ΕΒΔΟΜΑΔΙΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ (συμπεριλαμβάνονται οι οδηγίες με βάση την με Α.Π /Δ2/ Υ.Α.

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΕΒΔΟΜΑΔΙΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ (συμπεριλαμβάνονται οι οδηγίες με βάση την με Α.Π /Δ2/ Υ.Α."

Transcript

1 ΕΒΔΟΜΑΔΙΑΙΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ (συμπεριλαμβάνονται οι οδηγίες με βάση την με Α.Π /Δ/ Υ.Α.) ΕΒΔΟΜΑΔΙΑΙΟ Σ ΠΡΟΓΡΑΜΜΑΤ ΙΣΜΟΣ ΕΝΟΤΗΤΑ ΕΙΣΑΓΩΓΙΚΟ ΚΕΦΑΛΑΙΟ ΤΙΤΛΟΣ ΛΕΞΙΛΟΓΙΟ ΛΟΓΙΚΗΣ- ΣΥΝΟΛΑ ΠΑΡ/ΦΟΣ ΒΙΒΛΙΟΥ ΩΡΕ Σ ΟΔΗΓΙΕΣ Στο κεφάλαιο αυτό οι μαθητές διαπραγματεύονται την έννοια του συνόλου καθώς και σχέσεις και πράξεις μεταξύ συνόλων. Ειδικότερα: 1-16/09 19-/09 ΕΙΣΑΓΩΓΙΚΟ ΚΕΦΑΛΑΙΟ ΚΕΦΑΛΑΙΟ ΛΕΞΙΛΟΓΙΟ ΛΟΓΙΚΗΣ- ΣΥΝΟΛΑ ΟΙ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ Ε1 ΚΑΙ Ε Οι Πράξεις και οι Ιδιότητές τους.1 Οι Πράξεις και οι Ιδιότητές τους.1 19 Όσον αφορά στην Ε.1, αυτή να μη διδαχθεί ως αυτόνομο κεφάλαιο αλλά να συζητηθεί το νόημα και η χρήση των στοιχείων της Λογικής στις ιδιότητες και προτάσεις που διατρέχουν τη διδακτέα ύλη (για παράδειγμα στην ιδιότητα α β 0 α 0 και β 0 της.1 μπορεί να διερευνηθεί το νόημα της ισοδυναμίας και του συνδέσμου και. Οι μαθητές αντιμετωπίζουν για πρώτη φορά με συστηματικό τρόπο την έννοια του συνόλου και των σχέσεων και πράξεων μεταξύ συνόλων. Επειδή η έννοια του συνόλου είναι πρωταρχική, δηλαδή δεν ορίζεται, χρειάζεται να τονισθούν οι προϋποθέσεις που απαιτούνται για να θεωρηθεί μια συλλογή αντικειμένων σύνολο μέσα από κατάλληλα παραδείγματα (π.χ. το σύνολο που αποτελείται από τα θρανία και τους μαθητές της τάξης, το σύνολο των ψηλών μαθητών της τάξης). Η αναπαράσταση συνόλων, σχέσεων και πράξεων αυτών καθώς και η μετάβαση από τη μία αναπαράσταση στην άλλη, μπορούν να υποστηρίξουν την κατανόηση της έννοιας του συνόλου. Οι πράξεις μεταξύ συνόλων είναι ένα πλαίσιο στο οποίο οι μαθητές μπορούν να δώσουν νόημα στους συνδέσμους ή και και. Ειδικά, όσον αφορά στο σύνδεσμο ή, να επισημανθεί η διαφορετική του σημασία στα Μαθηματικά από εκείνη της αποκλειστικής διάζευξης που του αποδίδεται συνήθως στην καθημερινή χρήση του. Οι δραστηριότητες Δ.1, Δ. και Δ. του ΑΠΣ είναι ενδεικτικές για την εννοιολογική προσέγγιση της έννοιας του συνόλου. Ενδεικτική δραστηριότητα: Παραλληλόγραμμα Στο κεφάλαιο αυτό οι μαθητές επαναλαμβάνουν και εμβαθύνουν στις ιδιότητες του συνόλου των πραγματικών αριθμών με στόχο να βελτιώσουν την κατανόηση της δομής του. Η επανάληψη και περαιτέρω εξάσκηση των μαθητών στον αλγεβρικό λογισμό (αλγεβρικές πράξεις, παραγοντοποίηση, ταυτότητες κ.λ.π.) δεν αποτελεί τον κύριο στόχο αυτού του κεφαλαίου. Ειδικότερα: Οι μαθητές συναντούν δυσκολίες στη διάκριση των ρητών από τους άρρητους και γενικότερα στην ταξινόμηση των πραγματικών αριθμών σε φυσικούς, ακέραιους ρητούς και άρρητους. Οι διαφορετικές αναπαραστάσεις των πραγματικών αριθμών επηρεάζουν τις παραπάνω διεργασίες. Για το λόγο αυτό προτείνεται να δοθεί έμφαση στη διάκριση των ρητών από τους άρρητους με χρήση κατάλληλων παραδειγμάτων, όπως οι αριθμοί 4/, 1., 1,010101, 1, , καθώς και στην ταξινόμηση αριθμών στα βασικά υποσύνολα των πραγματικών αριθμών (όπως 4/, /5, 6/π, -1. κ.ά.). Παράλληλα, και με αφορμή τα παραπάνω παραδείγματα, μπορεί να γίνει συζήτηση αν το άθροισμα και το γινόμενο δύο ρητών ή δύο άρρητων ή ρητού και άρρητου είναι ρητός ή άρρητος. Σημαντικό για τον αλγεβρικό λογισμό είναι οι μαθητές να κατανοήσουν τις ιδιότητες των πράξεων. Σε αυτό θα βοηθήσει η λεκτική διατύπωση και η διερεύνηση των ιδιοτήτων καθώς και η αναγνώριση της σημασίας της ισοδυναμίας, της συνεπαγωγής και των συνδέσμων ή και και, με ιδιαίτερη έμφαση στις ιδιότητες: α β=0 α=0 ή β=0, 6-0/09 α β 0 α 0 και β 0. Να δοθεί έμφαση στις μεθόδους απόδειξης και ιδιαίτερα σε αυτές με τις οποίες δεν είναι εξοικειωμένοι οι μαθητές, όπως η χρήση της απαγωγής σε άτοπο για την απόδειξη ότι ο είναι άρρητος και του αντιπαραδείγματος στην απόρριψη του ισχυρισμού: α =β α=β. Η δραστηριότητα Δ9 του ΑΠΣ μπορεί να αξιοποιηθεί προς αυτή την κατεύθυνση. Ενδεικτική δραστηριότητα 1 (Ελένη-Κώστας) 0-07/10 Διάταξη Πραγματικών. Οι μαθητές, επηρεασμένοι από τη διαδοχικότητα των

2 10-14/ /10 Αριθμών (εκτός της απόδειξης της ιδιότητας 4) Διάταξη Πραγματικών Αριθμών (εκτός της απόδειξης της ιδιότητας 4). Απόλυτη Τιμή Πραγματικού Αριθμού. ακεραίων, συναντούν δυσκολίες στην κατανόηση της πυκνότητας των ρητών αριθμών. Προτείνεται να δοθεί έμφαση στη διερεύνηση της έννοιας της πυκνότητας και της διαδοχικότητας στα βασικά υποσύνολα των πραγματικών αριθμών (προτείνεται η δραστηριότητα Δ.9 του ΑΠΣ) καθώς και στις ομοιότητες και διαφορές των ιδιοτήτων 5 της ισότητας και της ανισότητας, με έμφαση στις ισοδυναμίες: α +β =0 α=0 και β=0, ενώ α +β >0 α 0 ή β 0 και στα σχόλια 1 και της σελ. 56. Οι μαθητές έχουν αντιμετωπίσει, στο Γυμνάσιο, την απόλυτη τιμή ενός αριθμού ως την απόστασή του από το μηδέν στον άξονα των πραγματικών αριθμών. Στην ενότητα αυτή δίνεται ο τυπικός ορισμός της απόλυτης τιμής και αποδεικνύονται οι βασικές ιδιότητές της. Να επισημανθεί η μέθοδος απόδειξης των ιδιοτήτων των απολύτων τιμών (ότι η ζητούμενη σχέση είναι ισοδύναμη με μία σχέση που γνωρίζουμε ότι είναι αληθής) και να συζητηθεί η αναγκαιότητα του πρέπει και του αρκεί σε αυτές. Η γεωμετρική ερμηνεία της απόλυτης τιμής ενός αριθμού και της απόλυτης τιμής της διαφοράς δύο αριθμών είναι σημαντική, γιατί βοηθά τους μαθητές να αποδώσουν νόημα στην έννοια. Η σύνδεση, όμως, της αλγεβρικής σχέσης και της γεωμετρικής της αναπαράστασης δεν είναι κάτι που γίνεται εύκολα από τους μαθητές και για αυτό απαιτείται να δοθεί σε αυτό ιδιαίτερη έμφαση. Με αυτή την έννοια προτείνεται να μη διδαχθούν, στη γενική τους μορφή, οι: x-x 0 <ρ x (x 0-ρ, x 0+ρ) x 0- ρ<x<x 0+ρ καθώς και Ix-x 0I>ρ x (-, x 0-ρ)U(x 0+ρ, + ) x<x 0-ρ ή x>x 0+ρ καθώς και η γεωμετρική ερμηνεία αυτών, επειδή είναι πολύ δύσκολο να γίνουν κατανοητά από τους μαθητές σ αυτή τη φάση της αλγεβρικής τους εμπειρίας. Ομοίως να μη διδαχθεί η έννοια του κέντρου και της ακτίνας διαστήματος. Αντίθετα, οι μαθητές μπορούν να ασχοληθούν με τα παραπάνω μέσα από συγκεκριμένα παραδείγματα (π.χ. η ανίσωση x- < σημαίνει: ποιοι είναι οι αριθμοί που απέχουν από το απόσταση μικρότερη του ; δηλ. x- < d (x, ) < v -1<x<5). -6/10 1/10-04/11 Απόλυτη Τιμή Πραγματικού Αριθμού. Προτείνεται, όμως, να γίνει διαπραγμάτευση των σχέσεων x <ρ -ρ<x<ρ και x >ρ x<-ρ ή x>ρ. H δραστηριότητα Δ.10 του ΑΠΣ υποστηρίζει την παραπάνω προσέγγιση. Ενδεικτική δραστηριότητα: Δίνονται τα σημεία Α, Β και Μ που παριστάνουν στον άξονα των πραγματικών αριθμών τους αριθμούς -, 7 και x αντίστοιχα, με - <x< 7. α) Να διατυπώσετε τη γεωμετρική ερμηνεία των παραστάσεων: i. x+ ii. x-7 β) Με τη βοήθεια του άξονα να δώσετε τη γεωμετρική ερμηνεία του αθροίσματος: x+ + x-7. γ) Να βρείτε την τιμή της παράστασης A = x+ + x-7 γεωμετρικά. δ) Να επιβεβαιώσετε αλγεβρικά το προηγούμενο συμπέρασμα. ΠΕΜΠΤΗ 7/0/016 ΓΙΟΡΤΗ 8ης ΟΚΤΩΒΡΙΟΥ- ΠΑΡΑΣΚΕΥΗ 8/10/016 Οι μαθητές έχουν ήδη αντιμετωπίσει, στο Γυμνάσιο, τις τετραγωνικές ρίζες και δυνάμεις με ακέραιο εκθέτη καθώς και τις ιδιότητες αυτών. Στην ενότητα αυτή γίνεται επέκταση στη ν-οστή ρίζα και στη δύναμη με ρητό εκθέτη. Να μη διδαχθούν οι ιδιότητες και 4 (δηλαδή οι Ρίζες Πραγματικών Αριθμών (εκτός των ιδιοτήτων και 4).4 = και = εφόσον καλύπτονται πλήρως από τη χρήση των δυνάμεων με ρητό εκθέτη και μάλιστα με μικρότερες δυσκολίες χειρισμών. Να επισημανθεί η διατήρηση των ιδιοτήτων των δυνάμεων με ακέραιο εκθέτη και στην περίπτωση του ρητού εκθέτη. Προτείνεται η διαπραγμάτευση απλών ασκήσεων. Για να αναδειχθούν τα πλεονεκτήματα των αλγεβρικών μεθόδων έναντι της χρήσης του υπολογιστή τσέπης, προτείνεται μια δραστηριότητα σαν τη Δ.11 του ΑΠΣ. Στο ερώτημα ποιον αριθμό εκφράζει η παράσταση 4 [( ) ] δόθηκαν

3 ΚΕΦΑΛΑΙΟ ΕΞΙΣΩΣΕΙΣ /11-11/11 Εξισώσεις 1ου Βαθμού δυο διαφορετικές απαντήσεις. Να εξετάσετε που 1 βρίσκεται το πρόβλημα.1η απάντηση: 4 [( ) ] = 4 [( ) ] = [( ) ] ] (4 ) 4 4 η απάντηση: [( ) ] ( ) ( ) Στο κεφάλαιο αυτό οι μαθητές μελετούν συστηματικά και διερευνούν εξισώσεις 1ου και ου βαθμού. Ως ιδιαίτερη περίπτωση εξετάζεται η εξίσωση x ν =α. Ειδικότερα: Οι μαθητές, στο Γυμνάσιο, έχουν διαπραγματευθεί αναλυτικά την επίλυση εξισώσεων της μορφής αx+β=0, της οποίας οι συντελεστές α και β είναι συγκεκριμένοι αριθμοί. Συναντούν δυσκολίες στη μετάβαση από την επίλυση μιας τέτοιας μορφής εξίσωσης στην επίλυση της γενικής μορφής αx+β=0, για δυο κυρίως λόγους: α) είναι δύσκολος ο διαχωρισμός της έννοιας της παραμέτρου από την έννοια της μεταβλητής και β) δεν είναι εξοικειωμένοι με τη διαδικασία της διερεύνησης γενικά. Για το λόγο αυτό, προτείνεται να δοθεί προτεραιότητα στην αναγνώριση του ρόλου της παραμέτρου, σε μια παραμετρική εξίσωση 1ου βαθμού μέσα από τη διαπραγμάτευση της παραμετρικής εξίσωσης που περιλαμβάνεται στη θεωρία αυτής της παραγράφου (σχολικό βιβλίο, σελ. 80). Για παράδειγμα, μπορεί να ζητηθεί από τους μαθητές να λύσουν την εξίσωση για συγκεκριμένες τιμές του λ ( π.χ. λ=, λ=5, λ=1, λ=-1) και στη συνέχεια να προσπαθήσουν να διατυπώσουν γενικά.1 14/11-18/11 Εξισώσεις 1ου Βαθμού συμπεράσματα για κάθε τιμή της παραμέτρου λ. Προτείνεται, επίσης, προς διαπραγμάτευση η δραστηριότητα Δ.1 του ΑΠΣ καθώς και η επίλυση απλών παραμετρικών εξισώσεων και απλών εξισώσεων που ανάγονται σε εξισώσεις 1ου βαθμού (όπως η άσκηση 10 της Α Ομάδας). Για καλύτερη κατανόηση και εμπέδωση των ιδιοτήτων των απολύτων τιμών, προτείνεται να δοθεί ιδιαίτερη έμφαση σε εξισώσεις, όπως η Ix-5I=-, την οποία δύσκολα χαρακτηρίζουν οι μαθητές από την αρχή ως αδύνατη. ΠΕΜΠΤΗ 17/11/016 ΓΙΟΡΤΗ 17ης ΝΟΕΜΒΡΗ 1-5/11 Η Εξίσωση x ν = α. Η επίλυση εξισώσεων της μορφής x ν =α να περιοριστεί σε απλές εξισώσεις 8-0/ /1 1-16/1 Εξισώσεις ου Βαθμού. Εξισώσεις ου Βαθμού. Εξισώσεις ου Βαθμού. Η επίλυση της εξίσωσης αx +βx+γ=0, α 0 στη γενική της μορφή με τη μέθοδο συμπλήρωσης τετραγώνου είναι μια διαδικασία που δυσκολεύει τους μαθητές. Προτείνεται να χρησιμοποιήσουν οι μαθητές τη μέθοδο της συμπλήρωσης τετραγώνου πρώτα σε εξισώσεις ου βαθμού με συντελεστές συγκεκριμένους αριθμούς και στη συνέχεια με τη βοήθεια του εκπαιδευτικού να γενικεύσουν τη διαδικασία. Επίσης, προτείνεται η επίλυση απλών εξισώσεων που ανάγονται σε εξισώσεις ου βαθμού (όπως τα παραδείγματα 1 και ) και να δοθεί έμφαση στη μοντελοποίηση και επίλυση προβλημάτων με χρήση εξισώσεων ου βαθμού (προτείνονται οι δραστηριότητες Δ.1 και Δ.14 του ΑΠΣ). Οι τύποι του Vieta επιτρέπουν στους μαθητές είτε να κατασκευάσουν μια εξίσωση ου βαθμού με δεδομένο το άθροισμα και το γινόμενο ριζών της είτε να προσδιορίσουν απευθείας τις ρίζες της (βρίσκοντας δυο αριθμούς που να έχουν άθροισμα S και γινόμενο P). Προτείνεται να ζητηθεί από τους μαθητές, υπό μορφή άσκησης, να προσδιορίσουν αυτούς τους τύπους και να τους χρησιμοποιήσουν στην επίλυση σχετικών προβλημάτων. Πέραν των παραπάνω στόχων, η χρήση των τύπων του Vieta σε ασκήσεις με πολύπλοκους αλγεβρικούς χειρισμούς ξεφεύγει από το πνεύμα της διδασκαλίας και δεν προσφέρει στη μαθηματική σκέψη των μαθητών.

4 19-/1 ΕΠΑΝΑΛΗΨΗ ΕΞΙΣΩΣΕΩΝ ΔΙΑΓΩΝΙΣΜΑ Α ΤΕΤΡΑΜΗΝΟΥ Μια μικρή μεταλλική σφαίρα εκτοξεύεται κατακόρυφα από το έδαφος. Το ύψος y (σε m) στο οποίο θα βρεθεί η σφαίρα τη χρονική στιγμή t (σε sec) μετά την εκτόξευση, δίνεται από τη σχέση: y = 60t 5t. α) Μετά από πόσο χρόνο η σφαίρα θα επανέλθει στο έδαφος; β) Ποιες χρονικές στιγμές η σφαίρα θα βρεθεί στο ύψος y = 175 m; γ) Να βρείτε το χρονικό διάστημα στη διάρκεια του οποίου η σφαίρα βρίσκεται σε ύψος μεγαλύτερο από 100 m. Ενδεικτική δραστηριότητα : Το μικροπείραμα Επίλυση εξισώσεων ου βαθμού με τη βοήθεια τύπου από τα εμπλουτισμένα σχολικά βιβλία, μπορεί να χρησιμοποιηθεί για την κατανόηση της αλγεβρικής και γραφικής προσέγγισης των λύσεων μιας εξίσωσης δευτέρου βαθμού και επιβεβαίωση των αποτελεσμάτων με τη βοήθεια του τύπου. /1-08/01 ΔΙΑΚΟΠΕΣ ΧΡΙΣΤΟΥΓΕΝΝΩΝ ΚΕΦΑΛΑΙΟ 4 ΑΝΙΣΩΣΕΙΣ 11 Στο κεφάλαιο αυτό οι μαθητές μελετούν συστηματικά και διερευνούν ανισώσεις 1ου και ου βαθμού Ειδικότερα: 09-1/01 Ανισώσεις 1ου Βαθμού /01 Ανισώσεις 1ου Βαθμού 4.1-7/01 Ανισώσεις ου Βαθμού 4. Οι μαθητές, στο Γυμνάσιο, έχουν διαπραγματευθεί αναλυτικά την επίλυση ανισώσεων 1ου βαθμού με συγκεκριμένους συντελεστές. Εκτός από τη χρήση της αριθμογραμμής, για την απεικόνιση του συνόλου λύσεων μιας ανίσωσης, προτείνεται να δοθεί έμφαση και στη χρήση των διαστημάτων των πραγματικών αριθμών για την παραπάνω απεικόνιση, ως εφαρμογή της αντίστοιχης υποπαραγράφου της.. Να συζητηθούν ομοιότητες και διαφορές ανάμεσα στην εξίσωση και την ανίσωση, ως προς τη διαδικασία της επίλυσης τους και το σύνολο των λύσεών τους. Για καλύτερη κατανόηση και εμπέδωση των ιδιοτήτων των απολύτων τιμών, προτείνεται να λυθούν από τους μαθητές και ανισώσεις όπως οι x-5 <- ή x-5 >-, των οποίων τη λύση, αν και προκύπτει από απλή παρατήρηση, δεν την αναγνωρίζουν άμεσα οι μαθητές. Προτείνεται επίσης να δοθεί προτεραιότητα στη μοντελοποίηση προβλημάτων με χρήση ανισώσεων 1ου βαθμού, όπως για παράδειγμα η άσκηση 11 της Α Ομάδας και οι ασκήσεις και 4 της Β Ομάδας. Ενδεικτική δραστηριότητα: Η Ειρήνη παρατηρεί ότι κάθε φορά που ο σκύλος της γαβγίζει τη νύχτα ξυπνάει και χάνει 15 λεπτά ύπνου. Το προηγούμενο βράδυ κοιμήθηκε λιγότερο από 5 ώρες, ενώ συνήθως (αν δεν γαβγίσει ο σκύλος) κοιμάται 8 ώρες το βράδυ. α) Πόσες φορές μπορεί να ξύπνησε το προηγούμενο βράδυ η Ειρήνη; β) Μπορεί να την ξύπνησε το γάβγισμα φορές; Να αιτιολογήσετε την απάντησή σας. Η διαπραγμάτευση ανισώσεων ου βαθμού γίνεται για πρώτη φορά στην Α Λυκείου. Προτείνεται να δοθεί έμφαση στη διερεύνηση της παραγοντοποίησης του τριωνύμου, όπου γίνεται ξανά χρήση της μεθόδου συμπλήρωσης τετραγώνου, ώστε να μη δοθούν απευθείας τα συμπεράσματα αυτής. Στον προσδιορισμό του πρόσημου του τριωνύμου, παρατηρείται συχνά οι μαθητές να παραβλέπουν το πρόσημο του συντελεστή του δευτεροβάθμιου όρου ή να συγχέουν το πρόσημο της διακρίνουσας με το πρόσημο του τριωνύμου (π.χ. όταν Δ<0, θεωρούν ότι και το τριώνυμο παίρνει αρνητικές

5 τιμές). Τα παραπάνω προβλήματα συχνά αντιμετωπίζονται με διάφορα τεχνάσματα με τα σύμβολα + και -, ώστε να προσδιορίσουν οι μαθητές το πρόσημο του τριωνύμου και να επιλύσουν ανισώσεις ου βαθμού. Τέτοιες προσεγγίσεις δε συνδέονται με την κατανόηση του πότε ένα τριώνυμο παίρνει θετικές και πότε αρνητικές τιμές. Για το λόγο αυτό προτείνεται να δοθεί έμφαση στην κατανόηση της διαδικασίας προσδιορισμού του πρόσημου του τριωνύμου (π.χ. μέσα από τη μελέτη του προσήμου των παραγόντων του και του συντελεστή του δευτεροβάθμιου όρου, όταν αυτό παραγοντοποιείται) και στη συνέχεια στη χρήση των συμπερασμάτων για την επίλυση ανισώσεων ου βαθμού. ΔΕΥΤΕΡΑ 0/01/017 ΤΡΙΩΝ ΙΕΡΑΡΧΩΝ 1/01-0/0 Ανισώσεις ου Βαθμού 4. Η μοντελοποίηση και επίλυση προβλημάτων με χρήση ανισώσεων ου βαθμού (π.χ. η δραστηριότητα Δ.15 του ΑΠΣ και η άσκηση 7 της Β Ομάδας) λειτουργούν προς αυτήν την κατεύθυνση. α) Να λύσετε την ανίσωση: x 5x 6 < 0. β) Να βρείτε το πρόσημο των αριθμών και ( ) 5 6 ( 7) Να αιτιολογήσετε το συλλογισμό σας. γ) Αν α (-6, 6), να βρείτε το πρόσημο της παράστασης Λ=a 5 a 6. Να αιτιολογήσετε την απάντησή σας. Ενδεικτική δραστηριότητα : Ποιοι πραγματικοί αριθμοί είναι μεγαλύτεροι από το τετράγωνό τους; Ποιοι είναι μεγαλύτεροι κατά 1 από το τετράγωνό τους; ΚΕΦΑΛΑΙΟ 5 ΠΡΟΟΔΟΙ /0 Ακολουθίες 5.1 Ενδεικτική δραστηριότητα : Το μικροπείραμα Πρόσημο των τιμών του τριωνύμου από τα εμπλουτισμένα σχολικά βιβλία, μπορεί να χρησιμοποιηθεί διερευνητικά, ώστε ο μαθητής να οδηγηθεί μέσα από πειραματισμούς και εικασίες στην εύρεση της περιοχής που πρέπει να κινείται η τιμή της μεταβλητής χ, ώστε το τριώνυμο να παίρνει θετική ή αρνητική τιμή. Παράλληλα μαθαίνει για το ρόλο της εικασίας και του πειραματισμού στη διαδικασία της εύρεσης αλγεβρικών σχέσεων. Στο κεφάλαιο αυτό οι μαθητές εισάγονται στην έννοια της ακολουθίας πραγματικών αριθμών και μελετούν περιπτώσεις ακολουθιών που εμφανίζουν κάποιες ειδικές μορφές κανονικότητας, την αριθμητική και τη γεωμετρική πρόοδο. Ειδικότερα: Να δοθεί προτεραιότητα στην αναγνώριση της ακολουθίας ως αντιστοιχίας των φυσικών στους πραγματικούς αριθμούς και στην εξοικείωση των μαθητών με το συμβολισμό (π.χ. ότι ο φυσικός αριθμός 1, μέσω μιας ακολουθίας α, αντιστοιχεί στον πραγματικό αριθμό α1 που αποτελεί τον πρώτο όρο της ακολουθίας αυτής), δεδομένου ότι αυτός δυσκολεύει τους μαθητές (προτείνεται η δραστηριότητα Δ.16 του ΑΠΣ).

6 1-17/0 Αριθμητική πρόοδος 5. Αρχικά οι μαθητές χρειάζεται να μπορούν να αναγνωρίσουν με βάση τον ορισμό αν μια συγκεκριμένη ακολουθία είναι αριθμητική πρόοδος (π.χ. η δραστηριότητα Δ.17 του ΑΠΣ). Στη συνέχεια, να προσδιορίζουν το ν-οστό όρο με τρόπο τέτοιο που να τους βοηθά να αντιληφθούν κανονικότητες, οι οποίες μπορούν να τους οδηγήσουν στα γενικά συμπεράσματα (προτείνεται η δραστηριότητα Δ.18 του ΑΠΣ χωρίς τα ερωτήματα γ και δ). Η μοντελοποίηση και επίλυση προβλημάτων (όπως η άσκηση 1 της Α Ομάδας) συμβάλλει στην εννοιολογική κατανόηση τηςέννοιας της αριθμητικής προόδου. Ο τύπος για το άθροισμα των ν πρώτων όρων αριθμητικής προόδου δεν θα διδαχθεί. Ωστόσο, απλά αθροίσματα μικρού αριθμού όρων είναι εφικτό να υπολογιστούν και μάλιστα ο υπολογισμός του χωρίς τον τύπο βοηθά στην κατανόηση της προόδου και της κανονικότητας που αυτή εκφράζει. Το να δοθούν απλώς οι τύποι και στη συνέχεια οι μαθητές να επιδοθούν στην αλγοριθμική χρήση τους για την επίλυση ασκήσεων δεν είναι συμβατό με το πνεύμα του ΑΠΣ. 0-4/0 Αριθμητική πρόοδος (εκτός της υποπαραγράφου "άθροισμα ν διαδοχικών όρων αριθμητικής προόδου") 5. Ενδεικτική δραστηριότητα: Το μικροπείραμα Ας φτιάξουμε μια σκάλα από τα εμπλουτισμένα σχολικά βιβλία, μπορεί να χρησιμοποιηθεί διερευνητικά ώστε ο μαθητής να οδηγηθεί μέσα από πειραματισμούς και εικασίες στην κατανόηση των εννοιών της αριθμητικής προόδου. 7/0/017 ΚΑΘΑΡΗ ΔΕΥΤΕΡΑ 8/0-0/ /0 ΚΕΦΑΛΑΙΟ 6 Γεωμετρική πρόοδος Γεωμετρική πρόοδος (εκτός της υποπαραγράφου "άθροισμα ν διαδοχικών όρων γεωμετρικής προόδου") ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΤΩΝ ΣΥΝΑΡΤΗΣΕΩΝ Η διαπραγμάτευση της έννοιας της γεωμετρικής προόδου προτείνεται να γίνει κατ αντιστοιχία με την έννοια της αριθμητικής προόδου. Προτείνονται οι δραστηριότητες Δ.19 (χωρίς τα ερωτήματα δ και ε) και Δ.1 (χωρίς το ερώτημα δ) του ΑΠΣ, που στόχο έχουν να αντιληφθούν οι μαθητές κανονικότητες που θα τους οδηγήσουν στην εύρεση του ν-στού όρου γεωμετρικής προόδου. Ο τύπος για το άθροισμα των ν πρώτων όρων γεωμετρικής προόδου δεν θα διδαχθεί. Ωστόσο, απλά αθροίσματα μικρού αριθμού όρων μπορεί να είναι εφικτό να υπολογιστούν και μάλιστα ο υπολογισμός του χωρίς τον τύπο βοηθά στην κατανόηση της προόδου και της κανονικότητας που αυτή εκφράζει. Ενδεικτική δραστηριότητα: Την ημέρα που η Μαρία γιόρταζε τα 1α γενέθλιά της, η γιαγιά της, της έδωσε 50 ευρώ και της είπε ότι μέχρι να γιορτάσει τα 1α γενέθλιά της θα της αύξανε κάθε χρόνο το ποσό του δώρου της κατά10 ευρώ. Ο παππούς της Μαρίας της έδωσε 5 ευρώ και της είπε ότι μέχρι να γιορτάσει τα 1αγενέθλιά της θα της διπλασίαζε κάθε χρόνο, το προηγούμενο ποσό του δώρου του. Η Μαρία δυσαρεστήθηκε με την πρόταση του παππού της. Είχε δίκιο; Πόσα χρήματα θα είναι το δώρο της, στα 15α και στα 1α γενέθλια της, από τον παππού της και πόσα από τη γιαγιά της; Οι μαθητές, στο Γυμνάσιο, έχουν έρθει σε επαφή με την έννοια της συνάρτησης, κυρίως με εμπειρικό τρόπο, και έχουν διερευνήσει στοιχειωδώς συγκεκριμένες συναρτήσεις. Στην Α Λυκείου μελετούν την έννοια της συνάρτησης με πιο συστηματικό και τυπικό τρόπο. Σε πολλούς μαθητές δημιουργούνται παρανοήσεις και ελλιπείς εικόνες σχετικά με την έννοια αυτή, με αποτέλεσμα να παρουσιάζουν προβλήματα στην αναγνώριση μιας συνάρτησης, καθώς και να μη μπορούν να χειριστούν με ευελιξία διαφορετικές αναπαραστάσεις της ίδιας συνάρτησης (π.χ. πίνακας τιμών, αλγεβρικός τύπος, γραφική παράσταση). Για το λόγο αυτό θα πρέπει οι μαθητές, μέσω κατάλληλων δραστηριοτήτων, να χρησιμοποιούν, να συνδέουν και να ερμηνεύουν τις αναπαραστάσεις μιας συνάρτησης καθώς και να εντοπίζουν πλεονεκτήματα και (ενδεχομένως)μειονεκτήματα καθεμιάς εξ αυτών. Η

7 1-17/0 0-/0 Η έννοια της συνάρτησης Η έννοια της συνάρτησης εξαντλητική ενασχόληση των μαθητών με επίλυση εξισώσεων και ανισώσεων για την εύρεση του πεδίου ορισμού δεν βοηθά στην κατανόηση της έννοιας της συνάρτησης και δεν είναι στο πνεύμα της διδασκαλίας. Οι έννοιες κατακόρυφη - οριζόντια μετατόπιση καμπύλης, μονοτονία ακρότατα - συμμετρίες συνάρτησης, δεν συμπεριλαμβάνονται στη διδακτέα ύλη, όπως αναπτύσσονται στις παραγράφους 6.4 και 6.5. Οι έννοιες αυτές θα μελετηθούν στις ειδικές περιπτώσεις συναρτήσεων της μορφής: f(x)=αx+β ( 6.), f(x)=αx ( 7.1) και f(x)=αx +βx+γ ( 7.). Ειδικότερα: Προτείνεται να δοθούν αρχικά συγκεκριμένα παραδείγματα μοντελοποίησης καταστάσεων, ώστε να αναδειχθεί η σημασία της έννοιας της συνάρτησης για τις εφαρμογές, και στη συνέχεια να ακολουθήσει ο τυπικός ορισμός. Να δοθεί έμφαση στην αναγνώριση και τεκμηρίωση, με βάση τον ορισμό, αν αντιστοιχίες που δίνονται με διάφορες αναπαραστάσεις είναι συναρτήσεις ή όχι (οι δραστηριότητες Δ., Δ. και Δ.4 του ΑΠΣ λειτουργούν προς αυτήν την κατεύθυνση), στη σύνδεση διαφορετικών αναπαραστάσεων μιας συνάρτησης (τύπος, πίνακας τιμών και γραφική παράσταση) και στην ερμηνεία μιας δεδομένης γραφικής παράστασης για την επίλυση ενός προβλήματος (προτείνονται οι δραστηριότητες Δ.15 και Δ.6 του ΑΠΣ). Οι μαθητές πρέπει να μπορούν: Να παριστάνουν ένα ζεύγος αριθμών με σημείο του επιπέδου. Στη σελίδα 70 να γίνει αντιδιαστολή μεταξύ του συνόλου {α,β} και του διατεταγμένου ζεύγους (α,β). i. Να βρίσκουν το συμμετρικό ενός σημείου A(x,y), ως προς τους άξονες, την αρχή των αξόνων και ως προς τη διχοτόμο της 1ης και ης γωνίας των αξόνων. ii. Να υπολογίζουν την απόσταση δύο σημείων. iii. Να αναγνωρίζουν, αν μία καμπύλη είναι γραφική παράσταση συνάρτησης. iν. Να βρίσκουν τα σημεία τομής της γραφικής παράστασης μιας συνάρτησης με τους δύο άξονες. ΠΑΡΑΣΚΕΥΗ 4/0/016 ΓΙΟΡΤΗ 5ης ΜΑΡΤΙΟΥ 7-1/0 0-07/04 Γραφική παράσταση συνάρτησης 6. Η Συνάρτηση f(x)= αx+β (εκτός της κλίσης ευθείας ως λόγος μεταβολής) i)ποιόν κανόνα πρέπει να εφαρμόσουμε για να υπολογίσουμε από πόσα σημεία θα αποτελείται το 7ο σχήμα; ii) Από πόσα σημεία θα αποτελείται το 7ο σχήμα; Ενδεικτική δραστηριότητα : Αν με Δ παραστήσουμε μια δόση αμπικιλλίνης (η αμπικιλλίνη είναι μια χημική ουσία χρησιμοποιείται για τη θεραπεία αναπνευστικών λοιμώξεων) σε χιλιοστόγραμμα και με W παραστήσουμε το βάρος παιδιού σε κιλά, τότε η εξίσωση Δ = 50W δίνει έναν κανόνα για την εύρεση της μέγιστης ασφαλούς ημερήσιας δόσης του φαρμάκου της αμπικιλλίνης για παιδιά που ζυγίζουν λιγότερο από 10 κιλά. α) Η εξίσωση εκφράζει συνάρτηση; Να αιτιολογήσετε το συλλογισμό σας. β) Ποιες είναι οι λογικές επιλογές για ανεξάρτητη και εξαρτημένη μεταβλητή; γ) Να δημιουργήσετε έναν πίνακα τιμών και μια γραφική παράσταση. Οι μαθητές έχουν διαπραγματευθεί τη γραφική παράσταση της ευθείας ψ=αx+β στο Γυμνάσιο. Εδώ προτείνεται να δοθεί έμφαση στη διερεύνηση του ρόλου των παραμέτρων α και β στη γραφική παράσταση της f(x)=αx+β, ώστε να προκύψουν οι σχετικές θέσεις ευθειών στο επίπεδο (πότε είναι παράλληλες μεταξύ τους, πότε ταυτίζονται, πότε τέμνουν τον άξονα y y στο ίδιο σημείο). Επίσης προτείνεται, αφού οι μαθητές παρατηρήσουν (με χρήση της γραφικής παράστασης και του πίνακα τιμών συγκεκριμένων γραμμικών συναρτήσεων) πώς μεταβάλλονται οι τιμές της συνάρτησης όταν

8 μεταβάλλεται η ανεξάρτητη μεταβλητή, να καταλήξουν σε γενικότερα συμπεράσματα που αφορούν στη μονοτονία της συνάρτησης και να τα εκφράσουν συμβολικά, καθώς και να διερευνήσουν το ρόλο της παραμέτρου α σε σχέση με αυτά (προτείνεται η δραστηριότητα Δ.7 του ΑΠΣ). 08-/04 ΔΙΑΚΟΠΕΣ ΠΑΣΧΑ ΚΕΦΑΛΑΙΟ 7 ΜΕΛΕΤΗ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ 10 Στο κεφάλαιο αυτό οι μαθητές μελετούν τη συνάρτηση ψ=αx και τις ιδιότητές της. Επίσης, με αφετηρία την ψ=αx, κατασκευάζουν τη γραφική παράσταση της συνάρτησης f(x)=αx + βx + γ την οποία στη συνέχεια χρησιμοποιούν για να μελετήσουν ιδιότητες της f. Ειδικότερα: 4/04-8/04 Μελέτη της Συνάρτησης: f(x)= αx 7.1 Οι μαθητές χρησιμοποιούν πίνακες τιμών και λογισμικό για να κάνουν τη γραφική παράσταση της συνάρτησης ψ=αx. Μέσα από την παρατήρηση της γραφικής παράστασης και των τιμών διερευνούν τη μονοτονία, τα ακρότατα και τις συμμετρίες των συναρτήσεων g(x)=x και h(x)=-x. Με τη βοήθεια της γραφικής παράστασης γενικεύουν τα παραπάνω συμπεράσματα για τη συνάρτηση f(x)=αx (προτείνεται η δραστηριότητα Δ. 9 του ΑΠΣ ή η χρήση λογισμικού) και τα εκφράζουν συμβολικά. ΔΕΥΤΕΡΑ 01/05/017 ΠΡΩΤΟΜΑΓΙΑ Το μικροπείραμα Οι μεταβολές της συνάρτησης ψ=αx από τα εμπλουτισμένα σχολικά βιβλία, μπορεί να χρησιμοποιηθεί διερευνητικά για τη μελέτη μονοτονίας της συνάρτησης ψ=αx όταν α>0 ή α<0. 1/ /05 Μελέτη της Συνάρτησης: f(x)= αx +βx+γ 7. Ενδεικτική δραστηριότητα : Το μικροπείραμα Μετατοπίσεις της ψ=αx από τα εμπλουτισμένα σχολικά βιβλία, μπορεί να χρησιμοποιηθεί διερευνητικά από τους μαθητές για την οριζόντια και κατακόρυφη μετατόπιση της ψ=αx αλλά και την εύρεση του τύπου της στη νέα θέση και να πειραματιστούν για τον συνδυασμό των δύο παραπάνω μετατοπίσεων. /851/ /05 Μελέτη της Συνάρτησης: f(x)= αx +βx+γ 7. Να δοθεί έμφαση στη χάραξη και διερεύνηση της γραφικής παράστασης συγκεκριμένων πολυωνυμικών συναρτήσεων της μορφής f(x)=αx +βx+γ και στη διαισθητική μελέτη της μονοτονίας, των ακρότατων και της συμμετρίας της συνάρτησης με τη βοήθεια της γραφικής της παράστασης. Η γενίκευση των παραπάνω εννοιών θα διδαχτούν στην Β Λυκείου. Ειδικότερα, όσον αφορά στη χάραξη της γραφικής παράστασης και στη μελέτη της συνάρτησης f(x)=αx +βx+γ, η ιδέα που βρίσκεται και πίσω από τη δραστηριότητα Δ.0 του ΑΠΣ είναι η εξής:

9 Οι μαθητές χρησιμοποιούν είτε πίνακες τιμών είτε λογισμικό για να χαράξουν τη γραφική παράσταση της ψ=αx +κ και να την συγκρίνουν με την ψ=αx, ομοίως για την ψ=α(x+λ) και τελικά για την ψ=α(x+λ) +κ. Με αυτόν τον τρόπο εισάγονται διαισθητικά στις μετατοπίσεις, τις οποίες θα γενικεύσουν στην Β Λυκείου. Αν χρησιμοποιηθεί λογισμικό, οι μαθητές μπορούν αφού χαράξουν τη γραφική παράσταση της g(x)=αx για διάφορες τιμές του α να την μετατοπίσουν κ μονάδες οριζόντια για διάφορες τιμές του κ (π.χ. κατά μονάδες αριστερά, κατά 4 μονάδες δεξιά) και να παρατηρήσουν τη μορφή που παίρνει ο τύπος της συνάρτησης. Στη συνέχεια να μετατοπίσουν λ μονάδες κατακόρυφα για διάφορες τιμές του λ (π.χ. κατά μονάδες κάτω, κατά 5 μονάδες πάνω) και να κάνουν ανάλογες παρατηρήσεις. Συνδυάζοντας τις δύο μετατοπίσεις μπορούν να παρατηρήσουν ότι η συνάρτηση που θα προκύψει θα είναι της μορφής f(x)=α(x+κ) +λ. Τέλος, δίνονται στους μαθητές συγκεκριμένες συναρτήσεις της μορφής f(x)=αx +βx+γ και εκείνοι προσπαθούν, με κατάλληλες μετατοπίσεις της g(x)=αx, να οδηγηθούν στη γραφική παράσταση της f. Στη συνέχεια μελετούν, με τη βοήθεια της γραφικής της παράστασης, ιδιότητες της f και επεκτείνουν τα συμπεράσματα που αφορούν στη μονοτονία, στα ακρότατα και στις συμμετρίες της g(x) = αx στην f(x)=αx +βx+γ. Επίσης, να γίνει γεωμετρική ερμηνεία των συμπερασμάτων των. και 4. (ρίζες και πρόσημο τριωνύμου) με τη βοήθεια της γραφικής παράστασης της συνάρτησης f(x)=αx +βx+γ (προτείνεται η δραστηριότητα Δ. του ΑΠΣ). Διδακτικά έχει ιδιαίτερο ενδιαφέρον να σχεδιαστούν οι έξι βασικές περιπτώσεις που αφορούν στις τιμές της διακρίνουσας (Δ>0, Δ=0 και Δ<0) συνδυαζόμενες με το πρόσημο του α (α>0, α<0) ώστε οι μαθητές να συνδέσουν τη γραφική παράσταση με τα αλγεβρικά συμπεράσματα που ήδη χρησιμοποιούν α) Να συμπληρώσετε τον παρακάτω πίνακα τιμών των συναρτήσεων: φ(x)=x, f(x)=(x-), g(x)=(x+). x φ(x)=x f(x)=(x-) g(x)=(x+) β) Με βάση τον παραπάνω πίνακα τιμών, να χαράξετε τις γραφικές παραστάσεις των συναρτήσεων φ, f και g. γ)ποια μετατόπιση της γραφικής παράστασης της φ, δίνει τη γραφική παράσταση της f και ποια μετατόπιση της γραφικής παράστασης της φ δίνει τη γραφική παράσταση της g. Ενδεικτική δραστηριότητα : Ένας μετεωρολόγος δημιούργησε την διπλανή παραβολή για να παρουσιάσει τη θερμοκρασία μιας πόλης μια συγκεκριμένη ημέρα του έτους, όπου το x είναι ο αριθμός ωρών μετά τα μεσάνυχτα και το y είναι η θερμοκρασία (σε βαθμούς Κελσίου). α) Βρείτε τη συνάρτηση f που αντιστοιχεί στην παραπάνω γραφική παράσταση. β) Ποια είναι η πιο κρύα θερμοκρασία την ημέρα εκείνη; ΠΕΙΡΑΙΑΣ, ΣΕΠΤΕΜΒΡΙΟΣ 016 ΜΑΓΔΑΛΗΝΗ ΚΟΚΚΑΛΙΑΡΗ ΡΑΛΛΕΙΟ ΓΕΛ ΠΕΙΡΑΙΑ

Άλγεβρα και Στοιχεία Πιθανοτήτων

Άλγεβρα και Στοιχεία Πιθανοτήτων Άλγεβρα και Στοιχεία Πιθανοτήτων I. Εισαγωγή Το μάθημα «Άλγεβρα και Στοιχεία Πιθανοτήτων» περιέχει σημαντικές μαθηματικές έννοιες, όπως της πιθανότητας, της απόλυτης τιμής, των προόδων, της συνάρτησης

Διαβάστε περισσότερα

ΔΙΔΑΚΤΕΑ -ΕΞΕΤΑΣΤΕΑ ΥΛΗ

ΔΙΔΑΚΤΕΑ -ΕΞΕΤΑΣΤΕΑ ΥΛΗ ΥΛΗ ΚΑΙ ΟΔΗΓΙΕΣ ΔΙΔΑΣΚΑΛΙΑΣ ΣΧΟΛ. ΕΤΟΣ 2014-15 ΑΛΓΕΒΡΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΠΙΘΑΝΟΤΗΤΩΝ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΙΔΑΚΤΕΑ -ΕΞΕΤΑΣΤΕΑ ΥΛΗ Από το βιβλίο «Άλγεβρα και Στοιχεία Πιθανοτήτων Α Γενικού Λυκείου»

Διαβάστε περισσότερα

Σύµφωνα µε την Υ.Α /Γ2/ Εξισώσεις 2 ου Βαθµού. 3.2 Η Εξίσωση x = α. Κεφ.4 ο : Ανισώσεις 4.2 Ανισώσεις 2 ου Βαθµού

Σύµφωνα µε την Υ.Α /Γ2/ Εξισώσεις 2 ου Βαθµού. 3.2 Η Εξίσωση x = α. Κεφ.4 ο : Ανισώσεις 4.2 Ανισώσεις 2 ου Βαθµού Σύµφωνα µε την Υ.Α. 139606/Γ2/01-10-2013 Άλγεβρα Α ΤΑΞΗ ΕΣΠΕΡΙΝΟΥ ΓΕΛ Ι. ιδακτέα ύλη Από το βιβλίο «Άλγεβρα και Στοιχεία Πιθανοτήτων Α Γενικού Λυκείου» (έκδοση 2013) Εισαγωγικό κεφάλαιο E.2. Σύνολα Κεφ.1

Διαβάστε περισσότερα

Καθορισµός και διαχείριση διδακτέας ύλης των θετικών µαθηµάτων της Α Ηµερησίου Γενικού Λυκείου για το σχολικό έτος

Καθορισµός και διαχείριση διδακτέας ύλης των θετικών µαθηµάτων της Α Ηµερησίου Γενικού Λυκείου για το σχολικό έτος Καθορισµός και διαχείριση διδακτέας ύλης των θετικών µαθηµάτων της Α Ηµερησίου Γενικού Λυκείου για το σχολικό έτος 2013-14 Μετά από σχετική εισήγηση του Ινστιτούτου Εκπαιδευτικής Πολιτικής (πράξη 32/2013

Διαβάστε περισσότερα

ΠΡΟΣ : ΚΟΙΝ.: Άλγεβρα Α Τάξης Ημερήσιου Γενικού Λυκείου ΔΙΔΑΚΤΕΑ ΥΛΗ-ΟΔΗΓΙΕΣ ΔΙΔΑΣΚΑΛΙΑΣ

ΠΡΟΣ : ΚΟΙΝ.: Άλγεβρα Α Τάξης Ημερήσιου Γενικού Λυκείου ΔΙΔΑΚΤΕΑ ΥΛΗ-ΟΔΗΓΙΕΣ ΔΙΔΑΣΚΑΛΙΑΣ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΓΕΝΙΚΗ ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ Π/ΘΜΙΑΣ ΚΑΙ Δ/ΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ, ΠΡΟΓΡΑΜΜΑΤΩΝ ΚΑΙ ΟΡΓΑΝΩΣΗΣ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α -----

Διαβάστε περισσότερα

ΠΡΟΣ : ΚΟΙΝ.: Άλγεβρα Α Τάξης Ημερήσιου Γενικού Λυκείου ΔΙΔΑΚΤΕΑ ΥΛΗ-ΟΔΗΓΙΕΣ ΔΙΔΑΣΚΑΛΙΑΣ

ΠΡΟΣ : ΚΟΙΝ.: Άλγεβρα Α Τάξης Ημερήσιου Γενικού Λυκείου ΔΙΔΑΚΤΕΑ ΥΛΗ-ΟΔΗΓΙΕΣ ΔΙΔΑΣΚΑΛΙΑΣ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΓΕΝΙΚΗ ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ Π/ΘΜΙΑΣ ΚΑΙ Δ/ΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ, ΠΡΟΓΡΑΜΜΑΤΩΝ ΚΑΙ ΟΡΓΑΝΩΣΗΣ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α -----

Διαβάστε περισσότερα

ΘΕΜΑ: Οδηγίες για τη διδασκαλία των Μαθηματικών στις Α, Β τάξεις Ημερήσιου ΓΕΛ και Α, Β, Γ τάξεις Εσπερινού ΓΕΛ για το σχολ.

ΘΕΜΑ: Οδηγίες για τη διδασκαλία των Μαθηματικών στις Α, Β τάξεις Ημερήσιου ΓΕΛ και Α, Β, Γ τάξεις Εσπερινού ΓΕΛ για το σχολ. ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΓΕΝΙΚΗ ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ Π/ΘΜΙΑΣ ΚΑΙ Δ/ΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ, ΠΡΟΓΡΑΜΜΑΤΩΝ ΚΑΙ ΟΡΓΑΝΩΣΗΣ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α -----

Διαβάστε περισσότερα

----- Ταχ. Δ/νση: Ανδρέα Παπανδρέου 37 Τ.Κ. Πόλη: Μαρούσι Ιστοσελίδα: Πληροφορίες: Αν. Πασχαλίδου

----- Ταχ. Δ/νση: Ανδρέα Παπανδρέου 37 Τ.Κ. Πόλη: Μαρούσι Ιστοσελίδα:  Πληροφορίες: Αν. Πασχαλίδου ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΓΕΝΙΚΗ ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ Π/ΘΜΙΑΣ ΚΑΙ Δ/ΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ, ΠΡΟΓΡΑΜΜΑΤΩΝ ΚΑΙ ΟΡΓΑΝΩΣΗΣ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α -----

Διαβάστε περισσότερα

Βαθμός Ασφαλείας: Να διατηρηθεί μέχρι: Βαθ. Προτεραιότητας: ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ. Αθήνα, Αρ. Πρωτ /Γ2

Βαθμός Ασφαλείας: Να διατηρηθεί μέχρι: Βαθ. Προτεραιότητας: ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ. Αθήνα, Αρ. Πρωτ /Γ2 ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- Βαθμός Ασφαλείας: Να διατηρηθεί μέχρι: Βαθ. Προτεραιότητας: Αθήνα, 01-10-2013 Αρ. Πρωτ. 139606/Γ2 ΕΝΙΑΙΟΣ ΔΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΠΙΘΑΝΟΤΗΤΩΝ

ΑΛΓΕΒΡΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΠΙΘΑΝΟΤΗΤΩΝ ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΕΝΙΑΙΟΣ ΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & /ΘΜΙΑΣ ΕΚΠ/ΣΗΣ /ΝΣΗ ΣΠΟΥ ΩΝ /ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α Βαθµός Ασφαλείας: Να διατηρηθεί µέχρι: Βαθ. Προτεραιότητας:

Διαβάστε περισσότερα

Επιμέλεια: Καραγιάννης Β. Ιωάννης Σχολικός Σύμβουλος Μαθηματικών ΟΔΗΓΙΕΣ ΔΙΔΑΣΚΑΛΙΑΣ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΤΗΣ ΥΛΗΣ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ

Επιμέλεια: Καραγιάννης Β. Ιωάννης Σχολικός Σύμβουλος Μαθηματικών ΟΔΗΓΙΕΣ ΔΙΔΑΣΚΑΛΙΑΣ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΤΗΣ ΥΛΗΣ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Επιμέλεια: Καραγιάννης Β. Ιωάννης Σχολικός Σύμβουλος Μαθηματικών ΟΔΗΓΙΕΣ ΔΙΔΑΣΚΑΛΙΑΣ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΤΗΣ ΥΛΗΣ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Σχολικό Έτος: 2015-2016 1 ΠΕΡΙΕΧΟΜΕΝΑ ΔΙΔΑΚΤΕΑ ΥΛΗ ΑΛΓΕΒΡΑΣ Α ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ

Διαβάστε περισσότερα

ΚΟΙΝ.: ΘΕΜΑ: Οδηγίες διδασκαλίας των μαθημάτων Α και Β τάξεων Ημερησίου ΓΕΛ και Α, Β και Γ τάξεων Εσπερινού ΓΕΛ

ΚΟΙΝ.: ΘΕΜΑ: Οδηγίες διδασκαλίας των μαθημάτων Α και Β τάξεων Ημερησίου ΓΕΛ και Α, Β και Γ τάξεων Εσπερινού ΓΕΛ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΕΝΙΑΙΟΣ ΔΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ Δ/ΝΣΗ ΣΠΟΥΔΩΝ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α ----- Ταχ. Δ/νση: Ανδρέα Παπανδρέου 37 Τ.Κ. Πόλη:

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ Βαθμός Ασφαλείας: Να διατηρηθεί μέχρι: Βαθ. Προτεραιότητας:

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ Βαθμός Ασφαλείας: Να διατηρηθεί μέχρι: Βαθ. Προτεραιότητας: ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΕΝΙΑΙΟΣ ΔΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ Δ/ΝΣΗ ΣΠΟΥΔΩΝ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α Βαθμός Ασφαλείας: Να διατηρηθεί μέχρι: Βαθ. Προτεραιότητας:

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ Βαθμός Ασφαλείας: Να διατηρηθεί μέχρι: Βαθ. Προτεραιότητας:

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ Βαθμός Ασφαλείας: Να διατηρηθεί μέχρι: Βαθ. Προτεραιότητας: ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΕΝΙΑΙΟΣ ΔΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ Δ/ΝΣΗ ΣΠΟΥΔΩΝ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α ----- Ταχ. Δ/νση: Ανδρέα Παπανδρέου 37 Τ.Κ. Πόλη:

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ Βαθμός Ασφαλείας: Να διατηρηθεί μέχρι: Βαθ. Προτεραιότητας:

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ Βαθμός Ασφαλείας: Να διατηρηθεί μέχρι: Βαθ. Προτεραιότητας: ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΕΝΙΑΙΟΣ ΔΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ Δ/ΝΣΗ ΣΠΟΥΔΩΝ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α ----- Ταχ. Δ/νση: Ανδρέα Παπανδρέου 37 Τ.Κ. Πόλη:

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ Βαθμός Ασφαλείας: Να διατηρηθεί μέχρι: Βαθ. Προτεραιότητας:

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ Βαθμός Ασφαλείας: Να διατηρηθεί μέχρι: Βαθ. Προτεραιότητας: ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΕΝΙΑΙΟΣ ΔΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ Δ/ΝΣΗ ΣΠΟΥΔΩΝ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α ----- Ταχ. Δ/νση: Ανδρέα Παπανδρέου 37 Τ.Κ. Πόλη:

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ Βαθμός Ασφαλείας: Να διατηρηθεί μέχρι: Βαθ. Προτεραιότητας:

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ Βαθμός Ασφαλείας: Να διατηρηθεί μέχρι: Βαθ. Προτεραιότητας: ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΕΝΙΑΙΟΣ ΔΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ Δ/ΝΣΗ ΣΠΟΥΔΩΝ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α ----- Ταχ. Δ/νση: Ανδρέα Παπανδρέου 37 Τ.Κ. Πόλη:

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ Βαθμός Ασφαλείας: Να διατηρηθεί μέχρι: Βαθ. Προτεραιότητας:

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ Βαθμός Ασφαλείας: Να διατηρηθεί μέχρι: Βαθ. Προτεραιότητας: ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΕΝΙΑΙΟΣ ΔΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ Δ/ΝΣΗ ΣΠΟΥΔΩΝ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α ----- Ταχ. Δ/νση: Ανδρέα Παπανδρέου 37 Τ.Κ. Πόλη:

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ Βαθμός Ασφαλείας: Να διατηρηθεί μέχρι: Βαθ. Προτεραιότητας:

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ Βαθμός Ασφαλείας: Να διατηρηθεί μέχρι: Βαθ. Προτεραιότητας: ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΕΝΙΑΙΟΣ ΔΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ Δ/ΝΣΗ ΣΠΟΥΔΩΝ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α ----- Ταχ. Δ/νση: Ανδρέα Παπανδρέου 37 Τ.Κ. Πόλη:

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ Βαθµός Ασφαλείας: Να διατηρηθεί µέχρι: Βαθ. Προτεραιότητας:

ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ Βαθµός Ασφαλείας: Να διατηρηθεί µέχρι: Βαθ. Προτεραιότητας: ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΕΝΙΑΙΟΣ ΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & /ΘΜΙΑΣ ΕΚΠ/ΣΗΣ /ΝΣΗ ΣΠΟΥ ΩΝ /ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α ----- Ταχ. /νση: Ανδρέα Παπανδρέου 37 Τ.Κ. Πόλη: 15180

Διαβάστε περισσότερα

Βαθμός Ασφαλείας: Να διατηρηθεί μέχρι: Βαθ. Προτεραιότητας: Αθήνα, 01-10-2013 Αρ. Πρωτ. 139606/Γ2 Δ/νσεις Δ/θμιας Εκπ/σης Γραφεία Σχολικών Συμβούλων

Βαθμός Ασφαλείας: Να διατηρηθεί μέχρι: Βαθ. Προτεραιότητας: Αθήνα, 01-10-2013 Αρ. Πρωτ. 139606/Γ2 Δ/νσεις Δ/θμιας Εκπ/σης Γραφεία Σχολικών Συμβούλων ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΕΝΙΑΙΟΣ ΔΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ Δ/ΝΣΗ ΣΠΟΥΔΩΝ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ ----- Α Ταχ. Δ/νση: Ανδρέα Παπανδρέου 37 Τ.Κ. Πόλη:

Διαβάστε περισσότερα

----- Ταχ. Δ/νση: Ανδρέα Παπανδρέου 37 Τ.Κ. Πόλη: Μαρούσι Ιστοσελίδα: Πληροφορίες: Αν. Πασχαλίδου

----- Ταχ. Δ/νση: Ανδρέα Παπανδρέου 37 Τ.Κ. Πόλη: Μαρούσι Ιστοσελίδα:  Πληροφορίες: Αν. Πασχαλίδου ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΓΕΝΙΚΗ ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ Π/ΘΜΙΑΣ ΚΑΙ Δ/ΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ, ΠΡΟΓΡΑΜΜΑΤΩΝ ΚΑΙ ΟΡΓΑΝΩΣΗΣ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α -----

Διαβάστε περισσότερα

Διδακτέα ύλη των Μαθηματικών της Α Τάξης Ημερήσιου Γενικού Λυκείου και πρόταση διαχείρισής της.

Διδακτέα ύλη των Μαθηματικών της Α Τάξης Ημερήσιου Γενικού Λυκείου και πρόταση διαχείρισής της. Διδακτέα ύλη των Μαθηματικών της Α Τάξης Ημερήσιου Γενικού Λυκείου και πρόταση διαχείρισής της. Οι στόχοι της διδασκαλίας των Μαθηματικών στην Α Λυκείου, όπως διατυπώνονται στο Αναλυτικό Πρόγραμμα Σπουδών

Διαβάστε περισσότερα

ΘΕΜΑ: Οδηγίες για τη διδασκαλία των Μαθηματικών στις Α, Β τάξεις Ημερήσιου ΓΕΛ και Α, Β, Γ τάξεις Εσπερινού ΓΕΛ για το σχολ.

ΘΕΜΑ: Οδηγίες για τη διδασκαλία των Μαθηματικών στις Α, Β τάξεις Ημερήσιου ΓΕΛ και Α, Β, Γ τάξεις Εσπερινού ΓΕΛ για το σχολ. ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΓΕΝΙΚΗ ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ Π/ΘΜΙΑΣ ΚΑΙ Δ/ΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ, ΠΡΟΓΡΑΜΜΑΤΩΝ ΚΑΙ ΟΡΓΑΝΩΣΗΣ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α -----

Διαβάστε περισσότερα

ΠΡΟΣ : ΚΟΙΝ.: ΘΕΜΑ: Οδηγίες για τη διδασκαλία των Μαθηματικών της Α τάξης Γενικού Λυκείου για το σχ. έτος

ΠΡΟΣ : ΚΟΙΝ.: ΘΕΜΑ: Οδηγίες για τη διδασκαλία των Μαθηματικών της Α τάξης Γενικού Λυκείου για το σχ. έτος ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΔΙΑ ΒΙΟΥ ΜΑΘΗΣΗΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΕΝΙΑΙΟΣ ΔΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ Δ/ΝΣΗ ΣΠΟΥΔΩΝ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α Να διατηρηθεί μέχρι... Βαθμός Ασφαλείας...

Διαβάστε περισσότερα

ΠΡΟΣ : ΘΕΜΑ: Οδηγίες για τη διδασκαλία των Μαθηματικών της Α τάξης Γενικού Λυκείου για το σχ. έτος

ΠΡΟΣ : ΘΕΜΑ: Οδηγίες για τη διδασκαλία των Μαθηματικών της Α τάξης Γενικού Λυκείου για το σχ. έτος ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΔΙΑ ΒΙΟΥ ΜΑΘΗΣΗΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΕΝΙΑΙΟΣ ΔΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ Δ/ΝΣΗ ΣΠΟΥΔΩΝ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α Να διατηρηθεί μέχρι... Βαθμός Ασφαλείας...

Διαβάστε περισσότερα

Βαθμός Ασφαλείας: Να διατηρηθεί μέχρι: Βαθ. Προτεραιότητας: ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ -----

Βαθμός Ασφαλείας: Να διατηρηθεί μέχρι: Βαθ. Προτεραιότητας: ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΓΕΝΙΚΗ ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ Π/ΘΜΙΑΣ ΚΑΙ Δ/ΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ, ΠΡΟΓΡΑΜΜΑΤΩΝ ΚΑΙ ΟΡΓΑΝΩΣΗΣ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α -----

Διαβάστε περισσότερα

Βαθμός Ασφαλείας: Να διατηρηθεί μέχρι: Βαθ. Προτεραιότητας: ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ -----

Βαθμός Ασφαλείας: Να διατηρηθεί μέχρι: Βαθ. Προτεραιότητας: ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΓΕΝΙΚΗ ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ Π/ΘΜΙΑΣ ΚΑΙ Δ/ΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ, ΠΡΟΓΡΑΜΜΑΤΩΝ ΚΑΙ ΟΡΓΑΝΩΣΗΣ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α -----

Διαβάστε περισσότερα

Βαθμός Ασφαλείας: Να διατηρηθεί μέχρι: Βαθ. Προτεραιότητας: ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ -----

Βαθμός Ασφαλείας: Να διατηρηθεί μέχρι: Βαθ. Προτεραιότητας: ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΓΕΝΙΚΗ ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ Π/ΘΜΙΑΣ ΚΑΙ Δ/ΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ, ΠΡΟΓΡΑΜΜΑΤΩΝ ΚΑΙ ΟΡΓΑΝΩΣΗΣ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α -----

Διαβάστε περισσότερα

ΘΕΜΑ: Οδηγίες για τη διδασκαλία των Μαθηματικών στις Α, Β τάξεις Ημερήσιου ΓΕΛ και Α, Β, Γ τάξεις Εσπερινού ΓΕΛ για το σχολ.

ΘΕΜΑ: Οδηγίες για τη διδασκαλία των Μαθηματικών στις Α, Β τάξεις Ημερήσιου ΓΕΛ και Α, Β, Γ τάξεις Εσπερινού ΓΕΛ για το σχολ. ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΓΕΝΙΚΗ ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ Π/ΘΜΙΑΣ ΚΑΙ Δ/ΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ, ΠΡΟΓΡΑΜΜΑΤΩΝ ΚΑΙ ΟΡΓΑΝΩΣΗΣ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α -----

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ, ΠΟΛΙΤΙΣΜΟΥ ΚΑΙ ΑΘΛΗΤΙΣΜΟΥ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ, ΠΟΛΙΤΙΣΜΟΥ ΚΑΙ ΑΘΛΗΤΙΣΜΟΥ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ, ΠΟΛΙΤΙΣΜΟΥ ΚΑΙ ΑΘΛΗΤΙΣΜΟΥ ----- ΕΝΙΑΙΟΣ ΔΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ Δ/ΝΣΗ ΣΠΟΥΔΩΝ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α Βαθμός Ασφαλείας: Να

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ, ΠΟΛΙΤΙΣΜΟΥ ΚΑΙ ΑΘΛΗΤΙΣΜΟΥ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ, ΠΟΛΙΤΙΣΜΟΥ ΚΑΙ ΑΘΛΗΤΙΣΜΟΥ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ, ΠΟΛΙΤΙΣΜΟΥ ΚΑΙ ΑΘΛΗΤΙΣΜΟΥ ----- ΕΝΙΑΙΟΣ ΔΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ Δ/ΝΣΗ ΣΠΟΥΔΩΝ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α Βαθμός Ασφαλείας: Να

Διαβάστε περισσότερα

ΘΕΜΑ: Οδηγίες για τη διδασκαλία των Μαθηματικών στις Α, Β τάξεις Ημερήσιου ΓΕΛ και Α, Β, Γ τάξεις Εσπερινού ΓΕΛ για το σχολ.

ΘΕΜΑ: Οδηγίες για τη διδασκαλία των Μαθηματικών στις Α, Β τάξεις Ημερήσιου ΓΕΛ και Α, Β, Γ τάξεις Εσπερινού ΓΕΛ για το σχολ. IOANNIS SPILIOPOULOS 016.09.16 06:3:5 HPARCA Certification Services for Citizens CN=IOANNIS SPILIOPOULOS C=GR O=Elliniki Dimosia Dioikisi - Hellenic Public Administration E=ispiliopoulos@minedu.gov.gr

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ, ΠΟΛΙΤΙΣΜΟΥ ΚΑΙ ΑΘΛΗΤΙΣΜΟΥ -----

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ, ΠΟΛΙΤΙΣΜΟΥ ΚΑΙ ΑΘΛΗΤΙΣΜΟΥ ----- ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ, ΠΟΛΙΤΙΣΜΟΥ ΚΑΙ ΑΘΛΗΤΙΣΜΟΥ ----- ΕΝΙΑΙΟΣ ΔΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ Δ/ΝΣΗ ΣΠΟΥΔΩΝ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α Βαθμός Ασφαλείας: Να

Διαβάστε περισσότερα

ΠΡΟΣ : ΚΟΙΝ.: ΘΕΜΑ: Οδηγίες για τη διδασκαλία των Μαθηματικών της Α τάξης Γενικού Λυκείου για το σχ. έτος

ΠΡΟΣ : ΚΟΙΝ.: ΘΕΜΑ: Οδηγίες για τη διδασκαλία των Μαθηματικών της Α τάξης Γενικού Λυκείου για το σχ. έτος ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΔΙΑ ΒΙΟΥ ΜΑΘΗΣΗΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΕΝΙΑΙΟΣ ΔΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ Δ/ΝΣΗ ΣΠΟΥΔΩΝ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α Να διατηρηθεί μέχρι... Βαθμός Ασφαλείας...

Διαβάστε περισσότερα

Δημήτριος Σπαθάρας Σχολικός Σύμβουλος Μαθηματικών

Δημήτριος Σπαθάρας Σχολικός Σύμβουλος Μαθηματικών . Οδηγίες για τη διδασκαλία της Άλγεβρας Α τάξης Ημερήσιου ΓΕΛ κατά το σχολικό έτος 017-018 Σύμφωνα με την αρ. πρωτ. 163561/Δ/-10-017 εγκύκλιο του ΥΠ.Π.Ε.Θ. Δημήτριος Σπαθάρας Σχολικός Σύμβουλος Μαθηματικών

Διαβάστε περισσότερα

qwφιertyuiopasdfghjklzxερυυξnmηq σwωψerβνtyuςiopasdρfghjklzxcvbn mqwertyuiopasdfghjklzxcvbnφγιmλι

qwφιertyuiopasdfghjklzxερυυξnmηq σwωψerβνtyuςiopasdρfghjklzxcvbn mqwertyuiopasdfghjklzxcvbnφγιmλι qwφιertyuiopasdfghjklzxερυυξnmηq σwωψerβνtyuςiopasdρfghjklzxcvbn mqwertyuiopasdfghjklzxcvbnφγιmλι Οδηγός Εξετάσεων στα Μαθηματικά Γενικού qπςπζαwωeτrtνyuτioρνμpκaλsdfghςj klzxcvλοπbnαmqwertyuiopasdfghjklz

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Α Τάξης Ημερησίου ΓΕΛ

ΑΛΓΕΒΡΑ Α Τάξης Ημερησίου ΓΕΛ ΑΛΓΕΒΡΑ Α Τάξης Ημερησίου ΓΕΛ ΔΙΔΑΚΤΕΑ ΥΛΗ Ι. Εισαγωγή Το μάθημα «Άλγεβρα και Στοιχεία Πιθανοτήτων» περιέχει σημαντικές μαθηματικές έννοιες, όπως, της απόλυτης τιμής, των προόδων, της συνάρτησης κ.ά.,

Διαβάστε περισσότερα

ΘΕΜΑ Οδηγίες για τη διδασκαλία των Μαθηµατικών της Α τάξης Γενικού Λυκείου για το σχ. έτος

ΘΕΜΑ Οδηγίες για τη διδασκαλία των Μαθηµατικών της Α τάξης Γενικού Λυκείου για το σχ. έτος ΘΕΜΑ Οδηγίες για τη διδασκαλία των Μαθηµατικών της Α τάξης Γενικού Λυκείου για το σχ. έτος 2011-2012 Οι στόχοι της διδασκαλίας των Μαθηµατικών στην Α Λυκείου, όπως διατυπώνονται στο Αναλυτικό Πρόγραµµα

Διαβάστε περισσότερα

ημερήσιων και εσπερινών ΕΠΑ.Λ. για το σχολικό έτος 2011-2012.

ημερήσιων και εσπερινών ΕΠΑ.Λ. για το σχολικό έτος 2011-2012. ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΔΙΑ ΒΙΟΥ ΜΑΘΗΣΗΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΕΝΙΑΙΟΣ ΔΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ Δ/ΝΣΗ ΣΠΟΥΔΩΝ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ B ----- Να διατηρηθεί μέχρι... Βαθμός

Διαβάστε περισσότερα

Γ Τάξη Γυμνασίου Μ Α Θ Η Μ Α Τ Ι Κ Α. Ι. Διδακτέα ύλη

Γ Τάξη Γυμνασίου Μ Α Θ Η Μ Α Τ Ι Κ Α. Ι. Διδακτέα ύλη Γ Τάξη Γυμνασίου Μ Α Θ Η Μ Α Τ Ι Κ Α Ι. Διδακτέα ύλη Από το βιβλίο «Μαθηματικά Γ Γυμνασίου» των Δημητρίου Αργυράκη, Παναγιώτη Βουργάνα, Κωνσταντίνου Μεντή, Σταματούλας Τσικοπούλου, Μιχαήλ Χρυσοβέργη, έκδοση

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ, ΠΟΛΙΤΙΣΜΟΥ ΚΑΙ ΑΘΛΗΤΙΣΜΟΥ

ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ, ΠΟΛΙΤΙΣΜΟΥ ΚΑΙ ΑΘΛΗΤΙΣΜΟΥ ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ, ΠΟΛΙΤΙΣΜΟΥ ΚΑΙ ΑΘΛΗΤΙΣΜΟΥ ----- ΕΝΙΑΙΟΣ ΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & /ΘΜΙΑΣ ΕΚΠ/ΣΗΣ /ΝΣΗ ΣΠΟΥ ΩΝ /ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α Βαθµός Ασφαλείας: Να διατηρηθεί

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ, ΠΟΛΙΤΙΣΜΟΥ ΚΑΙ ΑΘΛΗΤΙΣΜΟΥ

ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ, ΠΟΛΙΤΙΣΜΟΥ ΚΑΙ ΑΘΛΗΤΙΣΜΟΥ ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ, ΠΟΛΙΤΙΣΜΟΥ ΚΑΙ ΑΘΛΗΤΙΣΜΟΥ ----- ΕΝΙΑΙΟΣ ΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & /ΘΜΙΑΣ ΕΚΠ/ΣΗΣ /ΝΣΗ ΣΠΟΥ ΩΝ /ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α Βαθµός Ασφαλείας: Να διατηρηθεί

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΑ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ

ΓΕΩΜΕΤΡΙΑ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ ΥΛΗ ΚΑΙ ΟΔΗΓΙΕΣ ΔΙΔΑΣΚΑΛΙΑΣ ΣΧΟΛ. ΕΤΟΣ 2014-15 ΓΕΩΜΕΤΡΙΑ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ Από το βιβλίο «Ευκλείδεια Γεωμετρία Α και Β Ενιαίου Λυκείου» των Αργυρόπουλου Η., Βλάμου

Διαβάστε περισσότερα

Γ Τάξη Γυμνασίου. Ι. Διδακτέα ύλη

Γ Τάξη Γυμνασίου. Ι. Διδακτέα ύλη ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΔΙΑ ΒΙΟΥ ΜΑΘΗΣΗΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΕΝΙΑΙΟΣ ΔΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ Δ/ΝΣΗ ΣΠΟΥΔΩΝ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α Ταχ. Δ/νση: Ανδρέα Παπανδρέου 37 Τ.Κ.

Διαβάστε περισσότερα

Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΛ I.

Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΛ I. Γεωμετρία Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΛ I. Εισαγωγή Η διδασκαλία της Γεωμετρίας στην Α Λυκείου εστιάζει στο πέρασμα από τον εμπειρικό στο θεωρητικό τρόπο σκέψης, με ιδιαίτερη έμφαση στη μαθηματική απόδειξη. Οι

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ. ΜΕΡΟΣ Α : Άλγεβρα. Κεφάλαιο 2 ο (Προτείνεται να διατεθούν 12 διδακτικές ώρες) Ειδικότερα:

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ. ΜΕΡΟΣ Α : Άλγεβρα. Κεφάλαιο 2 ο (Προτείνεται να διατεθούν 12 διδακτικές ώρες) Ειδικότερα: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΜΕΡΟΣ Α : Άλγεβρα Κεφάλαιο ο (Προτείνεται να διατεθούν διδακτικές ώρες) Ειδικότερα:. -. (Προτείνεται να διατεθούν 5 διδακτικές ώρες).3 (Προτείνεται να διατεθούν

Διαβάστε περισσότερα

1. Nα λυθούν οι ανισώσεις. 2. Nα λυθούν οι ανισώσεις. 3. Nα βρεθούν οι κοινές λύσεις των ανισώσεων: 4. Nα βρεθούν οι κοινές λύσεις των ανισώσεων:

1. Nα λυθούν οι ανισώσεις. 2. Nα λυθούν οι ανισώσεις. 3. Nα βρεθούν οι κοινές λύσεις των ανισώσεων: 4. Nα βρεθούν οι κοινές λύσεις των ανισώσεων: ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΑΝΙΣΩΣΕΙΣ ΚΕΦΑΛΑΙΟ 4 ο ΑΣΚΗΣΕΙΣ ΓΙΑ ΛΥΣΗ. Nα λυθούν οι ανισώσεις α) 4 β) 4. Nα λυθούν οι ανισώσεις ( )( ) α) + > - (+) β). Nα βρεθούν οι κοινές λύσεις των ανισώσεων: ( ) ( ) 8 4 8 και

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4 ο : ΑΝΙΣΩΣΕΙΣ ΤΟ 2 Ο ΘΕΜΑ

ΚΕΦΑΛΑΙΟ 4 ο : ΑΝΙΣΩΣΕΙΣ ΤΟ 2 Ο ΘΕΜΑ ΚΕΦΑΛΑΙΟ 4 ο : ΑΝΙΣΩΣΕΙΣ ΤΟ 2 Ο ΘΕΜΑ Άσκηση 1 Δίνονται οι ανισώσεις: 3x και 2 x α) Να βρείτε τις λύσεις τους (Μονάδες 10) β) Να βρείτε το σύνολο των κοινών τους λύσεων (Μονάδες 15) α) Έχουμε 3x 2x x 2

Διαβάστε περισσότερα

Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα

Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7, α) Να αιτιολογήσετε γιατί η (α ν ) είναι αριθμητική πρόοδος και να βρείτε τον εκατοστό

Διαβάστε περισσότερα

ΘΕΜΑ 2. Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7,

ΘΕΜΑ 2. Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7, Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7, α) Να αιτιολογήσετε γιατί η (α ν ) είναι αριθμητική πρόοδος και να βρείτε τον εκατοστό όρο της. (Μονάδες 15) β) Να αποδείξετε ότι

Διαβάστε περισσότερα

Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου

Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου Αριθμοί 1. ΑΡΙΘΜΟΙ Σύνολο Φυσικών αριθμών: Σύνολο Ακέραιων αριθμών: Σύνολο Ρητών αριθμών: ακέραιοι με Άρρητοι αριθμοί: είναι οι μη ρητοί π.χ. Το σύνολο Πραγματικών

Διαβάστε περισσότερα

ρ πε α εμ των α ματ ών 2014 Ο Η ΡΗ Ο Ο Γ Ρ Θ μα 2ο

ρ πε α εμ των α ματ ών 2014 Ο Η ΡΗ Ο Ο Γ Ρ Θ μα 2ο ρ πε α εμ των α ματ ών 2014 Γ Ο Η ΡΗ Ο Ο Γ Ρ Θ μα 2ο Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7, α) Να αιτιολογήσετε γιατί η (α ν ) είναι αριθμητική πρόοδος και να βρείτε τον

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΪΟΣ ΙΟΥΝΙΟΣ

ΘΕΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΪΟΣ ΙΟΥΝΙΟΣ ΘΕΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΪΟΣ ΙΟΥΝΙΟΣ ΤΑΞΗ: ΜΑΘΗΜΑ: A ΑΛΓΕΒΡΑ ΘΕΜΑ A Α1. Να αποδείξετε ότι: αβ α β (Μονάδες 15) A. Χαρακτηρίστε ως Σωστό (Σ) ή Λάθος (Λ) τις ακόλουθες προτάσεις: 1. Η εξίσωση

Διαβάστε περισσότερα

ΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 2014 Θ ΕΩΡΙA 15

ΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 2014 Θ ΕΩΡΙA 15 ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ ΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 04 Θ ΕΩΡΙA 5 ΘΕΜΑ A Α Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στην κόλλα σας δίπλα στο γράμμα που αντιστοιχεί σε κάθε πρόταση τη

Διαβάστε περισσότερα

τριώνυμο Η εξίσωση δευτέρου βαθμού στην πλήρη της μορφή ονομάζεται τριώνυμο, γιατί αποτελείται από τρία μονώνυμα. Η γενική μορφή της είναι:

τριώνυμο Η εξίσωση δευτέρου βαθμού στην πλήρη της μορφή ονομάζεται τριώνυμο, γιατί αποτελείται από τρία μονώνυμα. Η γενική μορφή της είναι: κεφάλαιο 4 Α τριώνυμο επίλυση της εξίσωσης δευτέρου βαθμού Η εξίσωση δευτέρου βαθμού στην πλήρη της μορφή ονομάζεται τριώνυμο, γιατί αποτελείται από τρία μονώνυμα. Η γενική μορφή της είναι: αx + βx + γ

Διαβάστε περισσότερα

Καραγιάννης Β. Ιωάννης Σχολικός Σύμβουλος Μαθηματικών ΟΔΗΓΙΕΣ ΔΙΔΑΣΚΑΛΙΑΣ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΤΗΣ ΥΛΗΣ Γ ΓΥΜΝΑΣΙΟΥ

Καραγιάννης Β. Ιωάννης Σχολικός Σύμβουλος Μαθηματικών ΟΔΗΓΙΕΣ ΔΙΔΑΣΚΑΛΙΑΣ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΤΗΣ ΥΛΗΣ Γ ΓΥΜΝΑΣΙΟΥ Επιμέλεια Καραγιάννης Β. Ιωάννης Σχολικός Σύμβουλος Μαθηματικών ΟΔΗΓΙΕΣ ΔΙΔΑΣΚΑΛΙΑΣ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΤΗΣ ΥΛΗΣ Γ ΓΥΜΝΑΣΙΟΥ Σχολικό Έτος: 2014-2015 Μαθηματικός Περιηγητής 1 Διδακτέα ύλη και οδηγίες διδασκαλίας

Διαβάστε περισσότερα

ΠΡΟΣ: ΚΟΙΝ: Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΚΑΙ ΕΣΠΕΡΙΝΟΥ ΕΠΑ.Λ. ΑΛΓΕΒΡΑ

ΠΡΟΣ: ΚΟΙΝ: Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΚΑΙ ΕΣΠΕΡΙΝΟΥ ΕΠΑ.Λ. ΑΛΓΕΒΡΑ ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- Βαθµός Ασφαλείας: Να διατηρηθεί µέχρι: Βαθ. Προτεραιότητας: ΕΝΙΑΙΟΣ ΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & /ΘΜΙΑΣ ΕΚΠ/ΣΗΣ /ΝΣΗ ΣΠΟΥ ΩΝ /ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ

Διαβάστε περισσότερα

Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. Θέμα 2 ο (150)

Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. Θέμα 2 ο (150) Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ Θέμα ο (150) -- Τράπεζα θεμάτων Άλγεβρας Α Λυκείου Φεργαδιώτης Αθανάσιος -3- Τράπεζα θεμάτων Άλγεβρας Α Λυκείου Φεργαδιώτης Αθανάσιος ΚΕΦΑΛΑΙΟ

Διαβάστε περισσότερα

ΘΕΜΑ 2. βρείτε. (Μονάδες 15) με διαφορά ω.

ΘΕΜΑ 2. βρείτε. (Μονάδες 15) με διαφορά ω. ΘΕΜΑ ΘΕΜΑ Έστω α, β πραγµατικοί αριθµοί για τους οποίους ισχύουν: α β = 4 και αβ + αβ = 0 α) Να αποδείξετε ότι: α + β = 5. (Μονάδες 0) β) Να κατασκευάσετε εξίσωση ου βαθµού µε ρίζες τους αριθµούς α, β

Διαβάστε περισσότερα

ΘΕΜΑ: Οδηγίες για τη διδασκαλία των Μαθηµατικών Γ/σίου και Γεν. Λυκείου.

ΘΕΜΑ: Οδηγίες για τη διδασκαλία των Μαθηµατικών Γ/σίου και Γεν. Λυκείου. Να διατηρηθεί µέχρι... ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ENIAIOΣ ΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & /ΘΜΙΑΣ ΕΚΠ/ΣΗΣ /ΝΣΗ ΣΠΟΥ ΩΝ /ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α' Αν. Παπανδρέου 37, 15180 Μαρούσι Πληροφορίες : Αν. Πασχαλίδου Τηλέφωνο

Διαβάστε περισσότερα

Γεωμετρία. I. Εισαγωγή

Γεωμετρία. I. Εισαγωγή I. Εισαγωγή Γεωμετρία Η διδασκαλία της Γεωμετρίας στην Α Λυκείου εστιάζει στο πέρασμα από τον εμπειρικό στο θεωρητικό τρόπο σκέψης, με ιδιαίτερη έμφαση στη μαθηματική απόδειξη. Οι μαθητές έχουν έρθει σε

Διαβάστε περισσότερα

α) γνησίως αύξουσα σε ένα διάστημα Δ του πεδίου ορισμού της (Σχ.α), όταν β) γνησίως φθίνουσα σε ένα διάστημα Δ του πεδίου ορισμού της (Σχ.

α) γνησίως αύξουσα σε ένα διάστημα Δ του πεδίου ορισμού της (Σχ.α), όταν β) γνησίως φθίνουσα σε ένα διάστημα Δ του πεδίου ορισμού της (Σχ. ΜΟΝΟΤΟΝΙΑ. ΙΔΙΟΤΗΤΕΣ ΣΥΝΑΡΤΗΣΕΩΝ. ΜΟΝΟΤΟΝΙΑ - ΑΚΡΟΤΑΤΑ - ΣΥΜΜΕΤΡΙΕΣ Μια συνάρτηση f λέγεται: α) γνησίως αύξουσα σε ένα διάστημα Δ του πεδίου ορισμού της (Σχ.α), όταν για οποιαδήποτε χ,χ Δ με χ

Διαβάστε περισσότερα

ΓΕΝΙΚΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΔΙΑΓΩΝΙΣΜΑΤΑ ΣΕ ΟΛΗ ΤΗΝ ΔΙΔΑΚΤΕΑ ΥΛΗ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ

ΓΕΝΙΚΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΔΙΑΓΩΝΙΣΜΑΤΑ ΣΕ ΟΛΗ ΤΗΝ ΔΙΔΑΚΤΕΑ ΥΛΗ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ ΓΕΝΙΚΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΔΙΑΓΩΝΙΣΜΑΤΑ ΣΕ ΟΛΗ ΤΗΝ ΔΙΔΑΚΤΕΑ ΥΛΗ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ ο Γενικό Επαναληπτικό Διαγώνισμα ΘΕΜΑ ο Α. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν γράφοντας στην κόλλα σας δίπλα στο γράμμα

Διαβάστε περισσότερα

ΟΔΗΓΙΕΣ ΔΙΔΑΣΚΑΛΙΑΣ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΤΗΣ

ΟΔΗΓΙΕΣ ΔΙΔΑΣΚΑΛΙΑΣ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΤΗΣ 2017-2018 ΚΑΡΑΓΙΑΝΝΗΣ ΙΩΑΝΝΗΣ ΣΧΟΛΙΚΟΣ ΣΥΜΒΟΥΛΟΣ ΟΔΗΓΙΕΣ ΔΙΔΑΣΚΑΛΙΑΣ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΤΗΣ ΥΛΗΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΩΝ ΕΠΑ.Λ ΘΕΜΑ: Διδακτέα Ύλη και Οδηγίες για τη διδασκαλία μαθημάτων Γενικής Παιδείας της Α,

Διαβάστε περισσότερα

Α. Η γραφική παράσταση της συνάρτησης 2. f(x) = α x 2 + β x + γ, α 0. f (x) x. Παράδειγμα. Περιοδικό ΕΥΚΛΕΙΔΗΣ Β Ε.Μ.Ε.

Α. Η γραφική παράσταση της συνάρτησης 2. f(x) = α x 2 + β x + γ, α 0. f (x) x. Παράδειγμα. Περιοδικό ΕΥΚΛΕΙΔΗΣ Β Ε.Μ.Ε. Περιοδικό ΕΥΚΛΕΙΔΗΣ Β Ε.Μ.Ε. (τεύχος 55) Μαθηματικά για την Α τάξη του Λυκείου Το τριώνυμο f(x) = α x + β x + γ, α Κώστα Βακαλόπουλου, Νίκου Ταπεινού Α. Η γραφική παράσταση της συνάρτησης f(x) αx βx γ,

Διαβάστε περισσότερα

Από το Γυμνάσιο στο Λύκειο... 7. 3. Δειγματικός χώρος Ενδεχόμενα... 42 Εύρεση δειγματικού χώρου... 46

Από το Γυμνάσιο στο Λύκειο... 7. 3. Δειγματικός χώρος Ενδεχόμενα... 42 Εύρεση δειγματικού χώρου... 46 ΠEΡΙΕΧΟΜΕΝΑ Από το Γυμνάσιο στο Λύκειο................................................ 7 1. Το Λεξιλόγιο της Λογικής.............................................. 11. Σύνολα..............................................................

Διαβάστε περισσότερα

2018 Φάση 2 ιαγωνίσµατα Επανάληψης ΑΛΓΕΒΡΑ. Α' Γενικού Λυκείου. Σάββατο 21 Απριλίου 2018 ιάρκεια Εξέτασης:3 ώρες ΘΕΜΑΤΑ

2018 Φάση 2 ιαγωνίσµατα Επανάληψης ΑΛΓΕΒΡΑ. Α' Γενικού Λυκείου. Σάββατο 21 Απριλίου 2018 ιάρκεια Εξέτασης:3 ώρες ΘΕΜΑΤΑ ΘΕΜΑ A ΑΛΓΕΒΡΑ Α' Γενικού Λυκείου Σάββατο 1 Απριλίου 018 ιάρκεια Εξέτασης: ώρες ΘΕΜΑΤΑ Πεδίο ορισμού μιας συνάρτησης f (x) από ένα σύνολο Α σε ένα σύνολο Β ονομάζουμε το σύνολο Α, στο οποίο φαίνονται οι

Διαβάστε περισσότερα

ΠΡΟΔΙΑΓΡΑΦΕΣ - ΟΔΗΓΙΕΣ ΔΙΑΜΟΡΦΩΣΗΣ ΘΕΜΑΤΩΝ ΓΙΑ ΤΟ ΜΑΘΗΜΑ

ΠΡΟΔΙΑΓΡΑΦΕΣ - ΟΔΗΓΙΕΣ ΔΙΑΜΟΡΦΩΣΗΣ ΘΕΜΑΤΩΝ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΠΡΟΔΙΑΓΡΑΦΕΣ - ΟΔΗΓΙΕΣ ΔΙΑΜΟΡΦΩΣΗΣ ΘΕΜΑΤΩΝ ΓΙΑ ΤΟ ΜΑΘΗΜΑ Μαθηματικά (Άλγεβρα - Γεωμετρία) Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ και Α, Β ΤΑΞΕΙΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ και Α ΤΑΞΗ ΕΣΠΕΡΙΝΟΥ ΕΠΑΛ ΚΕΝΤΡΙΚΗ

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΘΕΜΑ ο _6950 α) Να κατασκευάσετε ένα γραμμικό σύστημα δυο εξισώσεων με δυο αγνώστους με συντελεστές διάφορους του μηδενός, το οποίο να

Διαβάστε περισσότερα

----- Ταχ. Δ/νση: Ανδρέα Παπανδρέου 37 Τ.Κ. Πόλη: Μαρούσι Ιστοσελίδα: Πληροφορίες: Αν. Πασχαλίδου

----- Ταχ. Δ/νση: Ανδρέα Παπανδρέου 37 Τ.Κ. Πόλη: Μαρούσι Ιστοσελίδα:   Πληροφορίες: Αν. Πασχαλίδου ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΓΕΝΙΚΗ ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ Π/ΘΜΙΑΣ ΚΑΙ Δ/ΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ, ΠΡΟΓΡΑΜΜΑΤΩΝ ΚΑΙ ΟΡΓΑΝΩΣΗΣ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α -----

Διαβάστε περισσότερα

----- Ταχ. Δ/νση: Ανδρέα Παπανδρέου 37 Τ.Κ. Πόλη: Μαρούσι Ιστοσελίδα: Πληροφορίες: Αν. Πασχαλίδου

----- Ταχ. Δ/νση: Ανδρέα Παπανδρέου 37 Τ.Κ. Πόλη: Μαρούσι Ιστοσελίδα:  Πληροφορίες: Αν. Πασχαλίδου ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΓΕΝΙΚΗ ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ Π/ΘΜΙΑΣ ΚΑΙ Δ/ΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ, ΠΡΟΓΡΑΜΜΑΤΩΝ ΚΑΙ ΟΡΓΑΝΩΣΗΣ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α -----

Διαβάστε περισσότερα

----- Ταχ. Δ/νση: Ανδρέα Παπανδρέου 37 Τ.Κ. Πόλη: Μαρούσι Ιστοσελίδα: Πληροφορίες: Αν. Πασχαλίδου

----- Ταχ. Δ/νση: Ανδρέα Παπανδρέου 37 Τ.Κ. Πόλη: Μαρούσι Ιστοσελίδα:  Πληροφορίες: Αν. Πασχαλίδου ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΓΕΝΙΚΗ ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ Π/ΘΜΙΑΣ ΚΑΙ Δ/ΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ, ΠΡΟΓΡΑΜΜΑΤΩΝ ΚΑΙ ΟΡΓΑΝΩΣΗΣ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α -----

Διαβάστε περισσότερα

----- Ταχ. Δ/νση: Ανδρέα Παπανδρέου 37 Τ.Κ. Πόλη: Μαρούσι Ιστοσελίδα: Πληροφορίες: Αν. Πασχαλίδου

----- Ταχ. Δ/νση: Ανδρέα Παπανδρέου 37 Τ.Κ. Πόλη: Μαρούσι Ιστοσελίδα:   Πληροφορίες: Αν. Πασχαλίδου ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΓΕΝΙΚΗ ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ Π/ΘΜΙΑΣ ΚΑΙ Δ/ΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ, ΠΡΟΓΡΑΜΜΑΤΩΝ ΚΑΙ ΟΡΓΑΝΩΣΗΣ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α -----

Διαβάστε περισσότερα

----- Ταχ. Δ/νση: Ανδρέα Παπανδρέου 37 Τ.Κ. Πόλη: Μαρούσι Ιστοσελίδα: Πληροφορίες: Αν. Πασχαλίδου

----- Ταχ. Δ/νση: Ανδρέα Παπανδρέου 37 Τ.Κ. Πόλη: Μαρούσι Ιστοσελίδα:  Πληροφορίες: Αν. Πασχαλίδου ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΓΕΝΙΚΗ ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ Π/ΘΜΙΑΣ ΚΑΙ Δ/ΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ, ΠΡΟΓΡΑΜΜΑΤΩΝ ΚΑΙ ΟΡΓΑΝΩΣΗΣ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α -----

Διαβάστε περισσότερα

ΠΡΟΣ: Τηλέφωνο: Ινστιτούτο Εκπαιδευτικής Πολιτικής

ΠΡΟΣ: Τηλέφωνο: Ινστιτούτο Εκπαιδευτικής Πολιτικής ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΓΕΝΙΚΗ ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ Π/ΘΜΙΑΣ ΚΑΙ Δ/ΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ, ΠΡΟΓΡΑΜΜΑΤΩΝ ΚΑΙ ΟΡΓΑΝΩΣΗΣ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α -----

Διαβάστε περισσότερα

----- Ταχ. Δ/νση: Ανδρέα Παπανδρέου 37 Τ.Κ. Πόλη: Μαρούσι Ιστοσελίδα: Πληροφορίες: Αν. Πασχαλίδου

----- Ταχ. Δ/νση: Ανδρέα Παπανδρέου 37 Τ.Κ. Πόλη: Μαρούσι Ιστοσελίδα:  Πληροφορίες: Αν. Πασχαλίδου ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΓΕΝΙΚΗ ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ Π/ΘΜΙΑΣ ΚΑΙ Δ/ΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ, ΠΡΟΓΡΑΜΜΑΤΩΝ ΚΑΙ ΟΡΓΑΝΩΣΗΣ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α -----

Διαβάστε περισσότερα

----- Ταχ. Δ/νση: Ανδρέα Παπανδρέου 37 Τ.Κ. Πόλη: Μαρούσι Ιστοσελίδα: Πληροφορίες: Αν. Πασχαλίδου

----- Ταχ. Δ/νση: Ανδρέα Παπανδρέου 37 Τ.Κ. Πόλη: Μαρούσι Ιστοσελίδα:  Πληροφορίες: Αν. Πασχαλίδου ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΓΕΝΙΚΗ ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ Π/ΘΜΙΑΣ ΚΑΙ Δ/ΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ, ΠΡΟΓΡΑΜΜΑΤΩΝ ΚΑΙ ΟΡΓΑΝΩΣΗΣ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α -----

Διαβάστε περισσότερα

ΠΟΛΥΧΡΟΝΙΑΔΗΣ ΝΙΚΟΣ ΤΑΥΤΟΤΗΤΕΣ

ΠΟΛΥΧΡΟΝΙΑΔΗΣ ΝΙΚΟΣ ΤΑΥΤΟΤΗΤΕΣ ΘΕΩΡΙΑ Α ΛΥΚΕΙΟΥ ΤΑΥΤΟΤΗΤΕΣ ). (α + β) = α +αβ + β ). (α β) = α αβ + β. 3). (α + β) 3 = α 3 + 3α β +3αβ + β 3 ). (α β) 3 = α 3 3α β +3αβ β 3. 5). α β = (α β)(α + β) 6). α + β = (α + β) αβ. 6). α 3 β 3

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. 8. Πότε το γινόμενο δύο ή περισσοτέρων αριθμών παραγόντων είναι ίσο με το μηδέν ;

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. 8. Πότε το γινόμενο δύο ή περισσοτέρων αριθμών παραγόντων είναι ίσο με το μηδέν ; ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ ο : ( ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ) ΠΑΡΑΤΗΡΗΣΗ : Το κεφάλαιο αυτό περιέχει πολλά θέματα που είναι επανάληψη εννοιών που διδάχθηκαν στο Γυμνάσιο γι αυτό σ αυτές δεν θα επεκταθώ αναλυτικά

Διαβάστε περισσότερα

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr I ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ i e ΜΕΡΟΣ Ι ΟΡΙΣΜΟΣ - ΒΑΣΙΚΕΣ ΠΡΑΞΕΙΣ Α Ορισμός Ο ορισμός του συνόλου των Μιγαδικών αριθμών (C) βασίζεται στις εξής παραδοχές: Υπάρχει ένας αριθμός i για τον οποίο ισχύει i Το σύνολο

Διαβάστε περισσότερα

----- Ταχ. Δ/νση: Ανδρέα Παπανδρέου 37 Τ.Κ. Πόλη: Μαρούσι Ιστοσελίδα: Πληροφορίες: Αν. Πασχαλίδου

----- Ταχ. Δ/νση: Ανδρέα Παπανδρέου 37 Τ.Κ. Πόλη: Μαρούσι Ιστοσελίδα:  Πληροφορίες: Αν. Πασχαλίδου ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΓΕΝΙΚΗ ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ Π/ΘΜΙΑΣ ΚΑΙ Δ/ΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ, ΠΡΟΓΡΑΜΜΑΤΩΝ ΚΑΙ ΟΡΓΑΝΩΣΗΣ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α -----

Διαβάστε περισσότερα

Από το Γυμνάσιο στο Λύκειο Δειγματικός χώρος Ενδεχόμενα Εύρεση δειγματικού χώρου... 46

Από το Γυμνάσιο στο Λύκειο Δειγματικός χώρος Ενδεχόμενα Εύρεση δειγματικού χώρου... 46 ΠEΡΙΕΧΟΜΕΝΑ Από το Γυμνάσιο στο Λύκειο................................................ 7 1. Το Λεξιλόγιο της Λογικής.............................................. 11 2. Σύνολα..............................................................

Διαβάστε περισσότερα

Θέματα ενδοσχολικών εξετάσεων Άλγεβρας Α Λυκείου Σχ. έτος , Ν. Δωδεκανήσου ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΑΛΓΕΒΡΑ

Θέματα ενδοσχολικών εξετάσεων Άλγεβρας Α Λυκείου Σχ. έτος , Ν. Δωδεκανήσου ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΑΛΓΕΒΡΑ Θέματα ενδοσχολικών εξετάσεων Άλγεβρας Α Λυκείου Σχ. έτος 013-014, Ν. Δωδεκανήσου ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΑΛΓΕΒΡΑ ΣΧΟΛΙΚΟ ΕΤΟΣ: 013-014 Επιμέλεια: Καραγιάννης Ιωάννης Σχολικός

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ τάξης Ημερήσιου και Δ τάξης Εσπερινού Γενικού Λυκείου για το σχολικό έτος 2013 2014

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ τάξης Ημερήσιου και Δ τάξης Εσπερινού Γενικού Λυκείου για το σχολικό έτος 2013 2014 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ τάξης Ημερήσιου και Δ τάξης Εσπερινού Γενικού Λυκείου για το σχολικό έτος 3 4 ΜΕΡΟΣ Α : Άλγεβρα Κεφάλαιο ο (Προτείνεται να διατεθούν διδακτικές ώρες) Ειδικότερα:.

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΜΗ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΣΥΝΑΡΤΗΣΕΙΣ ΜΟΝΟΤΟΝΙΑ-ΑΚΡΟΤΑΤΑ-ΣΥΜΜΕΤΡΙΕΣ ΣΥΝΑΡΤΗΣΗΣ

ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΜΗ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΣΥΝΑΡΤΗΣΕΙΣ ΜΟΝΟΤΟΝΙΑ-ΑΚΡΟΤΑΤΑ-ΣΥΜΜΕΤΡΙΕΣ ΣΥΝΑΡΤΗΣΗΣ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ 4_095. Δίνονται οι ευθείες ε 1: λx + y = 1 και ε : x + λy = λ α) Να βρείτε για ποιες τιμές του λ οι δύο ευθείες τέμνονται και να γράψετε τις συντεταγμένες του κοινού τους σημείου συναρτήσει

Διαβάστε περισσότερα

x y z xy yz zx, να αποδείξετε ότι x=y=z.

x y z xy yz zx, να αποδείξετε ότι x=y=z. ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΚΕΦ. ο A. Ταυτότητες, ιδιότητες δυνάμεων, διάταξη.1 Να παραγοντοποιήσετε τις παρακάτω παραστάσεις: 1. 15a x 15a y 5a x 5a y. a x a x a x a x 3 3 4 3 3 3 3. x 4xy 16 4 y

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ

ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ Ε.1 I. 1. α 2 = 9 α = 3 ψ p: α 2 = 9, q: α = 3 Σύνολο αλήθειας της p: Α = {-3,3}, Σύνολο αλήθειας της q: B = {3} A B 2. α 2 = α α = 1 ψ p: α 2 = α, q: α = 1 Σύνολο

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ Βαθμός Ασφαλείας: Να διατηρηθεί μέχρι: Βαθ. Προτεραιότητας:

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ Βαθμός Ασφαλείας: Να διατηρηθεί μέχρι: Βαθ. Προτεραιότητας: ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΓΕΝΙΚΗ ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ Π/ΘΜΙΑΣ ΚΑΙ Δ/ΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ, ΠΡΟΓΡΑΜΜΑΤΩΝ ΚΑΙ ΟΡΓΑΝΩΣΗΣ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α Βαθμός

Διαβάστε περισσότερα

OΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ

OΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ Ο ΚΕΦΑΛΑΙΟ : ΟΡΙΟ ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ OΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ ΣΥΝΑΡΤΗΣΕΙΣ Έστω Α ένα υποσύνολο του Τι ονομάζουμε πραγματική συνάρτηση με πεδίο ορισμού το Α ; Απάντηση : ΕΣΠ Β Έστω

Διαβάστε περισσότερα

210-344 3306 E-mail: t09tee07@minedu.gov.gr

210-344 3306 E-mail: t09tee07@minedu.gov.gr ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΕΝΙΑΙΟΣ ΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & /ΘΜΙΑΣ ΕΚΠ/ΣΗΣ /ΝΣΗ ΣΠΟΥ ΩΝ /ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Β' Ταχ. /νση: Ανδρέα Παπανδρέου 37 Τ.Κ.-Πόλη: 15180 Μαρούσι ΠΡΟΣ:

Διαβάστε περισσότερα

ΠΡΟΣ: ΚΟΙΝ.: ΘΕΜΑ: Διαχείριση διδακτέας - εξεταστέας ύλης των Μαθηματικών Γ τάξης Ημερήσιου για το σχολικό έτος

ΠΡΟΣ: ΚΟΙΝ.: ΘΕΜΑ: Διαχείριση διδακτέας - εξεταστέας ύλης των Μαθηματικών Γ τάξης Ημερήσιου για το σχολικό έτος ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΓΕΝΙΚΗ ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ Π/ΘΜΙΑΣ ΚΑΙ Δ/ΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ ΔΙΕΘΥΝΣΗ ΣΠΟΥΔΩΝ, ΠΡΟΓΡΑΜΜΑΤΩΝ ΚΑΙ ΟΡΓΑΝΩΣΗΣ ΔΕΥΤΕΡΟΒΑΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α -----

Διαβάστε περισσότερα

ΥΛΗ ΜΑΘΗΜΑΤΩΝ A ΛΥΚΕΙΟΥ & A -B ΕΣΠΕΡΙΝΟΥ ΛΥΚΕΙΟΥ ΝΕΑ ΕΛΛΗΝΙΚΗ ΓΛΩΣΣΑ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ

ΥΛΗ ΜΑΘΗΜΑΤΩΝ A ΛΥΚΕΙΟΥ & A -B ΕΣΠΕΡΙΝΟΥ ΛΥΚΕΙΟΥ ΝΕΑ ΕΛΛΗΝΙΚΗ ΓΛΩΣΣΑ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΥΛΗ ΜΑΘΗΜΑΤΩΝ A ΛΥΚΕΙΟΥ & A -B ΕΣΠΕΡΙΝΟΥ ΛΥΚΕΙΟΥ 2015-16 ΝΕΑ ΕΛΛΗΝΙΚΗ ΓΛΩΣΣΑ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Για το μάθημα της Νέας Ελληνικής Γλώσσας της Α τάξης Ημερησίου Γενικού Λυκείου ως διδακτικά

Διαβάστε περισσότερα

Συγκεκριμένα: ΜΕΡΟΣ Β : Ανάλυση. Κεφάλαιο 1ο (Προτείνεται να διατεθούν 37 διδακτικές ώρες) Ειδικότερα:

Συγκεκριμένα: ΜΕΡΟΣ Β : Ανάλυση. Κεφάλαιο 1ο (Προτείνεται να διατεθούν 37 διδακτικές ώρες) Ειδικότερα: ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΓΕΝΙΚΗ ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ Π/ΘΜΙΑΣ ΚΑΙ Δ/ΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ, ΠΡΟΓΡΑΜΜΑΤΩΝ ΚΑΙ ΟΡΓΑΝΩΣΗΣ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α -----

Διαβάστε περισσότερα

με Τέλος πάντων, έστω ότι ξεκινάει ένα άλλο υποθετικό σενάριο που απλά δεν διευκρινίζεται. Για το i) θα έχουμε , 2

με Τέλος πάντων, έστω ότι ξεκινάει ένα άλλο υποθετικό σενάριο που απλά δεν διευκρινίζεται. Για το i) θα έχουμε , 2 Άσκηση 75 Σε έναν οργανισμό, αρχικά υπάρχουν 04800 βακτήρια. Μετά από 1 ώρα υπάρχουν 10400 βακτήρια, μετά από ώρες 5100 βακτήρια, και γενικά ο αριθμός των βακτηρίων υποδιπλασιάζεται κάθε μια ώρα. α) Πόσα

Διαβάστε περισσότερα

Μαθηματικά Α Τάξης Γυμνασίου

Μαθηματικά Α Τάξης Γυμνασίου Μαθηματικά Α Τάξης Γυμνασίου Διδακτικό Έτος 2018-2019 Ι. Διδακτέα ύλη Από το βιβλίο «Μαθηματικά Α Γυμνασίου» των Ιωάννη Βανδουλάκη, Χαράλαμπου Καλλιγά, Νικηφόρου Μαρκάκη, Σπύρου Φερεντίνου. Κεφ. 1 ο :

Διαβάστε περισσότερα

6.1 Η ΕΝΝΟΙΑ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ

6.1 Η ΕΝΝΟΙΑ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ ΟΡΙΣΜΟΣ 6. ΣΥΝΑΡΤΗΣΕΙΣ 6.1 Η ΕΝΝΟΙΑ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ Ονομάζουμε συνάρτηση από ένα σύνολο Α σε ένα σύνολο Β μια διαδικασία (κανόνα) f, με την οποία κάθε στοιχείο του συνόλου Α αντιστοιχίζεται σε ένα ακριβώς

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 3: ΟΡΙΑ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ

ΚΕΦΑΛΑΙΟ 1ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 3: ΟΡΙΑ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΚΕΦΑΛΑΙΟ ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ : ΟΡΙΑ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ Η έννοια του ορίου στο x ο Υπάρχουν συναρτήσεις οι τιμές των οποίων πλησιάζουν ένα πραγματικό αριθμό L, όταν η ανεξάρτητη μεταβλητή

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΕΡΟΣ Α

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΕΡΟΣ Α ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΓΕΝΙΚΗ ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ Π/ΘΜΙΑΣ ΚΑΙ Δ/ΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ ΔΙΕΘΥΝΣΗ ΣΠΟΥΔΩΝ, ΠΡΟΓΡΑΜΜΑΤΩΝ ΚΑΙ ΟΡΓΑΝΩΣΗΣ ΔΕΥΤΕΡΟΒΑΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α -----

Διαβάστε περισσότερα

ΘΕΜΑ 2. Δίνονται οι συναρτήσεις

ΘΕΜΑ 2. Δίνονται οι συναρτήσεις ΘΕΜΑ 2 Δίνονται οι συναρτήσεις (, x R 3 f ( x) = x και g x) = x α) Να δείξετε ότι οι γραφικές παραστάσεις των συναρτήσεων f, g τέμνονται σε τρία σημεία τα οποία και να βρείτε. (Μονάδες 13) β) Αν Α, Ο,

Διαβάστε περισσότερα