ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΜΗ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΣΥΝΑΡΤΗΣΕΙΣ ΜΟΝΟΤΟΝΙΑ-ΑΚΡΟΤΑΤΑ-ΣΥΜΜΕΤΡΙΕΣ ΣΥΝΑΡΤΗΣΗΣ

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΜΗ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΣΥΝΑΡΤΗΣΕΙΣ ΜΟΝΟΤΟΝΙΑ-ΑΚΡΟΤΑΤΑ-ΣΥΜΜΕΤΡΙΕΣ ΣΥΝΑΡΤΗΣΗΣ"

Transcript

1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ 4_095. Δίνονται οι ευθείες ε 1: λx + y = 1 και ε : x + λy = λ α) Να βρείτε για ποιες τιμές του λ οι δύο ευθείες τέμνονται και να γράψετε τις συντεταγμένες του κοινού τους σημείου συναρτήσει του λ. (Μονάδες 13) β) Για ποια τιμή του λ οι δύο ευθείες είναι παράλληλες; (Μονάδες 6) γ) Αν οι ευθείες ε 1 και ε ταυτίζονται, να αποδείξετε ότι οι ευθείες λx + λ y = λ 3 και x + λy = λ -1 είναι παράλληλες. (Μονάδες 6) ΜΗ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ 4_090 xy 6 α) Να λύσετε το σύστημα (Σ 1) : (Μονάδες 10) x y 13 xy 6 β) Είναι οι λύσεις του συστήματος (Σ 1) λύσεις και του (Σ ) : ; x y 13 Να δικαιολογήσετε την απάντηση σας. (Μονάδες 7) γ) Είναι οι λύσεις του συστήματος (Σ ) λύσεις και του (Σ 1); Να δικαιολογήσετε την απάντηση σας. (Μονάδες 8) ΣΥΝΑΡΤΗΣΕΙΣ ΜΟΝΟΤΟΝΙΑ-ΑΚΡΟΤΑΤΑ-ΣΥΜΜΕΤΡΙΕΣ ΣΥΝΑΡΤΗΣΗΣ _679 Στο παρακάτω σχήμα δίνεται η γραφική παράστασης της συνάρτησης 3 f ( x) x 3 x, x (,) α) Είναι η f άρτια ή περιττή; Να αποδείξετε αλγεβρικά τον ισχυρισμό σας. (Μονάδες 7) β) Χρησιμοποιώντας τη γραφική παράσταση της f, να βρείτε τη μέγιστη και την ελάχιστη τιμή της. (Μονάδες 6) γ) Να βρείτε τις θέσεις των ακρότατων της f. (Μονάδες 1)

2 4_0919 Η περιβαλλοντική ομάδα ενός σχολείου παρέλαβε συρματόπλεγμα μήκους 40m για να περιφράξει, χρησιμοποιώντας όλο το συρματόπλεγμα, έναν ορθογώνιο κήπο για καλλιέργεια λαχανικών. Οι μαθητές της περιβαλλοντικής ομάδας θέλουν να επιλέξουν ένα κήπο που να έχει όσο το δυνατόν μεγαλύτερο εμβαδόν. α) Να δώσετε τις διαστάσεις τριών διαφορετικών ορθογώνιων κήπων με περίμετρο 40m. Να εξετάσετε αν οι τρεις λαχανόκηποι έχουν το ίδιο εμβαδόν. (Μονάδες 7) β) Αν συμβολίσουμε με x το πλάτος και με Ε το εμβαδόν ενός λαχανόκηπου με περίμετρο 40m, να εκφράσετε το Ε ως συνάρτηση του x. (Μονάδες 8) E x γ) Να δείξετε ότι συνάρτησης f x x x Χρησιμοποιώντας την γραφική παράσταση της να κατασκευάσετε την γραφική παράσταση της Ε(x). Από τη γραφική παράσταση της Ε(x) να βρείτε τις διαστάσεις του λαχανόκηπου με το μεγαλύτερο εμβαδόν. (Μονάδες 10) 4_776 Για να κατασκευάσουμε ένα ανοικτό κουτί από ένα ορθογώνιο χαρτόνι με διαστάσεις 5dm και 8dm, κόβουμε ίσα τετράγωνα, πλευράς x,από κάθε γωνία του και γυρίζουμε προς τα πάνω τις πλευρές του (Σχήμα 1). α) Nα δείξετε ότι ο όγκος V του κουτιού εκφράζεται ως συνάρτηση του χ με τον τύπο V ( x) 4x 6x 40 x. (Μονάδες 6) β) Να βρείτε τις τιμές που μπορεί να πάρει το x στο πλαίσιο του προβλήματος. (Μονάδες 5) γ) Να βρείτε τις διαστάσεις (εκφρασμένες σε dm με ακέραιους αριθμούς) του κουτιού αν γνωρίζουμε ότι ο όγκος του είναι 8dm 3. (Μονάδες 7) δ) Στο σχ. δίνεται η γραφική παράσταση της συνάρτησης V ( x) 4x 6x 40 x. για x 0,.5. Χρησιμοποιώντας το σχήμα να βρείτε ποιος είναι ο μεγαλύτερος όγκος που μπορεί να έχει το κουτί. Στη συνέχεια να υπολογίσετε αλγεβρικά τις διαστάσεις του κουτιού με το μεγαλύτερο όγκο. (Μονάδες 7) + 40χ για χ e (0,,5). Χρησιμοποιώντας το σχήμα να βρείτε ποιος είναι ο μεγαλύτερος όγκος που μπορεί να έχει το κουτί. Στη συνέχεια να υπολογίσετε αλγεβρικά τις διαστάσεις του κουτιού με το μεγαλύτερο όγκο.

3 ΚΑΤΑΚΟΡΥΦΗ-ΟΡΙΖΟΝΤΙΑ ΜΕΤΑΤΟΠΙΣΗ ΚΑΜΠΥΛΗΣ 4_094 Δίνεται η συνάρτηση,, f x x R. α) Αν η γραφική παράσταση της f διέρχεται από τα σημεία Α(1, ) και Β(5, 8), να 3 1 δείξετε ότι και. (Μονάδες 8) β) Αν g(x) είναι η συνάρτηση που προκύπτει από τη μετατόπιση της γραφικής παράστασης της f οριζόντια κατά 1 μονάδα προς τα αριστερά και κατακόρυφα κατά 3 μονάδες προς τα κάτω, να βρείτε τον τύπο της g. (Μονάδες 9) 3 γ) Αν h x x 1 είναι η συνάρτηση που προκύπτει από τη μετατόπιση της γραφικής k παράστασης της f οριζόντια κατά κ μονάδες προς τα δεξιά και κατακόρυφα κατά μονάδες κάτω, να βρείτε το κ (κ > 0). (Μονάδες 8) ΟΙ ΤΡΙΓΩΝΟΜΕΤΡΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ 4_0339 Μια ρόδα ποδηλάτου περιστρέφεται γύρω από τον άξονά της. Σημειώνουμε ένα σημείο Ρ της ρόδας (όπως φαίνεται στο σχήμα), το οποίο τη χρονική στιγμή t = 0, είναι το σημείο επαφής της ρόδας με μια επιφάνεια. Η συνάρτηση που εκφράζει την απόσταση h (σε m) του σημείου Ρ από την επιφάνεια, t sec μετά την αρχή της κίνησης δίνεται από τη σχέση: h( t) 0, ( t) 0,, με ω θετική πραγματική σταθερά. Υποθέτουμε ότι το σημείο Ρ κάνει ένα πλήρη κύκλο σε 4sec. α) Να αποδείξετε ότι. (Μονάδες 5) β) Να προσδιορίσετε την απόσταση του Ρ από την επιφάνεια τις στιγμές: t 1 = 1sec, t = sec και t 3 = 7sec. (Μονάδες 6) γ) Να βρείτε την μέγιστη και την ελάχιστη τιμή της h. (Μονάδες 5) δ) Να προσδιορίσετε την ακτίνα της ρόδας. (Μονάδες 9)

4 4_091 Στο παρακάτω σχήμα δίνεται η γραφική παράσταση της συνάρτησης g(x)= αx+ β, όπου α, β πραγματικοί αριθμοί και της συνάρτησης f (x) = ρημ(ωx), όπου ω > 0 και ρ > 0. Και οι δύο συναρτήσεις έχουν πεδίο ορισμού το. Επίσης η f έχει μέγιστο 3. α) Να αποδείξετε ότι ρ = 3 και ω = (Μονάδες 5) β) Να βρείτε τα α, β. (Μονάδες 10) 1x γ) Να βρείτε, γραφικά, το πλήθος των λύσεων της εξίσωσης 3 x 0 στο διάστημα [0, π]. (Μονάδες 10) 4_09 t Δίνεται η συνάρτηση f ( t), t [0,4] α) Να βρείτε την περίοδο της f. (Μονάδες 5) β) Να βρείτε τη μέγιστη και την ελάχιστη τιμή της, καθώς και τις τιμές του t για τις οποίες η f παίρνει τις τιμές αυτές. (Μονάδες1) γ) Να κατασκευάσετε τη γραφική παράσταση της f. (Μονάδες 8) 4_691 Στο παρακάτω σχήμα δίνεται η γραφική παράσταση της συνάρτησης f ( x) x 4. α) Να βρείτε την περίοδο της συνάρτησης f. (Μονάδες 5) β) Το τετράπλευρο ΑΒΓΔ είναι ορθογώνιο με,0. Να βρείτε: 3 i. τις συντεταγμένες του σημείου Δ. (Μονάδες 10) ii. τις συντεταγμένες των σημείων Β και Γ. (Μονάδες 10)

5 4_693 Στο παρακάτω σχήμα δίνεται η γραφική παράσταση της συνάρτησης f x x παραμέτρους α, ω > 0 με Να βρείτε: α) την περίοδο της συνάρτησης f. (Μονάδες 9) β) τους αριθμούς α και ω (Μονάδες 8) γ) τους αριθμούς k για τους οποίους η εξίσωση f (x) = κ έχει μοναδική λύση στο 0, και στη συνέχεια να λυθεί η εξίσωση (Μονάδες 8) ΒΑΣΙΚΕΣ ΤΡΙΓΩΝΟΜΕΤΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ 4_093 Δίνεται η συνάρτηση f x 3x 1, x. α) Να βρείτε την περίοδο Τ και τη μέγιστη τιμή της f. (Μονάδες 5) β) Στο παρακάτω σχήμα δίνεται η γραφική παράσταση της συνάρτησης g x a x x, i. Nα προσδιορίσετε τα α, β, γ. (Μονάδες 1) ii. Για α = -, β = 1 και γ = 1, να λύσετε την εξίσωση f(x) = g(x) στο διάστημα [0, π). (Μονάδες 8) 4_690 Δίνεται η εξίσωση 1 x 3 x (Α) α) Να αποδείξετε ότι, αν x 0 είναι μία λύση της εξίσωσης (Α), τότε συνx 0 > 0. (Μονάδες 5)

6 β) Θεωρούμε την εξίσωση (1 x) 3 x (Β) η οποία προκύπτει υψώνοντας στο τετράγωνο τα δύο μέλη της εξίσωσης (Α). Να λύσετε την εξίσωση (Β). (Μονάδες 1) γ) Να λύσετε την εξίσωση (Α). (Μονάδες 8) ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΙ ΑΡΙΘΜΟΙ ΑΘΡΟΙΣΜΑΤΟΣ ΚΑΙ ΔΙΑΦΟΡΑΣ ΓΩΝΙΩΝ _639 α) Να δείξετε ότι : x x 4 4 x. (Μονάδες 13) β) Να βρείτε με την βοήθεια του ερωτήματος α) την ελάχιστη και τη μέγιστη τιμή της συνάρτησης f ( x) x x, x 4 4. (Μονάδες 1) ΠΟΛΥΩΝΥΜΑ ΔΙΑΙΡΕΣΗ ΠΟΛΥΩΝΥΜΩΝ _649 α) Να βρείτε το υπόλοιπο και το πηλίκο της διαίρεσης ( x 6x 11x ) : ( x 3). (Μονάδες 10) β) Αν P( x) x 6x 11x να βρείτε το, ώστε η διαίρεση P( x) : ( x 3) να έχει υπόλοιπο 0. (Μονάδες 15) _680 Δίνονται τα πολυώνυμα: 3 P x x + ( x 1 ) ( x 1) 9 και Q x 1 x x 9 x,. α) Ένας μαθητής ισχυρίζεται ότι και τα δύο πολυώνυμα είναι 3ου βαθμού. Συμφωνείτε με την άποψη αυτή; Να δικαιολογήσετε την απάντησή σας. (Μονάδες 13) β) Να βρείτε την τιμή του λ για την οποία τα πολυώνυμα Ρ(x) και Q(x) είναι ίσα. (Μονάδες 1) 4_76 4 Δίνεται το πολυώνυμο ( x) 3x 1x 8x x, όπου α, β σταθεροί πραγματικοί αριθμοί. Αν το πολυώνυμο Ρ(x) διαιρούμενο με x +1 αφήνει υπόλοιπο 16 + Ρ(1) και διαιρούμενο με x -1 αφήνει υπόλοιπο 16 - Ρ (-1), τότε: α) να αποδείξετε ότι Ρ(1) = 0 και Ρ(-1) = 16 (Μονάδες 8) β) να αποδείξετε ότι α = 4 και β = -3 (Μονάδες 9) (Μονάδες 8) γ) να αποδείξετε ότι

7 4_764 Έστω Ρ(x) πολυώνυμο τρίτου βαθμού το οποίο διαιρείται με το πολυώνυμο x είναι τέτοιο, ώστε Ρ (1) = 0 και P() = 8. α) Να αποδείξετε ότι x και x x x x. (Μονάδες 10) β) Να λύσετε την εξίσωση Ρ(x) = 8. (Μονάδες 6) γ) Nα λύσετε την ανίσωση Ρ(x) >. (Μονάδες 9) ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΚΑΙ ΑΝΙΣΩΣΕΙΣ _640 Δίνεται το πολυώνυμο P( x) x x x 1 α) Να δικαιολογήσετε γιατί το διώνυμο x-3 είναι παράγοντας του P(x). (Μονάδες 13) β) Να λύσετε την εξίσωση Px () 0. (Μονάδες 1) _641 Δίνεται το πολυώνυμο P( x) x ax 11x 30 με για το οποίο γνωρίζουμε ότι έχει ρίζα το 5. α) Να υπολογίσετε την τιμή του α. (Μονάδες 1) β) Για α=-4 να λύσετε την εξίσωση Px () 0. (Μονάδες 13) _64 Δίνεται το πολυώνυμο P( x) x ax 11x 30 με για το οποίο γνωρίζουμε ότι η τιμή του για x=1 είναι 16. α) Να υπολογίσετε την τιμή του α. (Μονάδες 1) β) Αν α=-4 και το είναι ρίζα της εξίσωσης Px () 0 να προσδιορίσετε τις άλλες ρίζες της εξίσωσης Px () 0. (Μονάδες 13) _643 Δίνεται το πολυώνυμο P( x) x x x με,, το οποίο έχει ρίζες τους αριθμούς 0,1 και 3. α) Να δείξετε ότι β=-4,γ=3 και δ=0. (Μονάδες 15) β) Να λύσετε την ανίσωση Px () 0. (Μονάδες 10) _644 3 Δίνεται το πολυώνυμο P( x) x 4x 3 με. α) Να βρείτε τις τιμές του λ ώστε το P(x) να έχει παράγοντα το x-1. (Μονάδες 10) β) Αν λ=3 να βρείτε όλες τις ρίζες του πολυωνύμου P(x). (Μονάδες 15)

8 _645 4 Αν η γραφική παράσταση της συνάρτησης f ( x) x x ax 5x 6 διέρχεται από το σημείο Μ(-,0), α) να αποδείξετε ότι α=-14 (Μονάδες 1) β) να βρείτε τα σημεία τομής της γραφικής παράστασης της f με τους άξονες χ χ και y y. (Μονάδες 13) _646 Δίνεται το πολυώνυμο P( x) 3x 10 x + 9x. α) Να κάνετε τη διαίρεση του πολυωνύμου P(x) με το πολυώνυμο 3x 4x 1 και να γράψετε την ταυτότητα της ευκλείδειας διαίρεσης. (Μονάδες 15) β) Να λύσετε την εξίσωση Px () 0. (Μονάδες 10) _647 Δίνεται η συνάρτηση f ( x) x x 5x. α) Nα βρείτε τα σημεία τομής της γραφικής παράστασης της f με τον άξονα χ χ (Μονάδες 15) β) Να βρείτε τα διαστήματα στα οποία η γραφική παράσταση της f βρίσκεται κάτω από τον άξονα χ χ. (Μονάδες 10) _648 Δίνεται το πολυώνυμο P( x) x x -5x με,. α) Αν το πολυώνυμο P(x) έχει ρίζα το 1 και το υπόλοιπο της διαίρεσής του με το x- είναι ίσο με - 4, να βρείτε τα,. (Μονάδες13) β) Αν α=- και β=6, να λύσετε την εξίσωση Px () 0. (Μονάδες 1) _681 Δίνεται το πολυώνυμο Ρ(x) = x 3 + αx + βx + Αν το Ρ(x) έχει παράγοντα το x + 1 και Ρ() = 18,τότε: α) Να αποδείξετε ότι α = 1 και β = (Μονάδες 10) β) Να λύσετε την εξίσωση: Ρ(x) = 0 (Μονάδες 8) γ) Να λύσετε την ανίσωση: ( x) 0 (Μονάδες 7) _68 Δίνεται το πολυώνυμο P x x k x x k ( ) ( 6) 7. α) Να βρείτε για ποια τιμή του k, το είναι ρίζα του Ρ(x). (Μονάδες 1) β) Αν κ = 6, να λύσετε την εξίσωση Ρ(x) = 0. (Μονάδες 13) _683 Δίνεται το πολυώνυμο x x x x 6. α) Αν γνωρίζετε ότι η τιμή του πολυωνύμου για x = 1 είναι ίση με 10 και P() = 10, να βρείτε τα, (Μονάδες 1) β) Αν α = -5 και β = 8, να λύσετε την ανίσωση Ρ(x) > 10. (Μονάδες 13)

9 _684 Μια εταιρεία κατασκευάζει κουτιά σχήματος ορθογωνίου παραλληλεπιπέδου με διαστάσεις 3cm, 4cm και 5cm. Ένας νέος πελάτης ζήτησε από την εταιρεία να κατασκευάσει κουτιά με όγκο 10 cm 3, δηλαδή διπλάσιο από εκείνον που κατασκευάζει. Η εταιρεία αποφάσισε να κατασκευάσει τα κουτιά που ζήτησε ο πελάτης της, αυξάνοντας τις διαστάσεις του αρχικού κουτιού κατά σταθερό ακέραιο μήκος x. α) Να αποδείξετε ότι το x θα είναι λύση της εξίσωσης x 3 1x 47x (Ο όγκος V ορθογωνίου παραλληλεπιπέδου με διαστάσεις α, β, γ δίνεται από τον τύπο: V = α β γ) (Μονάδες 1) β) Να βρείτε τον θετικό ακέραιο x λύνοντας την εξίσωση που δίνεται στο ερώτημα α). (Μονάδες 13) _685 Δίνονται τα πολυώνυμα x 3 x 3 x 1 και Q x x x 3 1, όπου α θετικός πραγματικός αριθμός. α) Να βρείτε το α ώστε τα πολυώνυμα Ρ(x) και Q(x) να είναι ίσα. (Μονάδες 13) β) Αν α = 1, να αποδείξετε ότι η εξίσωση P(x) = 0 δεν έχει ακέραιες ρίζες. (Μονάδες 1) _686 Δίνεται το πολυώνυμο ( x) x + x 4x. α) Αν Ρ(-1) = 6, να δείξετε ότι λ = 1. (Μονάδες 11) β) Nα λύσετε την εξίσωση Ρ(x) = 0. (Μονάδες 14) _687 P x x x x 3 1 είναι 3ου βαθμού. Το πολυώνυμο α) Να δείξετε ότι λ = -1. (Μονάδες 9) β) Να βρείτε το P(x). (Μονάδες 7) γ) Να βρείτε τις ρίζες του P(x). (Μονάδες 9) _688 Το πολυώνυμο Ρ(x) αν διαιρεθεί με το (x - ) δίνει πηλίκο x 3x και υπόλοιπο τον πραγματικό αριθμό υ. α) Να γράψετε την ταυτότητα της παραπάνω διαίρεσης. (Μονάδες 8) β) Αν Ρ(1) = 10, να βρείτε το υ. (Μονάδες 9) γ) Αν υ=10,να βρείτε το P(x). (Μονάδες 8) 4_734 Δίνεται ορθογώνιο τρίγωνο με εμβαδό E 30cm του οποίου η υποτείνουσα είναι κατά 1cm μεγαλύτερη από τη μία κάθετη πλευρά. Αν ονομάσουμε x το μήκος αυτής της κάθετης πλευράς και y το μήκος της άλλης κάθετης (σε cm), τότε: 60 α) Να δείξετε ότι οι αριθμοί x, y ικανοποιούν τις σχέσεις: y και (x1) x y x (Μονάδες 4) β) Να δείξετε ότι ο αριθμός x ικανοποιεί την εξίσωση: x x (Μονάδες 4)

10 γ) Αν γνωρίζετε ότι το μήκος της πλευράς x είναι αριθμός ακέραιος και μικρότερος του 15, να βρείτε την τιμή του x καθώς και τα μήκη των άλλων πλευρών του τριγώνου. (Μονάδες 1) δ) Να εξετάσετε αν υπάρχει άλλο ορθογώνιο τρίγωνο (με διαφορετικά μήκη πλευρών από αυτά που προσδιορίσατε στο ερώτημα γ)) το οποίο ικανοποιεί τα αρχικά δεδομένα του προβλήματος. (Μονάδες 5) 4_759 Στο παρακάτω σχήμα δίνεται τμήμα της γραφικής παράστασης της συνάρτησης 1 3 f ( x) x x, x R και γ, δ πραγματικές σταθερές. 3 α) Με βάση τη γραφική παράσταση, να αποδείξετε ότι γ = -1 και δ = 0. (Μονάδες 5) 1 3 β) Θεωρώντας τώρα δεδομένο ότι f ( x) x x, x R : 4 i. Να αποδείξετε ότι f ( x) f ( x), για κάθε x R. (Μονάδες 5) ii. Να μεταφέρετε στην κόλα σας το σχήμα και να συμπληρώσετε τη γραφική παράσταση της f για x < 0. (Μονάδες 5) 3 iii. Να επαληθεύσετε ότι f (1) και, στη συνέχεια, να λύσετε τις εξισώσεις f( x) και f( x). (Μονάδες 10) 4 4 4_777 Στο σχήμα φαίνονται η γραφική παράσταση της συνάρτησης f ( x) x x και η ευθεία που διέρχεται από τα σημεία Α (0, 1) και Β (1, -). α) Να βρείτε την εξίσωση της ευθείας. (Μονάδες 7) β) Αν η ευθεία έχει εξίσωση y = -3x + 1, να βρείτε τις συντεταγμένες των κοινών σημείων της ευθείας με τη γραφική παράσταση της f. (Μονάδες 9) γ) Να λύσετε την ανίσωση x x 3x 1 (Μονάδες 9)

11 ΕΞΙΣΩΣΕΙΣ ΚΑΙ ΑΝΙΣΩΣΕΙΣ ΠΟΥ ΑΝΑΓΟΝΤΑΙ ΣΕ ΠΟΛΥΩΝΥΜΙΚΕΣ 4_ Δίνεται το πολυώνυμο ( x) 1 x 1 x 1 x 3 x,,. α) Να υπολογίσετε τις τιμές των κ και λ αν το πολυώνυμο Ρ(x) είναι 3ου βαθμού και το υπόλοιπο της διαίρεσης του Ρ(x) με το x -1 είναι ίσο με - 4. (Μονάδες 7) β) Για κ = 1 και λ = - i. Να γράψετε την ταυτότητα της Ευκλείδειας διαίρεσης του πολυωνύμου Ρ(x) με το x -1. (Μονάδες 5) ii. Να λύσετε την εξίσωση Ρ(x) + 4 = x -1. (Μονάδες 7) Px ( ) iii. Να λύσετε την ανίσωση 1. (Μονάδες 6) ( x1) ( x) 4_769 Δίνεται το πολυώνυμο P x x ax x με,. α) Αν το πολυώνυμο P(x) έχει παράγοντα το x - και το υπόλοιπο της διαίρεσής του με το x +1 είναι ίσο με -6, να βρείτε τα,. (Μονάδες 7) β) Αν α = -5 και β = 1, να λύσετε την εξίσωση P(x) = 0. (Μονάδες 8) γ) Να λύσετε την εξίσωση (Μονάδες 10) 4_77 4 Δίνεται το πολυώνυμο P(x) x x x x με,. α) Να βρείτε τις τιμές των, όταν το πολυώνυμο P(x) έχει ρίζα το 1 και παράγοντα το x +. (Μονάδες 7) β) Για κ = -7 και λ = 6 να λυθεί η εξίσωση P(x) = 0. (Μονάδες 9) ( x) γ) Για κ = -7 και λ = 6 να λυθεί η ανίσωση 0. x 5 (Μονάδες 9) 4_773 Δίνεται το πολυώνυμο P( x) x x 7x 5, για το οποίο γνωρίζουμε ότι το υπόλοιπο της διαίρεσής του με το x είναι ίσο με 6 και ότι έχει ρίζα το 1. α) Να βρείτε τις τιμές των α και β (Μονάδες 8) β) Για 1 και 0, να λύσετε i. την ανίσωση Px () 0 (Μονάδες 8) ii. την εξίσωση P( x) x 1 (Μονάδες 9) 4_774 Δίνεται το πολυώνυμο x 3 x x x, με. α) Να κάνετε τη διαίρεση P(x):(x - α) και να γράψετε την ταυτότητα της διαίρεσης. (Μονάδες 7) β) Να βρείτε τις τιμές του α για τις οποίες το (x - α) διαιρεί το Ρ(x). (Μονάδες 6) γ) Αν 1, τότε: i. Να λύσετε την ανίσωση ( x) 0. (Μονάδες 6) ii. Να λύσετε την ανίσωση x x 1 0. (Μονάδες 6)

12 4_775 Μια εταιρεία εκτίμησε ότι το κέρδος της Ρ (σε χιλιάδες ευρώ) από την πώληση ενός συγκεκριμένου προϊόντος ήταν: x 0,5x 1,9 x 1, 0 x 4, όπου x είναι η διαφημιστική δαπάνη (σε χιλιάδες ευρώ). Για αυτό το προϊόν, ξόδεψε για διαφήμιση 3 χιλιάδες ευρώ και το κέρδος της ήταν 4,6 χιλιάδες ευρώ. α) i. Να χρησιμοποιήσετε την παραπάνω γραφική παράσταση της συνάρτησης P(x) για να εκτιμήσετε ένα άλλο ποσό x που θα μπορούσε να δαπανήσει για διαφήμιση η εταιρεία ώστε να έχει το ίδιο κέρδος. (Μονάδες 5) ii. Να επαληθεύσετε αλγεβρικά το αποτέλεσμα του ερωτήματος i. (Μονάδες 10) β) Πόσα χρήματα πρέπει να δαπανήσει η εταιρεία για διαφήμιση, ώστε το κέρδος της να είναι μεγαλύτερο από 4,6 χιλιάδες ευρώ; (Μονάδες 10) ΕΚΘΕΤΙΚΗ ΣΥΝΑΡΤΗΣΗ _630 Δίνεται η γραφική παράσταση της συνάρτησης f( x) 3 x, με x R α) Στο ίδιο σύστημα αξόνων να χαράξετε τις γραφικές παραστάσεις των συναρτήσεων x x gx ( ) 3 1 και hx ( ) 3 1, μετατοπίζοντας κατάλληλα τη γραφική παράσταση της συνάρτησης f. ( Μονάδες 1) β) Ποια είναι η ασύμπτωτη της γραφικής παράστασης της g και ποια της γραφικής παράστασης της h; (Μονάδες 13)

13 _633 x 38 Δίνεται συνάρτηση : (0, ) με 4, a (0,1) (1, ). α) Να προσδιορίσετε το είδος της μονοτονίας της συνάρτησης f x 0 αιτιολογώντας την απάντησή σας. (Μονάδες 13) β) Να λύσετε την ανίσωση x 1 1 3x5. (Μονάδες 1) 4_787 Όταν ένας ασθενής παίρνει μια δόση ενός φαρμάκου, τότε ο οργανισμός του το μεταβολίζει έτσι ώστε η ποσότητά του να μειώνεται σύμφωνα με τη συνάρτηση f ( t) q t 0a, t 0 όπου t ο χρόνος (σε ημέρες), f () t η ποσότητα του φαρμάκου(σε mg) και οι αριθμοί α,q 0 είναι κατάλληλες θετικές σταθερές. α) Να εξηγήσετε τι παριστάνει η σταθερά q 0 στο πλαίσιο του προβλήματος και να αιτιολογήσετε γιατί ισχύει 0 < α < 1. (Μονάδες 6) β) Υποθέτουμε τώρα ότι μία ημέρα μετά τη λήψη του φαρμάκου, η ποσότητά του στον οργανισμό του ασθενούς έχει υποδιπλασιαστεί. 1 i. Να αποδείξετε ότι (Μονάδες 5) ii. Να μεταφέρετε στην κόλα σας και να συμπληρώσετε τον παρακάτω πίνακα τιμών της συνάρτησης f, εκφράζοντας τις τιμές f () t συναρτήσει της αρχικής τιμής q 0. (Μονάδες 4) t f(t) q 0 q 0 1 γ) Υποθέτουμε τώρα ότι και ότι η ποσότητα του φαρμάκου που παραμένει στον οργανισμό στο τέλος της 4ης ημέρας είναι 5 mg. i. Να υπολογίσετε την ποσότητα της δόσης που πήρε ο ασθενής. (Μονάδες 5) ii. Να σχεδιάσετε τη γραφική παράσταση της συνάρτησης f στο διάστημα [0,6]. (Μονάδες 5) 4_790 Σε μια περιοχή της ευρωπαϊκής ένωσης λόγω των μέτρων που πάρθηκαν ο πληθυσμός των αγροτών (σε χιλιάδες) μειώνεται σύμφωνα με τον νόμο της εκθετικής μεταβολής ct Q t Qo e ). Ο αρχικός πληθυσμός ήταν 8 χιλιάδες αγρότες και μετά από δύο χρόνια ( έμεινε ο μισός. α) Να αποδείξετε ότι η συνάρτηση που δίνει τον πληθυσμό των αγροτών μετά από t χρόνια είναι: Q t t ln e 8 (Μονάδες 10) β) Ποιος θα είναι ο πληθυσμός των αγροτών ύστερα από τέσσερα χρόνια; Να αιτιολογήσετε την απάντησή σας. (Μονάδες 6) γ) Πόσος χρόνος θα έχει περάσει όταν ο αγροτικός πληθυσμός της περιοχής θα έχει μειωθεί στους χίλιους αγρότες; Να αιτιολογήσετε την απάντησή σας. (Μονάδες 9)

14 4_791 x Δίνεται η συνάρτηση f( x) για κάθε x και a,. Η γραφική παράσταση της συνάρτησης f διέρχεται από τα σημεία Α(1,3) και Β(,13). α) Να αποδείξετε ότι α = 5 και β = -7. (Μονάδες 7) β) Να βρείτε το κοινό σημείο της γραφικής παράστασης της συνάρτησης f με τον άξονα y y. (Μονάδες 4) γ) Να αποδείξετε ότι η συνάρτηση f είναι γνησίως αύξουσα στο. (Μονάδες 7) x δ) Να λύσετε την ανίσωση f ( 31) 3. (Μονάδες 7) ΛΟΓΑΡΙΘΜΟΙ ΛΟΓΑΡΙΘΜΙΚΗ ΣΥΝΑΡΤΗΣΗ _63 Δίνεται η συνάρτηση f ( x) ln( x 3), x 3. α) Να χαράξετε τη γραφική παράσταση της f μετατοπίζοντας κατάλληλα τη γραφική παράσταση της συνάρτησης g( x) ln x. (Μονάδες 8) β) Σε ποιο σημείο τέμνει η γραφική παράσταση της f τον άξονα x x; Να αιτιολογήσετε την απάντησή σας. (Μονάδες 8) γ) Ποια είναι η ασύμπτωτη της C f; (Μονάδες 9) _634 α) Να βρείτε τις τιμές του x για τις οποίες ορίζεται η παράσταση ln xln( x 6) ( Μονάδες 10) 1 β) Να λύσετε την εξίσωση : ln x ln( x 6) ln 49 ( Μονάδες 15) _635 x Δίνεται η συνάρτηση f x lne e 1. α) Να βρείτε το πεδίο ορισμού της συνάρτησης f. ( Μονάδες 1) β) Να λύσετε την εξίσωση f x 0. (Μονάδες 13)

15 _636 Δίνονται οι συναρτήσεις f x lnx +4 και g x lnx ln4. α) Να βρείτε τα πεδία ορισμού των συναρτήσεων f και g. (Μονάδες 1) f x g x. (Μονάδες 13) β) Να λύσετε την εξίσωση _637 Δίνεται η συνάρτηση f x ln3 x 1. α) Να βρείτε το πεδίο ορισμού της συνάρτησης f. ( Μονάδες 13) β) Να λύσετε την εξίσωση f x 0. (Μονάδες 1) _638 Δίνεται η συνάρτηση f x ln x 1 α) Να βρείτε το πεδίο ορισμού της συνάρτησης f. (Μονάδες 8) β) Να βρείτε τα σημεία τομής (αν υπάρχουν) της γραφικής παράστασης της συνάρτησης f με τους άξονες x x και y y. (Μονάδες 10) γ) Να παραστήσετε γραφικά τη συνάρτηση f μετατοπίζοντας κατάλληλα τη γραφική παράσταση της y ln x. (Μονάδες 7) 4_794 Δίνεται το πολυώνυμο x x x x 6,,. α) Να υπολογίσετε τις τιμές των α και β ώστε το πολυώνυμο Ρ(x) να έχει παράγοντα το x +1 και η αριθμητική τιμή του για x = να είναι ίση με 1. (Μονάδες 7) β) Για α=- και β=3 i. Να γράψετε την ταυτότητα της Ευκλείδειας διαίρεσης του πολυωνύμου Ρ(x) με το x -. (Μονάδες 5) ii. Να λύσετε την ανίσωση x x 14. (Μονάδες 7) iii. Να λύσετε την ανίσωση 4_796 x Δίνονται οι συναρτήσεις f x lne 1 lnx ln x 14. (Μονάδες 6) και g x lnx α) Να βρείτε τα πεδία ορισμού των συναρτήσεων f και g. (Μονάδες 4) β) Να λύσετε τις ανισώσεις f (x )> 0 και g (x) < 0. (Μονάδες 8) γ) Να συγκρίνετε τους αριθμούς f ln 3 και g e (Μονάδες 6) δ) Να λύσετε την εξίσωση f x f x g e 1 4_799 Δίνεται η συνάρτηση f x log x. (Μονάδες 7). α) Να βρείτε το πεδίο ορισμού της συνάρτησης f. (Μονάδες 5) β) Να υπολογίσετε τον αριθμό γ) Να λύσετε την εξίσωση log (Μονάδες 7) f ( x) f ( x) log (Μονάδες 13)

α) Στο ίδιο σύστημα αξόνων να χαράξετε τις γραφικές παραστάσεις των συναρτήσεων

α) Στο ίδιο σύστημα αξόνων να χαράξετε τις γραφικές παραστάσεις των συναρτήσεων ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Άλγεβρα Β-Λυκείου (2ο πακέτο ασκήσεων) 1 22630 Δίνεται η γραφική παράσταση της συνάρτησης f(x) = 3 x με x R. α) Στο ίδιο σύστημα αξόνων να χαράξετε τις γραφικές παραστάσεις των συναρτήσεων

Διαβάστε περισσότερα

ΤΑΞΙΝΟΜΗΣΗ ΘΕΜΑΤΩΝ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ ΑΝΑ ΕΝΟΤΗΤΑ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ 1.1

ΤΑΞΙΝΟΜΗΣΗ ΘΕΜΑΤΩΝ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ ΑΝΑ ΕΝΟΤΗΤΑ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ 1.1 ΤΑΞΙΝΟΜΗΣΗ ΘΕΜΑΤΩΝ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ ΑΝΑ ΕΝΟΤΗΤΑ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ 1.1 ΘΕΜΑ ο ΘΕΜΑ 16950 α) Να κατασκευάσετε ένα γραμμικό σύστημα δυο εξισώσεων με δυο αγνώστους με συντελεστές

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΑ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 2 ο : ΙΔΙΟΤΗΤΕΣ ΣΥΝΑΡΤΗΣΕΩΝ

ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΑ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 2 ο : ΙΔΙΟΤΗΤΕΣ ΣΥΝΑΡΤΗΣΕΩΝ Άλγεβρα Β Λυκείου, ο Κεφάλαιο ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΑ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ ο : ΙΔΙΟΤΗΤΕΣ ΣΥΝΑΡΤΗΣΕΩΝ ΟΡΙΣΜΟΣ 1 Μια συνάρτηση ƒ λέγεται γνησίως αύξουσα σε ένα διάστημα Δ του πεδίου ορισμού της, όταν για οποιαδήποτε

Διαβάστε περισσότερα

Επιμέλεια: Σακαρίκος Ευάγγελος 133 Θέματα - 21/1/2015

Επιμέλεια: Σακαρίκος Ευάγγελος 133 Θέματα - 21/1/2015 Τράπεζα Θεμάτων Β Λυκείου Άλγεβρα 1 Επιμέλεια: Σακαρίκος Ευάγγελος 133 Θέματα - 1/1/015 Τράπεζα Θεμάτων Β Λυκείου Άλγεβρα Τράπεζα Θεμάτων Β Λυκείου Άλγεβρα Κεφάλαιο 1 ο : Συστήματα 3 1.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ. ΘΕΜΑ 2ο

ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ. ΘΕΜΑ 2ο ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΘΕΜΑ ο _6950 α) Να κατασκευάσετε ένα γραμμικό σύστημα δυο εξισώσεων με δυο αγνώστους με συντελεστές διάφορους του μηδενός, το οποίο να είναι αδύνατο. β) Να παραστήσετε γραφικά

Διαβάστε περισσότερα

ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ

ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΘΕΜΑ ο _6950 α) Να κατασκευάσετε ένα γραμμικό σύστημα δυο εξισώσεων με δυο αγνώστους με συντελεστές διάφορους του

Διαβάστε περισσότερα

ΜΕΘΟΔΟΛΟΓΙΑ & ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΑΛΓΕΒΡΑ Β ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ

ΜΕΘΟΔΟΛΟΓΙΑ & ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΑΛΓΕΒΡΑ Β ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΜΕΘΟΔΟΛΟΓΙΑ & ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΑΛΓΕΒΡΑ Β ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ Επιμέλεια : Παλαιολόγου Παύλος Μαθηματικός Αγαπητοί μαθητές, αυτό το βιβλίο αποτελεί ένα σημαντικό βοήθημα για την Άλγεβρα της Β Λυκείου, που είναι

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ - ΜΑΘ. ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ

ΑΛΓΕΒΡΑ - ΜΑΘ. ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ 0 ΘΕΩΡΙΑ ΑΣΚΗΣΕΙΣ ΑΛΓΕΒΡΑ - ΜΑΘ. ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΕΞΕΤΑΣΕΩΝ Η ΤΕΛΕΥΤΑΙΑ ΕΠΑΝΑΛΗΨΗ Βαγγέλης Α Νικολακάκης Μαθηματικός ΛΙΓΑ ΛΟΓΑ Η παρούσα εργασία µμου δεν στοχεύει απλά στο κυνήγι

Διαβάστε περισσότερα

Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. Θέμα 2 ο (150)

Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. Θέμα 2 ο (150) Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ Θέμα ο (150) -- Τράπεζα θεμάτων Άλγεβρας Α Λυκείου Φεργαδιώτης Αθανάσιος -3- Τράπεζα θεμάτων Άλγεβρας Α Λυκείου Φεργαδιώτης Αθανάσιος ΚΕΦΑΛΑΙΟ

Διαβάστε περισσότερα

Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα

Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7, α) Να αιτιολογήσετε γιατί η (α ν ) είναι αριθμητική πρόοδος και να βρείτε τον εκατοστό

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ Β ΛΥΚΕΙΟΥ -- ΑΛΓΕΒΡΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ

ΑΣΚΗΣΕΙΣ Β ΛΥΚΕΙΟΥ -- ΑΛΓΕΒΡΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΑΣΚΗΣΕΙΣ Β ΛΥΚΕΙΟΥ -- ΑΛΓΕΒΡΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ Άσκηση η Γραμμικά συστήματα Δίνονται οι ευθείες : y3 και :y 5. Να βρεθεί το R, ώστε οι ευθείες να τέμνονται. Οι ευθείες και θα τέμνονται όταν το μεταξύ

Διαβάστε περισσότερα

ΜΕΛΕΤΗ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ

ΜΕΛΕΤΗ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ 5 ΜΕΛΕΤΗ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ Εισαγωγή Στο κεφάλαιο αυτό θα δούμε πώς, με τη βοήθεια των πληροφοριών που α- ποκτήσαμε μέχρι τώρα, μπορούμε να χαράξουμε με όσο το δυνατόν μεγαλύτερη ακρίβεια τη γραφική παράσταση

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΣΥΝΑΡΤΗΣΕΙΣ

ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΣΥΝΑΡΤΗΣΕΙΣ ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΣΥΝΑΡΤΗΣΕΙΣ ΚΑΤΑΚΟΡΥΦΗ-ΟΡΙΖΟΝΤΙΑ ΜΕΤΑΤΟΠΙΣΗ ΚΑΜΠΥΛΗΣ Να σχεδιάσετε στο ίδιο σύστημα αξόνων τις γραφικές παραστάσεις των συναρτήσεων: f ()=, g()= +3,h()= -3 Να σχεδιάσετε στο ίδιο σύστημα

Διαβάστε περισσότερα

Α Λ Γ Ε Β Ρ Α Σ Υ Σ Τ Η Μ Α Τ Α

Α Λ Γ Ε Β Ρ Α Σ Υ Σ Τ Η Μ Α Τ Α Σ Υ Λ Λ Ο Γ Η Α Σ Κ Η Σ Ε Ω Ν Β Λ Υ Κ Ε Ι Ο Υ Α Λ Γ Ε Β Ρ Α Σ Υ Σ Τ Η Μ Α Τ Α α 3y β 5 (1) Αν το (Σ) : 3 αy 5β τους α,β έχει λύση την (, y) = (1, ) να βρείτε () Να λυθούν τα συστήματα : y 4 3 y 5 6 5 6

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012. Ηµεροµηνία: Κυριακή 1 Απριλίου 2012 ΕΚΦΩΝΗΣΕΙΣ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012. Ηµεροµηνία: Κυριακή 1 Απριλίου 2012 ΕΚΦΩΝΗΣΕΙΣ ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 0 Ε_3.ΜλΑ(ε) ΤΑΞΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α A.. Α.. Α.3. ΘΕΜΑ Β Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΑΛΓΕΒΡΑ Ηµεροµηνία: Κυριακή Απριλίου

Διαβάστε περισσότερα

Η συνάρτηση y = αχ 2 + βχ + γ

Η συνάρτηση y = αχ 2 + βχ + γ Η συνάρτηση y αχ + βχ + γ Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd 1 Η συνάρτηση y αx + βx + γ με α 0 Μια συνάρτηση της μορφής y αx + βx + γ με α 0 ονομάζεται τετραγωνική

Διαβάστε περισσότερα

(Μονάδες 15) (Μονάδες 12)

(Μονάδες 15) (Μονάδες 12) ΑΛΓΕΒΡΑ Β Λυκε ί ου τ ράε ζ αθε μάτ ων( 1ηέ κδοση) θέ μαδε ύτ ε ροκαιτ έ τ αρτ ο Κόμβ οςατ σι οούλου01415 δης Ει μέ λε ι α:εμμανουήλκ.σκαλί Αντ ώνηςκ.αοστ όλου Άσκηση 1 α) Να κατασκευάσετε ένα γραμμικό

Διαβάστε περισσότερα

ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ ΜΑΘΗΜΑΤΙΚΩΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ. 1 ο δείγμα

ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ ΜΑΘΗΜΑΤΙΚΩΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ. 1 ο δείγμα ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ ΜΑΘΗΜΑΤΙΚΩΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ 1 ο δείγμα Α1 Αν α> με α 1 τότε για οποιουσδήποτε θ1, θ> να αποδείξετε ότι ισχύει: logα(θ1θ) = logαθ1 + logαθ Α Πότε ένα πολυώνυμο

Διαβάστε περισσότερα

β. Να βρείτε την πιθανότητα πραγματοποίησης καθενός από τα δύο ενδεχόμενα του ερωτήματος α).

β. Να βρείτε την πιθανότητα πραγματοποίησης καθενός από τα δύο ενδεχόμενα του ερωτήματος α). 1.: Έννοια της Πιθανότητας Κεφάλαιο 1ο: Πιθανότητες ΑΣΚΗΣΗ 1 (_497) Ένα τηλεοπτικό παιχνίδι παίζεται με ζεύγη αντιπάλων των δυο φύλων. Στο παιχνίδι συμμετέχουν 3 άντρες: ο Δημήτρης (Δ), ο Κώστας (Κ), ο

Διαβάστε περισσότερα

Επαναληπτικό Διαγώνισμα Άλγεβρας Β Λυκείου. Θέματα. A. Να διατυπώσετε τον ορισμό μιας γνησίως αύξουσας συνάρτησης. (5 μονάδες)

Επαναληπτικό Διαγώνισμα Άλγεβρας Β Λυκείου. Θέματα. A. Να διατυπώσετε τον ορισμό μιας γνησίως αύξουσας συνάρτησης. (5 μονάδες) Θέμα 1 Θέματα A. Να διατυπώσετε τον ορισμό μιας γνησίως αύξουσας συνάρτησης. (5 μονάδες) B. Να χαρακτηρίσετε ως σωστή (Σ) ή λάθος (Λ) τις παρακάτω προτάσεις: i) Ο βαθμός του υπολοίπου της διαίρεσης P(x)

Διαβάστε περισσότερα

Α Λ Γ Ε Β Ρ Α Β Λ Υ Κ Ε Ι Ο Υ

Α Λ Γ Ε Β Ρ Α Β Λ Υ Κ Ε Ι Ο Υ Α Λ Γ Ε Β Ρ Α Β Λ Υ Κ Ε Ι Ο Υ ΚΕΦΑΛΑΙΟ 1 ο ΣΥΣΤΗΜΑΤΑ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΙΑ Όταν έχουμε δύο γραμμικές εξισώσεις αx+βy=γ και α x+β y=γ και ζητάμε τις κοινές λύσεις τους, τότε λέμε ότι έχουμε να λύσουμε ένα γραμμικό

Διαβάστε περισσότερα

ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ. α) Το σημείο (-1,1) ανήκει στη γραφική παράσταση της f; α) Να βρεθεί η τιμή του α, ώστε η τιμή της f στο χ 0 =2 να είναι 1.

ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ. α) Το σημείο (-1,1) ανήκει στη γραφική παράσταση της f; α) Να βρεθεί η τιμή του α, ώστε η τιμή της f στο χ 0 =2 να είναι 1. Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ 1.Δίνεται η συνάρτηση f()= 4 1 α) Το σημείο (-1,1) ανήκει στη γραφική παράσταση της f; β) Αν χ=, ποια είναι η τιμή της f; γ) Αν f()=1, ποια είναι

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου Κεφάλαιο ο Αλγεβρικές Παραστάσεις ΛΕΜΟΝΙΑ ΜΠΟΥΤΣΚΟΥ Γυμνάσιο Αμυνταίου ΜΑΘΗΜΑ Α. Πράξεις με πραγματικούς αριθμούς ΑΣΚΗΣΕΙΣ ) ) Να συμπληρώσετε τα κενά ώστε στην κατακόρυφη στήλη

Διαβάστε περισσότερα

α) γνησίως αύξουσα σε ένα διάστημα Δ του πεδίου ορισμού της (Σχ.α), όταν β) γνησίως φθίνουσα σε ένα διάστημα Δ του πεδίου ορισμού της (Σχ.

α) γνησίως αύξουσα σε ένα διάστημα Δ του πεδίου ορισμού της (Σχ.α), όταν β) γνησίως φθίνουσα σε ένα διάστημα Δ του πεδίου ορισμού της (Σχ. ΜΟΝΟΤΟΝΙΑ. ΙΔΙΟΤΗΤΕΣ ΣΥΝΑΡΤΗΣΕΩΝ. ΜΟΝΟΤΟΝΙΑ - ΑΚΡΟΤΑΤΑ - ΣΥΜΜΕΤΡΙΕΣ Μια συνάρτηση f λέγεται: α) γνησίως αύξουσα σε ένα διάστημα Δ του πεδίου ορισμού της (Σχ.α), όταν για οποιαδήποτε χ,χ Δ με χ

Διαβάστε περισσότερα

ΘΕΜΑ 2. Δίνονται οι συναρτήσεις

ΘΕΜΑ 2. Δίνονται οι συναρτήσεις ΘΕΜΑ 2 Δίνονται οι συναρτήσεις (, x R 3 f ( x) = x και g x) = x α) Να δείξετε ότι οι γραφικές παραστάσεις των συναρτήσεων f, g τέμνονται σε τρία σημεία τα οποία και να βρείτε. (Μονάδες 13) β) Αν Α, Ο,

Διαβάστε περισσότερα

παράσταση της f τέμνει τον άξονα ψ ψ στο σημείο με τεταγμένη 3 και διέρχεται από το σημείο

παράσταση της f τέμνει τον άξονα ψ ψ στο σημείο με τεταγμένη 3 και διέρχεται από το σημείο ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΣΥΛΛΟΓΗ ΑΣΚΗΣΕΩΝ ου ΚΕΦΑΛΑΙΟΥ ΑΣΚΗΣΗ η (Κατσίποδας Δημήτρης) Δίνονται οι συναρτήσεις f() = με a, β R και g() = 5.Αν η γραφική παράσταση της f τέμνει τον άξονα ψ ψ στο σημείο

Διαβάστε περισσότερα

ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ B ΓΥΜΝΑΣΙΟΥ. 1 ο δείγμα

ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ B ΓΥΜΝΑΣΙΟΥ. 1 ο δείγμα ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ B ΓΥΜΝΑΣΙΟΥ 1 ο δείγμα Α. Θεωρία Α) Πότε ένα πολύγωνο λέγεται κανονικό; Β) Να δώσετε τον ορισμό της εγγεγραμμένης γωνίας σε κύκλο (Ο, ρ). (Να γίνει σχήμα) Γ) Ποια

Διαβάστε περισσότερα

Μαθηματικά Προσανατολισμού Γ Λυκείου, 1.1-1.7. ΚΑΡΑΓΙΑΝΝΗΣ ΙΩΑΝΝΗΣ Σχολικός Σύμβουλος Μαθηματικών Μ Α Θ Η Μ Α Τ Α ΣΤΑ Μ Α Θ Η Μ Α Τ Ι Κ Α

Μαθηματικά Προσανατολισμού Γ Λυκείου, 1.1-1.7. ΚΑΡΑΓΙΑΝΝΗΣ ΙΩΑΝΝΗΣ Σχολικός Σύμβουλος Μαθηματικών Μ Α Θ Η Μ Α Τ Α ΣΤΑ Μ Α Θ Η Μ Α Τ Ι Κ Α ΚΑΡΑΓΙΑΝΝΗΣ ΙΩΑΝΝΗΣ Σχολικός Σύμβουλος Μαθηματικών Μ Α Θ Η Μ Α Τ Α ΣΤΑ Μ Α Θ Η Μ Α Τ Ι Κ Α Π Ρ Ο Σ Α Ν Α Τ Ο Λ Ι Σ Μ Ο Υ Θ Ε Τ Ι Κ Ω Ν Σ Π Ο Υ Δ Ω Ν, Ο Ι Κ Ο Ν Ο Μ Ι Α Σ & Π Λ Η Ρ Ο Φ Ο Ρ Ι Κ Η Σ Γ ΛΥΚΕΙΟΥ

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Θετικής & Τεχνολογικής Κατεύθυνσης Β ΜΕΡΟΣ (ΑΝΑΛΥΣΗ) ΚΕΦ 1 ο : Όριο Συνέχεια Συνάρτησης

ΜΑΘΗΜΑΤΙΚΑ Θετικής & Τεχνολογικής Κατεύθυνσης Β ΜΕΡΟΣ (ΑΝΑΛΥΣΗ) ΚΕΦ 1 ο : Όριο Συνέχεια Συνάρτησης ΜΑΘΗΜΑΤΙΚΑ Θετικής & Τεχνολογικής Κατεύθυνσης Β ΜΕΡΟΣ (ΑΝΑΛΥΣΗ) ΚΕΦ ο : Όριο Συνέχεια Συνάρτησης Φυλλάδιο Φυλλάδι555 4 ο ο.α) ΕΝΝΟΙΑ ΣΥΝΑΡΤΗΣΗΣ - ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ.α) ΕΝΝΟΙΑ ΣΥΝΑΡΤΗΣΗΣ - ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ

Διαβάστε περισσότερα

3. Να δειχτει οτι α + 110 20α. Ποτε ισχυει το ισον; y = x. εξαρτάται από το α.

3. Να δειχτει οτι α + 110 20α. Ποτε ισχυει το ισον; y = x. εξαρτάται από το α. BAΣΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ Σ υ ν α ρ τ η σ η : f ( x ) = a / x. Πεδιο Ορισμου: Α = =(-,0) (0, + ) (αφου πρεπει x 0) * 3. Να δειχτει οτι α + 0 0α. Ποτε ισχυει το ισον;. Aν α, θετικοι. Συνολο Τιμων: f(α) = (αφου,

Διαβάστε περισσότερα

ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ

ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ Ξεφυλλίζοντας τα σχολικά βιβλία της Α και Β Λυκείου θα συναντήσουμε τις παρακάτω 10 "βασικές" συναρτήσεις των οποίων τη γραφική παράσταση πρέπει να γνωρίζουμε:

Διαβάστε περισσότερα

ΘΕΜΑ 2. Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7,

ΘΕΜΑ 2. Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7, Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7, α) Να αιτιολογήσετε γιατί η (α ν ) είναι αριθμητική πρόοδος και να βρείτε τον εκατοστό όρο της. (Μονάδες 15) β) Να αποδείξετε ότι

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ Οι ασκήσεις του φυλλαδίου δεν είναι ανά κεφάλαιο, αλλά τυχαία με σκοπό την τελική επανάληψη, και είναι θέματα εξετάσεων από διάφορα σχολεία του νομού Σερρών Σέρρες

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ

ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ 1 ο ΚΕΦΑΛΑΙΟ Ι. Να αντιστοιχίσετε καθένα από τα συστήματα: (Σ 1 ): { (Σ 2 ): { (Σ 3 ): { (Σ 4 ): { με εκείνη από τις απαντήσεις Α, Β, Γ που νομίζετε ότι είναι η σωστή.

Διαβάστε περισσότερα

ΑΚΑΗΜΙΑ ΚΥΒΟΣ ΘΕΣΣΑΛΟΝΙΚΗ ΜΑΘΗΜΑΤΙΚΑ 100% www.kivosacademy.gr

ΑΚΑΗΜΙΑ ΚΥΒΟΣ ΘΕΣΣΑΛΟΝΙΚΗ ΜΑΘΗΜΑΤΙΚΑ 100% www.kivosacademy.gr 11 ΟΗΓΙΕΣ 1. Το ebook περιέχει εργασίες δραστηριότητες για µαθητές που θα πάνε στη Γ Λυκείου και θα επιλέξουν µαθηµατικά κατεύθυνσης ή γενικής παιδείας.. Για την επίλυση θα χρειαστούν όλα τα βιβλία µαθηµατικών

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ Δ Ι Α Γ Ω Ν Ι Σ Μ Α 1

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ Δ Ι Α Γ Ω Ν Ι Σ Μ Α 1 Δ Ι Α Γ Ω Ν Ι Σ Μ Α Θ έ μ α Α Α. α. Πότε η εξίσωση αx + βx + γ = 0, α 0 έχει διπλή ρίζα; Ποια είναι η διπλή ρίζα της; 4 μονάδες β. Ποια μορφή παίρνει το τριώνυμο αx + βx + γ, α 0, όταν Δ = 0; 3 μονάδες

Διαβάστε περισσότερα

Εκφωνήσεις και λύσεις των ασκήσεων της Τράπεζας Θεμάτων στην Άλγεβρα Α ΓΕΛ

Εκφωνήσεις και λύσεις των ασκήσεων της Τράπεζας Θεμάτων στην Άλγεβρα Α ΓΕΛ Κοίταξε τις µεθόδους, τις λυµένες ασκήσεις και τις ασκήσεις προς λύση των ενοτήτων 6, 7 του βοηθήµατος Μεθοδολογία Άλγεβρας και Στοιχείων Πιθανοτήτων Α Γενικού Λυκείου των Ευσταθίου Μ. και Πρωτοπαπά Ελ.

Διαβάστε περισσότερα

Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους

Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ Κεφάλαιο 1 ο ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ 1.1 Πράξεις με πραγματικούς αριθμούς Α. Οι πραγματικοί αριθμοί και οι πράξεις τους 1. Ποιοι αριθμοί ονομάζονται: α) ρητοί β) άρρητοι γ) πραγματικοί;

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ ( ΘΕΡΙΝΑ )

ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ ( ΘΕΡΙΝΑ ) 5 1 1 1η σειρά ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ ( ΘΕΡΙΝΑ ) ΘΕΜΑ 1 Α. Ας υποθέσουμε ότι x 1,x,...,x κ είναι οι τιμές μιας μεταβλητής X, που αφορά τα άτομα ενός δείγματος μεγέθους

Διαβάστε περισσότερα

Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου

Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου Αριθμοί 1. ΑΡΙΘΜΟΙ Σύνολο Φυσικών αριθμών: Σύνολο Ακέραιων αριθμών: Σύνολο Ρητών αριθμών: ακέραιοι με Άρρητοι αριθμοί: είναι οι μη ρητοί π.χ. Το σύνολο Πραγματικών

Διαβάστε περισσότερα

1. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν γράφοντας την ένδειξη Σωστό ή Λάθος και να δικαιολογήσετε την απάντησή σας.

1. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν γράφοντας την ένδειξη Σωστό ή Λάθος και να δικαιολογήσετε την απάντησή σας. Κεφάλαιο Πραγματικοί αριθμοί. Οι πράξεις και οι ιδιότητές τους Κατανόηση εννοιών - Θεωρία. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν γράφοντας την ένδειξη Σωστό ή Λάθος και να δικαιολογήσετε την απάντησή

Διαβάστε περισσότερα

Ερωτήσεις ανάπτυξης. α) να βρείτε το σηµείο x 0. β) να αποδείξετε ότι η κλίση της εφαπτοµένης της

Ερωτήσεις ανάπτυξης. α) να βρείτε το σηµείο x 0. β) να αποδείξετε ότι η κλίση της εφαπτοµένης της Ερωτήσεις ανάπτυξης. ** Η συνάρτηση είναι παραγωγίσιµη στο R και η ευθεία (ε) είναι εφαπτοµένη της C στο σηµείο (0, (0)). Μετακινούµε τη C παράλληλα προς τους άξονες, όπως φαίνεται στο σχήµα, και ονοµάζουµε

Διαβάστε περισσότερα

Γενικό Ενιαίο Λύκειο Μαθ. Κατ. Τάξη B

Γενικό Ενιαίο Λύκειο Μαθ. Κατ. Τάξη B 151 Θέματα εξετάσεων περιόδου Μαΐου - Ιουνίου στα Μαθηματικά Κατεύθυνσης Τάξη - B Λυκείου 15 Α. Αν α, β, γ ακέραιοι ώστε α/β και α/γ, να δείξετε ότι α/(β + γ). Μονάδες 13 Β. α. Δώστε τον ορισμό της παραβολής.

Διαβάστε περισσότερα

1.1. 1o ΚΕΦΑΛΑΙΟ Β ΘΕΜΑΤΑ

1.1. 1o ΚΕΦΑΛΑΙΟ Β ΘΕΜΑΤΑ 1o ΚΕΦΑΛΑΙΟ Β ΘΕΜΑΤΑ 1.1 16950 Β (ΑΝΑΡΤΗΘΗΚΕ 08-11-14) α) Να κατασκευάσετε ένα γραµµικό σύστηµα δυο εξισώσεων µε δυο αγνώστους µε συντελεστές διάφορους του µηδενός, το οποίο να είναι αδύνατο. β) Να παραστήσετε

Διαβάστε περισσότερα

1,y 1) είναι η C : xx yy 0.

1,y 1) είναι η C : xx yy 0. ΘΕΜΑ Α ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ο δείγμα Α. Αν α, β δύο διανύσματα του επιπέδου με συντελεστές διεύθυνσης λ και λ αντίστοιχα, να αποδείξετε ότι α β λ λ.

Διαβάστε περισσότερα

Επαναληπτικές Ασκήσεις

Επαναληπτικές Ασκήσεις Β' Γυμν. - Επαναληπτικές Ασκήσεις 1 Άσκηση 1 Απλοποίησε τις αλγεβρικές παραστάσεις (α) 2y 2z 8ω 8ω 2y 2z (β) 1x 2y 3z 3 3 z 2z z 2 x y Επαναληπτικές Ασκήσεις Άλγεβρα - Γεωμετρία Άσκηση 2 Υπολόγισε την

Διαβάστε περισσότερα

Παντελής Μπουμπούλης, M.Sc., Ph.D. σελ. 2 math-gr.blogspot.com, bouboulis.mysch.gr

Παντελής Μπουμπούλης, M.Sc., Ph.D. σελ. 2 math-gr.blogspot.com, bouboulis.mysch.gr VI Ολοκληρώματα Παντελής Μπουμπούλης, MSc, PhD σελ mth-grlogspotcom, ououlismyschgr ΜΕΡΟΣ Αρχική Συνάρτηση Ορισμός Έστω f μια συνάρτηση ορισμένη σε ένα διάστημα Δ Αρχική συνάρτηση ή παράγουσα της στο Δ

Διαβάστε περισσότερα

2.7 ΤΟΠΙΚΑ ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΗΣ

2.7 ΤΟΠΙΚΑ ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΗΣ .7 ΤΟΠΙΚΑ ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΗΣ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ I. Αν μια συνάρτηση παρουσιάζει τοπικό ακρότατο σε ένα εσωτερικό σημείο του πεδίου ορισμού της και είναι παραγωγισιμη σε αυτό τότε ( ).(Θεώρημα Fermat) II.

Διαβάστε περισσότερα

B Γυμνασίου. Ενότητα 9

B Γυμνασίου. Ενότητα 9 B Γυμνασίου Ενότητα 9 Γραμμικές εξισώσεις με μία μεταβλητή Διερεύνηση (1) Να λύσετε τις πιο κάτω εξισώσεις και ακολούθως να σχολιάσετε το πλήθος των λύσεων που βρήκατε σε καθεμιά. α) ( ) ( ) ( ) Διερεύνηση

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ 1 ΚΕΦΑΛΑΙΟ 3 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ B ΓΥΝΜΑΣΙΟΥ. 1. Να λυθούν οι εξισώσεις και οι ανισώσεις :

ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ 1 ΚΕΦΑΛΑΙΟ 3 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ B ΓΥΝΜΑΣΙΟΥ. 1. Να λυθούν οι εξισώσεις και οι ανισώσεις : ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ. Να λυθούν οι εξισώσεις και οι ανισώσεις : α) γ) x x 3x 7x 9 4 5 0 x x x 3 6 3 4 β) δ) 3x x 3 x 4 3 5 x x. 4 4 3 5 x 4x 3 x 6x 7. Να λυθεί στο Q, η ανίσωση :. 5 8 8 3. Να λυθούν

Διαβάστε περισσότερα

(Μονάδες 10) γ) Αν η εξίσωση (1) έχει ρίζες τους αριθμούς x 1, x 2 και d x 1,

(Μονάδες 10) γ) Αν η εξίσωση (1) έχει ρίζες τους αριθμούς x 1, x 2 και d x 1, Σε ένα τμήμα της Α Λυκείου κάποιοι μαθητές παρακολουθούν μαθήματα Αγγλικών και κάποιοι Γαλλικών. Η πιθανότητα ένας μαθητής να μην παρακολουθεί Γαλλικά είναι 0,8. Η πιθανότητα ένας μαθητής να παρακολουθεί

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Β ΓΥΜΝΑΣΙΟΥ. 1. 2( x 1) 3(2 x) 5( x 3) 2. 4x 2( x 3) 6 2x 3. 2x 3(4 x) x 5( x 1)

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Β ΓΥΜΝΑΣΙΟΥ. 1. 2( x 1) 3(2 x) 5( x 3) 2. 4x 2( x 3) 6 2x 3. 2x 3(4 x) x 5( x 1) ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Β ΓΥΜΝΑΣΙΟΥ Α. Να λυθούν οι παρακάτω εξισώσεις: 1. ( x 1) ( x) 5( x ). x ( x ) 6 x. x ( x) x 5( x 1) x 1 (1 x) x ( x) x x. 1 x 5. x 6 1 1 ( ) 1 1 6. x 1 x 7. 1 x

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ. 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις)

ΣΥΣΤΗΜΑΤΑ. 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις) 6 ΣΥΣΤΗΜΑΤΑ 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις) Η εξίσωση αx βy γ Στο Γυμνάσιο διαπιστώσαμε με την βοήθεια παραδειγμάτων ότι η εξίσωση αx βy γ, με α 0 ή β 0, που λέγεται γραμμική εξίσωση,

Διαβάστε περισσότερα

Διδακτέα-εξεταστέα ύλη μαθηματικών Ημερησίου και Εσπερινού ΓΕ.Λ. Ο Δ Η Γ Ο Σ ΔΙΔΑΚΤΕΑΣ-ΕΞΕΤΑΣΤΕΑΣ ΥΛΗΣ ΗΜΕΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΓΕΝΙΚΩΝ ΛΥΚΕΙΩΝ

Διδακτέα-εξεταστέα ύλη μαθηματικών Ημερησίου και Εσπερινού ΓΕ.Λ. Ο Δ Η Γ Ο Σ ΔΙΔΑΚΤΕΑΣ-ΕΞΕΤΑΣΤΕΑΣ ΥΛΗΣ ΗΜΕΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΓΕΝΙΚΩΝ ΛΥΚΕΙΩΝ Ο Δ Η Γ Ο Σ ΔΙΔΑΚΤΕΑΣ-ΕΞΕΤΑΣΤΕΑΣ ΥΛΗΣ ΜΑΘΗΜΑΤΙΚΩΝ ΗΜΕΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΓΕΝΙΚΩΝ ΛΥΚΕΙΩΝ Γενική Επιμέλεια: Καραγιάννης Ιωάννης Σχολικός Σύμβουλος Μαθηματικός Περιηγητής 1 ΠΕΡΙΕΧΟΜΕΝΑ 1. Διδακτέα-εξεταστέα

Διαβάστε περισσότερα

Ερωτήσεις ανάπτυξης. 2. ** Να βρείτε το ευρύτερο δυνατό υποσύνολο του R στο οποίο ορίζεται καθεμιά από τις παρακάτω συναρτήσεις: α) f (x) = 2 +

Ερωτήσεις ανάπτυξης. 2. ** Να βρείτε το ευρύτερο δυνατό υποσύνολο του R στο οποίο ορίζεται καθεμιά από τις παρακάτω συναρτήσεις: α) f (x) = 2 + Ερωτήσεις ανάπτυξης. ** Έστω η συνάρτηση f () = - 3 +. α) Να βρείτε τις τιμές f (), f (0), f (-3), f () β) Να βρείτε τα σημεία τομής της C f με τους άξονες γ) Να βρείτε τις τιμές f (t), f (t), f ( + h),,

Διαβάστε περισσότερα

Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις

Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις 2 ΕΡΩΤΗΣΕΙΙΣ ΘΕΩΡΙΙΑΣ ΑΠΟ ΤΗΝ ΥΛΗ ΤΗΣ Β ΤΑΞΗΣ ΜΕΡΟΣ Α -- ΑΛΓΕΒΡΑ Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις Α. 1 1 1. Τι ονομάζεται Αριθμητική και τι Αλγεβρική παράσταση; Ονομάζεται Αριθμητική παράσταση μια παράσταση

Διαβάστε περισσότερα

Απαντήσεις Λύσεις σε Θέματα από την Τράπεζα Θεμάτων. Μάθημα: Άλγεβρα Α Λυκείου

Απαντήσεις Λύσεις σε Θέματα από την Τράπεζα Θεμάτων. Μάθημα: Άλγεβρα Α Λυκείου Απαντήσεις Λύσεις σε Θέματα από την Τράπεζα Θεμάτων Μάθημα: Άλγεβρα Α Λυκείου Παρουσιάζουμε συνοπτικές λύσεις σε επιλεγμένα Θέματα («Θέμα 4ο») από την Τράπεζα θεμάτων. Το αρχείο αυτό τις επόμενες ημέρες

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ. και 25x i). Να κάνετε τις πράξεις στο πολυώνυμο.

ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ. και 25x i). Να κάνετε τις πράξεις στο πολυώνυμο. ΣΥΛΛΟΓΟΣ «Η ΕΛΛΗΝΙΚΗ ΠΑΙΔΕΙΑ» ΓΥΜΝΑΣΙΟ ΑΜΑΡΟΥΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΘΕΜΑ 1 Δίνονται τα πολυώνυμα (3x ) (5 x)(3x ) και 5x 9 i). Να κάνετε τις πράξεις στο πολυώνυμο. ii). Να βρείτε την τιμή του

Διαβάστε περισσότερα

1. ** Να βρεθεί το ευρύτερο δυνατό υποσύνολο του R στο οποίο ορίζεται καθεµιά από τις παρακάτω συναρτήσεις: , x [0, 2π] εφx -1

1. ** Να βρεθεί το ευρύτερο δυνατό υποσύνολο του R στο οποίο ορίζεται καθεµιά από τις παρακάτω συναρτήσεις: , x [0, 2π] εφx -1 Ερωτήσεις ανάπτυξης. ** Να βρεθεί το ευρύτερο δυνατό υποσύνολο του R στο οποίο ορίζεται καθεµιά από τις παρακάτω συναρτήσεις: α) f () = ( -) 4 - + β) f () = - - + 3 4 - - γ) f () = δ) f () = - + - - 5-3

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ

ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ Ε.1 I. 1. α 2 = 9 α = 3 ψ p: α 2 = 9, q: α = 3 Σύνολο αλήθειας της p: Α = {-3,3}, Σύνολο αλήθειας της q: B = {3} A B 2. α 2 = α α = 1 ψ p: α 2 = α, q: α = 1 Σύνολο

Διαβάστε περισσότερα

θ. Bolzano θ. Ενδιάμεσων τιμών θ. Μεγίστου Ελαχίστου και Εφαρμογές

θ. Bolzano θ. Ενδιάμεσων τιμών θ. Μεγίστου Ελαχίστου και Εφαρμογές Περιοδικό ΕΥΚΛΕΙΔΗΣ Β ΕΜΕ (Τεύχος 35) θ Bolzano θ Ενδιάμεσων τιμών θ Μεγίστου Ελαχίστου και Εφαρμογές Στο άρθρο αυτό επιχειρείται μια προσέγγιση των βασικών αυτών θεωρημάτων με εφαρμογές έ- τσι ώστε να

Διαβάστε περισσότερα

Α Λυκείου ΑΛΓΕΒΡΑ & ΓΕΩΜΕΤΡΙΑ

Α Λυκείου ΑΛΓΕΒΡΑ & ΓΕΩΜΕΤΡΙΑ Α Λυκείου ΑΛΓΕΒΡΑ & ΓΕΩΜΕΤΡΙΑ τράπεζαθεμάτων θέμαδεύτεροκαιτέταρτο Επιμέλεια: ΕμμανουήλΚ.Σκαλίδης ΑντώνηςΚ.Αποστόλου ΚόμβοςΑτσιποπούλου014-15 1 ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ, ΠΙΘΑΝΟΤΗΤΕΣ 1. Ένα κουτί περιέχει 5 άσπρες,

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ Διανύσματα Πολλαπλασιασμός αριθμού με διάνυσμα ο Θέμα _8603 Δίνεται τρίγωνο ΑΒΓ και σημεία Δ και Ε του επιπέδου τέτοια, ώστε 5 και

Διαβάστε περισσότερα

Συναρτήσεις Όρια Συνέχεια

Συναρτήσεις Όρια Συνέχεια Κωνσταντίνος Παπασταματίου Μαθηματικά Γ Λυκείου Κατεύθυνσης Συναρτήσεις Όρια Συνέχεια Συνοπτική Θεωρία Μεθοδολογίες Λυμένα Παραδείγματα Επιμέλεια: Μαθηματικός Φροντιστήριο Μ.Ε. «ΑΙΧΜΗ» Κ. Καρτάλη 8 (με

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ 5 ΠΕΡΙΟΔΩΝ

ΜΑΘΗΜΑΤΙΚΑ 5 ΠΕΡΙΟΔΩΝ ΕΥΡΩΠΑΙΚΟ ΑΠΟΛΥΤΗΡΙΟ 010 ΜΑΘΗΜΑΤΙΚΑ 5 ΠΕΡΙΟΔΩΝ ΗΜΕΡΟΜΗΝΙΑ: 4 Ιουνίου 010 ΔΙΑΡΚΕΙΑ ΕΞΕΤΑΣΗΣ: 4 ώρες (40 λεπτά) ΕΠΙΤΡΕΠΟΜΕΝΑ ΒΟΗΘΗΜΑΤΑ Ευρωπαικό τυπολόγιο Μη προγραμματιζόμενος υπολογιστής, χωρίς γραφικά

Διαβάστε περισσότερα

Επαναληπτικά θέματα στα Μαθηματικά προσανατολισμού-ψηφιακό σχολείο ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ

Επαναληπτικά θέματα στα Μαθηματικά προσανατολισμού-ψηφιακό σχολείο ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΚΕΦΑΛΑΙΟ 1 ο -ΣΥΝΑΡΤΗΣΕΙΣ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ Απο το Ψηφιακό Σχολείο του ΥΠΠΕΘ Επιμέλεια: Συντακτική Ομάδα mathpgr Συντονιστής:

Διαβάστε περισσότερα

ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΕΙΑ ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ

ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΕΙΑ ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΕΙΑ ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ Φροντιστήριο Μ.Ε. «ΑΙΧΜΗ» Κ.Καρτάλη 8 Βόλος Τηλ. 43598 ΠΊΝΑΚΑΣ ΠΕΡΙΕΧΟΜΈΝΩΝ 3. Η ΕΝΝΟΙΑ ΤΗΣ ΠΑΡΑΓΩΓΟΥ... 5 ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ...

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ. ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ Μαθηματικά Γενικής Παιδείας Γ.Λυκείου ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΑΣΚΗΣΕΙΣ ) Να βρείτε το πεδίο ορισμού των συναρτήσεων: ( ) 6+ 9, g ( ), h ( ) 5 +, k

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ Επαναληπτικές SOS-ΑΣΚΗΣΕΙΣ

ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ Επαναληπτικές SOS-ΑΣΚΗΣΕΙΣ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ Επαναληπτικές SOS-ΑΣΚΗΣΕΙΣ ΚΕΦΑΛΑΙΟ. Νδο ηµ α Α) = εφα +συνα Β) π συνα εφ α = +ηµ α Γ) ηµ α= ηµ α συνα+ συν α ηµα ) συν α+ηµ α εφα= + εφα εφα Ε) ( + συνα) εφα=ηµ α Ζ) =εφα εφα+σφα. Νδο

Διαβάστε περισσότερα

ΠΡΟΤΕΙΝΟΜΕΝΟΣ ΣΧΕΔΙΑΣΜΟΣ ΕΠΑΝΑΛΗΨΗΣ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΓΥΜΝΑΣΙΟΥ

ΠΡΟΤΕΙΝΟΜΕΝΟΣ ΣΧΕΔΙΑΣΜΟΣ ΕΠΑΝΑΛΗΨΗΣ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΓΥΜΝΑΣΙΟΥ ΕΚΠΑΙΔΕΥΤΗΡΙΑ ΓΥΜΝΑΣΙΟ ΑΜΑΡΟΥΣΙΟΥ ΠΡΟΤΕΙΝΟΜΕΝΟΣ ΣΧΕΔΙΑΣΜΟΣ ΕΠΑΝΑΛΗΨΗΣ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ Επαναληπτικές Ασκήσεις (από σχολικό βιβλίο) (από βοήθημα Γ Γυμνασίου Πετσιά-Κάτσιου) Κεφάλαιο 1ο 17,

Διαβάστε περισσότερα

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. Να εξετάσετε αν ισχύουν οι υποθέσεις του Θ.Μ.Τ. για την συνάρτηση στο διάστημα [ 1,1] τέτοιο, ώστε: C στο σημείο (,f( ))

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. Να εξετάσετε αν ισχύουν οι υποθέσεις του Θ.Μ.Τ. για την συνάρτηση στο διάστημα [ 1,1] τέτοιο, ώστε: C στο σημείο (,f( )) ΚΕΦΑΛΑΙΟ ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 6: ΘΕΩΡΗΜΑ ΜΕΣΗΣ ΤΙΜΗΣ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ (Θ.Μ.Τ.) [Θεώρημα Μέσης Τιμής Διαφορικού Λογισμού του κεφ..5 Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ Παράδειγμα. ΘΕΜΑ

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΨΗ Α ΛΥΚΕΙΟΥ. 3. Δίνονται τα σύνολα 2

ΕΠΑΝΑΛΗΨΗ Α ΛΥΚΕΙΟΥ. 3. Δίνονται τα σύνολα 2 ΕΠΑΝΑΛΗΨΗ Α ΛΥΚΕΙΟΥ ΣΥΝΟΛΑ-ΠΙΘΑΝΟΤΗΤΕΣ Έστω βασικό σύνολο Ω = {, 4, 5, 8, 0} και τα υποσύνολα του Ω, Α = {, 5, 0}, Β = {4, 8, 0} i) Να παραστήσετε με διάγραμμα Venn τα παραπάνω σύνολα ii) Να περιγράψετε

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. 118 ερωτήσεις θεωρίας με απάντηση 324 416 ασκήσεις για λύση. 20 συνδυαστικά θέματα εξετάσεων

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. 118 ερωτήσεις θεωρίας με απάντηση 324 416 ασκήσεις για λύση. 20 συνδυαστικά θέματα εξετάσεων ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ 118 ερωτήσεις θεωρίας με απάντηση 34 416 ασκήσεις για λύση ερωτήσεις κατανόησης λυμένα παραδείγματα 0 συνδυαστικά θέματα εξετάσεων Π Ε Ρ Ι Ε Χ Ο Μ Ε Ν Α Εισαγωγική ενότητα Το λεξιλόγιο

Διαβάστε περισσότερα

ΜΟΝΟΤΟΝΙΑ ΑΚΡΟΤΑΤΑ- ΣΥΝΟΛΟ ΤΙΜΩΝ ΚΟΙΛΟΤΗΤΑ ΣΗΜΕΙΑ ΚΑΜΠΗΣ. i) Για την εύρεση µονοτονίας µιας συνάρτησης υπολογίζω την f ( x )

ΜΟΝΟΤΟΝΙΑ ΑΚΡΟΤΑΤΑ- ΣΥΝΟΛΟ ΤΙΜΩΝ ΚΟΙΛΟΤΗΤΑ ΣΗΜΕΙΑ ΚΑΜΠΗΣ. i) Για την εύρεση µονοτονίας µιας συνάρτησης υπολογίζω την f ( x ) () Μονοτονία ΜΟΝΟΤΟΝΙΑ ΑΚΡΟΤΑΤΑ- ΣΥΝΟΛΟ ΤΙΜΩΝ ΚΟΙΛΟΤΗΤΑ ΣΗΜΕΙΑ ΚΑΜΠΗΣ i) Για την εύρεση µονοτονίας µιας συνάρτησης υπολογίζω την f ( ) και βρίσκω το πρόσηµό της ii) Αν προκύψει να είναι αύξουσα ή φθίνουσα,

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ. 14ο Λύκειο Περιστερίου

ΑΛΓΕΒΡΑ. 14ο Λύκειο Περιστερίου ΑΛΓΕΒΡΑ Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΕΚΦΩΝΗΣΕΙΣ 4ο Λύκειο Περιστερίου Εκκφωννήήσσεει ιςς κκααι ι λλύύσσεει ιςς θθεεμμάάττωνν Άλλγγεεββρρααςς Τρράάππεεζζααςς θθεεμμάάττωνν ααννάά εεννόόττηητταα ΑΛΓΕΒΡΑ

Διαβάστε περισσότερα

Συναρτήσεις. 5.1 Η έννοια της συνάρτησης. 1. Να συμπληρώσετε τις τιμές των παρακάτω συναρτήσεων : α) ψ = 2χ + 6 o Για χ = -1,5 : ψ =..=..

Συναρτήσεις. 5.1 Η έννοια της συνάρτησης. 1. Να συμπληρώσετε τις τιμές των παρακάτω συναρτήσεων : α) ψ = 2χ + 6 o Για χ = -1,5 : ψ =..=.. Συναρτήσεις. 5.1 Η έννοια της συνάρτησης. 1. Να συμπληρώσετε τις τιμές των παρακάτω συναρτήσεων : α) ψ = 2χ + 6 o Για χ = 1 : ψ =..=.. = o Για χ = -1 : ψ =..=.. = o Για χ = 0 : ψ =..=.. = o Για χ = 2 :

Διαβάστε περισσότερα

Λύκειο Παραλιμνίου Σχολική Χρονιά 2013-2014 Γενικές ασκήσεις επανάληψης Γ κατ

Λύκειο Παραλιμνίου Σχολική Χρονιά 2013-2014 Γενικές ασκήσεις επανάληψης Γ κατ Λύκειο Παραλιμνίου Σχολική Χρονιά 1-14 Γενικές ασκήσεις επανάληψης Γ κατ 1. Να βρείτε την παράγωγο της συνάρτησης y = e ημ + ln. Να βρείτε την παράγωγο της συνάρτησης y = τοξημ( ) d y y = ημ θ. Να βρείτε

Διαβάστε περισσότερα

1.4 ΕΦΑΡΜΟΓΕΣ ΤΩΝ ΠΑΡΑΓΩΓΩΝ

1.4 ΕΦΑΡΜΟΓΕΣ ΤΩΝ ΠΑΡΑΓΩΓΩΝ 1 1. ΕΦΑΡΜΟΓΕΣ ΤΩΝ ΠΑΡΑΓΩΓΩΝ ΘΕΩΡΙΑ 1. Θεώρηµα γνησίως αύξουσας Αν µία συνάρτηση είναι παραγωγίσιµη σ ένα διάστηµα και για κάθε εσωτερικό σηµείο του ισχύει f () > 0 τότε η f είναι γνησίως αύξουσα στο.

Διαβάστε περισσότερα

(Έκδοση: 05 03 2015)

(Έκδοση: 05 03 2015) (Έκδοση: 05 03 05) Οι απαντήσεις και οι λύσεις είναι αποτέλεσμα της συλλογικής δουλειάς των συνεργατών του δικτυακού τόπου http://lisari.blogspot.gr 4η έκδοση: 05 03 05 (συνεχής ανανέωση) Το βιβλίο διατίθεται

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 ÔÑÉÐÔÕ Ï

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 ÔÑÉÐÔÕ Ï ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 3 Ε_3.Μλ3ΘΤ(ε) ΤΑΞΗ: ΚΑΤΕΥΘΥΝΣΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ

Διαβάστε περισσότερα

Κεφάλαιο 4: Διαφορικός Λογισμός

Κεφάλαιο 4: Διαφορικός Λογισμός ΣΥΓΧΡΟΝΗ ΠΑΙΔΕΙΑ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Κεφάλαιο 4: Διαφορικός Λογισμός Μονοτονία Συνάρτησης Tζουβάλης Αθανάσιος Κεφάλαιο 4: Διαφορικός Λογισμός Περιεχόμενα Μονοτονία συνάρτησης... Λυμένα παραδείγματα...

Διαβάστε περισσότερα

Θαλής Α' Λυκείου 1995-1996

Θαλής Α' Λυκείου 1995-1996 Θαλής Α' Λυκείου 1995-1996 1. Δυο μαθητές Α και Β παίζουν το ακόλουθο παιχνίδι: Τους δίνεται ένα κανονικό πολύγωνο με άρτιο πλήθος πλευρών, μεγαλύτερο από 6 (π.χ. ένα 100-γωνο). Κάθε παίκτης συνδέει δυο

Διαβάστε περισσότερα

Σημειώσεις Μαθηματικών 2

Σημειώσεις Μαθηματικών 2 Σημειώσεις Μαθηματικών 2 Συναρτήσεις - 3 Ραφαήλ Φάνης Μαθηματικός 1 Κεφάλαιο 3 Συνέχεια Συναρτήσεων 3.1 Όρισμός Συνεχούς Συνάρτησης Ορισμός Μια συνάρτηση f ονομάζεται συνεχής στο x 0 Df αν υπάρχει το πραγματικός

Διαβάστε περισσότερα

Παραδείγµατα συναρτήσεων: f:[0,+ ) IR, f(x)=2+ x f:ir IR: f(x)=

Παραδείγµατα συναρτήσεων: f:[0,+ ) IR, f(x)=2+ x f:ir IR: f(x)= ΣΥΝΑΡΤΗΣΕΙΣ - 9 - ΚΕΦΑΛΑΙ ΚΕΦΑΛΑΙ ο - ΣΥΝΑΡΤΗΣΕΙΣ.. ρισµός Συνάρτηση από ένα σύνολο Α σ ένα σύνολο Β είναι ένας κανόνας µε τον οποίο κάθε στοιχείο του Α απεικονίζεται σε ένα ακριβώς στοιχείο του Β. Το

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Β Γυμνασίου

ΜΑΘΗΜΑΤΙΚΑ Β Γυμνασίου ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΜΑΘΗΜΑΤΙΚΑ Β Γυμνασίου Ενότητα 3: Πραγματικοί αριθμοί Πυθαγόρειο Θεώρημα ΠΑΙΔΑΓΩΓΙΚΟ ΙΝΣΤΙΤΟΥΤΟ ΥΠΗΡΕΣΙΑ ΑΝΑΠΤΥΞΗΣ ΠΡΟΓΡΑΜΜΑΤΩΝ ΜΑΘΗΜΑΤΙΚΑ Β Γυμνασίου Ενότητα 2: Πραγματικοί

Διαβάστε περισσότερα

Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. Θέμα 4 ο (141)

Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. Θέμα 4 ο (141) Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ Θέμα 4 ο (141) -- Τράπεζα θεμάτων Άλγεβρας Α Λυκείου Φεργαδιώτης Αθανάσιος -3- Τράπεζα θεμάτων Άλγεβρας Α Λυκείου Φεργαδιώτης Αθανάσιος ΚΕΦΑΛΑΙΟ

Διαβάστε περισσότερα

2. Να προσδιορίσετε τους επταψήφιους αριθμούς, οι οποίοι είναι τέλεια τετράγωνα και τα τρία πρώτα ψηφία τους, στη σειρά, είναι τα 4, 0 και 0.

2. Να προσδιορίσετε τους επταψήφιους αριθμούς, οι οποίοι είναι τέλεια τετράγωνα και τα τρία πρώτα ψηφία τους, στη σειρά, είναι τα 4, 0 και 0. Ευκλείδης Γ' Γυμνασίου 1995-1996 1. Να γίνει γινόμενο η παράσταση Α= ν 2 3ν 1 2 1. 2. Να προσδιορίσετε τους επταψήφιους αριθμούς, οι οποίοι είναι τέλεια τετράγωνα και τα τρία πρώτα ψηφία τους, στη σειρά,

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4 ο. Πίνακας διερεύνησης της εξίσωσης Εξίσωση: αx 2 +βx+γ=0 (α 0) (Ε) Έχει ΥΟ ρίζες άνισες που δίνονται από τους τύπους x 1,2 =

ΚΕΦΑΛΑΙΟ 4 ο. Πίνακας διερεύνησης της εξίσωσης Εξίσωση: αx 2 +βx+γ=0 (α 0) (Ε) Έχει ΥΟ ρίζες άνισες που δίνονται από τους τύπους x 1,2 = ΕΞΙΩΕΙ-ΑΝΙΩΕΙ ου ΒΑΘΜΟΥ - 38 - ΚΕΦΑΑΙΟ 4 ΚΕΦΑΑΙΟ 4 ο Εξισώσεις - Ανισώσεις β βαθµού 5.1. Μορφή και διερεύνηση της εξίσωσης β βαθµού Άθροισµα και γινόµενο των ριζών της Κάθε εξίσωση β βαθµού πριν τη λύσουµε,

Διαβάστε περισσότερα

3.5 Η ΣΥΝΑΡΤΗΣΗ y=α/x-η ΥΠΕΡΒΟΛΗ Ποσά αντιστρόφως ανάλογα- Η υπερβολή

3.5 Η ΣΥΝΑΡΤΗΣΗ y=α/x-η ΥΠΕΡΒΟΛΗ Ποσά αντιστρόφως ανάλογα- Η υπερβολή ΣΥΝΑΡΤΗΣΗ y=α/ Η ΥΠΕΡΒΟΛΗ.5 Η ΣΥΝΑΡΤΗΣΗ y=α/-η ΥΠΕΡΒΟΛΗ Ποσά αντιστρόφως ανάλογα- Η υπερβολή Δύο ποσά λέγονται αντιστρόφως ανάλογα, όταν η τιμή του ενός πολλαπλασιαστεί επί έναν αριθµό, τότε η τιµή του

Διαβάστε περισσότερα

Μονοτονία - Ακρότατα - 1 1 Αντίστροφη Συνάρτηση

Μονοτονία - Ακρότατα - 1 1 Αντίστροφη Συνάρτηση 4 Μονοτονία - Ακρότατα - Αντίστροφη Συνάρτηση Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Μονοτονία συνάρτησης Μια συνάρτηση f λέγεται: Γνησίως αύξουσα σ' ένα διάστημα Δ του πεδίου ορισμού της, όταν για οποιαδήποτε,

Διαβάστε περισσότερα

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 74 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 18 ΙΑΝΟΥΑΡΙΟΥ 2014

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 74 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 18 ΙΑΝΟΥΑΡΙΟΥ 2014 Τηλ. 6165-617784 - Fax: 64105 Tel. 6165-617784 - Fax: 64105 ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕΔΡΟΥΣ ΕΞΕΤΑΣΤΙΚΩΝ ΚΕΝΤΡΩΝ ΚΑΙ ΕΠΙΤΗΡΗΤΕΣ 1. Παρακαλούμε να διαβάσετε προσεκτικά

Διαβάστε περισσότερα

Μαθηματικά Γ Γυμνασίου

Μαθηματικά Γ Γυμνασίου Α λ γ ε β ρ ι κ έ ς π α ρ α σ τ ά σ ε ι ς 1.1 Πράξεις με πραγματικούς αριθμούς (επαναλήψεις συμπληρώσεις) A. Οι πραγματικοί αριθμοί και οι πράξεις τους Διδακτικοί στόχοι Θυμάμαι ποιοι αριθμοί λέγονται

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ Οι πραγματικοί αριθμοί αποτελούνται από τους ρητούς και τους άρρητους αριθμούς, τους φυσικούς και τους ακέραιους αριθμούς. Δηλαδή είναι το μεγαλύτερο σύνολο αριθμών που μπορούμε

Διαβάστε περισσότερα

GREEK MATHEMATICAL SOCIETY Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 106 79 ΑΘΗΝΑ Τηλ. 3616532-3617784 - Fax: 3641025 e-mail : info@hms.gr www.hms.

GREEK MATHEMATICAL SOCIETY Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 106 79 ΑΘΗΝΑ Τηλ. 3616532-3617784 - Fax: 3641025 e-mail : info@hms.gr www.hms. Τηλ 361653-3617784 - Fax: 364105 Tel 361653-3617784 - Fax: 364105 17 Ιανουαρίου 015 Β ΓΥΜΝΑΣΙΟΥ 7 49 3 4 3 6 11 Υπολογίστε την τιμή της παράστασης: Α= + + : 3 9 7 3 5 10 Πρόβλημα Μία οικογένεια αγόρασε

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ 3 ΠΕΡΙΟΔΩΝ ΗΜΕΡΟΜΗΝΙΑ: 8 ΙΟΥΝΙΟΥ 2009

ΜΑΘΗΜΑΤΙΚΑ 3 ΠΕΡΙΟΔΩΝ ΗΜΕΡΟΜΗΝΙΑ: 8 ΙΟΥΝΙΟΥ 2009 ΕΥΡΩΠΑΙΚΟ ΑΠΟΛΥΤΗΡΙΟ 2009 ΜΑΘΗΜΑΤΙΚΑ 3 ΠΕΡΙΟΔΩΝ ΗΜΕΡΟΜΗΝΙΑ: 8 ΙΟΥΝΙΟΥ 2009 ΔΙΑΡΚΕΙΑ ΕΞΕΤΑΣΗΣ: 3 ώρες (180 λεπτά) ΕΠΙΤΡΕΠΟΜΕΝΑ ΒΟΗΘΗΜΑΤΑ Ευρωπαικό τυπολόγιο Μη προγραμματιζόμενος υπολογιστής, χωρίς γραφικά

Διαβάστε περισσότερα

και 2, 2 2 είναι κάθετα να βρείτε την τιμή του κ. γ) Αν στο τρίγωνο ΑΒΓ επιπλέον ισχύει Α(3,1), να βρείτε τις συντεταγμένες των κορυφών του Β και Γ.

και 2, 2 2 είναι κάθετα να βρείτε την τιμή του κ. γ) Αν στο τρίγωνο ΑΒΓ επιπλέον ισχύει Α(3,1), να βρείτε τις συντεταγμένες των κορυφών του Β και Γ. Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ (ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ) 8556 ΘΕΜΑ Δίνονται τα διανύσματα και με, και, 3 α) Να βρείτε το εσωτερικό γινόμενο β) Αν τα διανύσματα γ) Να βρείτε το μέτρο του διανύσματος 8558 ΘΕΜΑ

Διαβάστε περισσότερα

ΠΡΟΣ: ΚΟΙΝ.: ΘΕΜΑ: Οδηγίες για τη διδακτέα - εξεταστέα ύλη των µαθηµάτων Β τάξης Ηµερησίου Γενικού Λυκείου και Γ τάξης Εσπερινού Γενικού Λυκείου

ΠΡΟΣ: ΚΟΙΝ.: ΘΕΜΑ: Οδηγίες για τη διδακτέα - εξεταστέα ύλη των µαθηµάτων Β τάξης Ηµερησίου Γενικού Λυκείου και Γ τάξης Εσπερινού Γενικού Λυκείου ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΕΝΙΑΙΟΣ ΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & /ΘΜΙΑΣ ΕΚΠ/ΣΗΣ /ΝΣΗ ΣΠΟΥ ΩΝ /ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α ----- Ταχ. /νση: Ανδρέα Παπανδρέου 37 Τ.Κ. Πόλη: 15180

Διαβάστε περισσότερα

Μελέτη και γραφική παράσταση συνάρτησης

Μελέτη και γραφική παράσταση συνάρτησης 7 Μελέτη και γραφική παράσταση συνάρτησης Α ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Η διαδικασία με την οποία προσδιορίζουμε τα ιδιαίτερα χαρακτηριστικά μιας συνάρτησης ονομάζεται μελέτη συνάρτησης Αυτή συνίσταται

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΕΠΙΛΕΓΜΕΝΑ ΘΕΜΑΤΑ ΑΠΟ ΤΗΝ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΕΠΙΛΕΓΜΕΝΑ ΘΕΜΑΤΑ ΑΠΟ ΤΗΝ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΕΠΙΛΕΓΜΕΝΑ ΘΕΜΑΤΑ ΑΠΟ ΤΗΝ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Άσκηση 1 Από τους µαθητές ενός Λυκείου, το 25% συµµετέχει στη οµάδα, το 30% συµµετέχει στη θεατρική οµάδα ποδοσφαίρου και το 15% των µαθητών

Διαβάστε περισσότερα

1.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ

1.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ 1.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ Μέθοδοι επίλυσης γραμμικού συστήματος χ Γραφική επίλυση Σχεδιάζουμε τις ευθείες που αντιπροσωπεύουν οι εξισώσεις του συστήματος. Αν: - οι δύο ευθείες τέμνονται, τότε το σύστημα έχει

Διαβάστε περισσότερα