπάρχουν δύο τύποι μνήμης, η μνήμη τυχαίας προσπέλασης (Random Access Memory RAM) και η μνήμη ανάγνωσης-μόνο (Read-Only Memory ROM).

Υπάρχουν δύο τύποι μνήμης, η μνήμη τυχαίας προσπέλασης (Random Access Memory RAM) και η μνήμη ανάγνωσης-μόνο (Read-Only Memory ROM). Μνήμες Ένα από τα βασικά πλεονεκτήματα των ψηφιακών συστημάτων σε σχέση με τα αναλογικά, είναι η ευκολία αποθήκευσης μεγάλων ποσοτήτων πληροφοριών, είτε προσωρινά είτε μόνιμα Οι πληροφορίες αποθηκεύονται

Διαβάστε περισσότερα

Οργάνωση Υπολογιστών ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Εργαστήριο 9: Εισαγωγή στην Ομοχειρία (Pipelining - Διοχέτευση) Μανόλης Γ.Η.

Οργάνωση Υπολογιστών ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Εργαστήριο 9: Εισαγωγή στην Ομοχειρία (Pipelining - Διοχέτευση) Μανόλης Γ.Η. ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Οργάνωση Υπολογιστών Εργαστήριο 9: Εισαγωγή στην Ομοχειρία (Pipelining - Διοχέτευση) Μανόλης Γ.Η. Κατεβαίνης Τμήμα Επιστήμης Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Ψηφιακή Λογική Σχεδίαση

Ψηφιακή Λογική Σχεδίαση Ψηφιακή Λογική Σχεδίαση Επιμέλεια: Νίκος Φακωτάκης, Καθηγητής Ανδρέας Εμερετλής, Υποψήφιος Διδάκτορας Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σημείωμα Αδειοδότησης Το παρόν υλικό διατίθεται

Διαβάστε περισσότερα

ΗΥ220: Εργαστήριο ψηφιακών κυκλωμάτων

ΗΥ220: Εργαστήριο ψηφιακών κυκλωμάτων Πανεπιστήμιο Κρήτης Τμήμα Επιστήμης Υπολογιστών ΗΥ220: Εργαστήριο ψηφιακών κυκλωμάτων Γιώργος Δημητρακόπουλος Μονάδες επεξεργασίας δεδομένων και ο έλεγχος τους Δόμηση σύνθετων κυκλωμάτων 1. Γενική περιγραφή

Διαβάστε περισσότερα

Α. ΣΚΟΔΡΑΣ ΠΛΗ21 ΟΣΣ#2. 14 Δεκ 2008 ΠΑΤΡΑ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ 2008 Α. ΣΚΟΔΡΑΣ ΧΡΟΝΟΔΙΑΓΡΑΜΜΑ ΜΕΛΕΤΗΣ

Α. ΣΚΟΔΡΑΣ ΠΛΗ21 ΟΣΣ#2. 14 Δεκ 2008 ΠΑΤΡΑ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ 2008 Α. ΣΚΟΔΡΑΣ ΧΡΟΝΟΔΙΑΓΡΑΜΜΑ ΜΕΛΕΤΗΣ ΠΛΗ21 ΟΣΣ#2 14 Δεκ 2008 ΠΑΤΡΑ ΧΡΟΝΟΔΙΑΓΡΑΜΜΑ ΜΕΛΕΤΗΣ 7-segment display 7-segment display 7-segment display Αποκωδικοποιητής των 7 στοιχείων (τμημάτων) (7-segment decoder) Κύκλωμα αποκωδικοποίησης του στοιχείου

Διαβάστε περισσότερα

e-book ΛΟΓΙΚΗ ΣΧΕΔΙΑΣΗ ΑΣΚΗΣΕΙΣ

e-book ΛΟΓΙΚΗ ΣΧΕΔΙΑΣΗ ΑΣΚΗΣΕΙΣ e-book ΛΟΓΙΚΗ ΣΧΕΔΙΑΣΗ ΑΣΚΗΣΕΙΣ 1. Να μετατρέψετε τον δεκαδικό 16.25 σε δυαδικό. 2. Να μετατρέψετε τον δεκαδικό 18.75 σε δυαδικό και τον δεκαδικό 268 σε δεκαεξαδικό. 3. Να βρεθεί η βάση εκείνου του αριθμητικού

Διαβάστε περισσότερα

Οργάνωση Υπολογιστών ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Εργαστήριο 10: Επίδοση Επεξεργαστών, CPI. Μανόλης Γ.Η. Κατεβαίνης

Οργάνωση Υπολογιστών ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Εργαστήριο 10: Επίδοση Επεξεργαστών, CPI. Μανόλης Γ.Η. Κατεβαίνης ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Οργάνωση Υπολογιστών Εργαστήριο 10: Επίδοση Επεξεργαστών, CPI Μανόλης Γ.Η. Κατεβαίνης Τμήμα Επιστήμης Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Κεφάλαιο 3 ο Ακολουθιακά Κυκλώματα με ολοκληρωμένα ΤΤL

Κεφάλαιο 3 ο Ακολουθιακά Κυκλώματα με ολοκληρωμένα ΤΤL Κεφάλαιο 3 ο Ακολουθιακά Κυκλώματα με ολοκληρωμένα ΤΤL 3.1 Εισαγωγή στα FLIP FLOP 3.1.1 Θεωρητικό Υπόβαθρο Τα σύγχρονα ακολουθιακά κυκλώματα με τα οποία θα ασχοληθούμε στο εργαστήριο των Ψηφιακών συστημάτων

Διαβάστε περισσότερα

Ψηφιακή Λογική Σχεδίαση

Ψηφιακή Λογική Σχεδίαση Ψηφιακή Λογική Σχεδίαση Επιμέλεια: Γεώργιος Θεοδωρίδης, Επίκουρος Καθηγητής Ανδρέας Εμερετλής, Υποψήφιος Διδάκτορας Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σημείωμα Αδειοδότησης Το παρόν

Διαβάστε περισσότερα

Πανεπιστήμιο Πατρών Τμήμα Φυσικής Εργαστήριο Ηλεκτρονικής. Ψηφιακά Ηλεκτρονικά. Καταχωρητές και Μετρητές 2. Επιμέλεια Διαφανειών: Δ.

Πανεπιστήμιο Πατρών Τμήμα Φυσικής Εργαστήριο Ηλεκτρονικής. Ψηφιακά Ηλεκτρονικά. Καταχωρητές και Μετρητές 2. Επιμέλεια Διαφανειών: Δ. Πανεπιστήμιο Πατρών Τμήμα Φυσικής Ψηφιακά Ηλεκτρονικά Καταχωρητές και Μετρητές Επιμέλεια Διαφανειών: Δ. Μπακάλης Πάτρα, Φεβρουάριος 2009 Εισαγωγή Καταχωρητής: είναι μία ομάδα από δυαδικά κύτταρα αποθήκευσης

Διαβάστε περισσότερα

Ελίνα Μακρή

Ελίνα Μακρή Ελίνα Μακρή elmak@unipi.gr Μετατροπή Αριθμητικών Συστημάτων Πράξεις στα Αριθμητικά Συστήματα Σχεδίαση Ψηφιακών Κυκλωμάτων με Logism Άλγεβρα Boole Λογικές Πύλες (AND, OR, NOT, NAND, XOR) Flip Flops (D,

Διαβάστε περισσότερα

7.1 Θεωρητική εισαγωγή

7.1 Θεωρητική εισαγωγή ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ - ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 7 ΑΚΟΛΟΥΘΙΑΚΑ ΚΥΚΛΩΜΑΤΑ ΜΑΝ ΑΛΩΤΕΣ FLIP FLOP Σκοπός: Η κατανόηση της λειτουργίας των βασικών ακολουθιακών κυκλωµάτων. Θα µελετηθούν συγκεκριµένα: ο µανδαλωτής (latch)

Διαβάστε περισσότερα

Συνδυαστικά Κυκλώματα

Συνδυαστικά Κυκλώματα 3 Συνδυαστικά Κυκλώματα 3.1. ΣΥΝΔΥΑΣΤΙΚΗ Λ ΟΓΙΚΗ Συνδυαστικά κυκλώματα ονομάζονται τα ψηφιακά κυκλώματα των οποίων οι τιμές της εξόδου ή των εξόδων τους διαμορφώνονται αποκλειστικά, οποιαδήποτε στιγμή,

Διαβάστε περισσότερα

Lab 6: Signed Add/Subtract, FF (U.Crete, CS-120) 14-10-28 17:28 διαίρεσης, δηλαδή αριστερά 28-24 = 4 bits της διεύθυνσης) μετατρέποντας στο δεκαδικό, βλέπουμε ότι όντως πρόκειται γιά τη θέση 256+128+16

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΗΛΕΚΤΡΟΝΙΚΩΝ ΕΦΑΡΜΟΓΩΝ

ΕΡΓΑΣΤΗΡΙΟ ΗΛΕΚΤΡΟΝΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΕΡΓΑΣΤΗΡΙΟ ΗΛΕΚΤΡΟΝΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΨΗΦΙΑΚΑ ΟΛΟΚΛΗΡΩΜΕΝΑ ΗΛΕΚΤΡΟΝΙΚΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ ΟΜΑ Α Α Αριθµητική Λογική Μονάδα των 8-bit 1. Εισαγωγή Γενικά µια αριθµητική λογική µονάδα (ALU, Arithmetic Logic Unit)

Διαβάστε περισσότερα

Εργαστήριο 8: Μετρητής μέσω Αθροιστή & Καταχωρητή, Ακμοπυροδότηση

Εργαστήριο 8: Μετρητής μέσω Αθροιστή & Καταχωρητή, Ακμοπυροδότηση ΗΥ-120: Ψηφιακή Σχεδίαση Φθινόπωρο 2011 Τμ. Επ. Υπολογιστών Πανεπιστήμιο Κρήτης Εργαστήριο 8: Μετρητής μέσω Αθροιστή & Καταχωρητή, Ακμοπυροδότηση 29 Νοεμβρίου - 2 Δεκεμβρίου 2011 Διαλέξεις βδομάδας 8:

Διαβάστε περισσότερα

8.1 Θεωρητική εισαγωγή

8.1 Θεωρητική εισαγωγή ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ - ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 8 ΣΤΟΙΧΕΙΑ ΜΝΗΜΗΣ ΚΑΤΑΧΩΡΗΤΕΣ Σκοπός: Η µελέτη της λειτουργίας των καταχωρητών. Θα υλοποιηθεί ένας απλός στατικός καταχωρητής 4-bit µε Flip-Flop τύπου D και θα µελετηθεί

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Εργαστήριο 8: Μετρητής μέσω Αθροιστή & Καταχωρητή, Ακμοπυροδότηση

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Εργαστήριο 8: Μετρητής μέσω Αθροιστή & Καταχωρητή, Ακμοπυροδότηση ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Σχεδίαση Εργαστήριο 8: Μετρητής μέσω Αθροιστή & Καταχωρητή, Ακμοπυροδότηση Μανόλης Γ.Η. Κατεβαίνης Τμήμα Επιστήμης Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Οργάνωση Υπολογιστών ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ασκήσεις 7: Πρόγραμμα Συνδεδεμένης Λίστας και Διαδικασιών. Μανόλης Γ.Η.

Οργάνωση Υπολογιστών ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ασκήσεις 7: Πρόγραμμα Συνδεδεμένης Λίστας και Διαδικασιών. Μανόλης Γ.Η. ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Οργάνωση Υπολογιστών Ασκήσεις 7: Πρόγραμμα Συνδεδεμένης Λίστας και Διαδικασιών Μανόλης Γ.Η. Κατεβαίνης Τμήμα Επιστήμης Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Μοντελοποίηση Λογικών Κυκλωμάτων

Μοντελοποίηση Λογικών Κυκλωμάτων Μοντελοποίηση Λογικών Κυκλωμάτων Ενότητα 7: Η γλώσσα VHDL, Μοντελοποίηση, διαχείριση χρόνου Τμήμα Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

Ακολουθιακό κύκλωμα Η έξοδος του κυκλώματος εξαρτάται από τις τιμές εισόδου ΚΑΙ από την προηγούμενη κατάσταση του κυκλώματος

Ακολουθιακό κύκλωμα Η έξοδος του κυκλώματος εξαρτάται από τις τιμές εισόδου ΚΑΙ από την προηγούμενη κατάσταση του κυκλώματος 1 Συνδυαστικό κύκλωμα Η έξοδος του κυκλώματος εξαρτάται ΜΟΝΟ από τις εισόδους του Εάν γνωρίζουμε τις τιμές των εισόδων του κυκλώματος, τότε μπορούμε να προβλέψουμε ακριβώς τις εξόδους του Ακολουθιακό κύκλωμα

Διαβάστε περισσότερα

Θέμα 1ο (3 μονάδες) Υλοποιήστε το ακoλουθιακό κύκλωμα που περιγράφεται από το κατωτέρω διάγραμμα

Θέμα 1ο (3 μονάδες) Υλοποιήστε το ακoλουθιακό κύκλωμα που περιγράφεται από το κατωτέρω διάγραμμα Ηλεκτρολόγοι Μηχανικοί ΕΜΠ Λογική Σχεδίαση Ψηφιακών Συστημάτων Διαγώνισμα επαναληπτικής εξέτασης 2016 Θέμα 1ο (3 μονάδες) Υλοποιήστε το ακoλουθιακό κύκλωμα που περιγράφεται από το κατωτέρω διάγραμμα καταστάσεων,

Διαβάστε περισσότερα

Ψηφιακή Λογική Σχεδίαση

Ψηφιακή Λογική Σχεδίαση Ψηφιακή Λογική Σχεδίαση Επιμέλεια: Νίκος Φακωτάκης, Καθηγητής Ανδρέας Εμερετλής, Υποψήφιος Διδάκτορας Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σημείωμα Αδειοδότησης Το παρόν υλικό διατίθεται

Διαβάστε περισσότερα

Πανεπιστήμιο Πατρών Τμήμα Φυσικής Εργαστήριο Ηλεκτρονικής. Ψηφιακά Ηλεκτρονικά. Συνδυαστική Λογική. Επιμέλεια Διαφανειών: Δ.

Πανεπιστήμιο Πατρών Τμήμα Φυσικής Εργαστήριο Ηλεκτρονικής. Ψηφιακά Ηλεκτρονικά. Συνδυαστική Λογική. Επιμέλεια Διαφανειών: Δ. Πανεπιστήμιο Πατρών Τμήμα Φυσικής Ψηφιακά Ηλεκτρονικά Συνδυαστική Λογική Επιμέλεια Διαφανειών: Δ. Μπακάλης Πάτρα, Φεβρουάριος 2009 Ψηφιακά Κυκλώματα Τα ψηφιακά κυκλώματα διακρίνονται σε συνδυαστικά (combinational)

Διαβάστε περισσότερα

ΘΕΜΑΤΑ & ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ

ΘΕΜΑΤΑ & ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Θεματική Ενότητα Ακαδημαϊκό Έτος 2010 2011 Ημερομηνία Εξέτασης Κυριακή 26.6.2011 Ώρα Έναρξης Εξέτασης

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΙΚΗ ΑΝΑΛΥΣΗ Ενότητα #4: ΙΣΟΡΡΟΠΙΑ ΑΓΟΡΩΝ

ΟΙΚΟΝΟΜΙΚΗ ΑΝΑΛΥΣΗ Ενότητα #4: ΙΣΟΡΡΟΠΙΑ ΑΓΟΡΩΝ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΟΙΚΟΝΟΜΙΚΗ ΑΝΑΛΥΣΗ Ενότητα #4: ΙΣΟΡΡΟΠΙΑ ΑΓΟΡΩΝ Διδάσκων: Μανασάκης Κωνσταντίνος ΤΜΗΜΑ ΠΟΛΙΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Τα κείμενα και τα διαγράμματα της παρουσίασης έχουν ληφθεί

Διαβάστε περισσότερα

5. Σύγχρονα Ακολουθιακά Κυκλώματα

5. Σύγχρονα Ακολουθιακά Κυκλώματα 5. Σύγχρονα Ακολουθιακά Κυκλώματα Ακολουθιακό (sequential) λέμε το σύστημα που περιέχει στοιχεία μνήμης, δηλ. κυκλώματα αποθήκευσης δυαδικής πληροφορίας Γενικό διάγραμμα ακολουθιακού κυκλώματος - Αποτελείται

Διαβάστε περισσότερα

Ψηφιακή Λογική Σχεδίαση

Ψηφιακή Λογική Σχεδίαση Ψηφιακή Λογική Σχεδίαση Επιμέλεια: Γεώργιος Θεοδωρίδης, Επίκουρος Καθηγητής Ανδρέας Εμερετλής, Υποψήφιος Διδάκτορας Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σημείωμα Αδειοδότησης Το παρόν

Διαβάστε περισσότερα

Άσκηση 3 Ένα νέο είδος flip flop έχει τον ακόλουθο πίνακα αληθείας : I 1 I 0 Q (t+1) Q (t) 1 0 ~Q (t) Κατασκευάστε τον πίνακα

Άσκηση 3 Ένα νέο είδος flip flop έχει τον ακόλουθο πίνακα αληθείας : I 1 I 0 Q (t+1) Q (t) 1 0 ~Q (t) Κατασκευάστε τον πίνακα Άσκηση Δίδονται οι ακόλουθες κυματομορφές ρολογιού και εισόδου D που είναι κοινή σε ένα D latch και ένα D flip flop. Το latch είναι θετικά ενεργό, ενώ το ff θετικά ακμοπυροδοτούμενο. Σχεδιάστε τις κυματομορφές

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 10 ΣΧΕΔΙΑΣΗ ΑΚΟΛΟΥΘΙΑΚΩΝ ΚΥΚΛΩΜΑΤΩΝ

ΑΣΚΗΣΗ 10 ΣΧΕΔΙΑΣΗ ΑΚΟΛΟΥΘΙΑΚΩΝ ΚΥΚΛΩΜΑΤΩΝ ΑΣΚΗΣΗ ΣΧΕΔΙΑΣΗ ΑΚΟΛΟΥΘΙΑΚΩΝ ΚΥΚΛΩΜΑΤΩΝ.. ΣΚΟΠΟΣ Η σχεδίαση ακολουθιακών κυκλωμάτων..2. ΘΕΩΡΗΤΙΚΟ ΜΕΡΟΣ.2.. ΑΛΓΟΡΙΘΜΟΣ ΣΧΕΔΙΑΣΗΣ ΑΚΟΛΟΥΘΙΑΚΩΝ ΚΥΚΛΩΜΑΤΩΝ Τα ψηφιακά κυκλώματα με μνήμη ονομάζονται ακολουθιακά.

Διαβάστε περισσότερα

K24 Ψηφιακά Ηλεκτρονικά 9: Flip-Flops

K24 Ψηφιακά Ηλεκτρονικά 9: Flip-Flops K24 Ψηφιακά Ηλεκτρονικά 9: TEI Πελοποννήσου Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής ΤΕ ΤΕΧΝΟΛΟΓΙΚΟ Περιεχόμενα 1 2 3 Γενικά Ύστερα από τη μελέτη συνδυαστικών ψηφιακών κυκλωμάτων, θα μελετήσουμε

Διαβάστε περισσότερα

Εισαγωγή στην Πληροφορική

Εισαγωγή στην Πληροφορική Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Εισαγωγή στην Πληροφορική Ενότητα 3: Ψηφιακή Λογική ΙI Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός και αν αναφέρεται διαφορετικά

Διαβάστε περισσότερα

Επιπλέον διδακτικό υλικό κρυφών μνημών: set-associative caches, πολιτικές αντικατάστασης, χειρισμός εγγραφών

Επιπλέον διδακτικό υλικό κρυφών μνημών: set-associative caches, πολιτικές αντικατάστασης, χειρισμός εγγραφών ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Οργάνωση Υπολογιστών Επιπλέον διδακτικό υλικό κρυφών μνημών: set-associative caches, πολιτικές αντικατάστασης, χειρισμός εγγραφών Μανόλης Γ.Η. Κατεβαίνης Τμήμα Επιστήμης

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΜΙΚΡΟΗΛΕΚΤΡΟΝΙΚΗ - VLSI Ενότητα: Συνδιαστικά κυκλώματα, βασικές στατικές λογικές πύλες, σύνθετες και δυναμικές πύλες Κυριάκης

Διαβάστε περισσότερα

Λογική Δημήτρης Πλεξουσάκης Φροντιστήριο 5: Προτασιακός Λογισμός: Κατασκευή Μοντέλων Τμήμα Επιστήμης Υπολογιστών

Λογική Δημήτρης Πλεξουσάκης Φροντιστήριο 5: Προτασιακός Λογισμός: Κατασκευή Μοντέλων Τμήμα Επιστήμης Υπολογιστών Λογική Δημήτρης Πλεξουσάκης Φροντιστήριο 5: Προτασιακός Λογισμός: Κατασκευή Μοντέλων Τμήμα Επιστήμης Υπολογιστών Άδειες Χρήσης 1. Το παρόν εκπαιδευτικό υλικό υπόκειται στην άδεια χρήσης Creative Commons

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Οργάνωση Υπολογιστών Εργαστήριο 11: Κρυφές Μνήμες και η Επίδοσή τους Μανόλης Γ.Η. Κατεβαίνης Τμήμα Επιστήμης Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

Ακολουθιακό κύκλωμα Η έξοδος του κυκλώματος εξαρτάται από τις τιμές εισόδου ΚΑΙ από την προηγούμενη κατάσταση του κυκλώματος

Ακολουθιακό κύκλωμα Η έξοδος του κυκλώματος εξαρτάται από τις τιμές εισόδου ΚΑΙ από την προηγούμενη κατάσταση του κυκλώματος 1 Συνδυαστικό κύκλωμα Η έξοδος του κυκλώματος εξαρτάται ΜΟΝΟ από τις εισόδους του Εάν γνωρίζουμε τις τιμές των εισόδων του κυκλώματος, τότε μπορούμε να προβλέψουμε ακριβώς τις εξόδους του Ακολουθιακό κύκλωμα

Διαβάστε περισσότερα

K15 Ψηφιακή Λογική Σχεδίαση 7-8: Ανάλυση και σύνθεση συνδυαστικών λογικών κυκλωμάτων

K15 Ψηφιακή Λογική Σχεδίαση 7-8: Ανάλυση και σύνθεση συνδυαστικών λογικών κυκλωμάτων K15 Ψηφιακή Λογική Σχεδίαση 7-8: Ανάλυση και σύνθεση συνδυαστικών λογικών κυκλωμάτων Γιάννης Λιαπέρδος TEI Πελοποννήσου Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής ΤΕ Η έννοια του συνδυαστικού

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 6 ΒΑΣΙΚΑ ΑΚΟΛΟΥΘΙΑΚΑ ΚΥΚΛΩΜΑΤΑ. 6.1 Εισαγωγή

ΚΕΦΑΛΑΙΟ 6 ΒΑΣΙΚΑ ΑΚΟΛΟΥΘΙΑΚΑ ΚΥΚΛΩΜΑΤΑ. 6.1 Εισαγωγή ΚΕΦΑΛΑΙΟ 6 ΒΑΣΙΚΑ ΑΚΟΛΟΥΘΙΑΚΑ ΚΥΚΛΩΜΑΤΑ 6. Εισαγωγή Τα ψηφιακά κυκλώματα διακρίνονται σε συνδυαστικά και ακολουθιακά. Τα κυκλώματα που εξετάσαμε στα προηγούμενα κεφάλαια ήταν συνδυαστικά. Οι τιμές των

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Σχεδίαση Εργαστήριο 5: Δυαδική Αρίθμηση, Αθροιστές Μανόλης Γ.Η. Κατεβαίνης Τμήμα Επιστήμης Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

ΗΜΥ-210: Σχεδιασμός Ψηφιακών Συστημάτων

ΗΜΥ-210: Σχεδιασμός Ψηφιακών Συστημάτων ΗΜΥ-2: Σχεδιασμός Ψηφιακών Συστημάτων Χειμερινό Μετρητές Διδάσκουσα: Μαρία Κ. Μιχαήλ Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Περίληψη Μετρητής Ριπής Σύγχρονος υαδικός

Διαβάστε περισσότερα

6 η Θεµατική Ενότητα : Σχεδίαση Συστηµάτων σε Επίπεδο Καταχωρητή

6 η Θεµατική Ενότητα : Σχεδίαση Συστηµάτων σε Επίπεδο Καταχωρητή 6 η Θεµατική Ενότητα : Σχεδίαση Συστηµάτων σε Επίπεδο Καταχωρητή Εισαγωγή Η σχεδίαση ενός ψηφιακού συστήµατος ως ακολουθιακή µηχανή είναι εξαιρετικά δύσκολη Τµηµατοποίηση σε υποσυστήµατα µε δοµικές µονάδες:

Διαβάστε περισσότερα

Λογική. Δημήτρης Πλεξουσάκης. Ασκήσεις 2ου Φροντιστηρίου: Προτασιακός Λογισμός: Κανονικές Μορφές, Απλός Αλγόριθμος Μετατροπής σε CNF/DNF, Άρνηση

Λογική. Δημήτρης Πλεξουσάκης. Ασκήσεις 2ου Φροντιστηρίου: Προτασιακός Λογισμός: Κανονικές Μορφές, Απλός Αλγόριθμος Μετατροπής σε CNF/DNF, Άρνηση Λογική Δημήτρης Πλεξουσάκης Ασκήσεις 2ου Φροντιστηρίου: Προτασιακός Λογισμός: Κανονικές Μορφές, Απλός Αλγόριθμος Μετατροπής σε CNF/DNF, Άρνηση Τμήμα Επιστήμης Υπολογιστών Άδειες Χρήσης a. Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

ΤΙΤΛΟΣ ΕΡΓΑΣΤΗΡΙΑΚΗΣ ΑΣΚΗΣΗΣ ΑΣΥΓΧΡΟΝΟΙ ΜΕΤΡΗΤΕΣ

ΤΙΤΛΟΣ ΕΡΓΑΣΤΗΡΙΑΚΗΣ ΑΣΚΗΣΗΣ ΑΣΥΓΧΡΟΝΟΙ ΜΕΤΡΗΤΕΣ ΣΧΟΛΗ ΑΣΠΑΙΤΕ ΤΜΗΜΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΘΕΩΡΗΤΙΚΟ ΜΕΡΟΣ ΤΙΤΛΟΣ ΕΡΓΑΣΤΗΡΙΑΚΗΣ ΑΣΚΗΣΗΣ ΑΣΥΓΧΡΟΝΟΙ ΜΕΤΡΗΤΕΣ 1) Οι απαριθμητές ή μετρητές (counters) είναι κυκλώματα που

Διαβάστε περισσότερα

Σχεδίαση CMOS Ψηφιακών Ολοκληρωμένων Κυκλωμάτων

Σχεδίαση CMOS Ψηφιακών Ολοκληρωμένων Κυκλωμάτων Σχεδίαση CMOS Ψηφιακών Ολοκληρωμένων Κυκλωμάτων Αγγελική Αραπογιάννη Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Τηλεπικοινωνιών Η λειτουργία RESET R IN OUT Εάν το σήμα R είναι λογικό «1» στην έξοδο

Διαβάστε περισσότερα

ΗΜΥ 210: Σχεδιασμός Ψηφιακών Συστημάτων. Μετρητές 1

ΗΜΥ 210: Σχεδιασμός Ψηφιακών Συστημάτων. Μετρητές 1 ΗΜΥ-210: Σχεδιασμός Ψηφιακών Συστημάτων Μετρητές Διδάσκουσα: Μαρία Κ. Μιχαήλ Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Περίληψη Μετρητής Ριπής Σύγχρονος υαδικός Μετρητής

Διαβάστε περισσότερα

Ψηφιακά Κυκλώματα (1 ο μέρος) ΜΥΥ-106 Εισαγωγή στους Η/Υ και στην Πληροφορική

Ψηφιακά Κυκλώματα (1 ο μέρος) ΜΥΥ-106 Εισαγωγή στους Η/Υ και στην Πληροφορική Ψηφιακά Κυκλώματα ( ο μέρος) ΜΥΥ-6 Εισαγωγή στους Η/Υ και στην Πληροφορική Ψηφιακά κυκλώματα Οι δύο λογικές τιμές, αντιστοιχούν σε ηλεκτρικές τάσεις Υλοποιούνται με τρανζίστορ ή διόδους: ελεγχόμενοι διακόπτες

Διαβάστε περισσότερα

Προγραμματισμός Ηλεκτρονικών Υπολογιστών 1

Προγραμματισμός Ηλεκτρονικών Υπολογιστών 1 Προγραμματισμός Ηλεκτρονικών Υπολογιστών 1 Ενότητα 3: Άλγεβρα Βοole και Λογικές Πράξεις Δρ. Φραγκούλης Γεώργιος Τμήμα Ηλεκτρολογίας Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

ΤΙΤΛΟΣ ΕΡΓΑΣΤΗΡΙΑΚΗΣ ΑΣΚΗΣΗΣ ΣΥΓΧΡΟΝΟΙ ΜΕΤΡΗΤΕΣ

ΤΙΤΛΟΣ ΕΡΓΑΣΤΗΡΙΑΚΗΣ ΑΣΚΗΣΗΣ ΣΥΓΧΡΟΝΟΙ ΜΕΤΡΗΤΕΣ ΣΧΟΛΗ ΑΣΠΑΙΤΕ ΤΜΗΜΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΘΕΩΡΗΤΙΚΟ ΜΕΡΟΣ ΤΙΤΛΟΣ ΕΡΓΑΣΤΗΡΙΑΚΗΣ ΑΣΚΗΣΗΣ ΣΥΓΧΡΟΝΟΙ ΜΕΤΡΗΤΕΣ 1) Οι σύγχρονοι μετρητές υλοποιούνται με Flip-Flop τύπου T

Διαβάστε περισσότερα

ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ. Κεφάλαιο 3

ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ. Κεφάλαιο 3 ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ Κεφάλαιο 3 Κεντρική Μονάδα Επεξεργασίας Κεντρική Μονάδα Επεξεργασίας Μονάδα επεξεργασίας δεδομένων Μονάδα ελέγχου Μονάδα επεξεργασίας δεδομένων Δομή Αριθμητικής Λογικής Μονάδας

Διαβάστε περισσότερα

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ Διακριτά Μαθηματικά Ι Ενότητα 2: Γεννήτριες Συναρτήσεις Μέρος 1 Διδάσκων: Χ. Μπούρας (bouras@cti.gr) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

ΔΗΜΟΣΙΑ ΟΙΚΟΝΟΜΙΚΗ Ι

ΔΗΜΟΣΙΑ ΟΙΚΟΝΟΜΙΚΗ Ι ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΔΗΜΟΣΙΑ ΟΙΚΟΝΟΜΙΚΗ Ι Ενότητα 2: Εργαλεία Θετικής Ανάλυσης Κουτεντάκης Φραγκίσκος Γαληνού Αργυρώ Τμήμα Οικονομικών Επιστημών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

«Σχεδιασμός Ψηφιακών Συστημάτων σε FPGA» Εαρινό εξάμηνο Διάλεξη 8 η : Μηχανές Πεπερασμένων Κaταστάσεων σε FPGAs

«Σχεδιασμός Ψηφιακών Συστημάτων σε FPGA» Εαρινό εξάμηνο Διάλεξη 8 η : Μηχανές Πεπερασμένων Κaταστάσεων σε FPGAs ΤΕΙ Δυτικής Ελλάδας Τμήμα Μηχανικών Πληροφορικής ΤΕ Εργαστήριο Σχεδίασης Ψηφιακών Ολοκληρωμένων Κυκλωμάτων και Συστημάτων «Σχεδιασμός Ψηφιακών Συστημάτων σε FPGA» Εαρινό εξάμηνο 2016-2017 Διάλεξη 8 η :

Διαβάστε περισσότερα

ΔΙΟΙΚΗΤΙΚΗ ΕΠΙΣΤΗΜΗ. Ενότητα #10: ΔΙΟΙΚΗΣΗ ΟΛΙΚΗΣ ΠΟΙΟΤΗΤΑΣ ΚΑΙ ΑΝΑΣΧΕΔΙΑΣΜΟΣ ΔΙΑΔΙΚΑΣΙΑΣ

ΔΙΟΙΚΗΤΙΚΗ ΕΠΙΣΤΗΜΗ. Ενότητα #10: ΔΙΟΙΚΗΣΗ ΟΛΙΚΗΣ ΠΟΙΟΤΗΤΑΣ ΚΑΙ ΑΝΑΣΧΕΔΙΑΣΜΟΣ ΔΙΑΔΙΚΑΣΙΑΣ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΔΙΟΙΚΗΤΙΚΗ ΕΠΙΣΤΗΜΗ Ενότητα #10: ΔΙΟΙΚΗΣΗ ΟΛΙΚΗΣ ΠΟΙΟΤΗΤΑΣ ΚΑΙ ΑΝΑΣΧΕΔΙΑΣΜΟΣ ΔΙΑΔΙΚΑΣΙΑΣ Διδάσκων: Μανασάκης Κωνσταντίνος ΤΜΗΜΑ ΠΟΛΙΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Τα κείμενα και

Διαβάστε περισσότερα

ΔΙΟΙΚΗΤΙΚΗ ΕΠΙΣΤΗΜΗ ΚΕΦΑΛΑΙΟ 2#: ΕΙΣΑΓΩΓΗ ΣTΗ ΔΙΟΙΚΗΤΙΚΗ ΕΠΙΣΤΗΜΗ

ΔΙΟΙΚΗΤΙΚΗ ΕΠΙΣΤΗΜΗ ΚΕΦΑΛΑΙΟ 2#: ΕΙΣΑΓΩΓΗ ΣTΗ ΔΙΟΙΚΗΤΙΚΗ ΕΠΙΣΤΗΜΗ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΔΙΟΙΚΗΤΙΚΗ ΕΠΙΣΤΗΜΗ ΚΕΦΑΛΑΙΟ 2#: ΕΙΣΑΓΩΓΗ ΣTΗ ΔΙΟΙΚΗΤΙΚΗ ΕΠΙΣΤΗΜΗ Διδάσκων: Μανασάκης Κωνσταντίνος ΤΜΗΜΑ ΠΟΛΙΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Τα κείμενα και τα διαγράμματα της παρουσίασης

Διαβάστε περισσότερα

Λογική Δημήτρης Πλεξουσάκης Φροντιστήριο 6: Προτασιακός Λογισμός: Μέθοδος Επίλυσης Τμήμα Επιστήμης Υπολογιστών

Λογική Δημήτρης Πλεξουσάκης Φροντιστήριο 6: Προτασιακός Λογισμός: Μέθοδος Επίλυσης Τμήμα Επιστήμης Υπολογιστών Λογική Δημήτρης Πλεξουσάκης Φροντιστήριο 6: Προτασιακός Λογισμός: Μέθοδος Επίλυσης Τμήμα Επιστήμης Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται στην άδεια χρήσης Creative Commons και

Διαβάστε περισσότερα

K24 Ψηφιακά Ηλεκτρονικά 6: Πολυπλέκτες/Αποπολυπλέκτες

K24 Ψηφιακά Ηλεκτρονικά 6: Πολυπλέκτες/Αποπολυπλέκτες K24 Ψηφιακά Ηλεκτρονικά 6: Πολυπλέκτες/Αποπολυπλέκτες TEI Πελοποννήσου Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής ΤΕ ΤΕΧΝΟΛΟΓΙΚΟ Περιεχόμενα 1 2 3 4 Λειτουργία Πολυπλέκτης (Mul plexer) Ο

Διαβάστε περισσότερα

Πανεπιστήμιο Πατρών Τμήμα Φυσικής Εργαστήριο Ηλεκτρονικής. Ψηφιακά Ηλεκτρονικά. Ακολουθιακή Λογική. Επιμέλεια Διαφανειών: Δ.

Πανεπιστήμιο Πατρών Τμήμα Φυσικής Εργαστήριο Ηλεκτρονικής. Ψηφιακά Ηλεκτρονικά. Ακολουθιακή Λογική. Επιμέλεια Διαφανειών: Δ. Πανεπιστήμιο Πατρών Τμήμα Φυσικής Ψηφιακά Ηλεκτρονικά Ακολουθιακή Λογική Επιμέλεια Διαφανειών: Δ. Μπακάλης Πάτρα, Φεβρουάριος 2009 Εισαγωγή Είσοδοι Συνδυαστικό Κύκλωμα Έξοδοι Στοιχεία Μνήμης Κατάσταση

Διαβάστε περισσότερα

Ασύγχρονοι Απαριθμητές. Διάλεξη 7

Ασύγχρονοι Απαριθμητές. Διάλεξη 7 Ασύγχρονοι Απαριθμητές Διάλεξη 7 Δομή της διάλεξης Εισαγωγή στους Απαριθμητές Ασύγχρονος Δυαδικός Απαριθμητής Ασύγχρονος Δεκαδικός Απαριθμητής Ασύγχρονος Δεκαδικός Απαριθμητής με Latch Ασκήσεις 2 Ασύγχρονοι

Διαβάστε περισσότερα

Θέματα χρονισμού σε φλιπ-φλοπ και κυκλώματα VLSI

Θέματα χρονισμού σε φλιπ-φλοπ και κυκλώματα VLSI Εθνικό Μετσόβιο Πολυτεχνείο Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Τομέας Επικοινωνιών, Ηλεκτρονικής και Συστημάτων Πληροφορικής Εισαγωγή στην Σχεδίαση Συστημάτων VLSI Θέματα χρονισμού

Διαβάστε περισσότερα

Γ2.1 Στοιχεία Αρχιτεκτονικής. Γ Λυκείου Κατεύθυνσης

Γ2.1 Στοιχεία Αρχιτεκτονικής. Γ Λυκείου Κατεύθυνσης Γ2.1 Στοιχεία Αρχιτεκτονικής Γ Λυκείου Κατεύθυνσης Ορισμός άλγεβρας Boole Η άλγεβρα Boole ορίζεται, ως μία αλγεβρική δομή A, όπου: (α) Το Α είναι ένα σύνολο στοιχείων που περιέχει δύο τουλάχιστον στοιχεία

Διαβάστε περισσότερα

Μακροοικονομική Θεωρία Ι

Μακροοικονομική Θεωρία Ι ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Μακροοικονομική Θεωρία Ι Διάλεξη 6: Συνολική Ζήτηση και Συνολική Προσφορά (Μέρος Β) Διδάσκων: Γιαννέλλης Νικόλαος ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΣΧΟΛΗ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ

Διαβάστε περισσότερα

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ Θεωρία Υπολογισμού Ενότητα 21: Υπολογισμοί ΜΤ - Αναδρομικές Γλώσσες Τμήμα Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως

Διαβάστε περισσότερα

Γενική οργάνωση υπολογιστή «ΑΒΑΚΑ»

Γενική οργάνωση υπολογιστή «ΑΒΑΚΑ» Περιεχόμενα Γενική οργάνωση υπολογιστή «ΑΒΑΚΑ»... 2 Καταχωρητές... 3 Αριθμητική-λογική μονάδα... 3 Μονάδα μνήμης... 4 Μονάδα Εισόδου - Εξόδου... 5 Μονάδα ελέγχου... 5 Ρεπερτόριο Εντολών «ΑΒΑΚΑ»... 6 Φάση

Διαβάστε περισσότερα

6.1 Θεωρητική εισαγωγή

6.1 Θεωρητική εισαγωγή ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ - ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 6 ΑΠΟΚΩ ΙΚΟΠΟΙΗΤΕΣ ΚΑΙ ΠΟΛΥΠΛΕΚΤΕΣ Σκοπός: Η κατανόηση της λειτουργίας των κυκλωµάτων ψηφιακής πολυπλεξίας και αποκωδικοποίησης και η εξοικείωση µε τους ολοκληρωµένους

Διαβάστε περισσότερα

13. ΣΥΓΧΡΟΝΑ ΑΚΟΛΟΥΘΙΑΚΑ ΚΥΚΛΩΜΑΤΑ

13. ΣΥΓΧΡΟΝΑ ΑΚΟΛΟΥΘΙΑΚΑ ΚΥΚΛΩΜΑΤΑ 13. ΣΥΓΧΡΟΝΑ ΑΚΟΛΟΥΘΙΑΚΑ ΚΥΚΛΩΜΑΤΑ e-book ΛΟΓΙΚΗ ΣΧΕ ΙΑΣΗ ΑΣΗΜΑΚΗΣ-ΒΟΥΡΒΟΥΛΑΚΗΣ- ΚΑΚΑΡΟΥΝΤΑΣ-ΛΕΛΙΓΚΟΥ 1 ΣΥΓΧΡΟΝΑ ΑΚΟΛΟΥΘΙΑΚΑ ΚΥΚΛΩΜΑΤΑ ΑΚΟΛΟΥΘΙΑΚΟ ΚΥΚΛΩΜΑ ΣΥΓΧΡΟΝΟ ΑΚΟΛΟΥΘΙΑΚΟ ΚΥΚΛΩΜΑ ΣΧΕ ΙΑΣΗ ΣΥΓΧΡΟΝΟΥ

Διαβάστε περισσότερα

Επίπεδο Ψηφιακής Λογικής (The Digital Logic Level)

Επίπεδο Ψηφιακής Λογικής (The Digital Logic Level) Επίπεδο Ψηφιακής Λογικής (The Digital Logic Level) Ερωτήσεις Επανάληψης 1. Ένας καθηγητής λογικής μπαίνει σε ένα εστιατόριο και λέει : Θέλω ένα σάντουιτς ή ένα σουβλάκι και τηγανητές πατάτες. Δυστυχώς,

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΙΚΗ ΑΝΑΛΥΣΗ 2 Ενότητα #3: Το κόστος παραγωγής

ΟΙΚΟΝΟΜΙΚΗ ΑΝΑΛΥΣΗ 2 Ενότητα #3: Το κόστος παραγωγής ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΟΙΚΟΝΟΜΙΚΗ ΑΝΑΛΥΣΗ 2 Ενότητα #3: Το κόστος παραγωγής Διδάσκων: Μανασάκης Κωνσταντίνος ΤΜΗΜΑ ΠΟΛΙΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Τα κείμενα και τα διαγράμματα της παρουσίασης έχουν

Διαβάστε περισσότερα

ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ

ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Εισήγηση 9Β: Απλή Τυχαία Δειγματοληψία για την εκτίμηση ποσοστού Διδάσκων: Δαφέρμος Βασίλειος ΤΜΗΜΑ ΠΟΛΙΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ ΣΧΟΛΗΣ

Διαβάστε περισσότερα

7 η Θεµατική Ενότητα : Καταχωρητές, Μετρητές και Μονάδες Μνήµης

7 η Θεµατική Ενότητα : Καταχωρητές, Μετρητές και Μονάδες Μνήµης 7 η Θεµατική Ενότητα : Καταχωρητές, Μετρητές και Εισαγωγή Καταχωρητής: είναι µία οµάδα από δυαδικά κύτταρα αποθήκευσης και από λογικές πύλες που διεκπεραιώνουν την µεταφορά πληροφοριών. Οι µετρητές είναι

Διαβάστε περισσότερα

Εισαγωγή στις Τηλεπικοινωνίες / Εργαστήριο

Εισαγωγή στις Τηλεπικοινωνίες / Εργαστήριο ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Εισαγωγή στις Τηλεπικοινωνίες / Εργαστήριο Εργαστηριακή Άσκηση 8: Κβάντιση και παλμοκωδική διαμόρφωση - Πειραματική μελέτη Δρ.

Διαβάστε περισσότερα

Αρχιτεκτονική Υπολογιστών Ασκήσεις Εργαστηρίου

Αρχιτεκτονική Υπολογιστών Ασκήσεις Εργαστηρίου Αρχιτεκτονική Υπολογιστών Ασκήσεις Εργαστηρίου Ενότητα: ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ Νο 01 Δρ. Μηνάς Δασυγένης mdasyg@ieee.org Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών Εργαστήριο Ψηφιακών Συστημάτων και

Διαβάστε περισσότερα

Πανεπιστήμιο Θεσσαλίας Τμήμα Μηχανικών Η/Υ, Τηλεπικοινωνιών και Δικτύων

Πανεπιστήμιο Θεσσαλίας Τμήμα Μηχανικών Η/Υ, Τηλεπικοινωνιών και Δικτύων Πανεπιστήμιο Θεσσαλίας Τμήμα Μηχανικών Η/Υ, Τηλεπικοινωνιών και Δικτύων Οργάνωση Η/Υ Ενότητα 1η: Εισαγωγή στην Οργάνωση Η/Υ Άσκηση 1: Αναλύστε τη διαδοχική εκτέλεση των παρακάτω εντολών MIPS με βάση τις

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Βιομηχανικοί Ελεγκτές. Ενότητα: ΕΡΓΑΣΤΗΡΙΟ 2 ΕΛΕΓΧΟΣ ΤΡΙΦΑΣΙΚΟΥ ΚΙΝΗΤΗΡΑ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Βιομηχανικοί Ελεγκτές. Ενότητα: ΕΡΓΑΣΤΗΡΙΟ 2 ΕΛΕΓΧΟΣ ΤΡΙΦΑΣΙΚΟΥ ΚΙΝΗΤΗΡΑ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Βιομηχανικοί Ελεγκτές Ενότητα: ΕΡΓΑΣΤΗΡΙΟ 2 ΕΛΕΓΧΟΣ ΤΡΙΦΑΣΙΚΟΥ ΚΙΝΗΤΗΡΑ ΚΩΝΣΤΑΝΤΙΝΟΣ ΑΛΑΦΟΔΗΜΟΣ Τμήμα Μηχ. Αυτοματισμού ΤΕ Άδειες

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Θεµατική Ενότητα ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Ακαδηµαϊκό Έτος 2006 2007 Γραπτή Εργασία #2 Ηµεροµηνία Παράδοσης 28-0 - 2007 ΠΛΗ 2: Ψηφιακά Συστήµατα ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΛΥΣΕΙΣ Άσκηση : [5 µονάδες] Έχετε στη

Διαβάστε περισσότερα

Υπολογιστικά & Διακριτά Μαθηματικά

Υπολογιστικά & Διακριτά Μαθηματικά Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 4: Διατάξεις Μεταθέσεις Συνδυασμοί Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ

ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Εισήγηση 4A: Έλεγχοι Υποθέσεων και Διαστήματα Εμπιστοσύνης Διδάσκων: Δαφέρμος Βασίλειος ΤΜΗΜΑ ΠΟΛΙΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ ΣΧΟΛΗΣ ΚΟΙΝΩΝΙΚΩΝ

Διαβάστε περισσότερα

Ψηφιακή Λογική και Σχεδίαση

Ψηφιακή Λογική και Σχεδίαση Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Αρχιτεκτονική Υπολογιστών 26-7 Ψηφιακή Λογική και Σχεδίαση (σχεδίαση συνδυαστικών κυκλωμάτων) http://mixstef.github.io/courses/comparch/ Μ.Στεφανιδάκης Το τρανζίστορ

Διαβάστε περισσότερα

Εισαγωγή στην Πληροφορική & τον Προγραμματισμό

Εισαγωγή στην Πληροφορική & τον Προγραμματισμό ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Εισαγωγή στην Πληροφορική & τον Προγραμματισμό Ενότητα 3 η : Κωδικοποίηση & Παράσταση Δεδομένων Ι. Ψαρομήλιγκος Χ. Κυτάγιας Τμήμα

Διαβάστε περισσότερα

Θεωρία Πιθανοτήτων & Στατιστική

Θεωρία Πιθανοτήτων & Στατιστική ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ & Στατιστική Ενότητα 5 η : Θεωρητικές Κατανομές Πιθανότητας για Διακριτή Τυχαία Μεταβλητή. Γεώργιος Ζιούτας Τμήμα Ηλεκτρολόγων Μηχανικών

Διαβάστε περισσότερα

ΤΙΤΛΟΣ ΕΡΓΑΣΤΗΡΙΑΚΗΣ ΑΣΚΗΣΗΣ ΣΕΙΡΙΑΚΗ ΠΡΟΣΘΕΣΗ

ΤΙΤΛΟΣ ΕΡΓΑΣΤΗΡΙΑΚΗΣ ΑΣΚΗΣΗΣ ΣΕΙΡΙΑΚΗ ΠΡΟΣΘΕΣΗ ΑΣΠΑΙΤΕ ΤΜΗΜΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΗΛΕΚΤΡΟΛΟΓΙΑΣ & ΗΛΕΚΤΡΟΝΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ & μ-υπολογιστων ΤΙΤΛΟΣ ΕΡΓΑΣΤΗΡΙΑΚΗΣ ΑΣΚΗΣΗΣ ΣΕΙΡΙΑΚΗ ΠΡΟΣΘΕΣΗ Θεωρητικό Μέρος Οι σειριακές λειτουργίες είναι πιο

Διαβάστε περισσότερα

Λογική Δημήτρης Πλεξουσάκης Ασκήσεις στον Κατηγορηματικό Λογισμό Τμήμα Επιστήμης Υπολογιστών

Λογική Δημήτρης Πλεξουσάκης Ασκήσεις στον Κατηγορηματικό Λογισμό Τμήμα Επιστήμης Υπολογιστών Λογική Δημήτρης Πλεξουσάκης Ασκήσεις στον Κατηγορηματικό Λογισμό Τμήμα Επιστήμης Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται στην άδεια χρήσης Creative Commons και ειδικότερα Αναφορά

Διαβάστε περισσότερα

Πανεπιστήμιο Πατρών. Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών

Πανεπιστήμιο Πατρών. Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Πανεπιστήμιο Πατρών Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Εργαστήριο Σχεδίασης Ολοκληρωμένων Κυκλωμάτων Σχεδιασμός Ολοκληρωμένων Συστημάτων με τεχνικές VLSI Χειμερινό Εξάμηνο 2015 FSM

Διαβάστε περισσότερα

ΣΧΕΔΙΑΣΗ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ

ΣΧΕΔΙΑΣΗ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΣΧΕΔΙΑΣΗ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΣΥΝΔΥΑΣΤΙΚΗ ΛΟΓΙΚΗ 2017, Δρ. Ηρακλής Σπηλιώτης Συνδυαστικά και ακολουθιακά κυκλώματα Τα λογικά κυκλώματα χωρίζονται σε συνδυαστικά (combinatorial) και ακολουθιακά (sequential).

Διαβάστε περισσότερα

ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ - ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 3

ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ - ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 3 ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ - ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 3 ΑΠΛΟΠΟΙΗΣΗ και ΥΛΟΠΟΙΗΣΗ ΛΟΓΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ Σκοπός: Η κατανόηση της σχέσης µιας λογικής συνάρτησης µε το αντίστοιχο κύκλωµα. Η απλοποίηση λογικών συναρτήσεων

Διαβάστε περισσότερα

Εισαγωγή στις Τηλεπικοινωνίες

Εισαγωγή στις Τηλεπικοινωνίες ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Εισαγωγή στις Τηλεπικοινωνίες Ενότητα 4: Κβάντιση και Κωδικοποίηση Σημάτων Όνομα Καθηγητή: Δρ. Ηρακλής Σίμος Τμήμα: Ηλεκτρονικών

Διαβάστε περισσότερα

ΜΕΡΟΣ 1 ο : Δυαδικές συναρτήσεις Άλγεβρα Boole Λογικά διαγράμματα

ΜΕΡΟΣ 1 ο : Δυαδικές συναρτήσεις Άλγεβρα Boole Λογικά διαγράμματα ΜΕΡΟΣ 1 ο : Δυαδικές συναρτήσεις Άλγεβρα Boole Λογικά διαγράμματα 1. Για a=1, b=1 και c=0, υπολογίστε τις τιμές των λογικών παραστάσεων ab c, a+b +c, a+b c και ab +c Δώστε τα σύνολα τιμών των δυαδικών

Διαβάστε περισσότερα

Πανεπιστήμιο Πατρών Τμήμα Φυσικής Εργαστήριο Ηλεκτρονικής. Ψηφιακά Ηλεκτρονικά. Απλοποίηση Συναρτήσεων Boole. Επιμέλεια Διαφανειών: Δ.

Πανεπιστήμιο Πατρών Τμήμα Φυσικής Εργαστήριο Ηλεκτρονικής. Ψηφιακά Ηλεκτρονικά. Απλοποίηση Συναρτήσεων Boole. Επιμέλεια Διαφανειών: Δ. Πανεπιστήμιο Πατρών Τμήμα Φυσικής Ψηφιακά Ηλεκτρονικά Απλοποίηση Συναρτήσεων Boole Επιμέλεια Διαφανειών: Δ. Μπακάλης Πάτρα, Φεβρουάριος 2009 Απλοποίηση Συναρτήσεων Boole Η πολυπλοκότητα του κυκλώματος

Διαβάστε περισσότερα

Κινητές επικοινωνίες. Κεφάλαιο 6 Τεχνικές πoλυπλεξίας - CDMA

Κινητές επικοινωνίες. Κεφάλαιο 6 Τεχνικές πoλυπλεξίας - CDMA Κινητές επικοινωνίες Κεφάλαιο 6 Τεχνικές πoλυπλεξίας - CDMA 1 Πολυπλεξία Η πολυπλεξία επιτρέπει την παράλληλη μετάδοση δεδομένων από διαφορετικές πηγές χωρίς αλληλοπαρεμβολές. Τρία βασικά είδη TDM/TDMA

Διαβάστε περισσότερα