ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ. Κεφάλαιο 3

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ. Κεφάλαιο 3"

Transcript

1 ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ Κεφάλαιο 3 Κεντρική Μονάδα Επεξεργασίας

2 Κεντρική Μονάδα Επεξεργασίας Μονάδα επεξεργασίας δεδομένων Μονάδα ελέγχου

3 Μονάδα επεξεργασίας δεδομένων

4 Δομή Αριθμητικής Λογικής Μονάδας

5 Μονάδα πρόσθεσης και αφαίρεσης

6 Πρόσθεση δυαδικών αριθμών χωρίς πρόσημο Πρόσθεση δυαδικών αριθμών χωρίς πρόσημο Α = = 224 (10) Β = = 65 (10) S = = 33 (10)

7 Πρόσθεση δυαδικών αριθμών σε παράσταση συμπληρώματος ως προς 2 Πρόσθεση δυαδικών αριθμών χωρίς πρόσημο Α = = 224 (10) Β = = 65 (10) S = = 33 (10) Πρόσθεση δυαδικών αριθμών σε παράσταση συμπληρώματος ως προς 2 Α = = -32 (10) Β = = 65 (10) S= = 33 (10)

8 Τιμή προσήμου και υπερχείλισης ως συνάρτηση των προσήμων των αριθμών που προστίθενται a ν 1 b ν 1 c ν 2 s ν 1 Υ ν-1 ν-1 ν-2 ν

9 Τιμή προσήμου και υπερχείλισης ως συνάρτηση των προσήμων των αριθμών που προστίθενται a ν-11 b ν-11 c ν-22 s ν-11 Υ

10 Τιμή προσήμου και υπερχείλισης ως συνάρτηση των προσήμων των αριθμών που προστίθενται a ν-11 b ν-11 c ν-22 s ν-11 Υ

11 Τιμή προσήμου και υπερχείλισης ως συνάρτηση των προσήμων των αριθμών που προστίθενται a ν-11 b ν-11 c ν-22 s ν-11 Υ Υ = a ν-1 b ν-1 c ν-2 + a ν-1 b ν-1 c ν-2 c ν-1 = a ν-1 b ν-1 + a ν-1 c ν-2 + b ν-1 c ν-2 Υ = c ν-1 1 c ν-2 2

12 Υπολογισμός διεύθυνσης διακλάδωσης Πρόσθεση περιεχομένου ΜΠ των 8 bit και Αριθμού Μετατόπισης ΜΠ = = 224 (10) ΑΜ = = 65 (10) S= = 33 (10) ΜΠ = = 33 (10)

13 Αθροιστής πρόβλεψης κρατούμενου των 4 δυαδικών ψηφίων

14 Αθροιστής δύο επιπέδων πρόβλεψης κρατούμενου των 16 δυαδικών ψηφίων

15 Μονάδα εκτέλεσης λογικών πράξεων

16 Λογικός σχεδιασμός 4 καταχωρητών με δύο πόρτες ανάγνωσης και μία εγγραφής I Δ Διεύθυνση-Α Διεύθυνση-Β Διεύθυνση-Δ Α Β Αποκωδικοποιητής Αποκωδικοποιητής Αποκωδικοποιητής Α Β Δ α 3 α 2 α 1 α 0 β 3 β 2 β 1 β 0 δ 3 δ 2 δ 1 δ 0 Γράψε CLK δ 0 D Q D Q D Q... α 0 β 0 Διάβασε -Α Διάβασε -Β Γράψε CLK δ 1 Διάβασε -Α D Q D Q D Q... α 1 β Διάβασε -Β Γράψε CLK δ 2 D Q D Q... D Q α 2 Διάβασε -Α Διάβασε -ΒΒ... β2... Γράψε CLK δ 3 D Q D Q D Q... α 3 Διάβασε -Α... β3... Διάβασε -Β

17 Λογικός σχεδιασμός 4 καταχωρητών με δύο πόρτες ανάγνωσης και μία εγγραφής II

18 Λειτουργίες ες του ολισθητή t 1 t 0 Πράξη 00 Κυκλική ολίσθηση προς τα δεξιά 01 Λογική ολίσθηση προς τα αριστερά 10 Λογική ολίσθηση προς τα δεξιά 11 Αριθμητική ολίσθηση προς τα δεξιά

19 Ολισθητής των οκτώ δυαδικών ψηφίων υλοποιημένος με πολυπλέκτες

20 Λογική ολίσθηση προς τα δεξιά κατά 5 θέσεις t 1 t 0 =10 και c 2 c 1 c 0 =101

21 Λογική ολίσθηση προς τα δεξιά κατά 5 θέσεις t 1 t 0 =10 και c 2 c 1 c 0 =101

22 Λογική ολίσθηση προς τα δεξιά κατά 5 θέσεις t 1 t 0 =10 και c 2 c 1 c 0 =101

23 Πολλαπλασιασμός

24 Πολλαπλασιασμός με χαρτί και μολύβι πολλαπλασιαστέος λ Α 0101 πολλαπλασιαστής Β = Β 3 Β 2 Β 1 Β Α Β Α 2 Β Α 2 2 Β Α 2 3 Β Γ = Α Β

25 Πολλαπλασιασμός με χρήση ενδιάμεσων αθροισμάτων πολλαπλασιαστέος Α πολλαπλασιαστής Β = Β 3 Β 2 Β 1 Β Α Β Α 2 Β ημιάθροισμα Α 2 2 Β ημιάθροισμα Α 2 3 Β Γ = Α Β

26 Πολλαπλασιασμός με χρήση ενδιάμεσων αθροισμάτων πολλαπλασιαστέος Α πολλαπλασιαστής Β = Β 3 Β 2 Β 1 Β Α Β ολισθημένο προς τα δεξιά δξάα ΒΒ Α 2 Β ημιάθροισμα μ ολισθημένο προς τα δεξιά ημιάθροισμα Α 2 2 Β ημιάθροισμα ολισθημένο προς τα δεξιά ημιάθροισμα Α 2 3 Β Γ = Α Β

27 Αριθμητική Λογική Μονάδα με τη δυνατότητα εκτέλεσης πολλαπλασιασμού

28 Αλγόριθμος εκτέλεσης της πράξης του πολλαπλασιασμού

29 Πολλαπλασιασμός με διαδοχικές προσθέσεις και ολισθήσεις: (1) επανάληψη λειτουργία Κ1 / Κ2 Κ3 0 Τοποθέτηση αρχικών τιμών ΛΣΨ(Κ1/Κ2)=0 όχι πρόσθεση Ολίσθησε το περιεχόμενο των Κ1/Κ2 κατάμίαθέσηπροςταδεξιά ΛΣΨ(Κ1/Κ2)=1 πρόσθεση Ολίσθησε το περιεχόμενο των Κ1/Κ κατάμίαθέσηπροςταδεξιά ΛΣΨ(Κ1/Κ2)=1 πρόσθεση Ολίσθησε το περιεχόμενο των Κ1/Κ κατάμίαθέσηπροςταδεξιά ΛΣΨ(Κ1/Κ2)=0 όχι πρόσθεση Ολίσθησε το περιεχόμενο των Κ1/Κ2 κατάμίαθέσηπροςταδεξιά ΛΣΨ(Κ1/Κ2)=0 όχι πρόσθεση Ολίσθησε το περιεχόμενο των Κ1/Κ2 κατάμίαθέσηπροςταδεξιά

30 Πολλαπλασιασμός με διαδοχικές προσθέσεις και ολισθήσεις: (2) επανάληψη λειτουργία Κ1 / Κ2 Κ ΛΣΨ(Κ1/Κ2)=0 όχι πρόσθεση Ολίσθησε το περιεχόμενο των Κ1/Κ2 κατάμίαθέσηπροςταδεξιά ΛΣΨ(Κ1/Κ2)=1 πρόσθεση Ολίσθησε το περιεχόμενο των Κ1/Κ2 κατάμίαθέσηπροςταδεξιά ΛΣΨ(Κ1/Κ2)=0 όχι πρόσθεση Ολίσθησε το περιεχόμενο των Κ1/Κ2 κατάμίαθέσηπροςταδεξιά ΛΣΨ(Κ1/Κ2)=0 όχι πρόσθεση Ολίσθησε το περιεχόμενο των Κ1/Κ2 κατάμίαθέσηπροςταδεξιά

31 Πολλαπλασιασμός με διαδοχικές προσθέσεις και ολισθήσεις: (1) επανάληψη λειτουργία Κ1 / Κ2 Κ3 0 Τοποθέτηση αρχικών τιμών ΛΣΨ(Κ1/Κ2)=0 όχι πρόσθεση Ολίσθησε το περιεχόμενο των Κ1/Κ2 κατάμίαθέσηπροςταδεξιά ΛΣΨ(Κ1/Κ2)=1 πρόσθεση Ολίσθησε το περιεχόμενο των Κ1/Κ κατάμίαθέσηπροςταδεξιά ΛΣΨ(Κ1/Κ2)=1 πρόσθεση Ολίσθησε το περιεχόμενο των Κ1/Κ κατάμίαθέσηπροςταδεξιά ΛΣΨ(Κ1/Κ2)=0 όχι πρόσθεση Ολίσθησε το περιεχόμενο των Κ1/Κ2 κατάμίαθέσηπροςταδεξιά ΛΣΨ(Κ1/Κ2)=0 όχι πρόσθεση Ολίσθησε το περιεχόμενο των Κ1/Κ2 κατάμίαθέσηπροςταδεξιά

32 Πολλαπλασιασμός με διαδοχικές προσθέσεις και ολισθήσεις: (2) επανάληψη λειτουργία Κ1 / Κ2 Κ ΛΣΨ(Κ1/Κ2)=0 όχι πρόσθεση Ολίσθησε το περιεχόμενο των Κ1/Κ2 κατάμίαθέσηπροςταδεξιά ΛΣΨ(Κ1/Κ2)=1 πρόσθεση Ολίσθησε το περιεχόμενο των Κ1/Κ2 κατάμίαθέσηπροςταδεξιά ΛΣΨ(Κ1/Κ2)=0 όχι πρόσθεση Ολίσθησε το περιεχόμενο των Κ1/Κ2 κατάμίαθέσηπροςταδεξιά ΛΣΨ(Κ1/Κ2)=0 όχι πρόσθεση Ολίσθησε το περιεχόμενο των Κ1/Κ2 κατάμίαθέσηπροςταδεξιά

33 Πολλαπλασιασμός με χρήση ενδιάμεσων αθροισμάτων πολλαπλασιαστέος Α πολλαπλασιαστής Β = Β 3 Β 2 Β 1 Β Α Β Α Β ημιάθροισμα Α Β ημιάθροισμα Α Β Γ = Α Β

34 Πολλαπλασιαστής διάδοσης κρατούμενου

35 Πολλαπλασιαστής διάδοσης κρατούμενου Πλήρης αθροιστής: c = a b + a c + b c i i i i i 1 i i 1 s = a b c + a b c + a b c + a b c i i i i 1 i i i 1 i i i 1 i i i 1 κρατούμενου εξόδου = καθυστέρηση 2 πυλών αθροίσματος = καθυστέρηση 3 πυλών Ημιαθροιστής: c = a b ύ ξόδ θ έ 1 ύλ i i i s = a b i i i κρατούμενου εξόδου = καθυστέρηση 1 πύλης αθροίσματος = καθυστέρηση 2 πυλών

36 Πολλαπλασιαστής διάδοσης κρατούμενου καθυστέρηση ΠΑ: κρατούμενου εξόδου = 2 πύλες αθροίσματος = 3 πύλες καθυστέρηση ΗΑ: κρατούμενου εξόδου = 1 πύλη αθροίσματος = 2 πύλες Τ δκ =19 πύλες Τ δκ = t AND + t HAcarry +2 (ν-2) t ΠΑcarry + (ν-1) t ΠΑsum

37 Πολλαπλασιαστής διάδοσης κρατούμενου Τ δκ = t AND + t HAcarry +2 (ν-2) t ΠΑcarry + (ν-1) t ΠΑsum

38 Αθροιστής πρόβλεψης κρατούμενου των 4 δυαδικών ψηφίων Καθυστέρηση = 5 πύλες Αρχιτεκτονική Υπολογιστών, Δημήτρης Νικολός, B. Γκιούρδας Εκδοτική,

39 Πολλαπλασιαστής διάδοσης κρατούμενου καθυστέρηση ΠΑ: κρατούμενου εξόδου = 2 πύλες αθροίσματος = 3 πύλες καθυστέρηση ΗΑ: κρατούμενου εξόδου = 1 πύλη αθροίσματος = 2 πύλες Τ δκ =19 πύλες Καθυστέρηση τελευταίας βαθμίδας = 5 πύλες

40 καθυστέρηση ΠΑ: κρατ. εξόδου = 2 πύλες αθροίσματος = 3 πύλες Πολλαπλασιαστής διατήρησης κρατούμενου (1) Τ δκ =19 πύλες Τ διατ.κ =15 πύλες καθυστέρηση ΗΑ: κρατ. εξόδου = 1 πύλη, αθροίσματος = 2 πύλες

41 Πολλαπλασιαστής διατήρησης κρατούμενου (2) Τ διατ.κ = t AND +(ν-2) t ΠΑsum + t ΑΤΒ

42 Πολλαπλασιασμός με διαδοχικές προσθέσεις και ολισθήσεις για αριθμούς σε παράσταση συμπληρώματος ως προς 2 X ν 1 ν 1 ν = 2 X με 2 X 2 1 X = X 2 ν ν 2 ν 2 ν 1 i ν ν 1 = + i = + i i= 0 i= 0 X 1 2 X X 2 i ν 2 ν 1 X = X 2 X 2 i + ν 1 i i= 0

43 Πολλαπλασιασμός για αριθμούς σε παράσταση συμπληρώματος μ ως προς 2: -118 (-90) (διαφ. φ 1) Επανά- λειτουργία Κ1 / Κ2 Κ3 ληψη 0 Τοποθέτηση αρχικών τιμών ΛΣΨ(Κ1/Κ2)=0 όχι πρόσθεση Ολίσθησε το περιεχόμενο των Κ1/Κ2 κατά μία θέση προς τα δεξιά ΛΣΨ(Κ1/Κ2)=1 πρόσθεση Ολίσθησε το περιεχόμενο των Κ1/Κ2 κατά μία θέση προς τα δεξιά ΛΣΨ(Κ1/Κ2)=1 πρόσθεση Ολίσθησε το περιεχόμενο των Κ1/Κ2 κατά μία θέση προς τα δεξιά ΛΣΨ(Κ1/Κ2)=0 όχι πρόσθεση Ολίσθησε το περιεχόμενο των Κ1/Κ2 κατά μία θέση προς τα δεξιά

44 Πολλαπλασιασμός για αριθμούς σε παράσταση συμπληρώματος μ ως προς 2: -118 (-90) (διαφ. φ 2) ΛΣΨ(Κ1/Κ2)=0 όχι πρόσθεση Ολίσθησε το περιεχόμενο των Κ1/Κ2 κατά μία θέση προς τα δεξιά ΛΣΨ(Κ1/Κ2)=1 πρόσθεση Ολίσθησε το περιεχόμενο των Κ1/Κ κατά μία θέση προς τα δξά δεξιά ΛΣΨ(Κ1/Κ2)=0 όχι πρόσθεση 7 Ολίσθησε το περιεχόμενο των Κ1/Κ κατά μία θέση προς τα δεξιά ΛΣΨ(Κ1/Κ2)=1 αφαίρεση Ολίσθησε το περιεχόμενο των Κ1/Κ κατά μία θέση προς τα δεξιά

45 Αντικατάσταση ομάδας μονάδων Ομάδα θετικών μονάδων βάρη 2 j+2 2 j+1 2 j 2 i+1 2 i 2 i-1 1 η παράσταση η παράσταση = =63

46 Αντικατάσταση ομάδας μονάδων Ομάδα θετικών μονάδων βάρη 2 j+2 2 j+1 2 j 2 i+1 2 i 2 i-1 1 η παράσταση η παράσταση Ομάδα αρνητικών μονάδων βάρη 2 j+2 2 j+1 2 j 2 i+1 2 i 2 i-1 1η παράσταση η παράσταση

47 Κανόνες του αλγόριθμου Booth 00: Βρισκόμαστε εντός μίας ακολουθίας μηδενικών, οπότε δεν εκτελούμε καμία αριθμητική πράξη 10: Βρισκόμαστε στην αρχή μίας ακολουθίας μονάδων, οπότε θα πρέπει από το πιο σημαντικό τμήμα του γινομένου να αφαιρέσουμε τον πολλαπλασιαστέο 11: Βρισκόμαστε εντός μίας ακολουθίας μονάδων, οπότε δεν εκτελούμε καμία αριθμητική πράξη 01: Βρισκόμαστε στο τέλος μίας ακολουθίας μονάδων, οπότε θα πρέπει στο πιο σημαντικό τμήμα του γινομένου να προσθέσουμε τον πολλαπλασιαστέο λ

48 = ν k 1 ν 1 ν 2 ν k i ν ν ν k 2 + i 2 i= 0 = ν k 1 ν 1 ν 2 ν k+ 1 ν k i = Xi 2 = i= 0 ν k 1 ν 1 ν 2 ν k+ 1 ν k i = 2 + ( ) + X i 2 = i= 0 ν k 1 ν 1 ν 1 ν k i = 2 + ( ) + Xi 2 = i= 0 ν k 2 ν k 1 X i i= 0 X X X X X = + 2 i

49 Πολλαπλασιασμός με τον αλγόριθμο Booth -118 (-90) (διαφ. 1) Επανά- λειτουργία Κ1 Κ2 Κ2ε Κ3 ληψη 0 Τοποθέτηση αρχικών τιμών ΛΣΖ(Κ2/Κ2ε)=00 ( ) καμία πράξη Ολίσθησε το περιεχόμενο των Κ1/Κ2 κατά μία θέση προς τα δεξιά ΛΣΖ(Κ2/Κ2ε)=10 αφαίρεση Ολίσθησε το περιεχόμενο των Κ1/Κ κατά μία θέση προς τα δεξιά ΛΣΖ(Κ2/Κ2ε)=11 καμία πράξη Ολίσθησε το περιεχόμενο των Κ1/Κ2 κατά μία θέση προς τα δεξιά ΛΣΖ(Κ2/Κ2ε)=01 πρόσθεση 4 Ολίσθησε το περιεχόμενο των Κ1/Κ2 κατά μία θέση προς τα δεξιά

50 Πολλαπλασιασμός με τον αλγόριθμο Booth -118 (-90) (διαφ. 2) ΛΣΖ(Κ2/Κ2ε)=00 καμία πράξη Ολίσθησε το περιεχόμενο των Κ1/Κ2 κατά μία θέση προς τα δεξιά ΛΣΖ(Κ2/Κ2ε)=10 αφαίρεση Ολίσθησε το περιεχόμενο των Κ1/Κ κατά μία θέση προς τα δεξιά ΛΣΖ(Κ2/Κ2ε)=01 πρόσθεση Ολίσθησε το περιεχόμενο των Κ1/Κ2 κατά μία θέση προς τα δεξιά ΛΣΖ(Κ2/Κ2ε)=10 αφαίρεση Ολίσθησε το περιεχόμενο των Κ1/Κ κατά μία θέση προς τα δεξιά

51 Πολλαπλασιαστής διατήρησης κρατούμενου για αριθμούς σε παράσταση συμπληρώματος ως προς δύο Για να αποφύγουμε την επέκταση προσήμου μπορούμε αντί να προσθέτουμε τα μερικά γινόμενα που είναι σε παράσταση συμπληρώματος μ ως προς δύο να προσθέτουμε τις τιμές μςτους. Μερικό γινόμενο των τεσσάρων δυαδικών ψηφίων: x 3 x 2 x 1 x 0 Εάν x 3 =0 τότε το 0x 2 x 1 x 0 δίνει την τιμή του. Εάν x 3 =1 τότε το -1x 2 x 1 x 0 δίνει την τιμή του Επομένως άσχετα με το εάν ένα μερικό γινόμενο x ν-1 x ν-1 x 1 x 0 είναι θετικό ή αρνητικό θα μπορούσαμε να το εκφράσουμε ως το άθροισμα x ν-1 x 1 x 0-1

52 Πολλαπλασιαστής διατήρησης κρατούμενου για αριθμούς σε παράσταση συμπληρώματος ως προς δύο Έστω ότι έχουμε πολλαπλασιαστή και πολλαπλασιαστέο των τεσσάρων δυαδικών ψηφίων και ότι τα τέσσερα μερικά γινόμενα είναι τα W = w 3 w 2 w 1 w 0, Χ = x 3 x 2 x 1 x 0, Y = y 3 y 2 y 1 y 0 και Ζ = z 3 z 2 z 1 z 0. Το Ζ είναι το μερικό γινόμενο που αντιστοιχεί στο δυαδικό δ ψηφίο πρόσημου του πολλαπλασιαστή και άρα πρέπει να αφαιρεθεί από τα υπόλοιπα μερικά γινόμενα, ή διαφορετικά, πρέπει να προστεθεί σε αυτά το συμπλήρωμά του ως προς δύο, το οποίο ισούται με z z z z

53 Πολλαπλασιαστής διατήρησης κρατούμενου για αριθμούς σε παράσταση συμπληρώματος ως προς δύο

54 Πολλαπλασιαστής διατήρησης κρατούμενου για αριθμούς σε παράσταση συμπληρώματος ως προς δύο

55 Πολλαπλασιαστής διατήρησης κρατούμενου για αριθμούς σε παράσταση συμπληρώματος ως προς δύο

56 Πολλαπλασιαστής διατήρησης κρατούμενου για αριθμούς σε παράσταση συμπληρώματος ως προς δύο Πλήθος μερικών γινομένων;

57 Tροποποιημένοs αλγόριθμοs Booth Τριάδα B j+1 B j B j-1 Το μερικό γινόμενο που αντιστοιχεί σε κάθε τριάδα δυαδικών ψηφίων, ισούται με το άθροισμα δύο μερικών γινομένων α 7 α 6 α 5 α 4 α 3 α 2 α 1 α 0 α 7 α 6 α 5 α 4 α 3 α 2 α 1 α

58 Κανόνες τροποποιημένου αλγόριθμου Booth (διαφ. 1) Τριάδα Μερικό γινόμενο B j+1 B j B j Δεξιότερη δυάδα:00 Μερικό γινόμενο =0 Αριστερότερη δυάδα:00 Μερικό γινόμενο =0(x2) Συνδυασμένο μερικό γινόμενο =0 Δεξιότερη δυάδα:01 Μερικό γινόμενο = πολλαπλασιαστέος Αριστερότερη ρ ρηδυάδα:00 Μερικό γινόμενο =0(x 2) Συνδυασμένο μερικό γινόμενο = πολλαπλασιαστέος Συμβολισμός: μγx1 Δεξιότερη δυάδα:10 Μερικό γινόμενο = πολλαπλασιαστέοςς Αριστερότερη δυάδα:01 Μερικό γινόμενο = πολλαπλασιαστέος (x 2) Συνδυασμένο μερικό γινόμενο = πολλαπλασιαστέος Συμβολισμός: μγx1 Δεξιότερη δυάδα:11 Μερικό γινόμενο =0 Αριστερότερη δυάδα:01 Μερικό γινόμενο = πολλαπλασιαστέος (x 2) Συνδυασμένο μερικό γινόμενο = 2 x πολλαπλασιαστέος Συμβολισμός: μγx2

59 Κανόνες τροποποιημένου αλγόριθμου Booth (διαφ. 2) Τριάδα Μερικό γινόμενο B j+1 B j B j-1 Δεξιότερη δυάδα:00 Μερικό γινόμενο = Αριστερότερη δυάδα: 10 Μερικό γινόμενο = πολλαπλασιαστέος (x 2) Συνδυασμένο μερικό γινόμενο = 2xπολλαπλασιαστέος Συμβολισμός: μγx-2 Δεξιότερη δυάδα: 01 Μερικό γινόμενο = πολλαπλασιαστέος Αριστερότερη δυάδα:10 Μερικό γινόμενο = πολλαπλασιαστέος (x 2) Συνδυασμένο μερικό γινόμενο = πολλαπλασιαστέος Συμβολισμός: μγx-1 Δεξιότερη δυάδα:10 Μερικό γινόμενο = πολλαπλασιαστέος Αριστερότερη δυάδα:11 Μερικό γινόμενο =0(x2) Συνδυασμένο μερικό γινόμενο = πολλαπλασιαστέος Συμβολισμός: μγx-1 Δεξιότερη δυάδα:11 Μερικό γινόμενο = Αριστερότερη δυάδα: 11 Μερικό γινόμενο = 0 (x 2) Συνδυασμένο μερικό γινόμενο =0

60 Κανόνες τροποποιημένου αλγόριθμου Booth (διαφ. 2)

61 Κανόνες τροποποιημένου αλγόριθμου Booth (διαφ. 2)

62 Κανόνες τροποποιημένου αλγόριθμου Booth (διαφ. 2)

63 Κύκλωμα κωδικοποίησης ης ΚΚ

64 κύκλωμα μερικού γινομένου-ολίσθησης μγολ.

65 Πολλαπλασιαστής των 8 δυαδικών ψηφίων που υλοποιεί τον τροποποιημένο αλγόριθμο Booth

66 Αριθμητική Λογική Μονάδα με τη δυνατότητα εκτέλεσης διαίρεσης καταχωρητής καταχωρητής καταχωρητής υπολοίπου πηλίκου διαιρέτη Κ1 Κ2 Κ3. ΑΛΜ..... αρτηρία εξόδου αρτηρία εισόδου

67 Διαίρεση δυαδικών αριθμών με χαρτί και μολύβι Ι παράδειγμα 255:8 διαιρετέος 2 ν δυαδικών ψηφίων διαιρέτης ν δυαδικών ψηφίων ; πηλίκο ν+1 1 δυαδικών δ ψηφίων διαιρετέος < 2 ν διαιρέτη

68 Διαίρεση δυαδικών αριθμών με χαρτί και μολύβι ΙΙ διαιρετέος < 2 ν διαιρέτη

69 Αριθμητική Λογική Μονάδα με τη δυνατότητα εκτέλεσης διαίρεσης καταχωρητής καταχωρητής καταχωρητής υπολοίπου πηλίκου διαιρέτη Κ1 Κ2 Κ3. ΑΛΜ..... αρτηρία εξόδου αρτηρία εισόδου

70 Αλγόριθμος εκτέλεσης της πράξης της διαίρεσης μεταξύ μη προσημασμένων αριθμών

71 Διαίρεση με διαδοχικές ολισθήσεις και αφαιρέσεις 75:10 (διαφ. 1) Επανά- ληψη λειτουργία Κεξ Κ1 / Κ2 Κ3 0 Τοποθέτηση αρχικών τιμών Ολίσθησε το περιεχόμενο των Κ1/Κ2 κατά μία θέση προς τα αριστερά _ Κ1 K3<0 θέσε ΛΣΨ(Κ1/Κ2) = μη κάνεις αφαίρεση Ολίσθησε το περιεχόμενο των Κ1/Κ2 κατά μία 1010 θέση προς τα αριστερά _ 2 Κ1 K3>0 θέσε ΛΣΨ(Κ1/Κ2) = κάνε αφαίρεση Ολίσθησε το περιεχόμενο των Κ1/Κ2 κατά μία 1010 θέση προς τα αριστερά _ Κ1 K3>0 θέσε ΛΣΨ(Κ1/Κ2) = κάνε αφαίρεση

72 Διαίρεση με διαδοχικές ολισθήσεις και αφαιρέσεις 75:10 διαφ. 2) 4 Ολίσθησε το περιεχόμενο των Κ1/Κ2 κατά μία 1010 θέση προς τα αριστερά _ Κ1 K3>0 θέσε ΛΣΨ(Κ1/Κ2) = κάνε αφαίρεση

73 Συνδυαστική μονάδα εκτέλεσης διαίρεσης διαιρετέος < 2 ν διαιρέτη α 7 δ εισ α 7 - δ εισ δ εξ π=1 1 όταν δ εξ =0

74 Πίνακας αληθείας ημιαφαιρέτη α 7 δ εισ α 7 - δ εισ δ εξ δ =αα δ εξ 7 εισ π=1 1 όταν δ εξ =0

75 Πίνακας αληθείας ημιαφαιρέτη δ =α δ εξ 7 εισ π=1 όταν δ εξ=0 επομένως: π=δ =(α δ ) = α + δ εξ 7 εισ 7 εισ

76 Συνδυαστική μονάδα εκτέλεσης διαίρεσης

77 Αλγόριθμος εκτέλεσης πρόσθεσης μεταξύ αριθμών κινητής υποδιαστολής

78 Αλγόριθμος εκτέλεσης πολλαπλασιασμού μεταξύ αριθμών κινητής υποδιαστολής

79 Ακρίβεια αποτελέσματος και σφάλματα Ι Με ένα πεπερασμένο πλήθος δυαδικών ψηφίων μπορούμε να παραστήσουμε ένα πεπερασμένο πλήθος αριθμών. Επομένως υπάρχουν αριθμοί που δεν μπορούν να παρασταθούν ακριβώς (σφάλμα αναπαράστασης, representation error) Από αριθμούς με ακριβή αναπαράσταση μπορεί να προκύψει μη ακριβές αποτέλεσμα, π.χ. γινόμενο δύο αριθμών κινητής υποδιαστολής με συντελεστή των 48 δυαδικών ψηφίων που πρέπει να στρογγυλοποιηθεί σε 24 δυαδικά ψηφία (σφάλμα υπολογισμού, computation error) Ακόμη και ένα πολύ μικρό σφάλμα ανά αριθμητική πράξη μπορεί να καταλήξει μετά από εκατομμύρια πράξεις σε ανακριβές ρβ ςή και πλήρως εσφαλμένο αποτέλεσμα

80 Ακρίβεια αποτελέσματος και σφάλματα ΙΙ Ένας τρόπος περιορισμού της συσσώρευσης σφαλμάτων είναι η χρησιμοποίηση περισσότερων δυαδικών δ ψηφίων για την αποθήκευση των ενδιάμεσων αποτελεσμάτων π.χ. υπολογισμός του 1/3 σε κομπιουτεράκι (calculator) των 10 δεκαδικών ψηφίων που εσωτερικά χρησιμοποιεί 11 δεκαδικά ψηφία για την αποθήκευση των ενδιάμεσων αποτελεσμάτων. Εσωτερικά 10 δεκαδικά ψηφία: Α= = Εσωτερικά 11 δεκαδικά ψηφία: = Στρογγυλοποίηση Α=1

81 Παραβίαση των νόμων της άλγεβρας? (Χ+Υ)+Ζ = Χ+(Υ+Ζ)? προβλήματα συμβαίνουν όταν προσθέτουμε δύο μεγάλους αριθμούς, αντίθετου πρόσημου, με ένα μικρό αριθμό

82 Παραβίαση των νόμων της άλγεβρας? Y= 2 0 1, X= , Z= , α. Y+(X+Z) X+Z = , , =2 10 0, = =2 0 0, Y+(X+Z) = 2 0 1, , = =2 0 1, =Y β. (Y+X)+Z Y+X = 2 0 1, , = = , , = = , (Y+X)+Z = , , = =2 10 0, = 2 0 0, = 0

83 Μονάδα Ελέγχου Κύκλος εντολής 1. Φέρνει στην ΚΜΕ την εντολή που είναι αποθηκευμένη στη θέση μνήμης που δείχνει ο μετρητής προγράμματος. 2. Αλλάζει το περιεχόμενο του μετρητή προγράμματος ώστε να δείχνει τη θέση μνήμης που περιέχει την επόμενη εντολή του προγράμματος. 3. Αναλύει την εντολή και ελέγχει εάν η εντολή χρειάζεται δεδομένα από τη μνήμη και εάν ναι προσδιορίζει τη διεύθυνση που είναι αποθηκευμένα. 4. Φέρνει τα δεδομένα σε κάποιους από τους καταχωρητές της. 5. Εκτελεί την εντολή. 6. Αποθηκεύει τα αποτελέσματα. 7. Πηγαίνει στο βήμα 1 για να αρχίσει την εκτέλεση της επόμενης εντολής.

84 Υπευθυνότητα της μονάδας ελέγχου Επιλογή της σειράς εκτέλεσης των εντολών» Χρήση μετρητή προγράμματος» Αλλαγή της σειράς εκτέλεσης των εντολών - Εκτέλεση εντολής άλματος ή διακλάδωσης - Εκτέλεση εντολής κλήσης υποπρογράμματος - Συμβάν ειδικής περίπτωσης (exception) - Λήψη σήματος διακοπής (interrupt) Παραγωγή γή σημάτων ελέγχου για την εκτέλεση της εντολής

85 Βήμα του κύκλου εντολής Κάθε βήμα του κύκλου εντολής αναλύεται σε επί μέρους βήματα που καλούνται μικρολειτουργίες ργ

86 Περιγραφή ργρ της Μονάδας Ελέγχου Ο πλέον χρήσιμος τρόπος περιγραφής της συμπεριφοράς της Μονάδας ελέγχου είναι τα διαγράμματα καταστάσεων Το διάγραμμα καταστάσεων περιγράφει: τις μικρολειτουργίες ργ που πρέπει να εκτελεστούν και τη σειρά με την οποία πρέπει να εκτελεστούν

87 Σχεδίαση Μονάδας Ελέγχου Κατά την σχεδίαση της Μονάδας Επεξεργασίας Δεδομένων πρέπει να αναγνωριστούν τα σημεία στα οποία πρέπει να εφαρμοστούν τα σήματα ελέγχου Σε κάθε μικρολειτουργία αντιστοιχεί ένα σύνολο γραμμών ελέγχου που πρέπει να πάρουν συγκεκριμένες τιμές για να εκτελεστεί η μικρολειτουργία

88 Μονάδα ελέγχου

89 Υλοποίηση η της μονάδα ελέγχου Ως κλασικό ακολουθιακό κύκλωμα Με την τεχνική του μικροπρογραμματισμού

90 Υλοποίηση της μονάδα ελέγχου ως κλασικό ακολουθιακό κύκλωμα Οι σχεδιαστικές αποφάσεις επηρεάζουν: Ποσότητα απαιτούμενου υλικού Ταχύτητα λειτουργίας Χρονική διάρκεια που απαιτείται για τον σχεδιασμό της Ευκολία επιβεβαίωσης ορθού σχεδιασμού Κόστος

91 Κωδικοποίηση καταστάσεων Ελαχιστοποίηση στοιχείων μνήμης (flip-flops) Κωδικοποίηση ενός ενεργού σήματος (onehot encoding)» Χρησιμοποίηση σημαντικά μεγαλύτερου αριθμού από flip-flops» Σχετικά μικρή αύξηση του απαιτούμενου υλικού» Γρηγορότερη μονάδα ελέγχου

92 Μικροπρογραμματισμός ρ μ Μικροπρογραμματισμένη μονάδα ελέγχου Μνήμη ελέγχου Μικροεντολή Μικροπρόγραμμα Μικροπρογραμματιζόμενη μονάδα ελέγχου

93 Δομή μιας μικροπρογραμματισμένης μονάδας ελέγχου

94 Γενική μορφή μικροεντολής

95 Τεχνικές μείωσης της απαιτούμενης χωρητικότητας της μνήμης ελέγχου Χρησιμοποίηση περισσότερων της μίας μορφής μικροεντολών Οργάνωση δύο επιπέδων, νανοπρογραμματισμός Κωδικοποίηση των σημάτων ελέγχου

96 Μορφή μικροεντολής για μείωση της χωρητικότητας της μνήμης ελέγχου

97 Παράδειγμα Θεωρήστε: 5 μικροεντολές άλματος υπό συνθήκη 1 μικροεντολή άλματος χωρίς συνθήκη 80 σήματα ελέγχου σε κάθε άλλου είδους μικροεντολή

98 Δομή της μνήμης ελέγχου με οργάνωση δύο επιπέδων

99 Σήματα ελέγχου πλήρως κωδικοποιημένα σε ένα πεδίο

100 Πεδία ελέγχου χωρίς κωδικοποίηση

101 Πεδία ελέγχου με μερική κωδικοποίηση

3. Πρόσθεση Πολλαπλασιασμός 4. Πρόσθεση στο πρότυπο ΙΕΕΕ Πολλαπλασιασμός στο πρότυπο ΙΕΕΕ

3. Πρόσθεση Πολλαπλασιασμός 4. Πρόσθεση στο πρότυπο ΙΕΕΕ Πολλαπλασιασμός στο πρότυπο ΙΕΕΕ ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ MHXANIKOI Η/Υ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΙΠΕ Ο ΨΗΦΙΑΚΗΣ ΛΟΓΙΚΗΣ - ΙΙ Γ. Τσιατούχας 3 ο Κεφάλαιο 1. Γενική δομή CPU ιάρθρωση 2. Αριθμητική και λογική μονάδα 3. Πρόσθεση Πολλαπλασιασμός

Διαβάστε περισσότερα

Εισαγωγή στους Η/Υ. Γιώργος Δημητρίου. Μάθημα 11 ο και 12 ο

Εισαγωγή στους Η/Υ. Γιώργος Δημητρίου. Μάθημα 11 ο και 12 ο Γιώργος Δημητρίου Μάθημα 11 ο και 12 ο Μονάδες ράξεων Αριθμητική/Λογική Μονάδα (ΑΛΜ - ALU): Βασικές αριθμητικές πράξεις ρόσθεση/αφαίρεση Λογικές πράξεις Μονάδες πολύπλοκων αριθμητικών πράξεων σταθερής

Διαβάστε περισσότερα

Περιεχόμενα. Πρώτο Κεφάλαιο. Εισαγωγή στα Ψηφιακά Συστήματα. Δεύτερο Κεφάλαιο. Αριθμητικά Συστήματα Κώδικες

Περιεχόμενα. Πρώτο Κεφάλαιο. Εισαγωγή στα Ψηφιακά Συστήματα. Δεύτερο Κεφάλαιο. Αριθμητικά Συστήματα Κώδικες Πρώτο Κεφάλαιο Εισαγωγή στα Ψηφιακά Συστήματα 1.1 Αναλογικά και Ψηφιακά Σήματα και Συστήματα... 1 1.2 Βασικά Ψηφιακά Κυκλώματα... 3 1.3 Ολοκληρωμένα κυκλώματα... 4 1.4 Τυπωμένα κυκλώματα... 7 1.5 Εργαλεία

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ. Πρόλογος...9 ΚΕΦ. 1. ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ - ΚΩΔΙΚΕΣ

ΠΕΡΙΕΧΟΜΕΝΑ. Πρόλογος...9 ΚΕΦ. 1. ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ - ΚΩΔΙΚΕΣ ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος...9 ΚΕΦ. 1. ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ - ΚΩΔΙΚΕΣ 1.1 Εισαγωγή...11 1.2 Τα κύρια αριθμητικά Συστήματα...12 1.3 Μετατροπή αριθμών μεταξύ των αριθμητικών συστημάτων...13 1.3.1 Μετατροπή ακέραιων

Διαβάστε περισσότερα

Εισαγωγή στην επιστήμη των υπολογιστών. Υπολογιστές και Δεδομένα Κεφάλαιο 4ο Πράξεις με μπιτ

Εισαγωγή στην επιστήμη των υπολογιστών. Υπολογιστές και Δεδομένα Κεφάλαιο 4ο Πράξεις με μπιτ Εισαγωγή στην επιστήμη των υπολογιστών Υπολογιστές και Δεδομένα Κεφάλαιο 4ο Πράξεις με μπιτ 1 Πράξεις με μπιτ 2 ΑριθμητικέςΠράξειςσεΑκέραιους Πρόσθεση, Αφαίρεση, Πολλαπλασιασμός, Διαίρεση Ο πολλαπλασιασμός

Διαβάστε περισσότερα

Λογική Σχεδίαση Ι - Εξεταστική Φεβρουαρίου 2013 Διάρκεια εξέτασης : 160 Ονοματεπώνυμο : Α. Μ. Έτος σπουδών:

Λογική Σχεδίαση Ι - Εξεταστική Φεβρουαρίου 2013 Διάρκεια εξέτασης : 160 Ονοματεπώνυμο : Α. Μ. Έτος σπουδών: Λογική Σχεδίαση Ι - Εξεταστική Φεβρουαρίου 23 Διάρκεια εξέτασης : 6 Ονοματεπώνυμο : Α. Μ. Έτος σπουδών: Θέμα (,5 μονάδες) Στις εισόδους του ακόλουθου κυκλώματος c b a εφαρμόζονται οι κάτωθι κυματομορφές.

Διαβάστε περισσότερα

! Εάν ο αριθμός διαθέτει περισσότερα bits, χρησιμοποιούμε μεγαλύτερες δυνάμεις του 2. ! Προσοχή στη θέση του περισσότερο σημαντικού bit!

! Εάν ο αριθμός διαθέτει περισσότερα bits, χρησιμοποιούμε μεγαλύτερες δυνάμεις του 2. ! Προσοχή στη θέση του περισσότερο σημαντικού bit! Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών 25-6 Πράξεις με δυαδικούς αριθμούς (αριθμητικές ) http://di.ionio.gr/~mistral/tp/csintro/ Αριθμοί Πράξεις με δυαδικούς αριθμούς

Διαβάστε περισσότερα

Τμήμα Χρηματοοικονομικής & Ελεγκτικής ΤΕΙ Ηπείρου Παράρτημα Πρέβεζας. Πληροφορική Ι. Μάθημα 4 ο Πράξεις με bits. Δρ.

Τμήμα Χρηματοοικονομικής & Ελεγκτικής ΤΕΙ Ηπείρου Παράρτημα Πρέβεζας. Πληροφορική Ι. Μάθημα 4 ο Πράξεις με bits. Δρ. Τμήμα Χρηματοοικονομικής & Ελεγκτικής ΤΕΙ Ηπείρου Παράρτημα Πρέβεζας Πληροφορική Ι Μάθημα 4 ο Πράξεις με bits Δρ. Γκόγκος Χρήστος Κατηγορίες πράξεων με bits Πράξεις με δυαδικά ψηφία Αριθμητικές πράξεις

Διαβάστε περισσότερα

Συστήματα αρίθμησης. = α n-1 *b n-1 + a n-2 *b n-2 + +a 1 b 1 + a 0 όπου τα 0 a i b-1

Συστήματα αρίθμησης. = α n-1 *b n-1 + a n-2 *b n-2 + +a 1 b 1 + a 0 όπου τα 0 a i b-1 Συστήματα αρίθμησης Δεκαδικό σύστημα αρίθμησης 1402 = 1000 + 400 +2 =1*10 3 + 4*10 2 + 0*10 1 + 2*10 0 Γενικά σε ένα σύστημα αρίθμησης με βάση το b N, ένας ακέραιος αριθμός με n ψηφία παριστάνεται ως:

Διαβάστε περισσότερα

Κεφάλαιο 2. Οργάνωση και διαχείριση της Πληροφορίας στον. Υπολογιστή

Κεφάλαιο 2. Οργάνωση και διαχείριση της Πληροφορίας στον. Υπολογιστή ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ Κεφάλαιο 2 Οργάνωση και διαχείριση της Πληροφορίας στον Υπολογιστή Δεδομένα και Εντολές πληροφορία δεδομένα εντολές αριθμητικά δδ δεδομένα κείμενο εικόνα Επιλογή Αναπαράστασης

Διαβάστε περισσότερα

Ελίνα Μακρή

Ελίνα Μακρή Ελίνα Μακρή elmak@unipi.gr Μετατροπή Αριθμητικών Συστημάτων Πράξεις στα Αριθμητικά Συστήματα Σχεδίαση Ψηφιακών Κυκλωμάτων με Logism Άλγεβρα Boole Λογικές Πύλες (AND, OR, NOT, NAND, XOR) Flip Flops (D,

Διαβάστε περισσότερα

Αριθμητικά Συστήματα Κώδικες

Αριθμητικά Συστήματα Κώδικες Αριθμητικά Συστήματα Κώδικες 1.1 Εισαγωγή Κεφάλαιο 1 Ένα αριθμητικό σύστημα ορίζει ένα σύνολο τιμών που χρησιμοποιούνται για την αναπαράσταση μίας ποσότητας. Ποσοτικοποιώντας τιμές και αντικείμενα και

Διαβάστε περισσότερα

Αριθμητικά Συστήματα

Αριθμητικά Συστήματα Αριθμητικά Συστήματα Σε οποιοδήποτε αριθμητικό σύστημα, με βάση τον αριθμό Β, ένας ακέραιος αριθμός με πλήθος ψηφίων ν, εκφράζεται ως ακολούθως: α ν-1 α ν-2 α 1 α 0 = α ν-1 Β ν-1 + α ν-2 Β ν-2 + + α 1

Διαβάστε περισσότερα

Αθροιστές. Ημιαθροιστής

Αθροιστές. Ημιαθροιστής Αθροιστές Η πιο βασική αριθμητική πράξη είναι η πρόσθεση. Για την πρόσθεση δύο δυαδικών ψηφίων υπάρχουν τέσσερις δυνατές περιπτώσεις: +=, +=, +=, +=. Οι τρεις πρώτες πράξεις δημιουργούν ένα άθροισμα που

Διαβάστε περισσότερα

100 ΕΡΩΤΗΣΕΙΣ ΜΕ ΤΙΣ ΑΝΤΙΣΤΟΙΧΕΣ ΑΠΑΝΤΗΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ

100 ΕΡΩΤΗΣΕΙΣ ΜΕ ΤΙΣ ΑΝΤΙΣΤΟΙΧΕΣ ΑΠΑΝΤΗΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ 100 ΕΡΩΤΗΣΕΙΣ ΜΕ ΤΙΣ ΑΝΤΙΣΤΟΙΧΕΣ ΑΠΑΝΤΗΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ 1) Να μετατρέψετε τον δεκαδικό αριθμό (60,25) 10, στον αντίστοιχο δυαδικό 11111,11 111001,01 111100,01 100111,1 111100,01 2)

Διαβάστε περισσότερα

Εισαγωγή στην Επιστήμη των Υπολογιστών

Εισαγωγή στην Επιστήμη των Υπολογιστών Εισαγωγή στην Επιστήμη των Υπολογιστών Ενότητα 2: Αποθήκευση Δεδομένων, 2ΔΩ Τμήμα: Αγροτικής Οικονομίας & Ανάπτυξης Διδάσκων: Θεόδωρος Τσιλιγκιρίδης Μαθησιακοί Στόχοι Η Ενότητα 2 διαπραγματεύεται θέματα

Διαβάστε περισσότερα

Συστήματα Αρίθμησης. Συστήματα Αρίθμησης 1. PDF created with FinePrint pdffactory Pro trial version

Συστήματα Αρίθμησης. Συστήματα Αρίθμησης 1. PDF created with FinePrint pdffactory Pro trial version Συστήματα Αρίθμησης Στην καθημερινή μας ζωή χρησιμοποιούμε το δεκαδικό σύστημα αρίθμησης. Στο σύστημα αυτό χρησιμοποιούμε δέκα διαφορετικά σύμβολα τα :,, 2, 3, 4, 5, 6,7 8, 9. Για τον αριθμό 32 θα χρειαστούμε

Διαβάστε περισσότερα

Εισαγωγή στην επιστήμη των υπολογιστών

Εισαγωγή στην επιστήμη των υπολογιστών Εισαγωγή στην επιστήμη των υπολογιστών Υπολογιστές και Δεδομένα Κεφάλαιο 3ο Αναπαράσταση Αριθμών www.di.uoa.gr/~organosi 1 Δεκαδικό και Δυαδικό Δεκαδικό σύστημα 2 3 Δεκαδικό και Δυαδικό Δυαδικό Σύστημα

Διαβάστε περισσότερα

9. OIΚΟΥΜΕΝΙΚΕΣ ΠΥΛΕΣ ΠΟΛΛΑΠΛΩΝ ΕΙΣΟ ΩΝ

9. OIΚΟΥΜΕΝΙΚΕΣ ΠΥΛΕΣ ΠΟΛΛΑΠΛΩΝ ΕΙΣΟ ΩΝ ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ 61 9. OIΚΟΥΜΕΝΙΚΕΣ ΠΥΛΕΣ ΠΟΛΛΑΠΛΩΝ ΕΙΣΟ ΩΝ I. Βασική Θεωρία Οι πύλες NAND και NOR ονομάζονται οικουμενικές πύλες (universal gates) γιατί κάθε συνδυαστικό κύκλωμα μπορεί να υλοποιηθεί

Διαβάστε περισσότερα

Δυαδικό Σύστημα Αρίθμησης

Δυαδικό Σύστημα Αρίθμησης Δυαδικό Σύστημα Αρίθμησης Το δυαδικό σύστημα αρίθμησης χρησιμοποιεί δύο ψηφία. Το 0 και το 1. Τα ψηφία ενός αριθμού στο δυαδικό σύστημα αρίθμησης αντιστοιχίζονται σε δυνάμεις του 2. Μονάδες, δυάδες, τετράδες,

Διαβάστε περισσότερα

ΘΕΜΑΤΑ & ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ

ΘΕΜΑΤΑ & ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Θεματική Ενότητα Ακαδημαϊκό Έτος 2010 2011 Ημερομηνία Εξέτασης Κυριακή 26.6.2011 Ώρα Έναρξης Εξέτασης

Διαβάστε περισσότερα

a -j a 5 a 4 a 3 a 2 a 1 a 0, a -1 a -2 a -3

a -j a 5 a 4 a 3 a 2 a 1 a 0, a -1 a -2 a -3 ΑΣΚΗΣΗ 5 ΑΘΡΟΙΣΤΕΣ - ΑΦΑΙΡΕΤΕΣ 5.1. ΣΚΟΠΟΣ Η πραγματοποίηση της αριθμητικής πρόσθεσης και αφαίρεσης με λογικά κυκλώματα. 5.2. ΘΕΩΡΗΤΙΚΟ ΜΕΡΟΣ ΣΥΣΤΗΜΑΤΑ ΑΡΙΘΜΗΣΗΣ: Κάθε σύστημα αρίθμησης χαρακτηρίζεται

Διαβάστε περισσότερα

1 Αριθμητική κινητής υποδιαστολής και σφάλματα στρογγύλευσης

1 Αριθμητική κινητής υποδιαστολής και σφάλματα στρογγύλευσης 1 Αριθμητική κινητής υποδιαστολής και σφάλματα στρογγύλευσης Στη συγκεκριμένη ενότητα εξετάζουμε θέματα σχετικά με την αριθμητική πεπερασμένης ακρίβειας που χρησιμοποιούν οι σημερινοί υπολογιστές και τα

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ: ΠΛΗ-21

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ: ΠΛΗ-21 ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ: ΠΛΗ-2 ΨΗΦΙΑΚΗ ΣΧΕΔΙΑΣΗ ΑΣΚΗΣΕΙΙΣ ΓΡΑΠΤΩΝ ΕΡΓΑΣΙΙΩΝ & ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΣΥΝΤΕΛΕΣΤΕΣ

Διαβάστε περισσότερα

Τμήμα Χρηματοοικονομικής & Ελεγκτικής ΤΕΙ Ηπείρου Παράρτημα Πρέβεζας. Πληροφορική Ι. Αναπαράσταση αριθμών στο δυαδικό σύστημα. Δρ.

Τμήμα Χρηματοοικονομικής & Ελεγκτικής ΤΕΙ Ηπείρου Παράρτημα Πρέβεζας. Πληροφορική Ι. Αναπαράσταση αριθμών στο δυαδικό σύστημα. Δρ. Τμήμα Χρηματοοικονομικής & Ελεγκτικής ΤΕΙ Ηπείρου Παράρτημα Πρέβεζας Πληροφορική Ι Αναπαράσταση αριθμών στο δυαδικό σύστημα Δρ. Γκόγκος Χρήστος Δεκαδικό σύστημα αρίθμησης Ελληνικό - Ρωμαϊκό Σύστημα αρίθμησης

Διαβάστε περισσότερα

Οργάνωση και Σχεδίαση Υπολογιστών Η ιασύνδεση Υλικού και Λογισµικού, 4 η έκδοση. Κεφάλαιο 3. Αριθµητική για υπολογιστές

Οργάνωση και Σχεδίαση Υπολογιστών Η ιασύνδεση Υλικού και Λογισµικού, 4 η έκδοση. Κεφάλαιο 3. Αριθµητική για υπολογιστές Οργάνωση και Σχεδίαση Υπολογιστών Η ιασύνδεση Υλικού και Λογισµικού, 4 η έκδοση Κεφάλαιο 3 Αριθµητική για υπολογιστές Ασκήσεις Η αρίθµηση των ασκήσεων είναι από την 4 η έκδοση του «Οργάνωση και Σχεδίαση

Διαβάστε περισσότερα

Αρβανιτίδης Θεόδωρος, - Μαθηματικά Ε

Αρβανιτίδης Θεόδωρος,  - Μαθηματικά Ε Πρόσθεση Φυσικών Αριθμών Μάθημα 5 ο Για να προσθέσω φυσικούς αριθμούς πρέπει να προσθέσω τις μονάδες των αριθμών αυτών, μετά τις δεκάδες των αριθμών, μετά τις εκατοντάδες κλπ. Η πρόσθεση φυσικών αριθμών

Διαβάστε περισσότερα

4.1 Θεωρητική εισαγωγή

4.1 Θεωρητική εισαγωγή ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ - ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 4 ΥΑ ΙΚΟΣ ΑΘΡΟΙΣΤΗΣ-ΑΦΑΙΡΕΤΗΣ Σκοπός: Να µελετηθούν αριθµητικά κυκλώµατα δυαδικής πρόσθεσης και αφαίρεσης. Να σχεδιαστούν τα κυκλώµατα από τους πίνακες αληθείας

Διαβάστε περισσότερα

Εισαγωγή στην Πληροφορική & τον Προγραμματισμό

Εισαγωγή στην Πληροφορική & τον Προγραμματισμό ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Εισαγωγή στην Πληροφορική & τον Προγραμματισμό Ενότητα 3 η : Κωδικοποίηση & Παράσταση Δεδομένων Ι. Ψαρομήλιγκος Χ. Κυτάγιας Τμήμα

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ: ΠΛΗ-21

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ: ΠΛΗ-21 ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ: ΠΛΗ-21 ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ ΑΣΚΗΣΕΙΙΣ ΓΡΑΠΤΩΝ ΕΡΓΑΣΙΙΩΝ & ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΣΥΝΤΕΛΕΣΤΕΣ

Διαβάστε περισσότερα

Τμήμα Οικιακής Οικονομίας και Οικολογίας. Αναπαράσταση Αριθμών

Τμήμα Οικιακής Οικονομίας και Οικολογίας. Αναπαράσταση Αριθμών Αναπαράσταση Αριθμών Δεκαδικό και Δυαδικό Δεκαδικό σύστημα Δεκαδικό και Δυαδικό Μετατροπή Για τη μετατροπή ενός αριθμού από το δυαδικό σύστημα στο δεκαδικό, πολλαπλασιάζουμε κάθε δυαδικό ψηφίο του αριθμού

Διαβάστε περισσότερα

Κεφάλαιο 3 Αρχιτεκτονική Ηλεκτρονικού Τμήματος (hardware) των Υπολογιστικών Συστημάτων ΕΡΩΤΗΣΕΙΣ ΑΣΚΗΣΕΙΣ

Κεφάλαιο 3 Αρχιτεκτονική Ηλεκτρονικού Τμήματος (hardware) των Υπολογιστικών Συστημάτων ΕΡΩΤΗΣΕΙΣ ΑΣΚΗΣΕΙΣ Κεφάλαιο 3 Αρχιτεκτονική Ηλεκτρονικού Τμήματος (hardware) των Υπολογιστικών Συστημάτων ΕΡΩΤΗΣΕΙΣ ΑΣΚΗΣΕΙΣ 1. Τι εννοούμε με τον όρο υπολογιστικό σύστημα και τι με τον όρο μικροϋπολογιστικό σύστημα; Υπολογιστικό

Διαβάστε περισσότερα

1. Πότε χρησιμοποιούμε την δομή επανάληψης; Ποιες είναι οι διάφορες εντολές (μορφές) της;

1. Πότε χρησιμοποιούμε την δομή επανάληψης; Ποιες είναι οι διάφορες εντολές (μορφές) της; 1. Πότε χρησιμοποιούμε την δομή επανάληψης; Ποιες είναι οι διάφορες (μορφές) της; Η δομή επανάληψης χρησιμοποιείται όταν μια σειρά εντολών πρέπει να εκτελεστεί σε ένα σύνολο περιπτώσεων, που έχουν κάτι

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΛΑΜΙΑΣ. A. Μετατροπή αριθμών 1. Μετατροπή αριθμών από δεκαδικό σε δυαδικό σύστημα αρίθμησης

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΛΑΜΙΑΣ. A. Μετατροπή αριθμών 1. Μετατροπή αριθμών από δεκαδικό σε δυαδικό σύστημα αρίθμησης ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΛΑΜΙΑΣ Τμήμα Πληροφορικής και Τεχνολογίας Υπολογιστών Μάθημα: Αρχιτεκτονική Υπολογιστών Εργασία: 1 A. Μετατροπή αριθμών 1. Μετατροπή αριθμών από δεκαδικό σε δυαδικό σύστημα

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ. 1.1. Υλικό και Λογισμικό.. 1 1.2 Αρχιτεκτονική Υπολογιστών.. 3 1.3 Δομή, Οργάνωση και Λειτουργία Υπολογιστών 6

ΠΕΡΙΕΧΟΜΕΝΑ. 1.1. Υλικό και Λογισμικό.. 1 1.2 Αρχιτεκτονική Υπολογιστών.. 3 1.3 Δομή, Οργάνωση και Λειτουργία Υπολογιστών 6 ΠΕΡΙΕΧΟΜΕΝΑ 1. Εισαγωγή στην Δομή, Οργάνωση, Λειτουργία και Αξιολόγηση Υπολογιστών 1.1. Υλικό και Λογισμικό.. 1 1.2 Αρχιτεκτονική Υπολογιστών.. 3 1.3 Δομή, Οργάνωση και Λειτουργία Υπολογιστών 6 1.3.1 Δομή

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2006

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2006 ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2006 Μάθημα : Ψηφιακά Ηλεκτρονικά Τεχνολογία ΙΙ, Θεωρητικής Κατεύθυνσης Ημερομηνία

Διαβάστε περισσότερα

Κεφάλαιο 2 ο Βασικές Έννοιες Αλγορίθμων (σελ )

Κεφάλαιο 2 ο Βασικές Έννοιες Αλγορίθμων (σελ ) Κεφάλαιο 2 ο Βασικές Έννοιες Αλγορίθμων (σελ. 25 48) Τι είναι αλγόριθμος; Γ ΛΥΚΕΙΟΥ Αλγόριθμος είναι μία πεπερασμένη σειρά ενεργειών, αυστηρά καθορισμένων και εκτελέσιμων σε πεπερασμένο χρονικό διάστημα,

Διαβάστε περισσότερα

Πληροφορική. Ενότητα 4 η : Κωδικοποίηση & Παράσταση Δεδομένων. Ι. Ψαρομήλιγκος Τμήμα Λογιστικής & Χρηματοοικονομικής

Πληροφορική. Ενότητα 4 η : Κωδικοποίηση & Παράσταση Δεδομένων. Ι. Ψαρομήλιγκος Τμήμα Λογιστικής & Χρηματοοικονομικής ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Πληροφορική Ενότητα 4 η : Κωδικοποίηση & Παράσταση Δεδομένων Ι. Ψαρομήλιγκος Τμήμα Λογιστικής & Χρηματοοικονομικής Άδειες Χρήσης

Διαβάστε περισσότερα

Πανεπιστήμιο Θεσσαλίας Τμήμα Μηχανικών Η/Υ, Τηλεπικοινωνιών και Δικτύων

Πανεπιστήμιο Θεσσαλίας Τμήμα Μηχανικών Η/Υ, Τηλεπικοινωνιών και Δικτύων Πανεπιστήμιο Θεσσαλίας Τμήμα Μηχανικών Η/Υ, Τηλεπικοινωνιών και Δικτύων Οργάνωση Η/Υ Ενότητα 4η: Μονάδα Ελέγχου Απλού Κύκλου Μηχανής Άσκηση 1: Θεωρήστε τη μονάδα επεξεργασίας δεδομένων της απλοποιημένης

Διαβάστε περισσότερα

Αριθμητικά Συστήματα

Αριθμητικά Συστήματα Αριθμητικά Συστήματα Οργάνωση Δεδομένων (1/2) Bits: Η μικρότερη αριθμητική μονάδα ενός υπολογιστικού συστήματος, η οποία δείχνει δύο καταστάσεις, 0 ή 1 (αληθές η ψευδές). Nibbles: Μονάδα 4 bit που παριστά

Διαβάστε περισσότερα

Πανεπιστήµιο Θεσσαλίας Τµήµα Μηχανικών Η/Υ, Τηλεπικοινωνιών και ικτύων

Πανεπιστήµιο Θεσσαλίας Τµήµα Μηχανικών Η/Υ, Τηλεπικοινωνιών και ικτύων Πανεπιστήµιο Θεσσαλίας Τµήµα Μηχανικών Η/Υ, Τηλεπικοινωνιών και ικτύων Αρχιτεκτονική Υπολογιστών Εργασία Εξαµήνου: Προσοµοίωση ARM σε επίπεδο VHDL/Verilog 1. Μελέτη συνόλου εντολών και αρχιτεκτονικής ARM

Διαβάστε περισσότερα

2 ΟΥ και 8 ΟΥ ΚΕΦΑΛΑΙΟΥ

2 ΟΥ και 8 ΟΥ ΚΕΦΑΛΑΙΟΥ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΙΜΕΛΕΙΑ: ΜΑΡΙΑ Σ. ΖΙΩΓΑ ΚΑΘΗΓΗΤΡΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ 2 ΟΥ και 8 ΟΥ ΚΕΦΑΛΑΙΟΥ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΔΟΜΗ ΕΠΑΝΑΛΗΨΗΣ 1) Πότε χρησιμοποιείται η δομή επανάληψης

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2009

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2009 ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2009 ΤΕΧΝΟΛΟΓΙΑ (ΙΙ) ΤΕΧΝΙΚΩΝ ΣΧΟΛΩΝ ΘΕΩΡΗΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Μάθημα : Ψηφιακά Ηλεκτρονικά

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2012

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2012 ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2012 ΤΕΧΝΟΛΟΓΙΑ (Ι) ΤΕΧΝΙΚΩΝ ΣΧΟΛΩΝ ΘΕΩΡΗΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Μάθημα : Μικροϋπολογιστές

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΤΕΙ ΙΟΝΙΩΝ ΝΗΣΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΓΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΣΤΗ ΔΙΟΙΚΗΣΗ ΚΑΙ ΣΤΗΝ ΟΙΚΟΝΟΜΙΑ 9 Ο ΜΑΘΗΜΑ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΑΠΟΣΤΟΛΙΑ ΠΑΓΓΕ Περιεχόμενα 2 Η λειτουργία του υπολογιστή Κατηγορίες Εντολών Μορφή Εντολών

Διαβάστε περισσότερα

Υπάρχουν δύο τύποι μνήμης, η μνήμη τυχαίας προσπέλασης (Random Access Memory RAM) και η μνήμη ανάγνωσης-μόνο (Read-Only Memory ROM).

Υπάρχουν δύο τύποι μνήμης, η μνήμη τυχαίας προσπέλασης (Random Access Memory RAM) και η μνήμη ανάγνωσης-μόνο (Read-Only Memory ROM). Μνήμες Ένα από τα βασικά πλεονεκτήματα των ψηφιακών συστημάτων σε σχέση με τα αναλογικά, είναι η ευκολία αποθήκευσης μεγάλων ποσοτήτων πληροφοριών, είτε προσωρινά είτε μόνιμα Οι πληροφορίες αποθηκεύονται

Διαβάστε περισσότερα

ΠΑΡΟΡΑΜΑΤΑ (ενημέρωση )

ΠΑΡΟΡΑΜΑΤΑ (ενημέρωση ) Προς διευκόλυνση των αναγνωστών τα παροράματα παρουσιάζονται ανάλογα με την ημερομηνία ενημέρωσης του αρχείου. Το μέγεθος των σχημάτων είναι κατάλληλο για να κοπούν και να επικολληθούν πάνω στα σχήματα

Διαβάστε περισσότερα

Πρόγραμμα Επικαιροποίησης Γνώσεων Αποφοίτων ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ

Πρόγραμμα Επικαιροποίησης Γνώσεων Αποφοίτων ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ Πρόγραμμα Επικαιροποίησης Γνώσεων Αποφοίτων ΕΝΟΤΗΤΑ Μ1 ΨΗΦΙΑΚΑ ΗΛΕΚΤΡΟΝΙΚΑ Εκπαιδευτής: Γ. Π. ΠΑΤΣΗΣ, Επικ. Καθηγητής, Τμήμα Ηλεκτρονικών Μηχανικών, ΤΕΙ Αθήνας ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ 1. Ποια είναι η βάση

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2008

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2008 ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2008 Τεχνολογία Ι Θεωρητικής Κατεύθυνσης Τεχνικών Σχολών Μάθημα : Μικροϋπολογιστές

Διαβάστε περισσότερα

Κεφάλαιο 4 ο. Ο Προσωπικός Υπολογιστής

Κεφάλαιο 4 ο. Ο Προσωπικός Υπολογιστής Κεφάλαιο 4 ο Ο Προσωπικός Υπολογιστής Μάθημα 4.3 Ο Επεξεργαστής - Εισαγωγή - Συχνότητα λειτουργίας - Εύρος διαδρόμου δεδομένων - Εύρος διαδρόμου διευθύνσεων - Εύρος καταχωρητών Όταν ολοκληρώσεις το μάθημα

Διαβάστε περισσότερα

Κεφάλαιο 2 Η έννοια και η παράσταση της πληροφορίας στον ΗΥ. Εφ. Πληροφορικής Κεφ. 2 Καραμαούνας Πολύκαρπος 1

Κεφάλαιο 2 Η έννοια και η παράσταση της πληροφορίας στον ΗΥ. Εφ. Πληροφορικής Κεφ. 2 Καραμαούνας Πολύκαρπος 1 Κεφάλαιο 2 Η έννοια και η παράσταση της πληροφορίας στον ΗΥ Καραμαούνας Πολύκαρπος 1 2.1Η έννοια της πληροφορίας Δεδομένα Πληροφορία Καραμαούνας Πολύκαρπος 2 2.2 ΗΥ Το βασικό εργαλείο επεξεργασίας και

Διαβάστε περισσότερα

Τετάρτη 5-12/11/2014. ΣΗΜΕΙΩΣΕΙΣ 3 ου και 4 ου ΜΑΘΗΜΑΤΟΣ ΕΙΔΙΚΟΤΗΤΑ: ΤΕΧΝΙΚΟΣ ΕΦΑΡΜΟΓΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ: ΑΡΧΙΤΕΚΤΟΝΙΚΗ Η/Υ Α ΕΞΑΜΗΝΟ

Τετάρτη 5-12/11/2014. ΣΗΜΕΙΩΣΕΙΣ 3 ου και 4 ου ΜΑΘΗΜΑΤΟΣ ΕΙΔΙΚΟΤΗΤΑ: ΤΕΧΝΙΚΟΣ ΕΦΑΡΜΟΓΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ: ΑΡΧΙΤΕΚΤΟΝΙΚΗ Η/Υ Α ΕΞΑΜΗΝΟ Τετάρτη 5-12/11/2014 ΣΗΜΕΙΩΣΕΙΣ 3 ου και 4 ου ΜΑΘΗΜΑΤΟΣ ΕΙΔΙΚΟΤΗΤΑ: ΤΕΧΝΙΚΟΣ ΕΦΑΡΜΟΓΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ: ΑΡΧΙΤΕΚΤΟΝΙΚΗ Η/Υ Α ΕΞΑΜΗΝΟ ΕΚΠΑΙΔΕΥΤΗΣ: ΤΡΟΧΙΔΗΣ ΠΑΝΑΓΙΩΤΗΣ 1. Παράσταση και οργάνωση δεδομένων

Διαβάστε περισσότερα

Τμήμα Οικιακής Οικονομίας και Οικολογίας. Αναπαράσταση Αριθμών

Τμήμα Οικιακής Οικονομίας και Οικολογίας. Αναπαράσταση Αριθμών Αναπαράσταση Αριθμών Δεκαδικό και Δυαδικό Δεκαδικό σύστημα Δεκαδικό και Δυαδικό Μετατροπή Για τη μετατροπή ενός αριθμού από το δυαδικό σύστημα στο δεκαδικό, πολλαπλασιάζουμε κάθε δυαδικό ψηφίο του αριθμού

Διαβάστε περισσότερα

Συνδυαστικά Λογικά Κυκλώματα

Συνδυαστικά Λογικά Κυκλώματα Συνδυαστικά Λογικά Κυκλώματα Ένα συνδυαστικό λογικό κύκλωμα συντίθεται από λογικές πύλες, δέχεται εισόδους και παράγει μία ή περισσότερες εξόδους. Στα συνδυαστικά λογικά κυκλώματα οι έξοδοι σε κάθε χρονική

Διαβάστε περισσότερα

Κεφάλαιο 3. Αριθμητική για υπολογιστές

Κεφάλαιο 3. Αριθμητική για υπολογιστές Κεφάλαιο 3 Αριθμητική για υπολογιστές Αριθμητική για υπολογιστές Λειτουργίες (πράξεις) σε ακεραίους Πρόσθεση και αφαίρεση Πολλαπλασιασμός και διαίρεση Χειρισμός της υπερχείλισης Πραγματικοί αριθμοί κινητής

Διαβάστε περισσότερα

Παράρτηµα Γ. Τα Βασικά της Λογικής Σχεδίασης. Οργάνωση και Σχεδίαση Υπολογιστών Η ιασύνδεση Υλικού και Λογισµικού, 4 η έκδοση

Παράρτηµα Γ. Τα Βασικά της Λογικής Σχεδίασης. Οργάνωση και Σχεδίαση Υπολογιστών Η ιασύνδεση Υλικού και Λογισµικού, 4 η έκδοση Οργάνωση και Σχεδίαση Υπολογιστών Η ιασύνδεση Υλικού και Λογισµικού, 4 η έκδοση Παράρτηµα Γ Τα Βασικά της Λογικής Σχεδίασης ιαφάνειες διδασκαλίας του πρωτότυπου βιβλίου µεταφρασµένες στα ελληνικά και εµπλουτισµένες

Διαβάστε περισσότερα

1 η Θεµατική Ενότητα : Δυαδικά Συστήµατα

1 η Θεµατική Ενότητα : Δυαδικά Συστήµατα 1 η Θεµατική Ενότητα : Δυαδικά Συστήµατα Δεκαδικοί Αριθµοί Βάση : 10 Ψηφία : 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 Αριθµοί: Συντελεστές Χ δυνάµεις του 10 7392.25 = 7x10 3 + 3x10 2 + 9x10 1 + 2x10 0 + 2x10-1 + 5x10-2

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Θεµατική Ενότητα ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Ακαδηµαϊκό Έτος 2006 2007 Γραπτή Εργασία #2 Ηµεροµηνία Παράδοσης 28-0 - 2007 ΠΛΗ 2: Ψηφιακά Συστήµατα ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΛΥΣΕΙΣ Άσκηση : [5 µονάδες] Έχετε στη

Διαβάστε περισσότερα

Οι φυσικοί αριθμοί. Παράδειγμα

Οι φυσικοί αριθμοί. Παράδειγμα Οι φυσικοί αριθμοί Φυσικοί Αριθμοί Είναι οι αριθμοί με τους οποίους δηλώνουμε πλήθος ή σειρά. Για παράδειγμα, φυσικοί αριθμοί είναι οι: 0, 1,, 3,..., 99, 100,...,999, 1000, 0... Χωρίζουμε τους Φυσικούς

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΟΥΣ ΥΠΟΛΟΓΙΣΤΕΣ. ΜΑΘΗΜΑ 2 ο. ΑΛΓΕΒΡΑ Boole ΛΟΓΙΚΑ ΚΥΚΛΩΜΑΤΑ

ΕΙΣΑΓΩΓΗ ΣΤΟΥΣ ΥΠΟΛΟΓΙΣΤΕΣ. ΜΑΘΗΜΑ 2 ο. ΑΛΓΕΒΡΑ Boole ΛΟΓΙΚΑ ΚΥΚΛΩΜΑΤΑ ΕΙΣΑΓΩΓΗ ΣΤΟΥΣ ΥΠΟΛΟΓΙΣΤΕΣ ΜΑΘΗΜΑ 2 ο ΑΛΓΕΒΡΑ Boole ΛΟΓΙΚΑ ΚΥΚΛΩΜΑΤΑ 2009-10 ΕΙΣΑΓΩΓΗ ΣΤΟΥΣ ΥΠΟΛΟΓΙΣΤΕΣ 1 Άλγεβρα Βοοle η θεωρητική βάση των λογικών κυκλωμάτων Η άλγεβρα Βοοle ορίζεται επάνω στο σύνολο

Διαβάστε περισσότερα

ΑΡΧΙΤΕΚΤΟΝΙΚΗ HARDWARE ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ

ΑΡΧΙΤΕΚΤΟΝΙΚΗ HARDWARE ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΨΗΦΙΑΚΑ ΣΥΣΤΗΜΑΤΑ ΚΕΦΑΛΑΙΟ 7ο ΑΡΧΙΤΕΚΤΟΝΙΚΗ HARDWARE ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Γενικό διάγραμμα υπολογιστικού συστήματος Γενικό διάγραμμα υπολογιστικού συστήματος - Κεντρική Μονάδα Επεξεργασίας ονομάζουμε

Διαβάστε περισσότερα

Εισαγωγή στους Ηλεκτρονικούς Υπολογιστές

Εισαγωγή στους Ηλεκτρονικούς Υπολογιστές στους Ηλεκτρονικούς Υπολογιστές http://courseware.mech.tua.gr/ml232/ 3 ο Μάθημα Λεωνίδας Αλεξόπουλος Λέκτορας ΕΜΠ E-mail: leo@mail.tua.gr URL: http://users.tua.gr/leo Λογικές Πράξεις Λογικές Συναρτήσεις

Διαβάστε περισσότερα

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΠΡΩΤΟΤΥΠΟ ΕΡΓΑΛΕΙΟ ΑΥΤΟΜΑΤΗΣ ΕΞΑΓΩΓΗΣ ΚΩΔΙΚΑ VHDL

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΠΡΩΤΟΤΥΠΟ ΕΡΓΑΛΕΙΟ ΑΥΤΟΜΑΤΗΣ ΕΞΑΓΩΓΗΣ ΚΩΔΙΚΑ VHDL ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΡΑΔΙΟΗΛΕΚΤΡΟΛΟΓΙΑΣ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΠΡΩΤΟΤΥΠΟ ΕΡΓΑΛΕΙΟ ΑΥΤΟΜΑΤΗΣ ΕΞΑΓΩΓΗΣ ΚΩΔΙΚΑ VHDL Παπαδόπουλος Ματθαίος 1 Επιβλέπων :Σ.Νικολαιδης

Διαβάστε περισσότερα

Γενικά Στοιχεία Ηλεκτρονικού Υπολογιστή

Γενικά Στοιχεία Ηλεκτρονικού Υπολογιστή Γενικά Στοιχεία Ηλεκτρονικού Υπολογιστή 1. Ηλεκτρονικός Υπολογιστής Ο Ηλεκτρονικός Υπολογιστής είναι μια συσκευή, μεγάλη ή μικρή, που επεξεργάζεται δεδομένα και εκτελεί την εργασία του σύμφωνα με τα παρακάτω

Διαβάστε περισσότερα

Ερωτήσεις πολλαπλής επιλογής - Κεφάλαιο 2. Α1. Ο αλγόριθμος είναι απαραίτητος μόνο για την επίλυση προβλημάτων πληροφορικής

Ερωτήσεις πολλαπλής επιλογής - Κεφάλαιο 2. Α1. Ο αλγόριθμος είναι απαραίτητος μόνο για την επίλυση προβλημάτων πληροφορικής Ερωτήσεις πολλαπλής επιλογής - Κεφάλαιο 2 Α1. Ο αλγόριθμος είναι απαραίτητος μόνο για την επίλυση προβλημάτων πληροφορικής Α2. Ο αλγόριθμος αποτελείται από ένα πεπερασμένο σύνολο εντολών Α3. Ο αλγόριθμος

Διαβάστε περισσότερα

ΕΙΔΙΚΟΤΗΤΑ: ΤΕΧΝΙΚΟΣ ΕΦΑΡΜΟΓΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ: ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ

ΕΙΔΙΚΟΤΗΤΑ: ΤΕΧΝΙΚΟΣ ΕΦΑΡΜΟΓΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ: ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΕΙΔΙΚΟΤΗΤΑ: ΤΕΧΝΙΚΟΣ ΕΦΑΡΜΟΓΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ: ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ (Τμήματα Υπολογιστή) ΕΚΠΑΙΔΕΥΤΗΣ:ΠΟΖΟΥΚΙΔΗΣ ΚΩΝΣΤΑΝΤΙΝΟΣ ΤΜΗΜΑΤΑ ΗΛΕΚΤΡΟΝΙΚΟΥ ΥΠΟΛΟΓΙΣΤΗ Κάθε ηλεκτρονικός υπολογιστής αποτελείται

Διαβάστε περισσότερα

Εντολές γλώσσας μηχανής

Εντολές γλώσσας μηχανής Εντολές γλώσσας μηχανής Στον υπολογιστή MIPS η εντολή πρόσθεσε τα περιεχόμενα των καταχωρητών 17 και 20 και τοποθέτησε το αποτέλεσμα στον καταχωρητή 9 έχει την μορφή: 00000010001101000100100000100000 Πεδία

Διαβάστε περισσότερα

Κεφάλαιο 1. B για κάθε 0 Ψ i (1-1)

Κεφάλαιο 1. B για κάθε 0 Ψ i (1-1) Κεφάλαιο 1 Σύνοψη Στο κεφάλαιο αυτό θα παρουσιαστούν τα κύρια αριθμητικά συστήματα, οι αλγόριθμοι μετατροπής μεταξύ των συστημάτων για την κάθε μια περίπτωση, ο τρόπος εκτέλεσης των τεσσάρων βασικών πράξεων

Διαβάστε περισσότερα

Κυκλώµατα µε MSI. υαδικός Αθροιστής & Αφαιρέτης

Κυκλώµατα µε MSI. υαδικός Αθροιστής & Αφαιρέτης 5 η Θεµατική Ενότητα : Συνδυαστικά Κυκλώµατα µε MSI υαδικός Αθροιστής & Αφαιρέτης A i B i FA S i C i C i+1 D Σειριακός Αθροιστής Σειριακός Αθροιστής: απαιτεί 1 πλήρη αθροιστή, 1 στοιχείο µνήµης και παράγει

Διαβάστε περισσότερα

Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ. Βασικές Έννοιες Προγραμματισμού. Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD

Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ. Βασικές Έννοιες Προγραμματισμού. Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ Βασικές Έννοιες Προγραμματισμού Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Αριθμητικά συστήματα Υπάρχουν 10 τύποι ανθρώπων: Αυτοί

Διαβάστε περισσότερα

ΠΛΗΡΟΦΟΡΙΚΗ Ι JAVA Τμήμα θεωρίας με Α.Μ. σε 8 & 9 11/10/07

ΠΛΗΡΟΦΟΡΙΚΗ Ι JAVA Τμήμα θεωρίας με Α.Μ. σε 8 & 9 11/10/07 ΠΛΗΡΟΦΟΡΙΚΗ Ι JAVA Τμήμα θεωρίας με Α.Μ. σε 8 & 9 11/10/07 Τμήμα θεωρίας: Α.Μ. 8, 9 Κάθε Πέμπτη, 11πμ-2μμ, ΑΜΦ23. Διδάσκων: Ντίνος Φερεντίνος Γραφείο 118 email: kpf3@cornell.edu Μάθημα: Θεωρία + προαιρετικό

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2009 ΑΠΑΝΤΗΣΕΙΣ

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2009 ΑΠΑΝΤΗΣΕΙΣ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2009 Μάθημα : Μικροϋπολογιστές Τεχνολογία Τ.Σ. Ι, Θεωρητικής κατεύθυνσης Ημερομηνία

Διαβάστε περισσότερα

Γ ε ν ι κ ό Λ ύ κ ε ι ο Ε λ ε υ θ ε ρ ο ύ π ο λ η ς. Α λ γ ό ρ ι θ μ ο ι

Γ ε ν ι κ ό Λ ύ κ ε ι ο Ε λ ε υ θ ε ρ ο ύ π ο λ η ς. Α λ γ ό ρ ι θ μ ο ι Α λ γ ό ρ ι θ μ ο ι Αριθμητικοί τελεστές Οι αριθμητικοί τελεστές είναι: πρόσθεση, αφαίρεση, πολλαπλασιασμός και διαίρεση +,-,*,/ ύψωση σε δύναμη ^ πηλίκο ακέραιης διαίρεσης δύο ακεραίων αριθμών div υπόλοιπο

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2006

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2006 ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2006 Μάθημα : Τεχνολογία Αναλογικών και Ψηφιακών Ηλεκτρονικών Τεχνολογία ΙΙ, Πρακτικής

Διαβάστε περισσότερα

Εισαγωγή στην επιστήμη των υπολογιστών. ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ και Μετατροπές Αριθμών

Εισαγωγή στην επιστήμη των υπολογιστών. ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ και Μετατροπές Αριθμών Εισαγωγή στην επιστήμη των υπολογιστών ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ και Μετατροπές Αριθμών 1 Αριθμητικό Σύστημα Ορίζει τον τρόπο αναπαράστασης ενός αριθμού με διακεκριμένα σύμβολα Ένας αριθμός αναπαρίσταται διαφορετικά

Διαβάστε περισσότερα

Κεφάλαιο 3. Αριθμητική για υπολογιστές

Κεφάλαιο 3. Αριθμητική για υπολογιστές Κεφάλαιο 3 Αριθμητική για υπολογιστές Αριθμητική για υπολογιστές Λειτουργίες (πράξεις) σε ακεραίους Πρόσθεση και αφαίρεση Πολλαπλασιασμός και διαίρεση Χειρισμός της υπερχείλισης Πραγματικοί αριθμοί κινητής

Διαβάστε περισσότερα

i Το τρανζίστορ αυτό είναι τύπου NMOS. Υπάρχει και το συμπληρωματικό PMOS. ; Τι συμβαίνει στο τρανζίστορ PMOS; Το τρανζίστορ MOS(FET)

i Το τρανζίστορ αυτό είναι τύπου NMOS. Υπάρχει και το συμπληρωματικό PMOS. ; Τι συμβαίνει στο τρανζίστορ PMOS; Το τρανζίστορ MOS(FET) Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Αρχιτεκτονική Υπολογιστών 25-6 Το τρανζίστορ MOS(FET) πύλη (gate) Ψηφιακή και Σχεδίαση πηγή (source) καταβόθρα (drai) (σχεδίαση συνδυαστικών κυκλωμάτων) http://di.ioio.gr/~mistral/tp/comparch/

Διαβάστε περισσότερα

Ψηφιακοί Υπολογιστές

Ψηφιακοί Υπολογιστές 1 η Θεµατική Ενότητα : υαδικά Συστήµατα Ψηφιακοί Υπολογιστές Παλαιότερα οι υπολογιστές χρησιµοποιούνταν για αριθµητικούς υπολογισµούς Ψηφίο (digit) Ψηφιακοί Υπολογιστές Σήµατα (signals) : διακριτά στοιχεία

Διαβάστε περισσότερα

Άσκηση 3 Ένα νέο είδος flip flop έχει τον ακόλουθο πίνακα αληθείας : I 1 I 0 Q (t+1) Q (t) 1 0 ~Q (t) Κατασκευάστε τον πίνακα

Άσκηση 3 Ένα νέο είδος flip flop έχει τον ακόλουθο πίνακα αληθείας : I 1 I 0 Q (t+1) Q (t) 1 0 ~Q (t) Κατασκευάστε τον πίνακα Άσκηση Δίδονται οι ακόλουθες κυματομορφές ρολογιού και εισόδου D που είναι κοινή σε ένα D latch και ένα D flip flop. Το latch είναι θετικά ενεργό, ενώ το ff θετικά ακμοπυροδοτούμενο. Σχεδιάστε τις κυματομορφές

Διαβάστε περισσότερα

1. ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ

1. ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΑΔΑΜΑΝΤΙΟΣ ΣΧΟΛΗ ΤΑΞΗ Δ ΟΝΟΜΑ α. Αντιμεταθετική ιδιότητα 1. ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ Π Ρ Ο Σ Θ Ε Σ Η Α. ΙΔΙΟΤΗΤΕΣ ΤΗΣ ΠΡΟΣΘΕΣΗΣ 8 + 7 = 15 ή 7 + 8 = 15 346 ή 517 ή 82 + 517 + 82 + 346 82 346 517 945 945

Διαβάστε περισσότερα

Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον

Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον Τεχνολογικό Εκπαιδευτικό Ίδρυμα Κεντρικής Μακεδονίας - Σέρρες Τμήμα Μηχανικών Πληροφορικής Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον Δρ. Δημήτρης Βαρσάμης Επίκουρος Καθηγητής Δρ. Δημήτρης Βαρσάμης

Διαβάστε περισσότερα

3.2 3.3 3.4 ΠΡΑΞΕΙΣ ΜΕ ΕΚΑ ΙΚΟΥΣ

3.2 3.3 3.4 ΠΡΑΞΕΙΣ ΜΕ ΕΚΑ ΙΚΟΥΣ 1 3.2 3.3 3.4 ΠΡΑΞΕΙΣ ΜΕ ΕΚΑ ΙΚΟΥΣ ΥΠΟΛΟΓΙΣΜΟΙ ΜΕ ΚΟΜΠΙΟΥΤΕΡΑΚΙ ΤΥΠΟΠΟΙΗΜΕΝΗ ΜΟΡΦΗ ΑΡΙΘΜΩΝ ΘΕΩΡΙΑ 1. Πρόσθεση αφαίρεση δεκαδικών Γίνονται όπως και στους φυσικούς αριθµούς. Προσθέτουµε ή αφαιρούµε τα ψηφία

Διαβάστε περισσότερα

Δυαδικη παρασταση αριθμων και συμβολων

Δυαδικη παρασταση αριθμων και συμβολων Δυαδικη παρασταση αριθμων και συμβολων Ενα αριθμητικο συστημα χαρακτηριζεται απο την βαση r και τα συμβολα a i που παιρνουν τις τιμες 0,1,...,r-1. (a n,,a 1,a 0. a -1,a -2,,a -m ) r = =a n r n + +a 1 r+a

Διαβάστε περισσότερα

Ανάπτυξη Εφαρμογών σε Προγραμματιστικό Περιβάλλον

Ανάπτυξη Εφαρμογών σε Προγραμματιστικό Περιβάλλον Ανάπτυξη Εφαρμογών σε Προγραμματιστικό Περιβάλλον ΚΕΦΑΛΑΙΟ 2 2.4 Βασικές συνιστώσες/εντολές ενός αλγορίθμου 2.4.1 Δομή ακολουθίας ΚΕΦΑΛΑΙΟ 7 7.1 7.9 Σταθερές (constants): Προκαθορισμένες τιμές που παραμένουν

Διαβάστε περισσότερα

K15 Ψηφιακή Λογική Σχεδίαση 7-8: Ανάλυση και σύνθεση συνδυαστικών λογικών κυκλωμάτων

K15 Ψηφιακή Λογική Σχεδίαση 7-8: Ανάλυση και σύνθεση συνδυαστικών λογικών κυκλωμάτων K15 Ψηφιακή Λογική Σχεδίαση 7-8: Ανάλυση και σύνθεση συνδυαστικών λογικών κυκλωμάτων Γιάννης Λιαπέρδος TEI Πελοποννήσου Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής ΤΕ Η έννοια του συνδυαστικού

Διαβάστε περισσότερα

Βασικές Εξειδικεύσεις σε Αρχιτεκτονική και Δίκτυα Υπολογιστών

Βασικές Εξειδικεύσεις σε Αρχιτεκτονική και Δίκτυα Υπολογιστών Βασικές Εξειδικεύσεις σε Αρχιτεκτονική και Δίκτυα Υπολογιστών Τόμος A Λάμπρος Μπισδούνης Καθηγητής ΤΕΙ Δυτικής Ελλάδας Ψηφιακά Συστήματα Το έργο υλοποιείται στο πλαίσιο του υποέργου 2 με τίτλο «Ανάπτυξη

Διαβάστε περισσότερα

Πραγµατικοί αριθµοί κινητής υποδιαστολής Floating Point Numbers. Σ. Τσιτµηδέλης - 2010 ΤΕΙ ΧΑΛΚΙΔΑΣ

Πραγµατικοί αριθµοί κινητής υποδιαστολής Floating Point Numbers. Σ. Τσιτµηδέλης - 2010 ΤΕΙ ΧΑΛΚΙΔΑΣ Πραγµατικοί αριθµοί κινητής υποδιαστολής Floating Point Numbers Σ. Τσιτµηδέλης - 2010 ΤΕΙ ΧΑΛΚΙΔΑΣ Εκθετική Παράσταση (Exponential Notation) Οι επόµενες είναι ισοδύναµες παραστάσεις του 1,234 123,400.0

Διαβάστε περισσότερα

Εισαγωγή στην πληροφορική

Εισαγωγή στην πληροφορική Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Εισαγωγή στην πληροφορική Ενότητα 4: Ψηφιακή Λογική, Άλγεβρα Boole, Πίνακες Αλήθειας (Μέρος B) Αγγελίδης Παντελής Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών

Διαβάστε περισσότερα

Εργαστήριο Ψηφιακής Σχεδίασης

Εργαστήριο Ψηφιακής Σχεδίασης ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ Εργαστήριο Ψηφιακής Σχεδίασης 8 Εργαστηριακές Ασκήσεις Χρ. Καβουσιανός Επίκουρος Καθηγητής 2014 Εργαστηριακές Ασκήσεις Ψηφιακής Σχεδίασης 2 Εργαστηριακές Ασκήσεις

Διαβάστε περισσότερα

Αρχιτεκτονική Υπολογιστών Ασκήσεις Εργαστηρίου

Αρχιτεκτονική Υπολογιστών Ασκήσεις Εργαστηρίου Αρχιτεκτονική Υπολογιστών Ασκήσεις Εργαστηρίου Ενότητα: ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ Νο 04 Δρ. Μηνάς Δασυγένης mdasyg@ieee.org Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών Εργαστήριο Ψηφιακών Συστημάτων και

Διαβάστε περισσότερα

Περιεχόμενα. Κεφάλαιο 3 Οι ιδιότητες των αριθμών... 37 3.1 Αριθμητικά σύνολα... 37 3.2 Ιδιότητες... 37 3.3 Περισσότερες ιδιότητες...

Περιεχόμενα. Κεφάλαιο 3 Οι ιδιότητες των αριθμών... 37 3.1 Αριθμητικά σύνολα... 37 3.2 Ιδιότητες... 37 3.3 Περισσότερες ιδιότητες... Περιεχόμενα Πρόλογος... 5 Κεφάλαιο Βασικές αριθμητικές πράξεις... 5. Τέσσερις πράξεις... 5. Σύστημα πραγματικών αριθμών... 5. Γραφική αναπαράσταση πραγματικών αριθμών... 6.4 Οι ιδιότητες της πρόσθεσης

Διαβάστε περισσότερα

Περιεχόµενα. Πρόλογος 11. 0 Εισαγωγή 21

Περιεχόµενα. Πρόλογος 11. 0 Εισαγωγή 21 Περιεχόµενα Πρόλογος 11 Σκοπός αυτού του βιβλίου 11 Σε ποιους απευθύνεται αυτό το βιβλίο 12 Βασικά χαρακτηριστικά του βιβλίου 12 Κάλυψη συστηµάτων CAD 14 Εργαστηριακή υποστήριξη 14 Συνοπτική παρουσίαση

Διαβάστε περισσότερα

Συνδυαστικά Κυκλώματα

Συνδυαστικά Κυκλώματα 3 Συνδυαστικά Κυκλώματα 3.1. ΣΥΝΔΥΑΣΤΙΚΗ Λ ΟΓΙΚΗ Συνδυαστικά κυκλώματα ονομάζονται τα ψηφιακά κυκλώματα των οποίων οι τιμές της εξόδου ή των εξόδων τους διαμορφώνονται αποκλειστικά, οποιαδήποτε στιγμή,

Διαβάστε περισσότερα

1. Βάσεις αριθμητικών συστημάτων 2. Μετατροπές μεταξύ ξύβάσεων 3. Αρνητικοί δυαδικοί αριθμοί 4. Αριθμητικές πράξεις δυαδικών αριθμών

1. Βάσεις αριθμητικών συστημάτων 2. Μετατροπές μεταξύ ξύβάσεων 3. Αρνητικοί δυαδικοί αριθμοί 4. Αριθμητικές πράξεις δυαδικών αριθμών ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ MHXANIKOI Η/Υ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΥΑ ΙΚΟΙ ΑΡΙΘΜΟΙ (ΑΚΕΡΑΙΟΙ ΑΡΙΘΜΟΙ) Γ. Τσιατούχας Παράρτηµα A ιάρθρωση 1. Βάσεις αριθμητικών συστημάτων 2. Μετατροπές μεταξύ ξύβάσεων 3. Αρνητικοί

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2006 ΑΠΑΝΤΗΣΕΙΣ

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2006 ΑΠΑΝΤΗΣΕΙΣ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2006 Μάθημα : Μικροϋπολογιστές Τεχνολογία Τ.Σ. Ι, Θεωρητικής κατεύθυνσης Ημερομηνία

Διαβάστε περισσότερα

Εισαγωγή στην Επιστήμη των Υπολογιστών

Εισαγωγή στην Επιστήμη των Υπολογιστών Εισαγωγή στην Επιστήμη των Υπολογιστών Ενότητα 2: Αποθήκευση Δεδομένων: Αριθμητική του Υπολογιστή, Αριθμητικά Συστήματα Μετατροπές, 2ΔΩ Τμήμα: Αγροτικής Οικονομίας & Ανάπτυξης Διδάσκων: Θεόδωρος Τσιλιγκιρίδης

Διαβάστε περισσότερα

8.1 Θεωρητική εισαγωγή

8.1 Θεωρητική εισαγωγή ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ - ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 8 ΣΤΟΙΧΕΙΑ ΜΝΗΜΗΣ ΚΑΤΑΧΩΡΗΤΕΣ Σκοπός: Η µελέτη της λειτουργίας των καταχωρητών. Θα υλοποιηθεί ένας απλός στατικός καταχωρητής 4-bit µε Flip-Flop τύπου D και θα µελετηθεί

Διαβάστε περισσότερα

Σ ή. : υαδικά. Ε ό. ή Ενότητα

Σ ή. : υαδικά. Ε ό. ή Ενότητα 1η Θεµατική Θ ή Ενότητα Ε ό : υαδικά δ ά Συστήµατα Σ ή Μονάδα Ελέγχου Ψηφιακοί Υπολογιστές Αριθµητική Μονάδα Κρυφή Μνήµη Μονάδα Μνήµης ιαχείριση Μονάδων Ι/Ο ίσκοι Οθόνες ικτυακές Μονάδες Πληκτρολόγιο,

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΑ ΨΗΦΙΑΚΩΝ ΗΛΕΚΤΡΟΝΙΚΩΝ. ΓΙΑΝΝΗΣ ΛΙΑΠΕΡΔΟΣ Επίκουρος Καθηγητής ΤΕΙ Πελοποννήσου

ΜΑΘΗΜΑΤΑ ΨΗΦΙΑΚΩΝ ΗΛΕΚΤΡΟΝΙΚΩΝ. ΓΙΑΝΝΗΣ ΛΙΑΠΕΡΔΟΣ Επίκουρος Καθηγητής ΤΕΙ Πελοποννήσου ΜΑΘΗΜΑΤΑ ΨΗΦΙΑΚΩΝ ΗΛΕΚΤΡΟΝΙΚΩΝ ΓΙΑΝΝΗΣ ΛΙΑΠΕΡΔΟΣ Επίκουρος Καθηγητής ΤΕΙ Πελοποννήσου ΣΠΑΡΤΗ 2016 Γιάννης Λιαπέρδος ΜΑΘΗΜΑΤΑ ΨΗΦΙΑΚΩΝ ΗΛΕΚΤΡΟΝΙΚΩΝ Copyright ΣΕΑΒ, 2016 Το παρόν έργο αδειοδοτείται υπό τους

Διαβάστε περισσότερα

Αρχιτεκτονική Υπολογιστών

Αρχιτεκτονική Υπολογιστών Πανεπιστήμιο Δυτικής Μακεδονίας Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Αρχιτεκτονική Υπολογιστών Ενότητα 5: Εντολές αλλαγής ροής. Διακλάδωση χωρίς συνθήκη. Διακλάδωση με συνθήκη. Δρ. Μηνάς Δασυγένης

Διαβάστε περισσότερα