Από το Γυμνάσιο στο Λύκειο Δειγματικός χώρος Ενδεχόμενα Εύρεση δειγματικού χώρου... 46

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Από το Γυμνάσιο στο Λύκειο... 7. 3. Δειγματικός χώρος Ενδεχόμενα... 42 Εύρεση δειγματικού χώρου... 46"

Transcript

1 ΠEΡΙΕΧΟΜΕΝΑ Από το Γυμνάσιο στο Λύκειο Το Λεξιλόγιο της Λογικής Σύνολα Παράσταση συνόλων Σύμβολα, Πράξεις συνόλων Δειγματικός χώρος Ενδεχόμενα Εύρεση δειγματικού χώρου Η έννοια της πιθανότητας Κλασικός ορισμός Αξιωματικός ορισμός πιθανότητας Λογισμός πιθανοτήτων ο Κριτήριο Αξιολόγησης Φύλλο εργασίας στους πραγματικούς αριθμούς και στις πράξεις τους Πραγματικοί αριθμοί: Πράξεις Ιδιότητες Αναλογίες Δυνάμεις Πράξεις πραγματικών αριθμών Αντίθετοι Αντίστροφοι Αναλογίες Δυνάμεις Οι ιδιότητες αβ = 0 και αβ Πραγματικοί αριθμοί: Ταυτότητες Μέθοδοι απόδειξης Παραγοντοποίηση Χρήση ταυτοτήτων Μέθοδοι απόδειξης Παραγοντοποίηση ο Κριτήριο Αξιολόγησης Διάταξη πραγματικών αριθμών Ιδιότητες διάταξης Αποδεικτικές ασκήσεις Σύγκριση αριθμών Διάστημα ο Κριτήριο Αξιολόγησης Φύλλο εργασίας στις απόλυτες τιμές Απόλυτη τιμή πραγματικού αριθμού Απαλοιφή απολύτων με χρήση του ορισμού Χρήση ιδιοτήτων σε απλοποίηση παραστάσεων και σε αποδείξεις σχέσεων με απόλυτα

2 Περιεχόμενα Χρήση της ιδιότητας α β α+ β α + β στην εύρεση διαστήματος των τιμών που μπορεί να πάρει μια παράσταση με απόλυτα καθώς και σε αποδείξεις ανισοτικών σχέσεων Επίλυση εξισώσεων με απόλυτες τιμές Επίλυση ανισώσεων Γεωμετρική αξιοποίηση της απόλυτης τιμής ο Κριτήριο Αξιολόγησης Φύλλο εργασίας στις ρίζες πραγματικών αριθμών Ρίζες πραγματικών αριθμών Πράξεις ριζών ίδιας τάξης Απλοποίηση ριζών Γινόμενο ρητού - ρίζας Περιορισμοί μεταβλητών σε παραστάσεις με ριζικά Πράξεις ριζών διαφορετικής τάξης Σύγκριση ποσοτήτων με ρίζες Απλοποίηση παραστάσεων της μορφής α± β γ Ρητοποίηση παρονομαστή Μέγιστη και ελάχιστη τιμή παράστασης με ριζικά ο Κριτήριο Αξιολόγησης Επαναληπτικές Ασκήσεις ο Επαναληπτικό Διαγώνισμα Φύλλο εργασίας στις εξισώσεις Εξισώσεις 1ου βαθμού Επίλυση εξίσωσης Αδύνατη Ταυτότητα Παραμετρικές εξισώσεις Εξισώσεις που ανάγονται σε πρωτοβάθμιες εξισώσεις Σύνθετες εξισώσεις απόλυτων τιμών και εξισώσεις με ρίζες Επίλυση τύπου Προβλήματα ο Κριτήριο Αξιολόγησης H εξίσωση x v = α Εξισώσεις νιοστού βαθμού που ανάγονται στη μορφή x v = α Εξισώσεις ου βαθμού Επίλυση εξίσωσης ου βαθμού Εξίσωση της μορφής αx + βx + γ = 0 με παράμετρο Εξισώσεις που ανάγονται σε ου βαθμού εξίσωση (Κλασματικές εξισώσεις Εξισώσεις που λύνονται με αντικατάσταση) Φύλλο εργασίας στο άθροισμα και γινόμενο ριζών εξίσωσης ου βαθμού Άθροισμα και γινόμενο ριζών εξίσωσης ου βαθμού Χρήση S και P στην εύρεση ριζών δευτεροβάθμιας εξίσωσης και στον υπολογισμό παραστάσεων

3 Περιεχόμενα Υπολογισμός παραμέτρων δευτεροβάθμιας εξίσωσης με συνθήκη το είδος των ριζών της εξίσωσης Κατασκευή εξίσωσης ου βαθμού ο Κριτήριο Αξιολόγησης Επαναληπτικές Ασκήσεις ο Επαναληπτικό Διαγώνισμα Παράρτημα Α: Αποδείξεις θεωρημάτων και προτάσεων σχολικού βιβλίου Ενδεικτικές Λύσεις Απαντήσεις Λύσεις των ασκήσεων του σχολικού βιβλίου

4 ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ ΣΤΙΣ ΑΠΟΛΥΤΕΣ ΤΙΜΕΣ ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ Σε ένα υπό κατασκευή κτίριο, ύψους 50 μέτρων από την επιφάνεια του εδάφους, με υπόγεια βάθους 0 μέτρων από την επιφάνεια του εδάφους, οι εργάτες μετακινούνται με δύο πλατφόρμες επιβίβασης αποβίβασης, μία γκρι και μία κόκκινη. Προκειμένου οι εργάτες να γνωρίζουν σε ποιο σημείο βρίσκονται, σε κάθε πλατφόρμα υπάρχει ηλεκτρονική ένδειξη για το ύψος σε μέτρα σε σχέση με την επιφάνεια του εδάφους, θετική όταν βρίσκονται πάνω από αυτή και αρνητική όταν βρίσκονται κάτω από αυτή. 1) Ποια είναι η απόσταση της πλατφόρμας από την επιφάνεια του εδάφους όταν η ένδειξη είναι 3 και ποια όταν είναι 3; Απ.:... Με τον ίδιο τρόπο να συμπληρωθεί ο παρακάτω πίνακας: Ύψος πλατφόρμας 5 7, ,7 Απόσταση πλατφόρμας από την επιφάνεια του εδάφους 179

5 Φύλλο εργασίας στις απόλυτες τιμές ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ ) Η ένδειξη στην γκρι πλατφόρμα είναι και στην κόκκινη 3. Ποια είναι η μεταξύ τους απόσταση; Απ.:... Να συμπληρωθεί ο παρακάτω πίνακας: Θέση γκρι Θέση κόκκινης πλατφόρμας πλατφόρμας ,5 7,3 0 8,7 9,1 4 Απόσταση κόκκινης από γκρι πλατφόρμα Απόσταση γκρι από κόκκινη πλατφόρμα Γενικά, αν θεωρήσουμε ότι η κόκκινη πλατφόρμα βρίσκεται σε ύψος α και η γκρι πλατφόρμα σε ύψος β, τότε η απόσταση της κόκκινης πλατφόρμας από την γκρι συμβολίζεται με α β, οπότε η απόσταση της γκρι πλατφόρμας από την κόκκινη είναι β α και άρα προκύπτει ότι α β... β α. Σύμφωνα με τον παραπάνω συμβολισμό, όταν η γκρι πλατφόρμα βρίσκεται στο ισόγειο (ύψος 0) και η κόκκινη σε άγνωστη θέση, έστω x, η απόσταση ανάμεσα στις δύο πλατφόρμες συμβολίζεται:... Άρα, σε οποιοδήποτε ύψος x και αν βρίσκεται η κάθε πλατφόρμα, η απόστασή της από την επιφάνεια του εδάφους είναι:... 3) Αν γνωρίζουμε ότι η γκρι πλατφόρμα βρίσκεται πάνω από την επιφάνεια του εδάφους και το ύψος της είναι x μέτρα, ποια είναι η απόστασή της από αυτή; Απ.:... 4) Αν γνωρίζουμε ότι η κόκκινη πλατφόρμα βρίσκεται κάτω από την επιφάνεια του εδάφους και το ύψος της είναι x μέτρα, ποια είναι η απόστασή της από αυτή; Απ.:... (Επαληθεύστε τη σχέση που βρήκατε βάζοντας συγκεκριμένες τιμές στο x, θετικές για την γκρι και αρνητικές για την κόκκινη πλατφόρμα.)!!! Συνδυάζοντας τις απαντήσεις στα ερωτήματα 3 και 4 καθώς και τον συμβολισμό 180 της απόστασης, προκύπτει ότι x = x, όταν x... 0, και x =..., όταν x < 0. 5) Αν γνωρίζουμε ότι και οι δύο πλατφόρμες απέχουν 6m από την επιφάνεια του εδάφους, ποια είναι τα πιθανά ύψη στα οποία μπορεί να βρίσκονται και ποιοι οι δυνατοί συνδυασμοί των υψών τους; Απ.:......

6 Φύλλο εργασίας στις απόλυτες τιμές 6) Από τα παραπάνω συμπεραίνουμε ότι τα δύο ύψη είναι είτε... μεταξύ τους είτε... 7) Γενικά, κάνοντας χρήση του συμβολισμού αν x = α, τότε x =... ή x =... 8) Αν γνωρίζουμε ότι η γκρι πλατφόρμα είναι σε ύψος m και η κόκκινη σε άγνωστο ύψος, έστω x, να εκφραστεί η απόσταση της κόκκινης από την γκρι πλατφόρμα. Απ.:... ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ 9) Να απαντηθεί το παραπάνω ερώτημα, αν το ύψος της γκρι πλατφόρμας είναι 1. Απ.:... 10) Αν η γκρι πλατφόρμα βρίσκεται σε ύψος 3 m, ποιες είναι οι πιθανές τιμές του x, αν γνωρίζουμε ότι η απόσταση της κόκκινης πλατφόρμας από την γκρι είναι 5 m; Απ.: ) Για ποιες τιμές του x οι αποστάσεις των ερωτημάτων 8 και 9 είναι ίσες μεταξύ τους; Απ.: (Υπόδειξη: Να λυθεί κάνοντας χρήση της σχέσης του ερωτήματος 7.) 1) Αν γνωρίζουμε ότι η γκρι πλατφόρμα απέχει από την επιφάνεια του εδάφους απόσταση μικρότερη από 5 m, μεταξύ ποιων υψών κινείται; Απ.:... Γενικεύοντας, ισχύει ότι, αν x < θ, με θ > 0, τότε θ... x <... 13) Αν γνωρίζουμε ότι η γκρι πλατφόρμα απέχει από την επιφάνεια του εδάφους απόσταση μεγαλύτερη από 7 m, ποια είναι τα επιτρεπτά ύψη κίνησης της πλατφόρμας; Απ.:... Γενικεύοντας, ισχύει ότι, αν x > θ, με θ > 0, τότε x... θ ή x >

7 8 Απόλυτη τιμή πραγματικού αριθμού Αν οι αριθμοί α και β παριστάνονται από τα σημεία Α και Β του άξονα των πραγματικών αριθμών, ορίζουμε ως απόλυτη τιμή της διαφοράς α β το μήκος του ευθύγραμμου τμήματος ΑΒ, το οποίο λέγεται απόσταση των αριθμών α και β και συμβολίζεται με d (α, β): α β = d( α, β) Ειδικότερα, αν ως σημείο Β επιλέξουμε την αρχή Ο(0) του άξονα, έχουμε ότι d( α, O) = α 0 = α. Επομένως έχουμε τον ακόλουθο ορισμό: Απόλυτη τιμή ενός πραγματικού αριθμού α, που παριστάνεται στον άξονα των πραγματικών από το σημείο Α, ονομάζεται η απόσταση του σημείου Α από το Ο(0), συμβολίζεται με α και ορίζεται από τον τύπο: 18

8 =, >0, και α =0, αν α=0, μπορούν να συμπτυ- Επειδή οι περιπτώσεις χθούν στη μορφή α α αν α α, αν α>0 α = 0, αν α=0 α, αν α <0 α = α, αν α 0, ο παραπάνω τύπος μπορεί να γραφεί ως εξής: α α, αν α 0 = α, αν α <0 Από τον παραπάνω ορισμό προκύπτει ότι: α β, αν α> β α β = 0, αν α= β β α, αν α < β ή α β, αν α β α β = β α, αν α < β Από τον ορισμό προκύπτουν οι εξής ιδιότητες για την απόλυτη τιμή του πραγματικού αριθμού α: α 0 Η απόλυτη τιμή του α είναι μη αρνητικός αριθμός. α α Η απόλυτη τιμή του α είναι πάντα μεγαλύτερη ή ίση και του α και του α α αντίθετού του ( α). α = α Η απόλυτη τιμή ενός πραγματικού αριθμού α ισούται με την απόλυτη τιμή του αντίθετού του. ΣΧΟΛΙΟ Η κατανόηση των παραπάνω ιδιοτήτων διευκολύνεται αν στις παραπάνω, αυστηρά μαθηματικές, διατυπώσεις αναλογιστούμε την απόλυτη τιμή σαν απόσταση του αριθμού α από το

9 Ερωτήσεις εννοιολογικού περιεχομένου 1. Αν 5 =x, τότε ο x ισούται με: Α. 5 Β. 5 Γ. 5 ή 5 Δ. δεν μπορούμε να ξέρουμε την τιμή του x, αφού ο x είναι άγνωστος. Αν 5 = x, τότε ο x ισούται με: Α. 5 Β. 5 Γ. 5 ή 5 Δ. δεν μπορούμε να ξέρουμε την τιμή του x, αφού ο x είναι άγνωστος 3. Αν x = α, τότε για τον α μπορούμε να συμπεράνουμε ότι είναι: Α. θετικός αριθμός Β. ομόσημος του x Γ. μη αρνητικός αριθμός Δ. οποιοσδήποτε αριθμός 4. Αν x = α, τότε για τον x μπορούμε να συμπεράνουμε ότι είναι: Α. θετικός αριθμός Β. ομόσημος του α Γ. μη αρνητικός αριθμός Δ. οποιοσδήποτε αριθμός 5. Αν x = α, τότε για τον x μπορούμε να συμπεράνουμε ότι είναι: Α. θετικός αριθμός Β. ομόσημος του α Γ. μη αρνητικός αριθμός Δ. οποιοσδήποτε αριθμός 6. Αν x = α, τότε για τον x μπορούμε να συμπεράνουμε ότι είναι: Α. αρνητικός αριθμός Β. μικρότερος ή ίσος του μηδενός Γ. οποιοσδήποτε πραγματικός αριθμός Δ. θετικός, αφού είναι μέσα σε απόλυτο 7. Αν x = α, τότε μπορούμε να συμπεράνουμε ότι: Α. ο α είναι αρνητικός αριθμός Β. α 0 Γ. α 0 Δ. ο α είναι οποιοσδήποτε πραγματικός αριθμός 8. Αν α = α, τότε μπορούμε να συμπεράνουμε ότι: Α. ο α είναι αρνητικός αριθμός Β. α 0 Γ. α 0 Δ. ο α είναι οποιοσδήποτε πραγματικός αριθμός 184

10 9. Nα επιλέξετε σε κάθε περίπτωση ποια από τις σχέσεις x = x ή x = x θα χρησιμοποιήσετε και να συμπληρώσετε τον παρακάτω πίνακα βρίσκοντας την x : x 3,1,3 5 1,9 4,4 x x, αν x 0 Θυμηθείτε ότι x = x και x =. αν x, x <0 α, αν α Σύμφωνα με τον ορισμό της απόλυτης τιμής α = α, αν α. <0 «Αν για έναν αριθμό α γνωρίζουμε ότι α + α = 0, τότε, σύμφωνα με τον ορισμό της απόλυτης τιμής, α < 0». Είναι σωστός ο παραπάνω ισχυρισμός; 11. Έστω α <0. Τότε από τον ορισμό της απόλυτης τιμής έχουμε α = α. Επίσης α >0, δηλαδή η απόλυτη τιμή του α είναι θετικός αριθμός. α ( α) <0 ΑΦΟΥ ( + )( ) = Άρα έχουμε: 1 α ( 1) α ( α) 0 α ( α) <0 = < α<0 == α>0 α α Μπορείτε να εντοπίσετε πού είναι το λάθος στον παραπάνω συλλογισμό; Συνηθισμένα λάθη Όταν μας δίνεται η α, συμπεραίνουμε ότι ο α είναι θετικός αριθμός. Λάθος. Ο α μπορεί να είναι είτε θετικός είτε αρνητικός αριθμός είτε και μηδέν. Αυτό που ξέρουμε είναι ότι η απόλυτη τιμή είναι πάντα μη αρνητικός αριθμός. α+ β = α + β Λάθος. Η ισότητα αυτή δεν ισχύει πάντα, π.χ. για α = 5 και β = : 5 = 3 =3, ενώ 5+ =5+=7. α = α Λάθος. Ο α δεν είναι πάντα θετικός αριθμός, π.χ. για α = 3 ισχύει 3 ( ) =3=

11 α, α 0 α = α, α <0 α 0 α α α α και α α = α Ιδιότητες απολύτων Βασική Ιδιότητα Βασική Ιδιότητα Βασική Ιδιότητα Βασική Ιδιότητα = α (Ι.1) α β = α β (Ι.) α β α =, για β 0 (Ι.3) β α α α (Ι.4) α β α+ β α + β (Ι.5) Αν θ > 0, τότε x = θ x = θ ή x = θ Αν α, τότε x = α x = α ή x = α Αν θ > 0, τότε x < θ θ < x < θ Αν x 0 και ρ > 0, τότε x x 0 < ρ x 0 ρ < x < x 0 + ρ Αν θ > 0, τότε x > θ x > θ ή x < θ Αν x 0 και ρ > 0, τότε x x 0 > ρ x < x 0 ρ ή x > x 0 + ρ (Ι.6) (Ι.7) (Ι.8) (Ι.9) 186

12 Μ.1 Απαλοιφή απολύτων με χρήση του ορισμού ΜΕΘΟΔΟΛΟΓΙΑ 1 Η απαλοιφή απολύτων πραγματοποιείται κάνοντας χρήση του ορισμού της απόλυτης τιμής ( α = α, αν α 0, ή α = α, αν α < 0) και άρα πρέπει να γνωρίζουμε τα πρόσημα των παραστάσεων που βρίσκονται μέσα στο απόλυτο: [Μ.1.1] Aν η παράσταση δεν περιέχει μεταβλητές, βρίσκουμε το πρόσημο των παραστάσεων μέσα στα απόλυτα με τη βοήθεια της ισοδυναμίας: α > β α β > 0. [M.1.] Aν η παράσταση περιέχει μεν μεταβλητές αλλά δε μας δίνεται κάποια συνθήκη γι' αυτές, τότε το πρόσημο των παραστάσεων είτε θα είναι προφανές (άθροισμα θετικών αριθμών, π.χ. x + 4, ή άθροισμα αρνητικών αριθμών, π.χ. x 5), είτε θα προκύπτει μετά από στοιχειώδεις μετασχηματισμούς, π.χ. x + x 1 = (x x + 1) = (x 1), είτε θα βρίσκεται με τη βοήθεια της ιδιότητας α α και α α. [M.1.3] Aν η παράσταση περιέχει μεταβλητές αλλά μας δίνεται συνθήκη για τις μεταβλητές αυτές, τότε, κάνοντας χρήση της συνθήκης αυτής και της ισοδυναμίας α > β α β > 0, βρίσκουμε τα πρόσημα των παραστάσεων μέσα στα απόλυτα. [M.1.4] Αν η παράσταση περιέχει μεταβλητές, χωρίς όμως να δίνεται συνθήκη γι αυτές και το πρόσημο των παραστάσεων μέσα στις απόλυτες τιμές δεν είναι προφανές και δεν μπορεί να προκύψει με μετασχηματισμούς, τότε κάνουμε χρήση του ορισμού ή του πίνακα προσήμων. Εν συνεχεία, αν η παράσταση που βρίσκεται μέσα στο απόλυτο είναι θετική, απλά βγάζουμε το απόλυτο βάζοντας παρένθεση στη θέση του ( α = α), ενώ, αν η παράσταση είναι αρνητική, τότε βάζουμε πάλι παρένθεση στη θέση του απολύτου και είτε γράφουμε τον αντίθετο της παράστασης μέσα στην παρένθεση είτε αφήνουμε την παράσταση ως έχει και αλλάζουμε το πρόσημο που υπάρχει μπροστά από την παρένθεση ( α = α, αν α < 0). Η περίπτωση που η τιμή της παράστασης του απολύτου ισούται με 0 είναι τετριμμένη και προφανώς τη θέση της απόλυτης τιμής παίρνει το

13 n Λυμένα Θέματα 8.1 Να γραφούν οι παρακάτω παραστάσεις χωρίς τα απόλυτα: α. Α = 5 π 3 + π Λύση β. B = x x 4x+ 4 x x x 1x+ 19 5x [M.1.1] α. Βρίσκουμε το πρόσημο των ποσοτήτων που είναι μέσα σε απόλυτα: 5 > 5 > 5 >0, άρα 5 = 5 π >3 π 3>0, άρα π 3 = π 3 π > 5, αφού π >3= 9 > 5 π 5 >0, άρα π 5 = π 5 1< 1< 1<, άρα 1 = ( 1 ) = 1+ = 1 Άρα: Α= 5 π 3 + π ( π ) ( π ) ( ) A = A = 5 π+3+ π 5+ 1 A = π π+3 1 A = [M.1.] β. Για κάθε x ισχύει: +3 x 0 = x +3 3 x +3>0, άρα x +3 = x +3 x 4 x+4= x x + = ( x ) 0, άρα x 4 x +4 = x 4x + 4 x x x x x x x 0, άρα x x = x+ x x x x x ( x x ) = ( x x 3+3 ) +1=( x 3 ) +1>0, = = = άρα x 1 x+9 = (x 3)

14 Άρα: B = x +3 + x 4 x+4 x x x 1 x+19 5x ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) B = x +3+ x x+ x x 3 1 5x B = x +3+ x + x x x 3 1 5x B = x x + x x x 1 5x B = x x 3 4 x+ ( ) ( ) ( ) ( ) B = x x 3 x + x 3 4 x+ B =( x x+3)( x + x 3) 4 x+ B =( x 5) 4 x+ B =4x 10 4 x+ B = 8 ΣΧΟΛΙΟ Αν A = 0, τότε Α = 0 = 0. Αν A < 0, τότε Α = Α. Η τελευταία ισότητα επαληθεύεται και για Α =0. Άρα, για πρακτικούς λόγους, μπορούμε να γράψουμε κατευθείαν: Α 0 Α = Α 8. Αν 1< α <, να απλοποιηθεί η παράσταση: Γ = α+ 1 + α + α 3 + α Λύση [M.1.3] +1 1< α< = 0< α+1<3 α+1>0, άρα α+1 = α+1 + ( ) 1< α< == 3< α <0 α <0, άρα α = ( α ) = α+ + 3 ( ) 1< α< == 4< α 3< 1 α 3<0, άρα α 3 = α+3 Άρα: Γ = α+1 + α + α 3 + α Γ = α+1+ ( α+ ) + ( α+3 ) + α Γ = α+1 α+ α+3+ α Γ =6 189

15 8.3 Να γραφεί η παρακάτω παράσταση χωρίς το απόλυτο: Κ = x 1 + Λύση [Μ.1.4] Ισχύει x 1 0 x 1(και x 1< 0 x <1). Δηλαδή: αν x 1, είναι x 1 0, άρα x 1 = x 1 και Κ = x 1+ K = x+1. αν x <1, είναι x 1< 0, άρα x 1 = ( x 1) x 1 = x+1 και Κ = x+1+ K = x+3. Συνοπτικά γράφουμε: x+1, αν x 1 K = x +3, αν x <1 8.4 Να απλοποιηθεί η παράσταση: Λύση Λ = x+ 3 + x [Μ.1.4] Βρίσκουμε το πρόσημο των παραστάσεων μέσα στo απόλυτo με τη βοήθεια του πίνακα προσήμων: x +3 0 x 3 x 0 x Αυτό σημαίνει ότι: +3<0, άρα +3 = 3 Αν x (, 3 ), τότε x x x x <0, άρα x = x +. Άρα Λ = x 3 x+= x 1. x+3 0, άρα x+3 = x+3 x <0, άρα x = x. + Άρα Λ = x+3 x+=5. Αν x 3, [, ) τότε 190

16 x+3>0, άρα x+3 = x+3 Αν x +, [, ) τότε x 0, άρα x = x. Άρα Λ = x+3+ x = x+1. Συνοπτικά γράφουμε: x 1, αν x (, 3) Λ = 5, αν x [ 3, ) x +1, αν x [, + ) Παρατήρηση Στο παραπάνω λυμένο θέμα, τα άκρα των διαστημάτων επιλέχθηκαν έτσι ώστε α, α 0 να είμαστε συνεπείς με τον ορισμό α =. Σε όποιο διάστημα όμως και α, α <0 να επιλέξουμε να συμπεριλάβουμε την κάθε ρίζα, το αποτελέσμα δε θα αλλάξει. Προτεινόμενες Ασκήσεις για λύση 8.5 Να υπολογίσετε την τιμή των παρακάτω παραστάσεων: α. Α= π + π 3 β. Β = 1 π π γ. Γ =4 π + π 4 δ. Δ=3 π + π 3 ε. Ε =9 π +1+ π +4 π στ. Ζ =π 8 1+ π 4 ζ. Η =π 18+ π 1+4π η. Θ =3π 7+ + θ. Ι =1 3+ π 4+ 3 π 8.6 Να απλοποιήσετε τις παρακάτω παραστάσεις: α. Α = x x β. 4 4 B = x + x + 1 x γ. Γ = x 6 x+9 + x + x+1 δ. Δ = x +6 x +9 + x +7 x + ε. E = x x +1 x +4 x +4 στ. Z = x +4 x+4 + x x+1 x +4 ζ. H = x +1 x +1 η. Θ =3 x + x +5 x θ. I = x + 3 x 8.7 Να απλοποιήσετε τις παρακάτω παραστάσεις: α. Α= x + π + π 4 x 3 1 β. Β = x + + x + x+ 4 x + x + x + π + π 4 γ. Γ = x +3 x +1 x δ. Δ = x 4 x+4 x x+1 3 x 191

17 ε. Ε = x 4 x+5 + x +4 x+5 x +3 στ. Ζ = x x+ x x Αν x < 4, να απλοποιήσετε τις παραστάσεις: α. Α = x+3 +7 x+ x 6 x+9 x β. Β = x+ + ( x 4 )( x+4) x 8.9 Αν ισχύει 3 < x < 4, να απλοποιήσετε τις παρακάτω παραστάσεις: α. Α = 7 4 x β. Β = x+3 x+8 γ. Γ = x 5 + x+8 7 δ. Δ = 4 x x Αν 3 < λ <5, να αποδείξετε ότι η παράσταση Α=3λ 5+ λ+3+ λ+4 είναι ανεξάρτητη του λ Αν < λ <8, να αποδείξετε ότι η παράσταση Α= 3+ λ + λ+ + λ 8 είναι ανεξάρτητη του λ. 8.1 Αν < λ <0, να αποδείξετε ότι η παράσταση: Α= λ+ 3 + λ + λ+ 5 + λ +1 3 λ είναι ανεξάρτητη του λ Να αποδείξετε ότι η παράσταση: Α=3λ +3+ λ + λ λ 1 3λ 6 είναι ανεξάρτητη του λ Αν 3 α 0, να δείξετε ότι η παράσταση: Α= α α+1+ α+4 + α + α 3 α+5 είναι ανεξάρτητη του α Αν α <1< β, να αποδείξετε ότι: α. 1 α + 1 β = α β β. α + β α β = 8.16 Αν x << y, να αποδείξετε ότι: α. y +x 4= y x +4 x β. y + x = y x + y γ. y x+1 + x y 3 =3 y x Αν y <0< x <1, να αποδείξετε ότι: α. x + y = x y β. x y + 1 x = 1 y 8.18 Αν z < w <0< x < y, να αποδείξετε ότι: α. x+ y + z+ w = x z + y w β. x y + z w = x w + y z 8.19 Αν α < και 0 < β <, να αποδείξετε ότι: α. β α+ + α + β = 4 β. α+ β = α β 8.0 Αν y >1και 1< x <0, να αποδείξετε ότι: α. x + x+1 + y 1 + y = y β. x y + x+ y = y γ. x + x+1 + y 1 + y = x y + x+ y 8.1 Αν Α= λ + λ λ+1 λ+1, να αποδείξετε ότι Α 0. Για ποιες τιμές του λ ισχύει Α = 0; 8. Αν: Β = λ 6 λ+9 1+ λ 3 λ 4 λ+5 να αποδείξετε ότι Β 0. Για ποιες τιμές του λ ισχύει Β = 0; 19

18 8.3 Έστω 1< x <1, 1< y <και x x+1 x + x+1 Α =, x 1 x +1 ( y 4 y+4) Β =. y α. Να απλοποιήσετε την παράσταση Α. β. Να απλοποιήσετε την παράσταση Β. γ. Αν επιπλέον A + B <0, να υπολογίσετε την τιμή της παράστασης: Γ = x+ y 3 + x+ y 8.4 Να γράψετε χωρίς το σύμβολο της απόλυτης τιμής, για τις διάφορες τιμές του x, τις παρακάτω παραστάσεις: α. Α = x 3 + β. B = x x 8.5 Δίνεται η παράσταση: Κ = λ+ + λ 3 α. Να απλοποιηθεί η παράσταση Κ. β. Να βρεθούν οι τιμές του πραγματικού αριθμού λ, ώστε K = Δίνονται οι παραστάσεις: Α = x+ y x y+1 Β = Α 1 + Α+1 με 0 x 1και < y <3. α. Να αποδείξετε ότι η παράσταση Α είναι ανεξάρτητη του y. β. Ποια είναι η μέγιστη και ποια η ελάχιστη τιμή του Α και για ποια x η Α παίρνει αυτές τις τιμές; γ. Να απoδείξετε ότι η παράσταση Β είναι ανεξάρτητη του x. 8.8 Δίνονται οι παραστάσεις: x 1 + x +1 Α = x x + x 1 Β = +1 x x 1 για x. α. Να αποδείξετε ότι Α =. β. Να αποδείξετε ότι Β = x. γ. Ποια είναι η ελάχιστη τιμή του Β και για ποιον x παίρνει αυτή την τιμή; 8.6 Δίνονται οι παραστάσεις: K = y 3 + y+ και Λ = y 4 + y 8 για y R. α. Να γραφτούν οι Κ και Λ χωρίς το σύμβολο της απόλυτης τιμής. β. Να βρεθεί η παράσταση Μ = Κ + Λ. 8.9 Δίνονται οι παραστάσεις: 3 Α= λ +1 + λ λ 1 και Β = λλ 1 λ+ για 1 λ 1. α. Να γράψετε τις Α και Β χωρίς το σύμβολο της απόλυτης τιμής. β. Να αποδείξετε ότι Α B = AB. 193

19 8.137 Αν d ( 4 x, x+1 ) = d( x 1, 3 ), να αποδείξετε ότι η απόσταση του x από το 1 είναι ίση με Να λυθούν οι ανισώσεις: α. d ( x, 4 ) < β. d ( x, 4 ) >6 γ. d ( 3, x) 10 δ. d ( 4, 3x) 11 ε. d ( x, 3 ) > d( x, 5) στ. d ( x, 3 ) < d( x, 7) ζ. d ( x, 1) d( x, 3) d( x, 1) d( x, ) η. 1 θ. 1> 0 d( x, 7) d( x, 4) ι. 1 < d( x, 3 ) < 4 ια. d( x, 4 ) <6 ιβ. 3 < d( 3x, 1) Αν για τους πραγματικούς αριθμούς α και β ισχύει d ( α, β) > d ( β, α), να αποδείξετε ότι α < β Δίνονται οι πραγματικοί αριθμοί α, β και γ. α. Να δείξετε ότι: d ( α, β) d( α, γ) + d( γ, β) β. Αν, επιπλέον, η απόσταση των αριθμών α και β είναι 3 και η απόσταση των α και γ είναι, ποια είναι η ελάχιστη απόσταση που μπορεί να έχουν οι β και γ; Στον άξονα των πραγματικών αριθμών xx τα σημεία Α και Β αντιστοιχούν στους αριθμούς 1 και 3. Να βρεθούν οι αριθμοί x που αντιστοιχούν στα σημεία Μ του άξονα με την ιδιότητα ( ΜΑ ). ( ΜΒ ) = 8.14 Να συμπληρώσετε τον παρακάτω πίνακα όπως φαίνεται στις πρώτες γραμμές του: Απόλυτη τιμή Απόσταση Διάστημα x 3 d ( x, ) 3 [ 1, 5] x + <3 d ( x, ) < 3 ( 5, 1) x +3 4 d ( x, 3) 4 (, 7] [ 1, + ) x 6 3 x <1 x 4 >3 d ( x, ) > d ( x, 3) d ( x, 1 ) <8 d ( x, 1 ) >0 ( 4, 4) (, 1] [ 3, + ) [ 08, ] Γενικές Ασκήσεις Να απλοποιηθεί η παράσταση: x+ x 3 Α = + x+4 3x 9 για x {, 3} Να διατάξετε από τη μικρότερη στη μεγαλύτερη τις παρακάτω ποσότητες: x, x, x, x + 1, x, x 45

20 8.145 Να βρεθούν οι κοινές λύσεις των ανισώσεων: x 4 > και x 1 <1 Στη συνέχεια, να γραφεί χωρίς απόλυτα η παράσταση Β = ( 4 x)( x 3 ), αν ο πραγματικός αριθμός x είναι κοινή λύση των παραπάνω ανισώσεων Να απλοποιηθεί η παράσταση 3 Γ =7x x x+7 για εκείνες τις τιμές του x για τις οποίες x x 1 και x 4 > Να λυθεί η εξίσωση: x+4 + x +4 x+4 + ( x+)( x 3 ) + + x+ x + x+7 =0 ( )( ) Αν η εξίσωση x 1 = λ, όπου λ, έχει δύο ετερόσημες λύσεις, τότε να δείξετε ότι λ 1+. (, ) Να βρεθούν τα x και y σε κάθε περίπτωση για τα οποία ισχύει ότι: α. x + x y =0 β. xy = x γ. xy = x Δίνεται η παράσταση: x y z A = + + x y z * όπου x, y, z. Να δείξετε ότι: α. Αν xyz >0, τότε 1 Α 3. β. Αν xyz <0, τότε 3 Α 1. γ. Αν x+ y+ z =0, τότε 1 Α 1. δ. Ισχύει το αντίστροφο του ερωτήματος (γ); Να βρεθούν οι πραγματικοί αριθμοί x, y για τους οποίους: y 10 y+ 5 + x y+ 7 = Να απλοποιηθεί η παράσταση: Α= α α για 1< α < Αν α πραγματικός αριθμός, να δείξετε ότι: α +4 α+5 3= α α +6α Να βρεθούν οι τιμές του x για τις οποίες αληθεύει η παρακάτω ανίσωση: x x Έστω α, β. Να βρεθεί το διάστημα στο οποίο παίρνει τιμές ο πραγματικός αριθμός x, αν ισχύει: β α > β x α x Για ποιες τιμές των α και β ισχύει η ισότητα α+ β = α + β ; Να βρεθούν οι τιμές των πραγματικών αριθμών α και β για τους οποίους: α. α β = α+ β β. α β = α + β γ. Γνωρίζοντας ότι οι αριθμοί x, y είναι ετερόσημοι και κάνοντας χρήση των (α) και x y x y (β), να δείξετε ότι + =. x+ y x + y Έστω οι πραγματικοί αριθμοί α, β. α. Να αποδείξετε ότι α β α + β. β. Πότε (για ποιες τιμές των α και β) ισχύει η ισότητα; 46

21 γ. Αν γνωρίζετε ότι αβ >0 και βγ <0, να δείξετε ότι: α β α γ =0 α β α + γ Έστω οι πραγματικοί αριθμοί α και β. Αν γνωρίζετε ότι αβ <0 και α+ β α β + α β ( α + β ) =50, να αποδείξετε ότι υπάρχει ορθογώνιο τρίγωνο με μήκη πλευρών α, β και Να λυθούν οι παρακάτω εξισώσεις: α. ( 5 x ) = ( x 1) 0101 β. ( 5 x ) = ( x 1) ν γ. ( 5 x ) = ( x 1 ) ν για τις διάφορες τιμές * του ν Να απλοποιηθεί η παράσταση: x + x x + x K = 7 3 x + x x Έστω x, y και x 1, y 1. Για τις διάφορες τιμές των x, y να απλοποιηθεί η x 1 y 1 παράσταση Α = + x 1 y Για τους πραγματικούς αριθμούς α, β και γ δίνεται η σχέση β < α < γ. Να δείξετε ότι α < ( αγ β ) Δίνονται οι πραγματικοί αριθμοί x, y και z. Αν ισχύει η σχέση 3 z < x <4 y, 1 να αποδείξετε ότι 3z 4 y < x. 3 * Αν για τους α, β ισχύει η σχέση =, να δείξετε ότι: α β 1+ α 1+ β α. α, β ομόσημοι β. α = β Αν αβ+ βα =, να αποδείξετε ότι α, β αντίστροφοι πραγματικοί αριθμοί Δίνονται οι θετικοί αριθμοί α, β, γ, δ. α β γ Αν ισχύει = = = λ, να δείξετε ότι β γ δ α δ 3 β γ Να λυθούν οι παρακάτω εξισώσεις: α. x = λ +1 β. x 3 x+1 =1 γ. x 9 + x 3 x =0 δ. x 7 x+11 =1 ε. x+ x 4 = 3x Αν x <, να λυθεί η εξίσωση: x +4 + x x 5 = Αν x < 3, να λυθεί η εξίσωση: x 3 4 x + x 6 = Να αποδείξετε ότι: α β = α + β αβ α. ( ) β. 9 x +1 6 x α+3 β +8 α β α + β = 3 α+ β γ. ( )( ) δ. Αν x+3 = x +3, τότε x 0. ε. Αν α β = α+ β, τότε α, β ετερόσημοι. στ. Αν 3 α+ β = 3 α + β, τότε α, β ομόσημοι. 47

22 4ο Κριτήριο Αξιολόγησης Απόλυτη τιμή πραγματικού αριθμού Προτεινόμενη διάρκεια: 1 διδακτική ώρα Θέμα Α 1. i. Να διατυπώσετε τον ορισμό της απόλυτης τιμής ενός πραγματικού αριθμού α. Πώς εκφράζεται η απόσταση δύο πραγματικών αριθμών α και β μέσω της απόλυτης τιμής; ii. Τι ονομάζουμε κέντρο και τι ακτίνα του διαστήματος ( α, β ), όπου α και β πραγματικοί αριθμοί;. i. Να αποδείξετε ότι για α, β R ισχύει α+ β α + β. ii. Πότε ισχύει η ισότητα στη σχέση που αποδείξατε στο (i); 3. Να χαρακτηρίσετε ως σωστή (Σ) ή λάθος (Λ) καθεμία από τις παρακάτω προτάσεις: i. α = α για κάθε α R. ii. Για α, β R ισχύει η ισοδυναμία αβ = αβ α, β ομόσημοι. iii. Για x, y R ισχύει d( x, y) = x y. iv. x + y + z =0 x = y = z =0. Θέμα Β Δίνεται η παράσταση Κ = x +1 +, όπου x R. 1. Να γράψετε την παράσταση Κ χωρίς απόλυτο.. Να βρείτε την τιμή του Κ, αν η απόσταση του x από το είναι ίση με 4. Θέμα Γ β R ισχύει η σχέση ( ) * Για τους α και α β = α + β. 1. Να αποδείξετε ότι οι α και β είναι ετερόσημοι. α β α β. Αν επιπλέον + + =1, να αποδείξετε ότι ο α είναι θετικός και ο β α β α β αρνητικός αριθμός. 50

23 4ο Κριτήριο Αξιολόγησης Θέμα Δ Δίνονται οι ακόλουθες παραστάσεις: Α = x 4+ x +4 x+4 x + x+3, x R 1 B = x+3 3, x R 1. Να αποδείξετε ότι Α =.. Να βρείτε τις τιμές του x, ώστε Α Β Α, και να εκφράσετε το αποτέλεσμα γεωμετρικά. 51

Από το Γυμνάσιο στο Λύκειο Δειγματικός χώρος Ενδεχόμενα Εύρεση δειγματικού χώρου... 46

Από το Γυμνάσιο στο Λύκειο Δειγματικός χώρος Ενδεχόμενα Εύρεση δειγματικού χώρου... 46 ΠEΡΙΕΧΟΜΕΝΑ Από το Γυμνάσιο στο Λύκειο................................................ 7 1. Το Λεξιλόγιο της Λογικής.............................................. 11 2. Σύνολα..............................................................

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. 118 ερωτήσεις θεωρίας με απάντηση 324 416 ασκήσεις για λύση. 20 συνδυαστικά θέματα εξετάσεων

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. 118 ερωτήσεις θεωρίας με απάντηση 324 416 ασκήσεις για λύση. 20 συνδυαστικά θέματα εξετάσεων ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ 118 ερωτήσεις θεωρίας με απάντηση 34 416 ασκήσεις για λύση ερωτήσεις κατανόησης λυμένα παραδείγματα 0 συνδυαστικά θέματα εξετάσεων Π Ε Ρ Ι Ε Χ Ο Μ Ε Ν Α Εισαγωγική ενότητα Το λεξιλόγιο

Διαβάστε περισσότερα

ΑΝΙΣΩΣΕΙΣ. 3.1 ΑΝΙΣΩΣΕΙΣ 1 ου ΒΑΘΜΟΥ. Οι ανισώσεις: αx + β > 0 και αx + β < 0

ΑΝΙΣΩΣΕΙΣ. 3.1 ΑΝΙΣΩΣΕΙΣ 1 ου ΒΑΘΜΟΥ. Οι ανισώσεις: αx + β > 0 και αx + β < 0 3 ΝΙΣΩΣΕΙΣ 31 ΝΙΣΩΣΕΙΣ 1 ου ΒΘΜΟΥ Οι ανισώσεις: α + β > 0 και α + β < 0 Γνωρίσαμε στο Γυμνάσιο τη διαδικασία επίλυσης μιας ανίσωσης της μορφής α β 0 ή της μορφής α β 0, με α και β συγκεκριμένους αριθμούς

Διαβάστε περισσότερα

1. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν γράφοντας την ένδειξη Σωστό ή Λάθος και να δικαιολογήσετε την απάντησή σας.

1. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν γράφοντας την ένδειξη Σωστό ή Λάθος και να δικαιολογήσετε την απάντησή σας. Κεφάλαιο Πραγματικοί αριθμοί. Οι πράξεις και οι ιδιότητές τους Κατανόηση εννοιών - Θεωρία. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν γράφοντας την ένδειξη Σωστό ή Λάθος και να δικαιολογήσετε την απάντησή

Διαβάστε περισσότερα

1.2 Εξισώσεις 1 ου Βαθμού

1.2 Εξισώσεις 1 ου Βαθμού 1.2 Εξισώσεις 1 ου Βαθμού Διδακτικοί Στόχοι: Θα μάθουμε: Να κατανοούμε την έννοια της εξίσωσης και τη σχετική ορολογία. Να επιλύουμε εξισώσεις πρώτου βαθμού με έναν άγνωστο. Να διακρίνουμε πότε μια εξίσωση

Διαβάστε περισσότερα

ΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 2014 Θ ΕΩΡΙA 10

ΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 2014 Θ ΕΩΡΙA 10 ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ ΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 04 Θ ΕΩΡΙA 0 ΘΕΜΑ A Α Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στην κόλλα σας δίπλα στο γράμμα που αντιστοιχεί σε κάθε πρόταση τη

Διαβάστε περισσότερα

Πολυωνυμικές εξισώσεις και ανισώσεις Εξισώσεις και ανισώσεις που ανάγονται σε πολυωνυμικές

Πολυωνυμικές εξισώσεις και ανισώσεις Εξισώσεις και ανισώσεις που ανάγονται σε πολυωνυμικές 0 Πολυωνυμικές εξισώσεις και ανισώσεις Εξισώσεις και ανισώσεις που ανάγονται σε πολυωνυμικές Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Για να λύσουμε μια πολυωνυμική εξίσωση P(x) 0 (ή μια πολυωνυμική ανίσωση P(x)

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2 Ο ΕΞΙΣΩΣΕΙΣ-ΑΝΙΣΩΣΕΙΣ

ΚΕΦΑΛΑΙΟ 2 Ο ΕΞΙΣΩΣΕΙΣ-ΑΝΙΣΩΣΕΙΣ ΚΕΦΑΛΑΙΟ Ο ΕΞΙΣΩΣΕΙΣ-ΑΝΙΣΩΣΕΙΣ. ΕΞΙΣΩΣΕΙΣ ΟΥ ΒΑΘΜΟΥ.3 ΠΡΟΒΛΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ ΟΥ ΒΑΘΜΟΥ Α. Επίλυση εξισώσεων δευτέρου βαθμού με ανάλυση σε γινόμενο παραγόντων 1. ΕΡΩΤΗΣΗ Ποια εξίσωση λέγεται εξίσωση ου βαθμού

Διαβάστε περισσότερα

Α. ΔΙΑΤΑΞΗ ΠΡΑΓΜΑΤΙΚΩΝ ΑΡΙΘΜΩΝ

Α. ΔΙΑΤΑΞΗ ΠΡΑΓΜΑΤΙΚΩΝ ΑΡΙΘΜΩΝ ΜΕΡΟΣ Α.5 ΑΝΙΣΟΤΗΤΕΣ-ΑΝΙΣΩΣΕΙΣ ΜΕ ΕΝΑΝ ΑΓΝΩΣΤΟ 9. 5 ΑΝΙΣΟΤΗΤΕΣ- ΑΝΙΣΩΣΕΙΣ ΜΕ ΕΝΑΝ ΑΓΝΩΣΤΟ Α. ΔΙΑΤΑΞΗ ΠΡΑΓΜΑΤΙΚΩΝ ΑΡΙΘΜΩΝ ΟΡΙΣΜΟΙ Εάν έχουμε δύο πραγματικούς αριθμούς α και β τότε λέμε ότι ο α είναι μεγαλύτερος

Διαβάστε περισσότερα

2 Ο ΓΕΛ ΣΤΑΥΡΟΥΠΟΛΗΣ ΣΧΟΛΙΚΟ ΕΤΟΣ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΧΑΛΑΤΖΙΑΝ ΠΑΥΛΟΣ

2 Ο ΓΕΛ ΣΤΑΥΡΟΥΠΟΛΗΣ ΣΧΟΛΙΚΟ ΕΤΟΣ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΧΑΛΑΤΖΙΑΝ ΠΑΥΛΟΣ Ο ΓΕΛ ΣΤΑΥΡΟΥΠΟΛΗΣ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ ΣΧΟΛΙΚΟ ΕΤΟΣ 016-017 ΕΠΙΜΕΛΕΙΑ : ΧΑΛΑΤΖΙΑΝ ΠΑΥΛΟΣ ΟΙ ΠΡΑΞΕΙΣ ΚΑΙ ΟΙ Ι ΙΟΤΗΤΕΣ ΤΟΥΣ ΡΗΤΟΙ λέγονται οι αριθµοί : ΟΙ ΠΕΡΙΟ ΙΚΟΙ αριθµοί είναι :. ΑΡΡΗΤΟΙ

Διαβάστε περισσότερα

1 ΔΙΑΓΩΝΙΣΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΛΥΚΕΙΩΝ ΤΗΣ ΡΟΔΟΥ ΤΗΣ Α ΤΑΞΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ ΔΙΑΓΩΝΙΣΜΑ 1 Ο

1 ΔΙΑΓΩΝΙΣΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΛΥΚΕΙΩΝ ΤΗΣ ΡΟΔΟΥ ΤΗΣ Α ΤΑΞΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ ΔΙΑΓΩΝΙΣΜΑ 1 Ο 1 ΔΙΑΓΩΝΙΣΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΛΥΚΕΙΩΝ ΤΗΣ ΡΟΔΟΥ ΤΗΣ Α ΤΑΞΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ ΔΙΑΓΩΝΙΣΜΑ 1 Ο ΘΕΜΑ 1 ο α) Αν χ 1, χ ρίζες της εξίσωσης αχ +βχ+γ=0, 0 να δείξετε ότι S 1 και P 1 Μον. 10 β) Έστω η συνάρτηση

Διαβάστε περισσότερα

Επίλυση εξισώσεων δευτέρου βαθμού με ανάλυση σε γινόμενο παραγόντων

Επίλυση εξισώσεων δευτέρου βαθμού με ανάλυση σε γινόμενο παραγόντων ΜΕΡΟΣ Α. ΕΞΙΣΩΣΕΙΣ ΔΕΥΤΕΡΟΥ ΒΑΘΜΟΥ 69. ΕΞΙΣΩΣΕΙΣ ΔΕΥΤΕΡΟΥ ΒΑΘΜΟΥ Ορισμός Ονομάζουμε εξίσωση ου βαθμού με έναν άγνωστο κάθε ισότητα που έχει την μορφή α +β+ γ = 0 με α 0 (ο είναι ο άγνωστος της εξίσωσης,

Διαβάστε περισσότερα

3.1 ΕΞΙΣΩΣΕΙΣ 1 ΟΥ ΒΑΘΜΟΥ

3.1 ΕΞΙΣΩΣΕΙΣ 1 ΟΥ ΒΑΘΜΟΥ ΚΕΦΑΛΑΙΟ : ΕΞΙΣΩΣΕΙΣ. ΕΞΙΣΩΣΕΙΣ ΟΥ ΒΑΘΜΟΥ ΜΕΘΟΔΟΛΟΓΙΑ : ΑΠΛΗ ΜΟΡΦΗ Κάθε εξίσωση που έχει ή μπορεί να πάρει τη μορφή : α+β=0 ή α=-β () λέγεται εξίσωση ου βαθμού (ή πρωτοβάθμια εξίσωση), με άγνωστο το, ενώ

Διαβάστε περισσότερα

2.1 ΠΡΑΞΕΙΣ ΚΑΙ ΟΙ ΙΔΙΟΤΗΤΕΣ ΤΟΥΣ

2.1 ΠΡΑΞΕΙΣ ΚΑΙ ΟΙ ΙΔΙΟΤΗΤΕΣ ΤΟΥΣ ΚΕΦΑΛΑΙΟ : ΟΙ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ. ΠΡΑΞΕΙΣ ΚΑΙ ΟΙ ΙΔΙΟΤΗΤΕΣ ΤΟΥΣ Ρητός ονομάζεται κάθε αριθμός που έχει ή μπορεί να πάρει τη μορφή κλάσματος, όπου, είναι ακέραιοι με 0. Ρητοί αριθμοί : Q /, 0. Έτσι π.χ.

Διαβάστε περισσότερα

Μ Α Θ Η Μ Α Τ Ι Κ Α Γ ΓΥΜΝΑΣΙΟΥ ΖΕΡΒΟΣ ΜΑΝΟΛΗΣ

Μ Α Θ Η Μ Α Τ Ι Κ Α Γ ΓΥΜΝΑΣΙΟΥ ΖΕΡΒΟΣ ΜΑΝΟΛΗΣ Μ Α Θ Η Μ Α Τ Ι Κ Α Γ ΓΥΜΝΑΣΙΟΥ ΖΕΡΒΟΣ ΜΑΝΟΛΗΣ 1 ΜΕΡΟΣ Α ΚEΦΑΛΑΙΟ 1 Ο ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ 1.1 ΠΡΑΞΕΙΣ ΜΕ ΠΡΑΓΜΑΤΙΚΟΥΣ ΑΡΙΘΜΟΥΣ Α. Οι πραγματικοί αριθμοί και οι πράξεις τους 1. ΕΡΩΤΗΣΗ Τι ονομάζουμε

Διαβάστε περισσότερα

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος ΜEd: «Σπουδές στην εκπαίδευση» Email : stvrentzou@gmail.com www.ma8eno.gr

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος ΜEd: «Σπουδές στην εκπαίδευση» Email : stvrentzou@gmail.com www.ma8eno.gr 1 Πρόσημο τριωνύμου - λύση ανίσωσης ου βαθμού Έστω το τριώνυμο f(x) = x - 4x - 1. Θέλουμε να εξετάσουμε για ποιες τιμές της μεταβλητής x το τριώνυμο f(x) γίνεται θετικό, για ποιες τιμές του x γίνεται αρνητικό,

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. 8. Πότε το γινόμενο δύο ή περισσοτέρων αριθμών παραγόντων είναι ίσο με το μηδέν ;

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. 8. Πότε το γινόμενο δύο ή περισσοτέρων αριθμών παραγόντων είναι ίσο με το μηδέν ; ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ ο : ( ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ) ΠΑΡΑΤΗΡΗΣΗ : Το κεφάλαιο αυτό περιέχει πολλά θέματα που είναι επανάληψη εννοιών που διδάχθηκαν στο Γυμνάσιο γι αυτό σ αυτές δεν θα επεκταθώ αναλυτικά

Διαβάστε περισσότερα

( ) ( ) Τοα R σημαίνει ότι οι συντελεστές δεν περιέχουν την μεταβλητή x. αντικ σταση στο που = α. [ ο αριθµ ός πουτο µηδεν ίζει

( ) ( ) Τοα R σημαίνει ότι οι συντελεστές δεν περιέχουν την μεταβλητή x. αντικ σταση στο που = α. [ ο αριθµ ός πουτο µηδεν ίζει μέρος πρώτο v v 1 v 1 Γενική μορφή πολυωνύμου: ( ) 1 1 Όροι του ( ) v v v P = a v + av 1 + av +... + a + a 1 + a, ν Ν, α ν R Τοα R σημαίνει ότι οι συντελεστές δεν περιέχουν την μεταβλητή. P : a, a, a,...,

Διαβάστε περισσότερα

Επαναληπτικό Διαγώνισμα Άλγεβρας Α Λυκείου

Επαναληπτικό Διαγώνισμα Άλγεβρας Α Λυκείου Επαναληπτικό Διαγώνισμα Άλγεβρας Α Λυκείου Θέμα Α. Αν x, x οι ρίζες της δευτεροβάθμιας εξίσωσης αx +βx+γ=, α να αποδείξετε ότι S P. (6 μονάδες) Β. Ελέγξατε αν κάθε μία από τις παρακάτω σχέσεις είναι σωστή

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ. Επιμέλεια: Γ. Π. Βαξεβάνης (Γ. Π. Β.

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ. Επιμέλεια: Γ. Π. Βαξεβάνης (Γ. Π. Β. ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ Γ. Π. Β. ΦΡΟΝΤΙΣΤΗΡΙΑΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ Επιμέλεια: Γ. Π. Βαξεβάνης (Γ. Π. Β.) (Μαθηματικός) ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ

Διαβάστε περισσότερα

αριθμούς Βασικές ασκήσεις Βασική θεωρία iii) φυσικοί; ii) ακέραιοι; iii) ρητοί;

αριθμούς Βασικές ασκήσεις Βασική θεωρία iii) φυσικοί; ii) ακέραιοι; iii) ρητοί; Πράξεις με πραγματικούς αριθμούς Βασικές ασκήσεις Βασική θεωρία Ρητοί και άρρητοι αριθμοί. α) Ποιοι αριθμοί ονομάζονται: iii) φυσικοί; ii) ακέραιοι; iii) ρητοί; iv) άρρητοι; v) πραγματικοί; β) Να βρείτε

Διαβάστε περισσότερα

ςεδς ΤΕΤΡΑΔΙΟ ΕΠΑΝΑΛΗΨΗΣ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΘΕΜΑΤΑ ΓΙΑ ΕΞΕΤΑΣΕΙΣ ΕΠΙΜΕΛΕΙΑ Βαγγέλης Βαγγέλης Νικολακάκης Μαθηματικός

ςεδς ΤΕΤΡΑΔΙΟ ΕΠΑΝΑΛΗΨΗΣ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΘΕΜΑΤΑ ΓΙΑ ΕΞΕΤΑΣΕΙΣ ΕΠΙΜΕΛΕΙΑ Βαγγέλης Βαγγέλης Νικολακάκης Μαθηματικός 01 ςεδς ΤΕΤΡΑΔΙΟ ΕΠΑΝΑΛΗΨΗΣ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΘΕΜΑΤΑ ΙΑ ΕΞΕΤΑΣΕΙΣ Βαγγέλης ΕΠΙΜΕΛΕΙΑ Βαγγέλης Νικολακάκης Μαθηματικός ΣΗΜΕΙΩΜΑ Το παραπάνω φυλλάδιο φτιάχτηκε για να προσφέρει λίγη βοήθεια κυρίως στους

Διαβάστε περισσότερα

Τάξη A Μάθημα: Άλγεβρα

Τάξη A Μάθημα: Άλγεβρα Τάξη A Μάθημα: Άλγεβρα Ερωτήσεις Θεωρίας Θέματα Εξετάσεων Επαναληπτικά Θέματα Επαναληπτικά Διαγωνίσματα Περιεχόμενα Α. Θεωρία - Αποδείξεις.. Σελ. Β. Θεωρία-Ορισμοί. Σελ.16 Γ. Ερωτήσεις Σωστού Λάθους...

Διαβάστε περισσότερα

Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα

Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7, α) Να αιτιολογήσετε γιατί η (α ν ) είναι αριθμητική πρόοδος και να βρείτε τον εκατοστό

Διαβάστε περισσότερα

Εισαγωγή Το σύνολο αναφοράς και οι περιορισμοί

Εισαγωγή Το σύνολο αναφοράς και οι περιορισμοί ΕΞΙΣΩΣΕΙΣ ΚΑΙ ΑΝΙΣΩΣΕΙΣ ΠΟΥ ΑΝΑΓΟΝΤΑΙ ΣΕ ΠΟΛΥΟΝΥΜΙΚΕΣ Εισαγωγή Το σύνολο αναφοράς και οι περιορισμοί Όταν έχουμε μία εξίσωση που περιέχει παρονομαστές ή ρίζες, πρέπει να βάζουμε περιορισμούς. Το νόημα

Διαβάστε περισσότερα

ΓΥΜΝΑΣΙΟ ΚΑΣΤΕΛΛΑΝΩΝ ΜΕΣΗΣ ΑΛΓΕΒΡΑ

ΓΥΜΝΑΣΙΟ ΚΑΣΤΕΛΛΑΝΩΝ ΜΕΣΗΣ ΑΛΓΕΒΡΑ ΑΛΓΕΒΡΑ ΠΡΟΑΠΑΙΤΟΥΜΕΝΑ ΑΠΟ Α ΓΥΜΝΑΣΙΟΥ Ομόσημοι Ετερόσημοι αριθμοί Αντίθετοι Αντίστροφοι αριθμοί Πρόσθεση ομόσημων και ετερόσημων ρητών αριθμών Απαλοιφή παρενθέσεων Πολλαπλασιασμός και Διαίρεση ρητών αριθμών

Διαβάστε περισσότερα

Μαθηματικά Γ Γυμνασίου

Μαθηματικά Γ Γυμνασίου Α λ γ ε β ρ ι κ έ ς π α ρ α σ τ ά σ ε ι ς 1.1 Πράξεις με πραγματικούς αριθμούς (επαναλήψεις συμπληρώσεις) A. Οι πραγματικοί αριθμοί και οι πράξεις τους Διδακτικοί στόχοι Θυμάμαι ποιοι αριθμοί λέγονται

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1ο: ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΝΟΤΗΤΑ 2: ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ - ΙΔΙΟΤΗΤΕΣ ΤΟΥ ΜΕΤΡΟΥ [Κεφ. 2.3: Μέτρο Μιγαδικού Αριθμού σχολικού βιβλίου].

ΚΕΦΑΛΑΙΟ 1ο: ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΝΟΤΗΤΑ 2: ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ - ΙΔΙΟΤΗΤΕΣ ΤΟΥ ΜΕΤΡΟΥ [Κεφ. 2.3: Μέτρο Μιγαδικού Αριθμού σχολικού βιβλίου]. ΚΕΦΑΛΑΙΟ ο: ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΝΟΤΗΤΑ : ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ - ΙΔΙΟΤΗΤΕΣ ΤΟΥ ΜΕΤΡΟΥ [Κεφ..3: Μέτρο Μιγαδικού Αριθμού σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β Παράδειγμα. Να βρείτε το μέτρο των μιγαδικών

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ

ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ Ε.1 I. 1. α 2 = 9 α = 3 ψ p: α 2 = 9, q: α = 3 Σύνολο αλήθειας της p: Α = {-3,3}, Σύνολο αλήθειας της q: B = {3} A B 2. α 2 = α α = 1 ψ p: α 2 = α, q: α = 1 Σύνολο

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4 ο. Πίνακας διερεύνησης της εξίσωσης Εξίσωση: αx 2 +βx+γ=0 (α 0) (Ε) Έχει ΥΟ ρίζες άνισες που δίνονται από τους τύπους x 1,2 =

ΚΕΦΑΛΑΙΟ 4 ο. Πίνακας διερεύνησης της εξίσωσης Εξίσωση: αx 2 +βx+γ=0 (α 0) (Ε) Έχει ΥΟ ρίζες άνισες που δίνονται από τους τύπους x 1,2 = ΕΞΙΩΕΙ-ΑΝΙΩΕΙ ου ΒΑΘΜΟΥ - 38 - ΚΕΦΑΑΙΟ 4 ΚΕΦΑΑΙΟ 4 ο Εξισώσεις - Ανισώσεις β βαθµού 5.1. Μορφή και διερεύνηση της εξίσωσης β βαθµού Άθροισµα και γινόµενο των ριζών της Κάθε εξίσωση β βαθµού πριν τη λύσουµε,

Διαβάστε περισσότερα

4.1 ΑΝΙΣΩΣΕΙΣ 1 ΟΥ ΒΑΘΜΟΥ

4.1 ΑΝΙΣΩΣΕΙΣ 1 ΟΥ ΒΑΘΜΟΥ 4.1 ΑΝΙΣΩΣΕΙΣ 1 ΟΥ ΒΑΘΜΟΥ ΜΕΘΟΔΟΛΟΓΙΑ 1 : ΑΠΛΗ ΜΟΡΦΗ Για να λύσω μια ανίσωση της μορφής : 0 ή 0 1 ος τρόπος : Λειτουργώ όπως και στις εξισώσεις πρώτου βαθμού, δηλαδή χωρίζω γνωστούς από αγνώστους, και

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012. Ηµεροµηνία: Κυριακή 1 Απριλίου 2012 ΕΚΦΩΝΗΣΕΙΣ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012. Ηµεροµηνία: Κυριακή 1 Απριλίου 2012 ΕΚΦΩΝΗΣΕΙΣ ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 0 Ε_3.ΜλΑ(ε) ΤΑΞΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α A.. Α.. Α.3. ΘΕΜΑ Β Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΑΛΓΕΒΡΑ Ηµεροµηνία: Κυριακή Απριλίου

Διαβάστε περισσότερα

εξισώσεις-ανισώσεις Μαθηματικά α λυκείου Φροντιστήρια Μ.Ε. ΠΑΙΔΕΙΑ σύνολο) στα Μαθηματικά, τη Φυσική αλλά και σε πολλές επιστήμες

εξισώσεις-ανισώσεις Μαθηματικά α λυκείου Φροντιστήρια Μ.Ε. ΠΑΙΔΕΙΑ σύνολο) στα Μαθηματικά, τη Φυσική αλλά και σε πολλές επιστήμες Με τον διεθνή όρο φράκταλ (fractal, ελλ. μορφόκλασμα ή μορφοκλασματικό σύνολο) στα Μαθηματικά, τη Φυσική αλλά και σε πολλές επιστήμες ονομάζεται ένα γεωμετρικό σχήμα που επαναλαμβάνεται αυτούσιο σε άπειρο

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ i ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ: ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΝΙΚΟΣ ΑΛΕΞΑΝΔΡΗΣ ΠΤΥΧΙΟΥΧΟΣ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΑΘΗΝΩΝ (ΕΚΠΑ)

Διαβάστε περισσότερα

Φ1: ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ

Φ1: ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ Φ: ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ: ΓΙΑΝΝΗΣ ΧΡΑΣ 0-0 ΑΛΓΕΒΡΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΠΙΘΑΝΟΤΗΤΩΝ Α ΛΥΚΕΙΟΥ ΘΕΜΑ Α - ΘΕΩΡΙΑ - ΣΩΣΤΟ-ΛΑΘΟΣ - ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ - ΑΝΤΙΣΤΟΙΧΗΣΗΣ - ΠΑΡΑΤΗΡΗΣΕΙΣ-ΜΕΘΟΔΟΛΟΓΙΑ ΘΕΜΑ Β - ΑΣΚΗΣΕΙΣ

Διαβάστε περισσότερα

ΘΕΜΑ 2. Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7,

ΘΕΜΑ 2. Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7, Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7, α) Να αιτιολογήσετε γιατί η (α ν ) είναι αριθμητική πρόοδος και να βρείτε τον εκατοστό όρο της. (Μονάδες 15) β) Να αποδείξετε ότι

Διαβάστε περισσότερα

ΓΕΝΙΚΟ ΛΥΚΕΙΟ Λ. ΑΙΔΗΨΟΥ ΣΧΟΛ. ΕΤΟΣ ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ ΙΟΥΝΙΟΥ ΑΛΓΕΒΡΑ Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ

ΓΕΝΙΚΟ ΛΥΚΕΙΟ Λ. ΑΙΔΗΨΟΥ ΣΧΟΛ. ΕΤΟΣ ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ ΙΟΥΝΙΟΥ ΑΛΓΕΒΡΑ Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΓΕΝΙΚΟ ΛΥΚΕΙΟ Λ. ΑΙΔΗΨΟΥ ΣΧΟΛ. ΕΤΟΣ 01-013 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ ΙΟΥΝΙΟΥ ΑΛΓΕΒΡΑ Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Θέμα 1 ο Α. Έστω a ένας πραγματικός αριθμός. Να δώσετε τον ορισμό της απόλυτης

Διαβάστε περισσότερα

ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ

ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΕΥΡΙΠΙΔΟΥ 80 ΝΙΚΑΙΑ ΝΕΑΠΟΛΗ ΤΗΛΕΦΩΝΟ 0965897 ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ ΒΡΟΥΤΣΗ ΕΥΑΓΓΕΛΙΑ ΜΠΟΥΡΝΟΥΤΣΟΥ ΚΩΝ/ΝΑ ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ Η έννοια του μιγαδικού

Διαβάστε περισσότερα

Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. Θέμα 2 ο (150)

Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. Θέμα 2 ο (150) Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ Θέμα ο (150) -- Τράπεζα θεμάτων Άλγεβρας Α Λυκείου Φεργαδιώτης Αθανάσιος -3- Τράπεζα θεμάτων Άλγεβρας Α Λυκείου Φεργαδιώτης Αθανάσιος ΚΕΦΑΛΑΙΟ

Διαβάστε περισσότερα

Πολυωνυμική εξίσωση βαθμού ν ονομάζεται κάθε εξίσωση της μορφής α ν x ν +α ν-1 x ν α 1 x+α 0 =0,με α 0,α 1,...

Πολυωνυμική εξίσωση βαθμού ν ονομάζεται κάθε εξίσωση της μορφής α ν x ν +α ν-1 x ν α 1 x+α 0 =0,με α 0,α 1,... 3 0 ΛΥΚΕΙΟ ΚΕΡΑΤΣΙΝΙΟΥ Λ. ΒΟΥΛΓΑΡΗ ΜΑΘΗΜΑΤΙΚΟΣ ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΕΞΙΣΩΣΕΙΣ ΠΟΥ ΑΝΑΓΟΝΤΑΙ ΣΕ ΠΟΛΥΩΝΥΜΙΚΕΣ Πολυωνυμική εξίσωση βαθμού ν ονομάζεται κάθε εξίσωση της μορφής α ν x ν +α ν-1 x ν-1 +...+α

Διαβάστε περισσότερα

Ρητοί αριθμοί είναι αυτοί που έχουν (ή μπορεί να πάρουν) κλασματική μορφή,

Ρητοί αριθμοί είναι αυτοί που έχουν (ή μπορεί να πάρουν) κλασματική μορφή, ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ.1 ΠΡΑΞΕΙΣ ΚΑΙ ΙΔΙΟΤΗΤΕΣ Οι αριθμοί 0,1,,,4, είναι οι Φυσικοί αριθμοί. Οι Φυσικοί αριθμοί μαζί με τους αντίθετούς τους αποτελούν τους Ακέραιους αριθμούς. Δηλαδή ακέραιοι είναι οι αριθμοί,-,-,-1,0,1,,,

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΑΠΟ ΤΗΝ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ

ΘΕΜΑΤΑ ΑΠΟ ΤΗΝ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ 3. Δίνεται ο πίνακας: 3 3 3 ΠΙΘΑΝΟΤΗΤΕΣ ΘΕΜΑ ο. Ένα κουτί περιέχει άσπρες, μαύρες, κόκκινες και πράσινες μπάλες. Οι άσπρες είναι 5, οι μαύρες είναι 9, ενώ οι κόκκινες και οι πράσινες μαζί είναι 6. Επιλέγουμε

Διαβάστε περισσότερα

4.2 ΑΝΙΣΩΣΕΙΣ 2 ου ΒΑΘΜΟΥ Ασκήσεις σχολικού βιβλίου σελίδας 112 114

4.2 ΑΝΙΣΩΣΕΙΣ 2 ου ΒΑΘΜΟΥ Ασκήσεις σχολικού βιβλίου σελίδας 112 114 1. ΑΝΙΣΩΣΕΙΣ ου ΒΑΘΜΟΥ Ασκήσεις σχολικού βιβλίου σελίδας 11 11 A Ομάδας 1. Να μετατρέψετε σε γινόμενα παραγόντων τα τριώνυμα: x 3x + x 3x Δ ( 3). 1. 9 8 1 > 0 Ρίζες: x Άρα ( 3) 1.1 3 1 3 1 ή 31 x 3x +

Διαβάστε περισσότερα

Κ Ε Φ Α Λ Α Ι Ο 2 ο : Ο ι Π ρ α γ μ α τ ι κ ο ί Α ρ ι θ μ ο ί. 2.1 Οι Πράξεις και οι Ιδιότητές τους. 2.2 Διάταξη Πραγματικών Αριθμών

Κ Ε Φ Α Λ Α Ι Ο 2 ο : Ο ι Π ρ α γ μ α τ ι κ ο ί Α ρ ι θ μ ο ί. 2.1 Οι Πράξεις και οι Ιδιότητές τους. 2.2 Διάταξη Πραγματικών Αριθμών Άλγεβρα Α Λυκείου, Κεφάλαιο ο ΘΕΩΡΙΑ-ΕΡΩΤΗΣΕΙΣ ΑΝΤΙΚΕΙΜΕΝΙΚΟΥ ΤΥΠΟΥ ΑΠΟΔΕΙΞΕΙΣ ΠΡΟΤΑΣΕΩΝ-ΑΣΚΗΣΕΙΣ ΤΡΑΠΕΖΑΣ ΥΠΟΥΡΓΕΙΟΥ Κ Ε Φ Α Λ Α Ι Ο ο : Ο ι Π ρ α γ μ α τ ι κ ο ί Α ρ ι θ μ ο ί. Οι Πράξεις και οι Ιδιότητές

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ 0 ΘΕΩΡΙΑ ΜΕΘΟΔΟΙ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ ΚΕΦΑΛΑΙΟ Βαγγέλης Α Νικολακάκης Μαθηματικός . ΠΡΑΞΕΙΣ ΠΡΑΓΜΑΤΙΚΩΝ ΒΑΣΙΚΗ ΘΕΩΡΙΑ. ΠΡΟΣΘΕΣΗ ΟΜΟΣΗΜΩΝ- ΕΤΕΡΟΣΗΜΩΝ Σε ομόσημους κάνω πρόσθεση και βάζω το κοινό

Διαβάστε περισσότερα

Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους

Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ Κεφάλαιο 1 ο ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ 1.1 Πράξεις με πραγματικούς αριθμούς Α. Οι πραγματικοί αριθμοί και οι πράξεις τους 1. Ποιοι αριθμοί ονομάζονται: α) ρητοί β) άρρητοι γ) πραγματικοί;

Διαβάστε περισσότερα

Η Θεωρία που πρέπει να θυμάσαι!!!... b a

Η Θεωρία που πρέπει να θυμάσαι!!!... b a Κεφ. εξισώσεις ανισώσεις εξάσκησηεπανάληψη Τhe Ds that make a champion: Devotion, Desire, Discipline Η Θεωρία που πρέπει να θυμάσαι!!!... Μορφές Εξισώσεων Λύση ή ρίζα εξίσωσης Εξίσωση ου βαθμού ax + b

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3 Ο ΣΤΟΙΧΕΙΑ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ

ΚΕΦΑΛΑΙΟ 3 Ο ΣΤΟΙΧΕΙΑ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ ΜΕΘΟΔΟΛΟΓΙΑ & ΑΣΚΗΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Γ ΕΠΑΛ ΚΕΦΑΛΑΙΟ Ο ΣΤΟΙΧΕΙΑ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ Επιμέλεια : Παλαιολόγου Παύλος Μαθηματικός ΚΕΦΑΛΑΙΟ ο : ΣΤΟΙΧΕΙΑ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ : ΠΑΡΑΓΩΓΙΣΙΜΗ

Διαβάστε περισσότερα

ΑΠΟΛΥΤΗ ΤΙΜΗ ΠΡΑΓΜΑΤΙΚΟΥ ΑΡΙΘΜΟΥ- ΑΣΚΗΣΕΙΣ

ΑΠΟΛΥΤΗ ΤΙΜΗ ΠΡΑΓΜΑΤΙΚΟΥ ΑΡΙΘΜΟΥ- ΑΣΚΗΣΕΙΣ ΑΠΟΛΥΤΗ ΤΙΜΗ ΠΡΑΓΜΑΤΙΚΟΥ ΑΡΙΘΜΟΥ- ΑΣΚΗΣΕΙΣ Κατηγορίες ασκήσεων στα απόλυτα ΠΕΡΙΠΤΩΣΗ : Εξισώσεις που περιέχουν απόλυτο μιας παράστασης και όχι παράταση του x έξω από το απόλυτο. α) Λύνουμε ως προς το απόλυτο

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ Δ Ι Α Γ Ω Ν Ι Σ Μ Α 1

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ Δ Ι Α Γ Ω Ν Ι Σ Μ Α 1 Δ Ι Α Γ Ω Ν Ι Σ Μ Α Θ έ μ α Α Α. α. Πότε η εξίσωση αx + βx + γ = 0, α 0 έχει διπλή ρίζα; Ποια είναι η διπλή ρίζα της; 4 μονάδες β. Ποια μορφή παίρνει το τριώνυμο αx + βx + γ, α 0, όταν Δ = 0; 3 μονάδες

Διαβάστε περισσότερα

Μ Α Θ Η Μ Α Τ Α Γ Λ Υ Κ Ε Ι Ο Υ

Μ Α Θ Η Μ Α Τ Α Γ Λ Υ Κ Ε Ι Ο Υ Μ Α Θ Η Μ Α Τ Α Γ Λ Υ Κ Ε Ι Ο Υ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ (Α ΜΕΡΟΣ: ΣΥΝΑΡΤΗΣΕΙΣ) Μαθηματικά Προσανατολισμού Γ Λυκείου- Μαθηματικός Περιηγητής ΕΝΟΤΗΤΑ

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος ΜEd: «Σπουδές στην εκπαίδευση» ΚΕΦΑΛΑΙΟ 1 Ο : Εξισώσεις - Ανισώσεις 1 1.1 Η ΕΝΝΟΙΑ ΤΗΣ ΜΕΤΑΒΛΗΤΗΣ ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΟΡΙΣΜΟΙ Μεταβλητή

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4 ο : ΑΝΙΣΩΣΕΙΣ ΤΟ 2 Ο ΘΕΜΑ

ΚΕΦΑΛΑΙΟ 4 ο : ΑΝΙΣΩΣΕΙΣ ΤΟ 2 Ο ΘΕΜΑ ΚΕΦΑΛΑΙΟ 4 ο : ΑΝΙΣΩΣΕΙΣ ΤΟ 2 Ο ΘΕΜΑ Άσκηση 1 Δίνονται οι ανισώσεις: 3x και 2 x α) Να βρείτε τις λύσεις τους (Μονάδες 10) β) Να βρείτε το σύνολο των κοινών τους λύσεων (Μονάδες 15) α) Έχουμε 3x 2x x 2

Διαβάστε περισσότερα

Σας εύχομαι καλή μελέτη και επιτυχία.

Σας εύχομαι καλή μελέτη και επιτυχία. ΠΡΟΛΟΓΟΣ Το βιβλίο αυτό αποτελεί συνέχεια του Α τεύχους και απευθύνεται κυρίως στους μαθητές της Α Λυκείου, αλλά και στους καθηγητές που διδάσκουν το μάθημα «Άλγεβρα και στοιχεία πιθανοτήτων» της Α Λυκείου.

Διαβάστε περισσότερα

ρ πε α εμ των α ματ ών 2014 Ο Η ΡΗ Ο Ο Γ Ρ Θ μα 2ο

ρ πε α εμ των α ματ ών 2014 Ο Η ΡΗ Ο Ο Γ Ρ Θ μα 2ο ρ πε α εμ των α ματ ών 2014 Γ Ο Η ΡΗ Ο Ο Γ Ρ Θ μα 2ο Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7, α) Να αιτιολογήσετε γιατί η (α ν ) είναι αριθμητική πρόοδος και να βρείτε τον

Διαβάστε περισσότερα

2.1 2.2 ΕΝΝΟΙΑ ΤΟΥ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ ΠΡΑΞΕΙΣ ΣΤΟ ΣΥΝΟΛΟ ΤΩΝ ΜΙΓΑΔΙΚΩΝ

2.1 2.2 ΕΝΝΟΙΑ ΤΟΥ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ ΠΡΑΞΕΙΣ ΣΤΟ ΣΥΝΟΛΟ ΤΩΝ ΜΙΓΑΔΙΚΩΝ ΚΕΦΑΛΑΙΟ Ο : ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ - ΕΝΟΤΗΤΕΣ :.... ΕΝΝΟΙΑ ΤΟΥ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ ΠΡΑΞΕΙΣ ΣΤΟ ΣΥΝΟΛΟ ΤΩΝ ΜΙΓΑΔΙΚΩΝ ΜΕΘΟΔΟΛΟΓΙΑ : ΠΡΑΓΜΑΤΙΚΟ & ΦΑΝΤΑΣΤΙΚΟ ΜΕΡΟΣ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ Έστω ένας μιγαδικός αριθμός,

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΑΝΙΣΩΣΕΙΣ Α ΒΑΘΜΟΥ 1. Να λυθούν οι ανισώσεις: i) 2x 1 5

ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΑΝΙΣΩΣΕΙΣ Α ΒΑΘΜΟΥ 1. Να λυθούν οι ανισώσεις: i) 2x 1 5 ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΑΝΙΣΩΣΕΙΣ Α ΒΑΘΜΟΥ. Να λυθούν οι ανισώσεις: i) ii) iii) iv) 4 9 v) 7 4 vi). Να λυθούν οι ανισώσεις: i) ( ) 4 ii) ( ) ( ) iii) 4( ) ( ) ( ) iv) ( ) ( ) 7( ) v) 4 9 ( ). Να λυθούν οι παρακάτω

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ. 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις)

ΣΥΣΤΗΜΑΤΑ. 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις) 6 ΣΥΣΤΗΜΑΤΑ 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις) Η εξίσωση αx βy γ Στο Γυμνάσιο διαπιστώσαμε με την βοήθεια παραδειγμάτων ότι η εξίσωση αx βy γ, με α 0 ή β 0, που λέγεται γραμμική εξίσωση,

Διαβάστε περισσότερα

1.1 A. ΟΙ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ ΚΑΙ ΟΙ

1.1 A. ΟΙ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ ΚΑΙ ΟΙ . A. ΟΙ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ ΚΑΙ ΟΙ ΠΡΑΞΕΙΣ ΤΟΥΣ ΘΕΩΡΙΑ. Τα σύνολα των αριθµών Το σύνολο των φυσικών αριθµών. Το σύνολο των ακεραίων αριθµών. N {0,,, 3 } Z { 3,,, 0,,, 3 } Το σύνολο των ρητών αριθµών. Q

Διαβάστε περισσότερα

2.3 Πολυωνυμικές Εξισώσεις

2.3 Πολυωνυμικές Εξισώσεις . Πολυωνυμικές Εξισώσεις η Μορφή Ασκήσεων: Ασκήσεις που μας ζητούν να λύσουμε μια πολυωνυμική εξίσωση.. Να λυθούν οι εξισώσεις: i. + + + 6 = 0 ii. 7 = iii. ( + ) + 7 = 0 iv. 8 + 56 = 0 i. + + + 6 = 0 (

Διαβάστε περισσότερα

β. Να βρείτε την πιθανότητα πραγματοποίησης καθενός από τα δύο ενδεχόμενα του ερωτήματος α).

β. Να βρείτε την πιθανότητα πραγματοποίησης καθενός από τα δύο ενδεχόμενα του ερωτήματος α). 1.: Έννοια της Πιθανότητας Κεφάλαιο 1ο: Πιθανότητες ΑΣΚΗΣΗ 1 (_497) Ένα τηλεοπτικό παιχνίδι παίζεται με ζεύγη αντιπάλων των δυο φύλων. Στο παιχνίδι συμμετέχουν 3 άντρες: ο Δημήτρης (Δ), ο Κώστας (Κ), ο

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΚΑΤΑ Ι ΑΚΤΙΚΗ ΕΝΟΤΗΤΑ ΤΟΥ ΚΕΦΑΛΑΙΟΥ 4

ΕΡΩΤΗΣΕΙΣ ΚΑΤΑ Ι ΑΚΤΙΚΗ ΕΝΟΤΗΤΑ ΤΟΥ ΚΕΦΑΛΑΙΟΥ 4 ΕΡΩΤΗΣΕΙΣ ΚΑΤΑ Ι ΑΚΤΙΚΗ ΕΝΟΤΗΤΑ ΤΟΥ ΚΕΦΑΛΑΙΟΥ 4 ΛΥΣΗ ΤΗΣ ΕΞΙΣΩΣΗΣ α + β + γ = 0 α 0 Η ΕΝΝΟΙΑ ΤΗΣ ΙΑΚΡΙΝΟΥΣΑΣ 1. Να λυθούν οι παρακάτω εξισώσεις ως προς ή y: α) - 4 = 0 β) 3 = 4 γ) + - 15 = 0 δ) 5-18 -

Διαβάστε περισσότερα

Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου

Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου Αριθμοί 1. ΑΡΙΘΜΟΙ Σύνολο Φυσικών αριθμών: Σύνολο Ακέραιων αριθμών: Σύνολο Ρητών αριθμών: ακέραιοι με Άρρητοι αριθμοί: είναι οι μη ρητοί π.χ. Το σύνολο Πραγματικών

Διαβάστε περισσότερα

Θεώρημα Βolzano. Κατηγορία 1 η. 11.1 Δίνεται η συνάρτηση:

Θεώρημα Βolzano. Κατηγορία 1 η. 11.1 Δίνεται η συνάρτηση: Κατηγορία η Θεώρημα Βolzano Τρόπος αντιμετώπισης:. Όταν μας ζητούν να εξετάσουμε αν ισχύει το θεώρημα Bolzano για μια συνάρτηση f σε ένα διάστημα [, ] τότε: Εξετάζουμε την συνέχεια της f στο [, ] (αν η

Διαβάστε περισσότερα

ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ

ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ Επιμέλεια : Παλαιολόγου Παύλος Μαθηματικός Αγαπητοί μαθητές. αυτό το βιβλίο αποτελεί ένα βοήθημα στην ύλη της Άλγεβρας Α Λυκείου, που είναι ένα από

Διαβάστε περισσότερα

Να υπολογίζουμε τη λύση ή ρίζα ενός πολυωνύμου της μορφής. Να υπολογίζουμε τη ν-οστή ρίζα ενός μη αρνητικού αριθμού.

Να υπολογίζουμε τη λύση ή ρίζα ενός πολυωνύμου της μορφής. Να υπολογίζουμε τη ν-οστή ρίζα ενός μη αρνητικού αριθμού. Ενότητα 3 Ρίζες Πραγματικών Αριθμών Στην ενότητα αυτή θα μάθουμε: Να υπολογίζουμε τη λύση ή ρίζα ενός πολυωνύμου της μορφής Ρ x x ν α. Να υπολογίζουμε τη ν-οστή ρίζα ενός μη αρνητικού αριθμού. Τις ιδιότητες

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2 Ο ΠΟΛΥΩΝΥΜΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ - ΑΣΚΗΣΕΙΣ

ΚΕΦΑΛΑΙΟ 2 Ο ΠΟΛΥΩΝΥΜΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ - ΑΣΚΗΣΕΙΣ ΚΕΦΑΛΑΙΟ Ο ΠΟΛΥΩΝΥΜΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ - ΑΣΚΗΣΕΙΣ ΚΕΦΑΛΑΙΟ Ο ΠΟΛΥΩΝΥΜΑ 10 ΕΠΑΝΑΛΗΨΕΙΣ ΑΠΟ ΠΡΟΗΓΟΥΜΕΝΕΣ ΤΑΞΕΙΣ α ) Ταυτότητες 1. (a-β)(a+β)=a - b. (a ± b ) = a ± ab + b 3 3 3 3. (a ± b ) = a ± 3a b + 3ab

Διαβάστε περισσότερα

Όταν λύνοντας μια εξίσωση καταλήγουμε στην μορφή 0x=0,τότε λέμε ότι

Όταν λύνοντας μια εξίσωση καταλήγουμε στην μορφή 0x=0,τότε λέμε ότι ΜΕΡΟΣ Α. ΕΞΙΣΩΣΕΙΣ Α ΒΑΘΜΟΥ 9. ΕΞΙΣΩΣΕΙΣ Α ΒΑΘΜΟΥ Χρήσιμες ιδιότητες πράξεων Αν αβ τότε α+γβ+γ Αν αβ τότε α-γβ-γ Αν αβ τότε α γ α β γ β Αν αβ τότε γ γ με γ 0 Η έννοια της εξίσωσης Μια ισότητα, που αληθεύει

Διαβάστε περισσότερα

Το βιβλίο αυτό είναι γραμμένο με βάση την αναμορφωμένη έκδοση του σχολικού

Το βιβλίο αυτό είναι γραμμένο με βάση την αναμορφωμένη έκδοση του σχολικού www.ziti.gr Πρόλογος Το βιβλίο αυτό είναι γραμμένο με βάση την αναμορφωμένη έκδοση του σχολικού βιβλίου Άλγεβρας της Αʹ τάξης του Γενικού Λυκείου, που θα διδάσκεται από το σχολικό έτος 00-0. Είναι ένα

Διαβάστε περισσότερα

Περί εξισώσεων με ένα άγνωστο

Περί εξισώσεων με ένα άγνωστο 1 ο ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΧΑΝΙΩΝ 19 Φεβρουαρίου 013 ΤΑΞΗ Α Σημειώσεις Άλγεβρας Περί εξισώσεων με ένα άγνωστο Εξίσωση με ένα άγνωστο λέμε την ισότητα δύο παραστάσεων μιας μεταβλητής. Πχ f(x) = g(x) όπου x μεταβλητή

Διαβάστε περισσότερα

Άλγεβρα 1 ο Κεφάλαιο ... ν παράγοντες

Άλγεβρα 1 ο Κεφάλαιο ... ν παράγοντες 1 Άλγεβρα 1 ο Κεφάλαιο Ερώτηση 1 : Τι ονομάζεται δύναμη α ν με βάση τον πραγματικό αριθμό α και εκθέτη το φυσικό αριθμό >1; H δύναμη με βάση έναν πραγματικό αριθμό α και εκθέτη ένα φυσικό αριθμό ν, συμβολίζεται

Διαβάστε περισσότερα

ςεδς ΘΕΜΑΤΑ ΕΞΙΣΩΣΕΩΝ 3 0 ΚΕΦΑΛΑΙΟ ΕΞΙΣΩΣΕΙΣ Β ΒΑΘΜΟΥ ΔΙΩΝΥΜΕΣ ΕΞΙΣΩΣΕΙΣ ΕΠΙΜΕΛΕΙΑ Βαγγέλης Βαγγέλης Νικολακάκης Μαθηματικός

ςεδς ΘΕΜΑΤΑ ΕΞΙΣΩΣΕΩΝ 3 0 ΚΕΦΑΛΑΙΟ ΕΞΙΣΩΣΕΙΣ Β ΒΑΘΜΟΥ ΔΙΩΝΥΜΕΣ ΕΞΙΣΩΣΕΙΣ ΕΠΙΜΕΛΕΙΑ Βαγγέλης Βαγγέλης Νικολακάκης Μαθηματικός 014 ςεδς ΘΕΜΑΤΑ ΕΞΙΣΩΣΕΩΝ 0 ΚΕΦΑΛΑΙΟ ΕΞΙΣΩΣΕΙΣ Α ΒΑΘΜΟΥ ΔΙΩΝΥΜΕΣ ΕΞΙΣΩΣΕΙΣ ΕΞΙΣΩΣΕΙΣ Β ΒΑΘΜΟΥ Βαγγέλης ΕΠΙΜΕΛΕΙΑ Βαγγέλης Νικολακάκης Μαθηματικός ΣΗΜΕΙΩΜΑ Το παρόν φυλλάδιο είναι ένα τμήμα μιας προσωπικής

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ 1. Τι είναι η Ευκλείδια διαίρεση; Είναι η διαδικασία κατά την οποία όταν δοθούν δύο φυσικοί αριθμοί Δ και δ, τότε βρίσκουμε άλλους δύο φυσικούς αριθμούς π και υ,

Διαβάστε περισσότερα

8. Να λυθεί η εξίσωση : 10 3 x= Αν ν είναι φυσικός αριθμός, τότε να υπολογίσετε την παράσταση: Α=(-1) ν +3(-1) ν+1-3(-1) 3ν+1.

8. Να λυθεί η εξίσωση : 10 3 x= Αν ν είναι φυσικός αριθμός, τότε να υπολογίσετε την παράσταση: Α=(-1) ν +3(-1) ν+1-3(-1) 3ν+1. Α. ΔΥΝΑΜΕΙΣ. Να γράψετε σε απλούστερη μορφή τις παραστάσεις: α.α.α = 5 : = (-).(-) - = (-0,) 5.(-0,5) 5 = α -.(α ) -.α. Υπολογίστε τις παραστάσεις (i) (ii) (-).(-0,5) - (iii) (0,) : (-0). Να γίνουν οι

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου Κεφάλαιο ο Αλγεβρικές Παραστάσεις ΛΕΜΟΝΙΑ ΜΠΟΥΤΣΚΟΥ Γυμνάσιο Αμυνταίου ΜΑΘΗΜΑ Α. Πράξεις με πραγματικούς αριθμούς ΑΣΚΗΣΕΙΣ ) ) Να συμπληρώσετε τα κενά ώστε στην κατακόρυφη στήλη

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΘΕΜΑ 1. α) Να λύσετε την εξίσωση : 2 2 2x. β) Αν α είναι η ϑετική εξίσωσης του ερωτήµατος (α), να λύσετε την ανίσωση : 1 x < α.

ΘΕΜΑΤΑ ΘΕΜΑ 1. α) Να λύσετε την εξίσωση : 2 2 2x. β) Αν α είναι η ϑετική εξίσωσης του ερωτήµατος (α), να λύσετε την ανίσωση : 1 x < α. ΘΕΜΑΤΑ ΘΕΜΑ 6 3 α) Να λύσετε την εξίσωση : 3 β) Αν α είναι η ϑετική εξίσωσης του ερωτήµατος (α), να λύσετε την ανίσωση : < α. ΘΕΜΑ α) Να λύσετε την ανίσωση : + < 7. β) Αν ο είναι λύση της ανίσωσης του

Διαβάστε περισσότερα

3. Να δειχτει οτι α α. Ποτε ισχυει το ισον; 2. Aν α, β θετικοι, να συγκρινεται τους αριθμους Α = βα + β, Β = α β + αβ

3. Να δειχτει οτι α α. Ποτε ισχυει το ισον; 2. Aν α, β θετικοι, να συγκρινεται τους αριθμους Α = βα + β, Β = α β + αβ ΑΝΙΣΩΣΕΙΣ 1 Α ν ι σ ω σ η 1 ο υ β α θ μ ο υ 3. Να δειχτει οτι α + 110 0α. Ποτε ισχυει το ισον; Μορφη: αx + β > 0 με α,β. Aν α, β θετικοι, να συγκρινεται τους αριθμους Α = βα + β, Β = α β + αβ Αν α > 0

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ. x + 5= 6 (1) και. x = 1, οπότε η (2) γίνεται 1 5x + 1= 7 x = 1 ΘΕΜΑ Β. Άσκηση 1. Να βρείτε τον αριθμό x R όταν. Λύση.

ΑΣΚΗΣΕΙΣ. x + 5= 6 (1) και. x = 1, οπότε η (2) γίνεται 1 5x + 1= 7 x = 1 ΘΕΜΑ Β. Άσκηση 1. Να βρείτε τον αριθμό x R όταν. Λύση. ΚΕΦΑΛΑΙΟ ο: ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΝΟΤΗΤΑ : ΈΝΝΟΙΑ ΜΙΓΑΔΙΚΟΥ ΓΕΩΜΕΤΡΙΚΗ ΠΑΡΑΣΤΑΣΗ ΜΙΓΑΔΙΚΟΥ ΠΡΑΞΕΙΣ ΣΤΟ ΣΥΝΟΛΟ ΤΩΝ ΜΙΓΑΔΙΚΩΝ ΣΥΖΥΓΕΙΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΔΥΝΑΜΕΙΣ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ ΑΡΙΘΜΟΥ ΚΑΙ ΤΟΥ i. ΙΔΙΟΤΗΤΕΣ

Διαβάστε περισσότερα

2.3 ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ

2.3 ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ.ptetragono.gr Σελίδα. ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ Να βρεθεί το μέτρο των μιγαδικών :..... 0 0. 5 5 6.. 0 0. 5. 5 5 0 0 0 0 0 0 0 0 ΜΕΘΟΔΟΛΟΓΙΑ : ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ Αν τότε. Αν χρειαστεί

Διαβάστε περισσότερα

1. Συµπλήρωσε τον πίνακα µε την κατάλληλη µαθηµατική έκφραση:

1. Συµπλήρωσε τον πίνακα µε την κατάλληλη µαθηµατική έκφραση: ΕΡΩΤΗΣΕΙΣ ΑΝΤΙΚΕΙΜΕΝΙΚΟΥ ΤΥΠΟΥ Ερωτήσεις συµπλήρωσης 1. Συµπλήρωσε τον πίνακα µε την κατάλληλη µαθηµατική έκφραση: Φυσική γλώσσα Μαθηµατική γλώσσα ύο αριθµοί x, y διαφέρουν κατά και έχουν γινόµενο x (x

Διαβάστε περισσότερα

Ο μαθητής που έχει μελετήσει το κεφάλαιο αυτό θα πρέπει να είναι σε θέση:

Ο μαθητής που έχει μελετήσει το κεφάλαιο αυτό θα πρέπει να είναι σε θέση: Ο μαθητής που έχει μελετήσει το κεφάλαιο αυτό θα πρέπει να είναι σε θέση: Να γνωρίζει: α. την έννοια του μιγαδικού αριθμού και β. πότε δύο μιγαδικοί αριθμοί είναι ίσοι. Να μπορεί να βρίσκει: α. το άθροισμα,

Διαβάστε περισσότερα

Μ Α Θ Η Μ Α Τ Α Γ Λ Υ Κ Ε Ι Ο Υ

Μ Α Θ Η Μ Α Τ Α Γ Λ Υ Κ Ε Ι Ο Υ Μ Α Θ Η Μ Α Τ Α Γ Λ Υ Κ Ε Ι Ο Υ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ (Α ΜΕΡΟΣ: ΣΥΝΑΡΤΗΣΕΙΣ) Επιμέλεια: Καραγιάννης Ιωάννης, Σχολικός Σύμβουλος Μαθηματικών

Διαβάστε περισσότερα

5.ΕΞΙΣΩΣΕΙΣ ΠΡΩΤΟΥ ΒΑΘΜΟΥ

5.ΕΞΙΣΩΣΕΙΣ ΠΡΩΤΟΥ ΒΑΘΜΟΥ 5.ΕΞΙΣΩΣΕΙΣ ΠΡΩΤΟΥ ΒΑΘΜΟΥ Για να επιλύσουμε μία παραμετρική εξίσωση ακολουθούμε τα παρακάτω βήματα: i) Βγάζω παρενθέσεις ii) Κάνω απαλοιφή παρανομαστών iii) Χωρίζω γνωστούς από αγνώστους (άγνωστος είναι

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΑΠΟΣΤΟΛΟΥ ΓΙΩΡΓΟΣ ΜΑΘΗΜΑΤΙΚΟΣ

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΑΠΟΣΤΟΛΟΥ ΓΙΩΡΓΟΣ ΜΑΘΗΜΑΤΙΚΟΣ 3ο κεφάλαιο: Εξισώσεις ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΑΠΟΣΤΟΛΟΥ ΓΙΩΡΓΟΣ ΜΑΘΗΜΑΤΙΚΟΣ ) Copyright 2014 Αποστόλου Γιώργος Αποστόλου Γεώργιος apgeorge2004@yahoo.com άδεια χρήσης 3η Εκδοση, Αύγουστος 2014 Περιεχόµενα 1

Διαβάστε περισσότερα

ΓΕΝΙΚΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΔΙΑΓΩΝΙΣΜΑΤΑ ΣΕ ΟΛΗ ΤΗΝ ΔΙΔΑΚΤΕΑ ΥΛΗ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ

ΓΕΝΙΚΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΔΙΑΓΩΝΙΣΜΑΤΑ ΣΕ ΟΛΗ ΤΗΝ ΔΙΔΑΚΤΕΑ ΥΛΗ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ ΓΕΝΙΚΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΔΙΑΓΩΝΙΣΜΑΤΑ ΣΕ ΟΛΗ ΤΗΝ ΔΙΔΑΚΤΕΑ ΥΛΗ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ ο Γενικό Επαναληπτικό Διαγώνισμα ΘΕΜΑ ο Α. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν γράφοντας στην κόλλα σας δίπλα στο γράμμα

Διαβάστε περισσότερα

Ανισώσεις. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. A ΛΥΚΕΙΟΥ κεφάλαιο ασκήσεις και τεχνικές σε 17 σελίδες. εκδόσεις. Καλό πήξιμο

Ανισώσεις. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. A ΛΥΚΕΙΟΥ κεφάλαιο ασκήσεις και τεχνικές σε 17 σελίδες. εκδόσεις. Καλό πήξιμο Ανισώσεις Κώστας Γλυκός A ΛΥΚΕΙΟΥ κεφάλαιο 4 391 ασκήσεις και τεχνικές σε 17 σελίδες ΙΙ Ι δδ ιι ι αα ίί ί ττ εε ρρ αα μμ αα θθ ήή μμ αα ττ αα 6 9 7. 3 0 0. 8 8. 8 8 Kgllykos..gr 9 / 1 0 / 0 1 6 εκδόσεις

Διαβάστε περισσότερα

Εκφωνήσεις και λύσεις των ασκήσεων της Τράπεζας Θεμάτων στην Άλγεβρα Α ΓΕΛ

Εκφωνήσεις και λύσεις των ασκήσεων της Τράπεζας Θεμάτων στην Άλγεβρα Α ΓΕΛ Κοίταξε τις µεθόδους, τις λυµένες ασκήσεις και τις ασκήσεις προς λύση των ενοτήτων 6, 7 του βοηθήµατος Μεθοδολογία Άλγεβρας και Στοιχείων Πιθανοτήτων Α Γενικού Λυκείου των Ευσταθίου Μ. και Πρωτοπαπά Ελ.

Διαβάστε περισσότερα

3. Να δειχτει οτι α α. Ποτε ισχυει το ισον;

3. Να δειχτει οτι α α. Ποτε ισχυει το ισον; EΞΙΣΩΣΕΙΣ Ε ξ ι σ ω σ η ο υ β α θ μ ο υ 3. Να δειχτει οτι α + 0 0α. Ποτε ισχυει το ισον; Εστω η εξισωση: α+β=0 () Λυση η ριζα. της Aν εξισωσης α, β θετικοι λεγεται, να συγκρινεται κάθε τιμη τους του πραγματικου

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΠΙΘΑΝΟΤΗΤΩΝ

ΑΛΓΕΒΡΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΠΙΘΑΝΟΤΗΤΩΝ ΝΙΚΟΣ ΑΛΕΞΑΝΔΡΗΣ ΜΑΘΗΜΑΤΙΚΟΣ ΑΛΓΕΒΡΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΠΙΘΑΝΟΤΗΤΩΝ Α ΛΥΚΕΙΟΥ Πιθανότητες Πραγματικοί αριθμοί Εξισώσεις Ανισώσεις Πρόοδοι Βασικές έννοιες των συναρτήσεων Μελέτη βασικών συναρτήσεων ΑΛΓΕΒΡΑ Α

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ και ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ Α ΛΥΚΕΙΟΥ

ΑΣΚΗΣΕΙΣ και ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ Α ΛΥΚΕΙΟΥ 1 ΑΣΚΗΣΕΙΣ και ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ Α ΛΥΚΕΙΟΥ 1.ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΠΙΘΑΝΟΤΗΤΕΣ 1.1 Σε ένα σχολείο με 00 μαθητές, οι 90 έχουν ποδήλατο, 36 έχουν «παπί», ενώ 84 άτομα δεν έχουν ούτε ποδήλατο ούτε παπί. Διαλέγουμε

Διαβάστε περισσότερα

- ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 6: ΜΗ ΠΕΠΕΡΑΣΜΕΝΟ ΟΡΙΟ ΣΤΟ

- ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 6: ΜΗ ΠΕΠΕΡΑΣΜΕΝΟ ΟΡΙΟ ΣΤΟ ΚΕΦΑΛΑΙΟ ο: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 6: ΜΗ ΠΕΠΕΡΑΣΜΕΝΟ ΟΡΙΟ ΣΤΟ R - ΟΡΙΟ ΣΥΝΑΡΤΗΣΗΣ ΣΤΟ ΑΠΕΙΡΟ - ΠΕΠΕΡΑΣΜΕΝΟ ΟΡΙΟ ΑΚΟΛΟΥΘΙΑΣ [Κεφ..6: Μη Πεπερασμένο Όριο στο R - Κεφ..7: Όρια Συνάρτησης

Διαβάστε περισσότερα

R={α/ αρητός ή άρρητος αριθμός }

R={α/ αρητός ή άρρητος αριθμός } o ΛΥΚΕΙΟ ΠΕΤΡΟΥΠΟΛΗΣ Οι ρητοί και οι άρρητοι αριθμοί λέγονται πραγματικοί αριθμοί. Το σύνολο που περιέχει όλους τους πραγματικούς αριθμούς λέγεται σύνολο των πραγματικών αριθμών και συμβολίζεται με R.

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ & ΠΡΟΑΠΑΙΤΟΥΜΕΝΕΣ ΓΝΩΣΕΙΣ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ Β ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ ΜΑΘΗΜΑΤΙΚΟΣ

ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ & ΠΡΟΑΠΑΙΤΟΥΜΕΝΕΣ ΓΝΩΣΕΙΣ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ Β ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ ΜΑΘΗΜΑΤΙΚΟΣ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ & ΠΡΟΑΠΑΙΤΟΥΜΕΝΕΣ ΓΝΩΣΕΙΣ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ Β ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ ΜΑΘΗΜΑΤΙΚΟΣ . ΣΥΝΟΛΑ ΑΡΙΘΜΩΝ Τα σύνολα των αριθμών είναι τα εξής : i. Φυσικοί αριθμοί : 0,,,,......,,,,0,,,,...

Διαβάστε περισσότερα

Aλγεβρα A λυκείου α Τομος

Aλγεβρα A λυκείου α Τομος Aλγ ε β ρ α A Λυ κ ε ί ο υ Α Τό μ ο ς Κάθε γνήσιο αντίτυπο φέρει την υπογραφή του συγγραφέα Σειρά: Γενικό Λύκειο, Θετικές Επιστήμες Άλγεβρα Α Λυκείου, Α Τόμος Παναγιώτης Γριμανέλλης Στοιχειοθεσία-σελιδοποίηση,

Διαβάστε περισσότερα

Γ. Ν. Π Α Π Α Δ Α Κ Η Σ Μ Α Θ Η Μ Α Τ Ι Κ Ο Σ ( M S C ) ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ. ΠΡΟΓΡΑΜΜΑ: Σπουδές στις Φυσικές Επιστήμες

Γ. Ν. Π Α Π Α Δ Α Κ Η Σ Μ Α Θ Η Μ Α Τ Ι Κ Ο Σ ( M S C ) ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ. ΠΡΟΓΡΑΜΜΑ: Σπουδές στις Φυσικές Επιστήμες Γ. Ν. Π Α Π Α Δ Α Κ Η Σ Μ Α Θ Η Μ Α Τ Ι Κ Ο Σ ( M S C ) ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΠΡΟΓΡΑΜΜΑ: Σπουδές στις Φυσικές Επιστήμες ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ: ΦΥΕ10 (Γενικά Μαθηματικά Ι) ΠΕΡΙΕΧΕΙ ΤΙΣ

Διαβάστε περισσότερα

Πρόλογος. Κ. Τζιρώνης Θ. Τζουβάρας Μαθηματικοί

Πρόλογος. Κ. Τζιρώνης Θ. Τζουβάρας Μαθηματικοί Πρόλογος Το βιβλίο αυτό περιέχει όλη την ύλη των Μαθηματικών της Β Γυμνασίου, χωρισμένη σε ενότητες, όπως ακριβώς στο σχολικό βιβλίο. Κάθε ενότητα περιλαμβάνει: Τη θεωρία Λυμένες ασκήσεις Χρήσιμες παρατηρήσεις

Διαβάστε περισσότερα

Άλγεβρα Α Λυκείου. Αξίζει να τονίσω ότι οι περισσότερες από τις ασκήσεις αυτές προήλθαν από διάφορα εξωσχολικά βιβλία και ιστοσελίδες συναδέλφων.

Άλγεβρα Α Λυκείου. Αξίζει να τονίσω ότι οι περισσότερες από τις ασκήσεις αυτές προήλθαν από διάφορα εξωσχολικά βιβλία και ιστοσελίδες συναδέλφων. Άλγεβρα Α Λυκείου Το υλικό αυτό αποτελείται από μικρές θεωρητικές υποδείξεις και ασκήσεις και προβλήματα που έχω αξιοποιήσει στην τάξη μου για τη διδασκαλία της Άλγεβρας της Α Λυκείου (Ημερήσιο Γενικό

Διαβάστε περισσότερα

0x2 = 2. = = δηλαδή η f δεν. = 2. Άρα η συνάρτηση f δεν είναι συνεχής στο [0,3]. Συνεπώς δεν. x 2. lim f (x) = lim (2x 1) = 3 και x 2 x 2

0x2 = 2. = = δηλαδή η f δεν. = 2. Άρα η συνάρτηση f δεν είναι συνεχής στο [0,3]. Συνεπώς δεν. x 2. lim f (x) = lim (2x 1) = 3 και x 2 x 2 ΚΕΦΑΛΑΙΟ ο: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 8: ΘΕΩΡΗΜΑ BOLZANO - ΠΡΟΣΗΜΟ ΣΥΝΑΡΤΗΣΗΣ - ΘΕΩΡΗΜΑ ΕΝΔΙΑΜΕΣΩΝ ΤΙΜΩΝ - ΘΕΩΡΗΜΑ ΜΕΓΙΣΤΗΣ ΚΑΙ ΕΛΑΧΙΣΤΗΣ ΤΙΜΗΣ - ΣΥΝΟΛΟ ΤΙΜΩΝ ΣΥΝΕΧΟΥΣ ΣΥΝΑΡΤΗΣΗΣ

Διαβάστε περισσότερα

ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ. Μια παράσταση που περιέχει πράξεις με μεταβλητές (γράμματα) και αριθμούς καλείται αλγεβρική, όπως για παράδειγμα η : 2x+3y-8

ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ. Μια παράσταση που περιέχει πράξεις με μεταβλητές (γράμματα) και αριθμούς καλείται αλγεβρική, όπως για παράδειγμα η : 2x+3y-8 ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ Άλγεβρα 1 ο Κεφάλαιο 1. Τι ονομάζουμε αριθμητική και τι αλγεβρική παράσταση; Να δώσετε από ένα παράδειγμα. Μια παράσταση που περιέχει πράξεις με αριθμούς, καλείται αριθμητική παράσταση,

Διαβάστε περισσότερα

Στέλιος Μιχαήλογλου - Δημήτρης Πατσιμάς

Στέλιος Μιχαήλογλου - Δημήτρης Πατσιμάς Μεθοδική Επανάληψη www.askisopolis.gr Στέλιος Μιχαήλογλου - Δημήτρης Πατσιμάς Ε. Σύνολα i. Τι είναι το σύνολο; ii. Ποιοι είναι οι βασικοί τρόποι παράστασης συνόλων και τι γνωρίζετε γι αυτούς; iii. Πότε

Διαβάστε περισσότερα