με Τέλος πάντων, έστω ότι ξεκινάει ένα άλλο υποθετικό σενάριο που απλά δεν διευκρινίζεται. Για το i) θα έχουμε , 2

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "με Τέλος πάντων, έστω ότι ξεκινάει ένα άλλο υποθετικό σενάριο που απλά δεν διευκρινίζεται. Για το i) θα έχουμε , 2"

Transcript

1 Άσκηση 75 Σε έναν οργανισμό, αρχικά υπάρχουν βακτήρια. Μετά από 1 ώρα υπάρχουν βακτήρια, μετά από ώρες 5100 βακτήρια, και γενικά ο αριθμός των βακτηρίων υποδιπλασιάζεται κάθε μια ώρα. α) Πόσα βακτήρια θα υπάρχουν μετά από 6 ώρες; (Μονάδες 6) β) Τη χρονική στιγμή όμως που τα βακτήρια ήταν 6400, ο οργανισμός παρουσίασε ξαφνική επιδείνωση. Ο αριθμός των βακτηρίων άρχισε πάλι να αυξάνεται ώστε κάθε μια ώρα να τριπλασιάζεται. Το φαινόμενο αυτό διήρκεσε για 5 ώρες. Συμβολίζουμε με βν το πλήθος των βακτηρίων ν ώρες μετά από την στιγμή της επιδείνωσης (v 5). i) Να δείξετε ότι η ακολουθία (βν) είναι γεωμετρική πρόοδος, και να βρείτε τον πρώτο όρο και το λόγο της. ii) Να εκφράσετε το πλήθος βν των βακτηρίων συναρτήσει του ν. (Μονάδες 1) iii) Πόσα βακτήρια θα υπάρχουν στον οργανισμό 3 ώρες μετά από την στιγμή της επιδείνωσης; (Μονάδες 7) α) Αφού «γενικά ο αριθμός των βακτηρίων υποδιπλασιάζεται» τότε βγάζουμε το συμπέρασμα ότι το πλήθος τους ακολουθεί γεωμετρική πρόοδο (φθίνουσα) 1 με λόγο. Έχουμε λοιπόν την γ.π. a Άρα μετά από 6 ώρες ζητάμε το με , 10400, Όπου από τον γενικό τύπο προκύπτει β) Κάτι δε πάει καλά αφού η χρονική στιγμή που ήταν 6400 τα βακτήρια άρχισαν να αυξάνονται ήταν μετά τη 5 η ώρα??? Πως έγινε όμως 300??? Δηλαδή αν τη στιγμή που ήταν 6400 ξεκίνησαν να αυξάνονται δε θα γινόντουσαν ποτέ 300. #$%^&*&^%$#@ Τέλος πάντων, έστω ότι ξεκινάει ένα άλλο υποθετικό σενάριο που απλά δεν διευκρινίζεται. Για το i) θα έχουμε , κλπ έχουμε λοιπόν την γεωμετρική πρόοδο με αναδρομικό τύπο 1 3 από το οποίο προκύπτει λόγος 3. ii) Άρα έχουμε τον γενικό τύπο Και τέλος μετά την 3 η ώρα δίνεται από τον 4 ο 3 όρο της

2 Άσκηση 7677 Δίνεται η ανίσωση: x 1 4 (1) α) Να λύσετε την ανίσωση και να παραστήσετε το σύνολο των λύσεών της πάνω στον άξονα των πραγματικών αριθμών. (Μονάδες 7) β) Να βρείτε όλες τις ακέραιες λύσεις της ανίσωσης (1). (Μονάδες 3) γ) Να κατασκευάσετε ένα τριώνυμο της μορφής x x το οποίο να έχει ρίζες δύο από τις ακέραιες λύσεις της ανίσωσης (1) και να έχει θετική τιμή, για κάθε 0. (Μονάδες 15) α) Από θεωρία ξέρω ότι αν 0, x x άρα προκύπτει 4 x 1 4 και αφαιρώντας παντού τη μονάδα παίρνουμε 5 x 3 που είναι και η λύση της ανίσωσης. β) Μεταξύ αυτών βρίσκονται οι ακέραιοι 4, 3,, 1,0,1, γ) γνωρίζοντας την θεωρία για το πρόσημο τριωνύμου (εντός και εκτός των ριζών) και παρατηρώντας ότι έχουμε 1 0 σκεπτόμαστε: Καταρχήν διαπιστώνουμε ότι το μηδέν δεν μπορεί να είναι ρίζα αφού θα αναιρέσει την υπόθεση ότι θέλουμε θετικές τιμές του τριωνύμου για 0. Έστω τώρα ότι και οι δύο ρίζες είναι αρνητικές. Τότε στο «μεσαίο» διάστημα θα έχω αρνητικές τιμές του τριωνύμου για αρνητικές τιμές του χ. Άτοπο. Έστω ότι έχω μια αρνητική και μια θετική ρίζα τότε ομοίως στο μεσαίο διάστημα θα έχω ένα υποσύνολο με αρνητικές τιμές του χ που θα «δίνουν» αρνητικές τιμές του τριωνύμου.

3 Άρα υποχρεωτικά έχω και τις δύο ρίζες θετικές. Δηλαδή τους αριθμούς 1, Με βοήθεια τους τύπους του Vieta προκύπτει λοιπόν το τριώνυμο 3 (ή με αντικατάσταση αφού θέλουμε οι 1, να είναι λύσεις θα επαληθεύουν την εξίσωση 3 0 και λύνοντας το σύστημα Βγάζουμε 3,. Άσκηση 7684 Δίνεται η ανίσωση: 1 3(1) α) Να λύσετε την ανίσωση και να παραστήσετε το σύνολο των λύσεών της πάνω στον άξονα των πραγματικών αριθμών. (Μονάδες 7) β) Να βρείτε όλες τις ακέραιες λύσεις της ανίσωσης (1). (Μονάδες 3) γ) Να κατασκευάσετε ένα τριώνυμο της μορφής το οποίο να έχει ρίζες δύο από τις ακέραιες λύσεις της ανίσωσης (1) και να έχει θετική τιμή, για κάθε 0 (Μονάδες 15) α) ύ 1 Ομοίως με την προηγούμενη άσκηση έχουμε β) Οι ακέραιες λύσεις αυτής είναι οι αριθμοί -,-1,0,1,,3,4 γ) Ακριβώς με τα ίδια κριτήρια σκεφτόμαστε: Αν το μηδέν είναι ρίζα τότε αναιρείται η υπόθεση που ζητάει θετικές τιμές για 0. Έστω τώρα ότι και οι δύο ρίζες είναι θετικές τότε στο μεσαίο διάστημα θα έχουμε αρνητικές τιμές του τριωνύμου για θετικές τιμές. Άτοπο Ομοίως αν είχαμε μια θετική και μια αρνητική, αφού και πάλι στο μεσαίο διάστημα θα είχαμε ολόκληρο υποσύνολο αριθμών θετικών που θα έκαναν αρνητικό το τριώνυμο. Άρα μοναδική περίπτωση να είναι και οι δυο αρνητικές. Δηλαδή οι -,-1 Όντως το τριώνυμο 3 (προέκυψε από τύπους Vieta )

4 τηρεί όλες τις προϋποθέσεις. Άσκηση 7745 Δίνεται το τριώνυμο f ( x) x x 3 α) Να βρείτε το πρόσημο του τριωνύμου f() x για τις διάφορες τιμές του x. (Μονάδες 10) β) Να προσδιορίσετε, αιτιολογώντας την απάντησή σας, το πρόσημο του γινομένου: f(,999) f( 1,00) (Μονάδες 7) γ) Αν 3 a 3, να βρείτε το πρόσημο του αριθμού: a a 3 (Μονάδες 8) α) Το πρόσημο καθορίζεται από τις ρίζες της αντίστοιχης εξίσωσης f( x) 0 Συγκεκριμένα όταν Δ>0 ξέρουμε ότι εντός του διαστήματος που ορίζουν οι δύο διαφορετικές ρίζες της εξίσωσης, το τριώνυμο είναι ετερόσημο του «α» (συντελεστή του x ), και ομόσημο εκτός αυτών. Εδώ έχουμε: 44( 1) με ρίζες τους αριθμούς 1, 1 1, 3. Άρα ( ) 0 x, 1 3, f x όταν f x όταν x 1,3 Και ( ) 0 β) f (,999) 0 αφού,999 3 άρα ανήκει στο ο διάστημα που έχουμε θετικές τιμές τριωνύμου. f ( 1,00) 0 αφού 1,00 1 και ανήκει στο πρώτο διάστημα. Άρα f(,999) f( 1,00) 0 γ) Ως συνήθως σε περιπτώσεις με απόλυτα πρέπει να πάρουμε περιπτώσεις για να τα βγάλουμε. Έστω ότι 0a 3 άρα a a αφού α θετικός. Άρα έχω να ελέγξω το Αυτό όμως είναι το f( a ). Από β) ερώτημα έχω ( ) 0 f x όταν x 1,3 Όποτε για στο υποσύνολο (0,3) ( 1,3) θα ισχύει f( a) 0. a a 3. Έστω τώρα ότι 3 a 0άρα a a αφού α αρνητικός. Άρα έχω να ελέγξω το a a 3 που αυτό είναι το f( a) ( 1). Όμως 3 a 0 3 a 0 0 a 3

5 και άρα αν θέσω a k έχω να βρω το πρόσημο του f( k ) με 0k 3 ομοίως με πριν δηλαδή οπότε f ( k) 0, f ( a) 0 Άρα a a a 3, ( 3,3) Άσκηση 7784 Στο παρακάτω σχήμα, δίνονται οι γραφικές παραστάσεις Cf και Cg των συναρτήσεων f και g αντίστοιχα, με f ( x) x, g( x) 1, x α) i) Να εκτιμήσετε τα σημεία τομής των Cf και Cg. ii) Να εκτιμήσετε τις τιμές του x, για τις οποίες η Cf είναι κάτω από τη Cg. (Μονάδες 10) β) Να επιβεβαιώσετε αλγεβρικά τις απαντήσεις σας στο προηγούμενο ερώτημα. (Μονάδες 10) γ) Να βρείτε για ποιες τιμές του x έχει νόημα πραγματικού αριθμού η παράσταση 1 f( x) A (Μονάδες 5) f( x)

6 α) i) Προφανώς εκτιμούμε ότι τέμνονται στα σημεία A(1,1), B (3,1) ii) Η C f είναι κάτω από την C g για 1x 3 β) για το i) πρέπει να λύσουμε την εξίσωση f ( x) g( x) αφού σημεία τομής σημαίνει για πιο (ίδιο x) έχω ίδια εικόνα δηλαδή ίδιο y. Άρα x1 x3 x 1 όπου προκύπτουν τα σημεία x1 x1 A(3, f (3) g(3) 1) και B(1, f (1) g(1) 1) για το ii) θα λύσουμε την ανίσωση f ( x) g( x) αφού στην ουσία το πάνω-κάτω αφορά τον άξονα ψψ και άρα τις εικόνες των συναρτήσεων. Έχουμε λοιπόν x 1 1 x γ) Για να έχει νόημα πρέπει f( x) 0 αφού σε κανένα κλάσμα δεν επιτρέπεται παρανομαστής μηδέν και 1 f ( x) 0 f ( x) 1 αφού η υπόριζος ποσότητα πρέπει να είναι πάντα αριθμός θετικός ή μηδέν. «Εύκολα» μπορούμε να λύσουμε την ανισότητα x 1 και με την δέσμευση x 0 Προκύπτει 1 x 3, άρα για 1,,3. Σημ. Μια γεωμετρική προσέγγιση θα ήταν: Αφού θέλω f( x) 0 θέλω δηλαδή η C f να μην τέμνει τον άξονα ψψ και αφού θέλω 1 f ( x) 0 f ( x) 1 και gx ( ) 1 Άρα θέλω f ( x) g( x) που το έχω απαντήσει στο β) ερώτημα.

7 Άσκηση 7791 Δίνονται οι πραγματικοί αριθμοί α και β για τους οποίους ισχύει η ανίσωση: ( 1)(1 ) 0 α) Να αποδείξετε ότι το 1 είναι μεταξύ των α, β. (Μονάδες 13) β) Αν επιπλέον 4, να υπολογίσετε την τιμή της παράστασης: 1 1 Να αιτιολογήσετε την απάντησή σας είτε γεωμετρικά είτε αλγεβρικά (Μονάδες 1) α) Ένα γινόμενο που είναι θετικό έχει τις εξής περιπτώσεις: οι και τα δυο θετικά ή και τα δύο αρνητικά. Οπότε: 1 0, 1 0 που βγαίνει το συμπέρασμα 1, 1 ή 1 0, 1 0 που βγαίνει το συμπέρασμα 1, 1 Σε κάθε περίπτωση η μονάδα βρίσκεται ανάμεσα στους α,β β) Διακρίνοντας πάλι τις ίδιες περιπτώσεις και βγάζοντας τα απόλυτα η παράσταση Κ γράφεται: όταν και τα δύο είναι θετικά ή όταν και τα δύο είναι αρνητικά. Από το επιπλέον κριτήριο έχουμε 4, ή 4 4 Άρα σε κάθε περίπτωση Κ=4 β) Γεωμετρικά Γνωρίζουμε ότι η απόλυτη τιμή εκφράζει απόσταση. Αφού η μονάδα βρίσκεται πάντα ανάμεσα στους α,β και εμείς ξέρουμε ότι η απόσταση από το α στο β είναι 4 και ψάχνουμε το Κ που εκφράζει το άθροισμα των αποστάσεων από το α στο 1 και από το 1 στο β τότε Κ=4 Ένα παράδειγμα σε μια περίπτωση: 1 1 4

8 Άσκηση 7940 ΘEMA 4 α) Να λύσετε τις εξισώσεις (1) () (Μονάδες 10) β) Ένας μαθητής παρατήρησε ότι οι ρίζες της εξίσωσης () είναι οι αντίστροφοι των ριζών της εξίσωσης (1) και ισχυρίστηκε ότι το ίδιο θα ισχύει για οποιοδήποτε ζευγάρι εξισώσεων της μορφής: 0 (3) 0 (4), 0 Αποδείξτε τον ισχυρισμό του μαθητή, δείχνοντας ότι: Αν ο αριθμός είναι ρίζα της εξίσωσης (3) και 0, τότε i) 0 και (Μονάδες 5) ii ο 1 επαληθεύει την εξίσωση (4). (Μονάδες 10) α) για την 1 η εξίσωση και , 1 4, 6 3 για την η εξίσωση και , 1, 16 4 β) i) αφού ρ ρίζα: 0 και τότε αν 0 τότε θα προέκυπτε 0 Άτοπο. ii) πάλι, αφού ρ ρίζα και 0 ώ 0 0 Όμως η τελευταία αποδεικνύει ότι αν θεωρήσουμε την εξίσωση 0 τότε ο 1 είναι ρίζα της. Αφού η παραπάνω παράσταση αποτελεί την αριθμητική αντικατάσταση για 1

9 Άσκηση 7958 α) Να λύσετε την ανίσωση: (Μονάδες 10) 1 5 β) Δίνονται δύο αριθμοί κ, λ οι οποίοι είναι λύσεις της ανίσωσης (1) και ικανοποιούν επιπλέον τη σχέση: ( 1)( 1) 0 i) Να δείξετε ότι το 1 είναι μεταξύ των κ, λ. (Μονάδες 8) 3 ii) Να δείξετε ότι: (Μονάδες 7) α)πολ/ντας με για απαλοιφή παρανομαστή Όπου με Δ=9 έχουμε 1, Αφού α=>0 τότε το τριώνυμο είναι θετικό εκτός του διαστήματος που όρισαν οι δύο ρίζες. Άρα η λύση της ανίσωσης είναι η ένωση των διαστημάτων, 1,. β) το i) έχει απαντηθεί στην 4_7791. Θα διακρίνουμε πάλι τις δύο περιπτώσεις αλλα με ετερόσημα πρόσημα αυτή τη φορά. Έστω 1 0, 1 0 η 1 η και ανάποδα για την η περίπτωση. ii) Αφού οι κ,λ είναι λύσεις της ανίσωσης θα βρίσκονται σε κάποιο από τα διαστήματα της λύσης. Όμως το ένα βρίσκεται ανάμεσα τους από ερώτημα β), και επίσης το 1 δεν ανήκει στις λύσεις της ανίσωσης (βρίσκεται στον «κενό» χώρο). Από αυτό συμπεραίνουμε ότι τα κ,λ θα βρίσκονται ένα σε κάθε διάστημα της ένωσης. Έστω ότι και 1 τότε από ιδιότητες απολύτων και ανισώσεων και με πρόσθεση κατά μέλη και προφανώς έπεται 3

10 1 3 Ομοίως αν ήταν ανάποδα και θα παίρναμε όπου και πάλι θα προέκυπτε το ζήτουμενο. Με το παρακάτω σχήμα γίνεται αμέσως κατανοητό. Άσκηση 7967 Ο ιδιοκτήτης ενός ταξιδιωτικού γραφείου εκτιμά ότι, όταν για μια συγκεκριμένη διαδρομή διαθέτει τα εισιτήρια στην κανονική τιμή των 1 ανά εισιτήριο, τότε πουλά κατά μέσο όρο 30 μόνο εισιτήρια, ενώ το λεωφορείο έχει 51 θέσεις. Θέλοντας να αυξήσει τη πελατεία του, κάνει την ακόλουθη προσφορά: Ο πρώτος επιβάτης που θα αγοράσει εισιτήριο θα πληρώσει 3 και κάθε επόμενος επιβάτης θα πληρώνει 0,5 περισσότερο από τον προηγούμενο. α) Να βρείτε το ποσό που θα πληρώσει ο δεύτερος, ο τρίτος και ο τέταρτος επιβάτης. (Μονάδες 4) β) Αν, για κάθε ν 51 ο αριθμός αν εκφράζει το ποσό που θα πληρώσει ο ν-οστός επιβάτης, να δείξετε ότι οι αριθμοί α1, α,,α51 είναι διαδοχικοί όροι αριθμητικής προόδου και να βρείτε τη διαφορά ω αυτής της προόδου.(μονάδες 6) γ) Αν το λεωφορείο γεμίσει, να βρείτε το ποσό που θα πληρώσει ο 51ος επιβάτης. (Μονάδες 7) δ) Να βρείτε πόσα τουλάχιστον εισιτήρια θα πρέπει να πουληθούν ώστε η είσπραξη του γραφείου με αυτή την προσφορά να ξεπερνά την είσπραξη που θα έκανε διαθέτοντας τα εισιτήρια στην τιμή των 1 ανά εισιτήριο. ( Δίνεται ότι: ) (Μονάδες 8)

11 α) Αφού ο πρώτος θα δώσει 3, τότε ο ος θα δώσει 3,5 ο 3 ος 4 και ο 4 ος 4,5 β) Είναι προφανές ότι τα ποσά των διαδοχικών πελατών αποτελούν διαδοχικούς όρους αριθμητικής προόδου αφού έχουμε σταθερή αύξηση με πρόσθεση 0,5. Άρα αν ο ν-οστος δώσει χ τότε ο επόμενος θα δώσει χ +0.5 Δηλαδή 0,5 0, Δηλαδή αποτελούν δ.ο. α.π. με 0.5 και γενικό τύπο 3 ( 1)0.5 γ) (511)0.5 8 δ) με τα 30 εισιτήρια των 1 θα εισπράξει 630 από την άλλη η ζητούμενη είσπραξη της προσφοράς είναι το άθροισμα των ν πρώτων όρων της α.π. ( 1 ( 1) ) (6 ( 1)0.5) Άρα ψάχνουμε το ν ώστε S 630 με S Δηλαδή θα λύσουμε την ανίσωση (6 ( 1)0.5) , , Δ=1001 και 1, 45, ή 56 Άρα θετικό είναι εκτός των ριζών που όρισαν οι δύο ρίζες όμως επειδή προφανώς δεν έχει νόημα το ν<-56 τότε δεχόμαστε το ν>45 Άσκηση 7974 Δίνεται πραγματικός αριθμός α, που ικανοποιεί τη σχέση: 1 α) Να γράψετε σε μορφή διαστήματος το σύνολο των δυνατών τιμών του α. (Μονάδες 8) β) Θεωρούμε στη συνέχεια το τριώνυμο: ( ) 4 i) Να βρείτε τη διακρίνουσα του τριωνύμου και να προσδιορίσετε το πρόσημό της. (Μονάδες 10) ii) Να δείξετε ότι, για κάθε τιμή του 1, ισχύει ( ) (Μονάδες 7) 4 1

12 ύ α) ,3 β) i) ( ) 4 η οποία είναι αρνητική αφού ii) Αφού Δ<0 και α=1>0 τότε το τριώνυμο είναι παντού ομόσημο του α. Δηλαδή θετικό.

B= πραγματοποιείται τουλάχιστον ένα από τα ενδεχόμενα Α και Β ii) B = πραγματοποιούνται ταυτόχρονα τα ενδεχόμενα Β και Γ iii)

B= πραγματοποιείται τουλάχιστον ένα από τα ενδεχόμενα Α και Β ii) B = πραγματοποιούνται ταυτόχρονα τα ενδεχόμενα Β και Γ iii) Πιθανότητες.3096. α) Αν Α,Β,Γ είναι τρία ενδεχόμενα ενός δειγματικού χώρου Ω ενός πειράματος τύχης που αποτελείται από απλά ισοπίθανα ενδεχόμενα, να διατυπώσετε λεκτικά τα παρακάτω ενδεχόμενα: i) A B ii)

Διαβάστε περισσότερα

ΘΕΜΑ 4. Δίνεται η εξίσωση. α) Να βρείτε την τιμή του λ ώστε η εξίσωση να είναι 1 ου βαθμού. (Μονάδες 5)

ΘΕΜΑ 4. Δίνεται η εξίσωση. α) Να βρείτε την τιμή του λ ώστε η εξίσωση να είναι 1 ου βαθμού. (Μονάδες 5) Δίνεται η εξίσωση (8-λ)x 2-2(λ-2)x+1=0, με παράμετρο λ R. α) Να βρείτε την τιμή του λ ώστε η εξίσωση να είναι 1 ου βαθμού. (Μονάδες 5) β) Αν η εξίσωση είναι 2 ου βαθμού, να βρείτε τις τιμές του λ ώστε

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ, ΠΡΟΟΔΟΙ

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ, ΠΡΟΟΔΟΙ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ, ΠΡΟΟΔΟΙ 1. Δίνεται η αριθμητική πρόοδος με α 2 =0 και α 4 =4. α) Να δείξετε ότι ω=2 και α 1 = 2. β) Να δείξετε ότι α ν =2ν 4 και να βρείτε ποιος όρος της είναι το 98. (51 ος ) 2. α) Να

Διαβάστε περισσότερα

2018 Φάση 2 ιαγωνίσµατα Επανάληψης ΑΛΓΕΒΡΑ. Α' Γενικού Λυκείου. Σάββατο 21 Απριλίου 2018 ιάρκεια Εξέτασης:3 ώρες ΘΕΜΑΤΑ

2018 Φάση 2 ιαγωνίσµατα Επανάληψης ΑΛΓΕΒΡΑ. Α' Γενικού Λυκείου. Σάββατο 21 Απριλίου 2018 ιάρκεια Εξέτασης:3 ώρες ΘΕΜΑΤΑ ΘΕΜΑ A ΑΛΓΕΒΡΑ Α' Γενικού Λυκείου Σάββατο 1 Απριλίου 018 ιάρκεια Εξέτασης: ώρες ΘΕΜΑΤΑ Πεδίο ορισμού μιας συνάρτησης f (x) από ένα σύνολο Α σε ένα σύνολο Β ονομάζουμε το σύνολο Α, στο οποίο φαίνονται οι

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4 ο : ΑΝΙΣΩΣΕΙΣ ΤΟ 2 Ο ΘΕΜΑ

ΚΕΦΑΛΑΙΟ 4 ο : ΑΝΙΣΩΣΕΙΣ ΤΟ 2 Ο ΘΕΜΑ ΚΕΦΑΛΑΙΟ 4 ο : ΑΝΙΣΩΣΕΙΣ ΤΟ 2 Ο ΘΕΜΑ Άσκηση 1 Δίνονται οι ανισώσεις: 3x και 2 x α) Να βρείτε τις λύσεις τους (Μονάδες 10) β) Να βρείτε το σύνολο των κοινών τους λύσεων (Μονάδες 15) α) Έχουμε 3x 2x x 2

Διαβάστε περισσότερα

Θεώρημα Βolzano. Κατηγορία 1 η. 11.1 Δίνεται η συνάρτηση:

Θεώρημα Βolzano. Κατηγορία 1 η. 11.1 Δίνεται η συνάρτηση: Κατηγορία η Θεώρημα Βolzano Τρόπος αντιμετώπισης:. Όταν μας ζητούν να εξετάσουμε αν ισχύει το θεώρημα Bolzano για μια συνάρτηση f σε ένα διάστημα [, ] τότε: Εξετάζουμε την συνέχεια της f στο [, ] (αν η

Διαβάστε περισσότερα

1. Nα λυθούν οι ανισώσεις. 2. Nα λυθούν οι ανισώσεις. 3. Nα βρεθούν οι κοινές λύσεις των ανισώσεων: 4. Nα βρεθούν οι κοινές λύσεις των ανισώσεων:

1. Nα λυθούν οι ανισώσεις. 2. Nα λυθούν οι ανισώσεις. 3. Nα βρεθούν οι κοινές λύσεις των ανισώσεων: 4. Nα βρεθούν οι κοινές λύσεις των ανισώσεων: ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΑΝΙΣΩΣΕΙΣ ΚΕΦΑΛΑΙΟ 4 ο ΑΣΚΗΣΕΙΣ ΓΙΑ ΛΥΣΗ. Nα λυθούν οι ανισώσεις α) 4 β) 4. Nα λυθούν οι ανισώσεις ( )( ) α) + > - (+) β). Nα βρεθούν οι κοινές λύσεις των ανισώσεων: ( ) ( ) 8 4 8 και

Διαβάστε περισσότερα

0x2 = 2. = = δηλαδή η f δεν. = 2. Άρα η συνάρτηση f δεν είναι συνεχής στο [0,3]. Συνεπώς δεν. x 2. lim f (x) = lim (2x 1) = 3 και x 2 x 2

0x2 = 2. = = δηλαδή η f δεν. = 2. Άρα η συνάρτηση f δεν είναι συνεχής στο [0,3]. Συνεπώς δεν. x 2. lim f (x) = lim (2x 1) = 3 και x 2 x 2 ΚΕΦΑΛΑΙΟ ο: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 8: ΘΕΩΡΗΜΑ BOLZANO - ΠΡΟΣΗΜΟ ΣΥΝΑΡΤΗΣΗΣ - ΘΕΩΡΗΜΑ ΕΝΔΙΑΜΕΣΩΝ ΤΙΜΩΝ - ΘΕΩΡΗΜΑ ΜΕΓΙΣΤΗΣ ΚΑΙ ΕΛΑΧΙΣΤΗΣ ΤΙΜΗΣ - ΣΥΝΟΛΟ ΤΙΜΩΝ ΣΥΝΕΧΟΥΣ ΣΥΝΑΡΤΗΣΗΣ

Διαβάστε περισσότερα

Άλγεβρα Α Λυκείου. Επαναληπτικά θέματα από διαγωνίσματα ΟΕΦΕ Πραγματικοί αριθμοί

Άλγεβρα Α Λυκείου. Επαναληπτικά θέματα από διαγωνίσματα ΟΕΦΕ Πραγματικοί αριθμοί wwwaskisopolisgr Άλγεβρα Α Λυκείου Επαναληπτικά θέματα από διαγωνίσματα ΟΕΦΕ 006-08 Δίνεται ότι και y Πραγματικοί αριθμοί α) i Να βρεθούν τα όρια μεταξύ των οποίων περιέχεται το ii Να βρεθούν τα όρια μεταξύ

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ, ΠΡΟΟ ΟΙ

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ, ΠΡΟΟ ΟΙ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ, ΠΡΟΟ ΟΙ 1. ίνεται η αριθµητική πρόοδος µε α 2 =0 και α 4 =4. α) Να δείξετε ότι ω=2 και α 1 = 2. β) Να δείξετε ότι α ν =2ν 4 και να βρείτε ποιος όρος της είναι το 98. (51 ος ) 2. α) Να

Διαβάστε περισσότερα

12. ΑΝΙΣΩΣΕΙΣ Α ΒΑΘΜΟΥ. είναι δύο παραστάσεις μιας μεταβλητής x πού παίρνει τιμές στο

12. ΑΝΙΣΩΣΕΙΣ Α ΒΑΘΜΟΥ. είναι δύο παραστάσεις μιας μεταβλητής x πού παίρνει τιμές στο ΓΕΝΙΚΑ ΠΕΡΙ ΑΝΙΣΩΣΕΩΝ Έστω f σύνολο Α, g Α ΒΑΘΜΟΥ είναι δύο παραστάσεις μιας μεταβλητής πού παίρνει τιμές στο Ανίσωση με έναν άγνωστο λέγεται κάθε σχέση της μορφής f f g g ή, η οποία αληθεύει για ορισμένες

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ ΘΕΜΑ ο Δίνεται η συνάρτηση f με τύπο : f( x) α. Να βρείτε το πεδίο ορισμού της. x x x x β. Να βρείτε τα σημεία τομής της με τους άξονες αν υπάρχουν. γ. Αν α, β ρίζες της εξίσωσης: ΘΕΜΑ ο Δίνεται η συνάρτηση

Διαβάστε περισσότερα

ΑΝΙΣΩΣΕΙΣ 2ου ΒΑΘΜΟΥ

ΑΝΙΣΩΣΕΙΣ 2ου ΒΑΘΜΟΥ ΑΝΙΣΩΣΕΙΣ ου ΒΑΘΜΟΥ Αν έχω τριώνυμο της μορφής :,. Υπολογίζω την Διακρίνουσα 4 Αν Δ> τότε η εξίσωση έχει άνισες ρίζες έστω Ομόσημο του α Ετερόσημο του α, τότε: Ομόσημο του α Αν Δ= τότε η εξίσωση έχει διπλή

Διαβάστε περισσότερα

ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ

ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ Επιμέλεια : Παλαιολόγου Παύλος Μαθηματικός Αγαπητοί μαθητές. αυτό το βιβλίο αποτελεί ένα βοήθημα στην ύλη της Άλγεβρας Α Λυκείου, που είναι ένα από

Διαβάστε περισσότερα

( 2) 1 0,. Αν ρ 1, ρ 2 οι ρίζες της (ε) και

( 2) 1 0,. Αν ρ 1, ρ 2 οι ρίζες της (ε) και ΘΕΜΑ ο Δίνεται η συνάρτηση f με τύπο : f( ) α. Να βρείτε το πεδίο ορισμού της. β. Να βρείτε τα σημεία τομής της με τους άξονες αν υπάρχουν. γ. Αν α, β ρίζες της εξίσωσης: ΘΕΜΑ ο f ( ), να δείξετε ότι αβ+=0.

Διαβάστε περισσότερα

3. α) Να λύσετε την εξίσωση x 2 = 3. β) Να σχηματίσετε εξίσωση δευτέρου βαθμού με ρίζες, τις ρίζες της εξίσωσης του α) ερωτήματος.

3. α) Να λύσετε την εξίσωση x 2 = 3. β) Να σχηματίσετε εξίσωση δευτέρου βαθμού με ρίζες, τις ρίζες της εξίσωσης του α) ερωτήματος. . Δίνεται η εξίσωση λ + 4(λ ) = 0, με παράμετρο λ R α) Να βρείτε τη διακρίνουσα της εξίσωσης. β) Να αποδείξετε ότι η παραπάνω εξίσωση έχει ρίζες πραγματικές για κάθε λ R. γ) Αν, είναι οι ρίζες της παραπάνω

Διαβάστε περισσότερα

τριώνυμο Η εξίσωση δευτέρου βαθμού στην πλήρη της μορφή ονομάζεται τριώνυμο, γιατί αποτελείται από τρία μονώνυμα. Η γενική μορφή της είναι:

τριώνυμο Η εξίσωση δευτέρου βαθμού στην πλήρη της μορφή ονομάζεται τριώνυμο, γιατί αποτελείται από τρία μονώνυμα. Η γενική μορφή της είναι: κεφάλαιο 4 Α τριώνυμο επίλυση της εξίσωσης δευτέρου βαθμού Η εξίσωση δευτέρου βαθμού στην πλήρη της μορφή ονομάζεται τριώνυμο, γιατί αποτελείται από τρία μονώνυμα. Η γενική μορφή της είναι: αx + βx + γ

Διαβάστε περισσότερα

7. α) Να λύσετε την ανίσωση x 5 <4. β) Αν κάποιος αριθμός α επαληθεύει την παραπάνω ανίσωση, να αποδείξετε ότι

7. α) Να λύσετε την ανίσωση x 5 <4. β) Αν κάποιος αριθμός α επαληθεύει την παραπάνω ανίσωση, να αποδείξετε ότι ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ, ΑΝΙΣΩΣΕΙΣ 1. α) Να λύσετε τις ανισώσεις: x 5 3 και x x 1 0. β) Να βρείτε τις κοινές λύσεις των ανισώσεων του ερωτήματος (α). x 1. Δίνονται οι ανισώσεις: 3x 1

Διαβάστε περισσότερα

( 2) 1 0,. Αν ρ 1, ρ 2 οι ρίζες της (ε) και

( 2) 1 0,. Αν ρ 1, ρ 2 οι ρίζες της (ε) και ΘΕΜΑ ο Δίνεται η συνάρτηση f με τύπο : f( x) α Να βρείτε το πεδίο ορισμού της x x x x β Να βρείτε τα σημεία τομής της με τους άξονες αν υπάρχουν γ Αν α, β ρίζες της εξίσωσης: ΘΕΜΑ ο x x f ( x), να δείξετε

Διαβάστε περισσότερα

ΘΕΜΑ 2. Δίνονται οι συναρτήσεις

ΘΕΜΑ 2. Δίνονται οι συναρτήσεις ΘΕΜΑ 2 Δίνονται οι συναρτήσεις (, x R 3 f ( x) = x και g x) = x α) Να δείξετε ότι οι γραφικές παραστάσεις των συναρτήσεων f, g τέμνονται σε τρία σημεία τα οποία και να βρείτε. (Μονάδες 13) β) Αν Α, Ο,

Διαβάστε περισσότερα

7. Αν υψώσουμε και τα δύο μέλη μιας εξίσωσης στον κύβο (και γενικά σε οποιαδήποτε περιττή δύναμη), τότε προκύπτει

7. Αν υψώσουμε και τα δύο μέλη μιας εξίσωσης στον κύβο (και γενικά σε οποιαδήποτε περιττή δύναμη), τότε προκύπτει 8 7y = 4 y + y ( 8 7y) = ( 4 y + y) ( y) + 4 y y 4 y = 4 y y 8 7y = 4 y + ( 4 y) = ( 4 y y) ( 4 y) = 4( 4 y)( y) ( 4 y) 4( 4 y)( y) = 0 ( 4 y) [ 4 y 4( y) ] = 4 ( 4 y)( y + 4) = 0 y = ή y = 4) 0 4 H y

Διαβάστε περισσότερα

Ανισώσεις. Κώστας Γλυκός. Τράπεζα θεμάτων ΜΑΘΗΜΑΤΙΚΟΣ. εκδόσεις / 1 0 /

Ανισώσεις. Κώστας Γλυκός. Τράπεζα θεμάτων ΜΑΘΗΜΑΤΙΚΟΣ. εκδόσεις / 1 0 / Ανισώσεις Κώστας Γλυκός Τράπεζα θεμάτων ΙΙ Ι δδ ιι ι αα ίί ί ττ εε ρρ αα μμ αα θθ ήή μμ αα ττ αα 6 9 7. 3 0 0. 8 8. 8 8 Kgllykos..gr 5 / 1 0 / 0 1 6 εκδόσεις τηλ. Οικίας : 10-610.178 κινητό : 697-300.88.88

Διαβάστε περισσότερα

ΘΕΜΑ 2. βρείτε. (Μονάδες 15) με διαφορά ω.

ΘΕΜΑ 2. βρείτε. (Μονάδες 15) με διαφορά ω. ΘΕΜΑ ΘΕΜΑ Έστω α, β πραγµατικοί αριθµοί για τους οποίους ισχύουν: α β = 4 και αβ + αβ = 0 α) Να αποδείξετε ότι: α + β = 5. (Μονάδες 0) β) Να κατασκευάσετε εξίσωση ου βαθµού µε ρίζες τους αριθµούς α, β

Διαβάστε περισσότερα

ΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 2014 Θ ΕΩΡΙA 15

ΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 2014 Θ ΕΩΡΙA 15 ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ ΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 04 Θ ΕΩΡΙA 5 ΘΕΜΑ A Α Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στην κόλλα σας δίπλα στο γράμμα που αντιστοιχεί σε κάθε πρόταση τη

Διαβάστε περισσότερα

25 Λυμένα 2 α θέματα Άλγεβρας από την Τράπεζα Θεμάτων. 1 ο GI_A_ALG_2_999

25 Λυμένα 2 α θέματα Άλγεβρας από την Τράπεζα Θεμάτων. 1 ο GI_A_ALG_2_999 5 Λυμένα α θέματα Άλγεβρας από την Τράπεζα Θεμάτων 1 ο GI_A_ALG 999 α) Με πράξεις βρίσκουμε: Δ=1, χ 1 = και χ =3. Άρα χ - 5χ + 6 = (χ-)(χ-3) β) (i) Πρέπει χ - 5χ + 6 0. Άρα (χ-)(χ-3) 0, οπότε χ και χ 3,

Διαβάστε περισσότερα

5. Να λυθεί η εξίσωση. 6. Δίνεται η συνάρτηση. 2f x ΛΥΣΗ: Τα x για τα οποία 2 x 0 x 0 x, δεν είναι λύσεις της εξίσωσης γιατί για

5. Να λυθεί η εξίσωση. 6. Δίνεται η συνάρτηση. 2f x ΛΥΣΗ: Τα x για τα οποία 2 x 0 x 0 x, δεν είναι λύσεις της εξίσωσης γιατί για 5. Να λυθεί η εξίσωση ΛΥΣΗ: Τα για τα οποία 0 0, δεν είναι λύσεις της εξίσωσης γιατί για αυτά ισχύει 1 ή 1 1 0 και αντικαθιστώντας στην εξίσωση παίρνουμε την μή αληθή σχέση Αρα θεωρούμε ότι 0 και πλέον

Διαβάστε περισσότερα

2.3 Πολυωνυμικές Εξισώσεις

2.3 Πολυωνυμικές Εξισώσεις . Πολυωνυμικές Εξισώσεις η Μορφή Ασκήσεων: Ασκήσεις που μας ζητούν να λύσουμε μια πολυωνυμική εξίσωση.. Να λυθούν οι εξισώσεις: i. + + + 6 = 0 ii. 7 = iii. ( + ) + 7 = 0 iv. 8 + 56 = 0 i. + + + 6 = 0 (

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. Γεώργιος Α. Κόλλιας - μαθηματικός. 150 ασκήσεις επανάληψης. και. Θέματα εξετάσεων

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. Γεώργιος Α. Κόλλιας - μαθηματικός. 150 ασκήσεις επανάληψης. και. Θέματα εξετάσεων Γεώργιος Α. Κόλλιας - μαθηματικός Περιέχονται 50 συνδυαστικές ασκήσεις επανάληψης και θέματα εξετάσεων. Δεν συμπεριλαμβάνεται το κεφάλαιο των πιθανοτήτων, της γεωμετρικής προόδου, της μονοτονίας συνάρτησης,

Διαβάστε περισσότερα

γ) Να εξετάσετε αν οι λύσεις της εξίσωσης του (α) ερωτήματος είναι και λύσεις της ανίσωσης του (β) ερωτήματος.

γ) Να εξετάσετε αν οι λύσεις της εξίσωσης του (α) ερωτήματος είναι και λύσεις της ανίσωσης του (β) ερωτήματος. α) Να λύσετε την εξίσωση: x+ 1 x+ 1+ 4 = 3 5 2 3 (Μονάδες 9) β) Nα λύσετε την ανίσωση: - x 2 +2x +3 0 (Μονάδες 9) γ) Να εξετάσετε αν οι λύσεις της εξίσωσης του (α) ερωτήματος είναι και λύσεις της ανίσωσης

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2 Ο ΠΟΛΥΩΝΥΜΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ - ΑΣΚΗΣΕΙΣ

ΚΕΦΑΛΑΙΟ 2 Ο ΠΟΛΥΩΝΥΜΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ - ΑΣΚΗΣΕΙΣ ΚΕΦΑΛΑΙΟ Ο ΠΟΛΥΩΝΥΜΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ - ΑΣΚΗΣΕΙΣ ΚΕΦΑΛΑΙΟ Ο ΠΟΛΥΩΝΥΜΑ 10 ΕΠΑΝΑΛΗΨΕΙΣ ΑΠΟ ΠΡΟΗΓΟΥΜΕΝΕΣ ΤΑΞΕΙΣ α ) Ταυτότητες 1. (a-β)(a+β)=a - b. (a ± b ) = a ± ab + b 3 3 3 3. (a ± b ) = a ± 3a b + 3ab

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΪΟΣ ΙΟΥΝΙΟΣ

ΘΕΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΪΟΣ ΙΟΥΝΙΟΣ ΘΕΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΪΟΣ ΙΟΥΝΙΟΣ ΤΑΞΗ: ΜΑΘΗΜΑ: A ΑΛΓΕΒΡΑ ΘΕΜΑ A Α1. Να αποδείξετε ότι: αβ α β (Μονάδες 15) A. Χαρακτηρίστε ως Σωστό (Σ) ή Λάθος (Λ) τις ακόλουθες προτάσεις: 1. Η εξίσωση

Διαβάστε περισσότερα

ρ πε α εμ των α ματ ών 2014 Ο Η ΡΗ Ο Ο Γ Ρ Θ μα 2ο

ρ πε α εμ των α ματ ών 2014 Ο Η ΡΗ Ο Ο Γ Ρ Θ μα 2ο ρ πε α εμ των α ματ ών 2014 Γ Ο Η ΡΗ Ο Ο Γ Ρ Θ μα 2ο Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7, α) Να αιτιολογήσετε γιατί η (α ν ) είναι αριθμητική πρόοδος και να βρείτε τον

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΓΕΝΙΚΑ ΘΕΜΑ Α. , έχει κατακόρυφη ασύμπτωτη την x 0.

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΓΕΝΙΚΑ ΘΕΜΑ Α. , έχει κατακόρυφη ασύμπτωτη την x 0. ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΓΕΝΙΚΑ ΘΕΜΑ Α Άσκηση Θεωρούμε τον παρακάτω ισχυρισμό: «Αν η συνάρτηση την» ορίζεται στο τότε δεν μπορεί να έχει κατακόρυφη ασύμπτωτη ) Να χαρακτηρίσετε τον παραπάνω ισχυρισμό γράφοντας

Διαβάστε περισσότερα

A N A B P Y T A ΑΣΚΗΣΕΙΣ ΠΟΛΥΩΝΥΜΩΝ. 1 (α + β + γ) [(α-β) 2 +(α-γ) 2 +(β-γ) 2 ] και τις υποθέσεις

A N A B P Y T A ΑΣΚΗΣΕΙΣ ΠΟΛΥΩΝΥΜΩΝ. 1 (α + β + γ) [(α-β) 2 +(α-γ) 2 +(β-γ) 2 ] και τις υποθέσεις ΑΣΚΗΣΕΙΣ ΠΟΛΥΩΝΥΜΩΝ ΑΣΚΗΣΗ η Αν α +β +γ = αβγ και α + β + γ, να δείξετε ότι το πολυώνυμο P()=(α β) +(β γ) + γ α είναι το μηδενικό πολυώνυμο. Από την ταυτότητα του Euler α +β +γ -αβγ = (α + β + γ)[(α-β)

Διαβάστε περισσότερα

ii) Να ποια τιμή του ώστε η εξίσωση (1) έχει μία διπλή πραγματική ρίζα; Έπειτα να βρεθεί η ρίζα αυτή. Ασκήσεις Άλγεβρας

ii) Να ποια τιμή του ώστε η εξίσωση (1) έχει μία διπλή πραγματική ρίζα; Έπειτα να βρεθεί η ρίζα αυτή. Ασκήσεις Άλγεβρας . Δίνεται η εξίσωση, (). i) Να βρεθεί ο αριθμός ώστε η εξίσωση () να έχει μία τουλάχιστον πραγματική ρίζα. ii) Να βρεθεί ο αριθμός ώστε η εξίσωση () να έχει δύο ίσες πραγματικές ρίζες. iii) Να βρεθεί ο

Διαβάστε περισσότερα

ΕΞΙΣΩΣΕΙΣ 2ου ΒΑΘΜΟΥ

ΕΞΙΣΩΣΕΙΣ 2ου ΒΑΘΜΟΥ ΕΞΙΣΩΣΕΙΣ ου ΒΑΘΜΟΥ Τι ονομάζουμε εξίσωση ου βαθμού; o Εξίσωση ου βαθμού με ένα άγνωστο ονομάζουμε κάθε εξίσωση που γράφεται ή μπορεί να γραφεί στη μορφή με α π.χ 5 6 Τι ονομάζουμε εξίσωση ου βαθμού ελλιπούς

Διαβάστε περισσότερα

β) Αν κάποιος αριθµός α επαληθεύει την παραπάνω ανίσωση, να αποδείξετε ότι 1 1 1 9 < α

β) Αν κάποιος αριθµός α επαληθεύει την παραπάνω ανίσωση, να αποδείξετε ότι 1 1 1 9 < α ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ, ΑΝΙΣΩΣΕΙΣ 1. α) Να λύσετε τις ανισώσεις: x 5 3 και x x 1 0. β) Να βρείτε τις κοινές λύσεις των ανισώσεων του ερωτήµατος (α). x 1. ίνονται οι ανισώσεις: 3x 1

Διαβάστε περισσότερα

Να αιτιολογήσετε την απάντησή σας µε τη βοήθεια και του ερωτήµατος α). ii) Να αποδείξετε ότι ισχύει η ανισότητα 1+α < 1+ α. α+α

Να αιτιολογήσετε την απάντησή σας µε τη βοήθεια και του ερωτήµατος α). ii) Να αποδείξετε ότι ισχύει η ανισότητα 1+α < 1+ α. α+α ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ, ΑΝΙΣΩΣΕΙΣ 1. α) Να λύσετε τις ανισώσεις: x 5 3 και x x 1 0. β) Να βρείτε τις κοινές λύσεις των ανισώσεων του ερωτήµατος (α). x 1. ίνονται οι ανισώσεις: 3x 1

Διαβάστε περισσότερα

ΘΕΜΑ 2. Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7,

ΘΕΜΑ 2. Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7, Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7, α) Να αιτιολογήσετε γιατί η (α ν ) είναι αριθμητική πρόοδος και να βρείτε τον εκατοστό όρο της. (Μονάδες 15) β) Να αποδείξετε ότι

Διαβάστε περισσότερα

2.6 ΣΥΝΕΠΕΙΕΣ ΤΟΥ ΘΕΩΡΗΜΑΤΟΣ ΜΕΣΗΣ ΤΙΜΗΣ

2.6 ΣΥΝΕΠΕΙΕΣ ΤΟΥ ΘΕΩΡΗΜΑΤΟΣ ΜΕΣΗΣ ΤΙΜΗΣ 6 ΣΥΝΕΠΕΙΕΣ ΤΟΥ ΘΕΩΡΗΜΑΤΟΣ ΜΕΣΗΣ ΤΙΜΗΣ ΜΕΘΟΔΟΛΟΓΙΑ : ΣΤΑΘΕΡΗ ΣΥΝΑΡΤΗΣΗ Αν θέλουμε να δείξουμε ότι μια συνάρτηση είναι σταθερή σε ένα διάστημα Δ αποδεικνύουμε ότι η είναι συνεχής στο Δ και ότι για κάθε

Διαβάστε περισσότερα

Άλγεβρα Α Λυκείου Κεφάλαιο 2ο. οι πράξεις και οι ιδιότητές τους

Άλγεβρα Α Λυκείου Κεφάλαιο 2ο. οι πράξεις και οι ιδιότητές τους οι πράξεις και οι ιδιότητές τους Μερικές ακόμη ταυτότητες (επιπλέον από τις αξιοσημείωτες που βρίσκονται στο σχολικό βιβλίο) ) Διαφορά δυνάμεων με ίδιο εκθέτη: ειδικά αν ο εκθέτης ν είναι άρτιος υπάρχει

Διαβάστε περισσότερα

4 η δεκάδα θεµάτων επανάληψης

4 η δεκάδα θεµάτων επανάληψης 1 4 η δεκάδα θεµάτων επανάληψης 31. Έστω Α, Β δύο ενδεχόµενα του ίδιου δειγµατικού χώρου. Αν Ρ(Α ) 0,8 και Ρ(Β ) 0,71 δείξτε ότι Ρ( Α Β) 1,01 Ρ( Α Β) i Το ενδεχόµενο Α Β δεν είναι το κενό. Έχουµε Ρ( Α

Διαβάστε περισσότερα

Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα

Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7, α) Να αιτιολογήσετε γιατί η (α ν ) είναι αριθμητική πρόοδος και να βρείτε τον εκατοστό

Διαβάστε περισσότερα

Άλγεβρα Α Λυκείου. Στέλιος Μιχαήλογλου

Άλγεβρα Α Λυκείου. Στέλιος Μιχαήλογλου Άλγεβρα Α Λυκείου Στέλιος Μιχαήλογλου wwwaskisopolisgr Άλγεβρα Α Λυκείου Οι πράξεις των πραγματικών αριθμών και οι ιδιότητες τους Αν οι αριθμοί α,β είναι αντίστροφοι, να αποδείξετε ότι: 7 4 : 8 0 7 Να

Διαβάστε περισσότερα

ΘΕΜΑ 4. . Αν για την τετμημένη x του σημείου M ισχύει:, τότε να δείξετε ότι το σημείο αυτό βρίσκεται κάτω από την. , με παράμετρο α 0.

ΘΕΜΑ 4. . Αν για την τετμημένη x του σημείου M ισχύει:, τότε να δείξετε ότι το σημείο αυτό βρίσκεται κάτω από την. , με παράμετρο α 0. ΘΕΜΑ 4 ΘΕΜΑ Δίνονται η συνάρτηση f x x x, x α) Να αποδείξετε ότι η γραφική παράσταση της συνάρτησης f δεν τέμνει τον άξονα xx. β) Να βρείτε τις τετμημένες των σημείων της ευθεία ψ x 3. (Μονάδες 0) γ) Έστω

Διαβάστε περισσότερα

2 είναι λύσεις της ανίσωσης 2x2 3x+1<0.

2 είναι λύσεις της ανίσωσης 2x2 3x+1<0. ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ, ΕΞΙΣΩΣΕΙΣ. α) Να βρείτε τις ρίζες της εξίσωσης x +0x=. x + 0x β) Να λύσετε την εξίσωση x. ίνεται η εξίσωση: x λx+(λ +λ )=0 (), λ R. α) Να προσδιορίσετε τον πραγµατικό αριθµό λ, ώστε η

Διαβάστε περισσότερα

Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου

Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου Αριθμοί 1. ΑΡΙΘΜΟΙ Σύνολο Φυσικών αριθμών: Σύνολο Ακέραιων αριθμών: Σύνολο Ρητών αριθμών: ακέραιοι με Άρρητοι αριθμοί: είναι οι μη ρητοί π.χ. Το σύνολο Πραγματικών

Διαβάστε περισσότερα

Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. Θέμα 4 ο (141)

Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. Θέμα 4 ο (141) Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ Θέμα 4 ο (141) -- Τράπεζα θεμάτων Άλγεβρας Α Λυκείου Φεργαδιώτης Αθανάσιος -3- Τράπεζα θεμάτων Άλγεβρας Α Λυκείου Φεργαδιώτης Αθανάσιος ΚΕΦΑΛΑΙΟ

Διαβάστε περισσότερα

Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. Θέμα 2 ο (150)

Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. Θέμα 2 ο (150) Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ Θέμα ο (150) -- Τράπεζα θεμάτων Άλγεβρας Α Λυκείου Φεργαδιώτης Αθανάσιος -3- Τράπεζα θεμάτων Άλγεβρας Α Λυκείου Φεργαδιώτης Αθανάσιος ΚΕΦΑΛΑΙΟ

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 1: ΟΡΙΣΜΟΣ ΠΕΔΙΟ ΟΡΙΣΜΟΥ ΠΡΑΞΕΙΣ ΣΥΝΑΡΤΗΣΕΩΝ ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΘΕΜΑ Α

ΕΝΟΤΗΤΑ 1: ΟΡΙΣΜΟΣ ΠΕΔΙΟ ΟΡΙΣΜΟΥ ΠΡΑΞΕΙΣ ΣΥΝΑΡΤΗΣΕΩΝ ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΘΕΜΑ Α ΚΕΦΑΛΑΙΟ 1 ο : ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 1: ΟΡΙΣΜΟΣ ΠΕΔΙΟ ΟΡΙΣΜΟΥ ΠΡΑΞΕΙΣ ΣΥΝΑΡΤΗΣΕΩΝ ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ ΛΥΜΕΝΑ ΘΕΜΑΤΑ Ερώτηση θεωρίας 1 ΘΕΜΑ Α Τι ονομάζουμε πραγματική συνάρτηση

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ Δ Ι Α Γ Ω Ν Ι Σ Μ Α 1

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ Δ Ι Α Γ Ω Ν Ι Σ Μ Α 1 Δ Ι Α Γ Ω Ν Ι Σ Μ Α Θ έ μ α Α Α. α. Πότε η εξίσωση αx + βx + γ = 0, α 0 έχει διπλή ρίζα; Ποια είναι η διπλή ρίζα της; 4 μονάδες β. Ποια μορφή παίρνει το τριώνυμο αx + βx + γ, α 0, όταν Δ = 0; 3 μονάδες

Διαβάστε περισσότερα

( ) ( ) Τοα R σημαίνει ότι οι συντελεστές δεν περιέχουν την μεταβλητή x. αντικ σταση στο που = α. [ ο αριθµ ός πουτο µηδεν ίζει

( ) ( ) Τοα R σημαίνει ότι οι συντελεστές δεν περιέχουν την μεταβλητή x. αντικ σταση στο που = α. [ ο αριθµ ός πουτο µηδεν ίζει μέρος πρώτο v v 1 v 1 Γενική μορφή πολυωνύμου: ( ) 1 1 Όροι του ( ) v v v P = a v + av 1 + av +... + a + a 1 + a, ν Ν, α ν R Τοα R σημαίνει ότι οι συντελεστές δεν περιέχουν την μεταβλητή. P : a, a, a,...,

Διαβάστε περισσότερα

ΟΙ πιο πάνω έννοιες εκφράζουν όπως λέμε τη μονοτονία της συνάρτησης.

ΟΙ πιο πάνω έννοιες εκφράζουν όπως λέμε τη μονοτονία της συνάρτησης. 3 Μονοτονία συναρτήσεων 3 Μονοτονία συναρτήσεων 3Α Μονοτονία συνάρτησης Έστω f μία συνάρτηση με πεδίο ορισμού Γνησίως αύξουσα συνάρτηση Η συνάρτηση f λέγεται γνησίως αύξουσα στο Δ αν για κάθε, Δ, με

Διαβάστε περισσότερα

Ορισμένες σελίδες του βιβλίου

Ορισμένες σελίδες του βιβλίου Ορισμένες σελίδες του βιβλίου 7. Θεωρούμε το σύνολο αναφοράς 0,,. Να οριστούν τα σύνολα: Α. των τριψηφίων αριθμών που σχηματίζουν τα στοιχεία του Ω. Β. των τριψηφίων αριθμών με διαφορετικά ψηφία Γ. των

Διαβάστε περισσότερα

1 ο Διαγώνισμα Ύλη: Συναρτήσεις μέχρι και τα ακρότατα

1 ο Διαγώνισμα Ύλη: Συναρτήσεις μέχρι και τα ακρότατα Θέμα Α Α1. Θεωρήστε τον παρακάτω ισχυρισμό: 1 ο Διαγώνισμα Ύλη: Συναρτήσεις μέχρι και τα ακρότατα 018-19 «Για κάθε ζεύγος πραγματικών συναρτήσεων,g :, 0 ή g 0» ισχύει ότι g 0 αν και μόνο αν α) Να χαρακτηρίσετε

Διαβάστε περισσότερα

Θέματα ενδοσχολικών εξετάσεων Άλγεβρας Α Λυκείου Σχ. έτος , Ν. Δωδεκανήσου ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΑΛΓΕΒΡΑ

Θέματα ενδοσχολικών εξετάσεων Άλγεβρας Α Λυκείου Σχ. έτος , Ν. Δωδεκανήσου ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΑΛΓΕΒΡΑ Θέματα ενδοσχολικών εξετάσεων Άλγεβρας Α Λυκείου Σχ. έτος 013-014, Ν. Δωδεκανήσου ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΑΛΓΕΒΡΑ ΣΧΟΛΙΚΟ ΕΤΟΣ: 013-014 Επιμέλεια: Καραγιάννης Ιωάννης Σχολικός

Διαβάστε περισσότερα

Κεφάλαιο 4: Διαφορικός Λογισμός

Κεφάλαιο 4: Διαφορικός Λογισμός ΣΥΓΧΡΟΝΗ ΠΑΙΔΕΙΑ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Κεφάλαιο 4: Διαφορικός Λογισμός Μονοτονία Συνάρτησης Tζουβάλης Αθανάσιος Κεφάλαιο 4: Διαφορικός Λογισμός Περιεχόμενα Μονοτονία συνάρτησης... Λυμένα παραδείγματα...

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΘΕΜΑ 1. α) Να λύσετε την εξίσωση : 2 2 2x. β) Αν α είναι η ϑετική εξίσωσης του ερωτήµατος (α), να λύσετε την ανίσωση : 1 x < α.

ΘΕΜΑΤΑ ΘΕΜΑ 1. α) Να λύσετε την εξίσωση : 2 2 2x. β) Αν α είναι η ϑετική εξίσωσης του ερωτήµατος (α), να λύσετε την ανίσωση : 1 x < α. ΘΕΜΑΤΑ ΘΕΜΑ 6 3 α) Να λύσετε την εξίσωση : 3 β) Αν α είναι η ϑετική εξίσωσης του ερωτήµατος (α), να λύσετε την ανίσωση : < α. ΘΕΜΑ α) Να λύσετε την ανίσωση : + < 7. β) Αν ο είναι λύση της ανίσωσης του

Διαβάστε περισσότερα

2.1 ΠΡΑΞΕΙΣ ΚΑΙ ΟΙ ΙΔΙΟΤΗΤΕΣ ΤΟΥΣ

2.1 ΠΡΑΞΕΙΣ ΚΑΙ ΟΙ ΙΔΙΟΤΗΤΕΣ ΤΟΥΣ ΚΕΦΑΛΑΙΟ : ΟΙ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ. ΠΡΑΞΕΙΣ ΚΑΙ ΟΙ ΙΔΙΟΤΗΤΕΣ ΤΟΥΣ Ρητός ονομάζεται κάθε αριθμός που έχει ή μπορεί να πάρει τη μορφή κλάσματος, όπου, είναι ακέραιοι με 0. Ρητοί αριθμοί : Q /, 0. Έτσι π.χ.

Διαβάστε περισσότερα

ΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 2014 Θ ΕΩΡΙA 10

ΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 2014 Θ ΕΩΡΙA 10 ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ ΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 04 Θ ΕΩΡΙA 0 ΘΕΜΑ A Α Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στην κόλλα σας δίπλα στο γράμμα που αντιστοιχεί σε κάθε πρόταση τη

Διαβάστε περισσότερα

g(x) =α x +β x +γ με α= 1> 0 και

g(x) =α x +β x +γ με α= 1> 0 και ΚΕΦΑΛΑΙΟ ο: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ : ΜΟΝΟΤΟΝΙΑ ΣΥΝΑΡΤΗΣΗΣ ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΗΣ [Κεφ..3: Μονότονες Συναρτήσεις - Αντίστροφη Συνάρτηση σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ Παράδειγμα.

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 8: ΜΟΝΟΤΟΝΙΑ ΣΥΝΑΡΤΗΣΗΣ [Ενότητα Μονοτονία Συνάρτησης του κεφ.2.6 Μέρος Β του σχολικού βιβλίου].

ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 8: ΜΟΝΟΤΟΝΙΑ ΣΥΝΑΡΤΗΣΗΣ [Ενότητα Μονοτονία Συνάρτησης του κεφ.2.6 Μέρος Β του σχολικού βιβλίου]. ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 8: ΜΟΝΟΤΟΝΙΑ ΣΥΝΑΡΤΗΣΗΣ [Ενότητα Μονοτονία Συνάρτησης του κεφ..6 Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ Παράδειγμα 1. ΘΕΜΑ Β Να μελετηθούν ως προς την μονοτονία

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Θετικής & Τεχνολογικής Κατεύθυνσης Β ΜΕΡΟΣ (ΑΝΑΛΥΣΗ) ΚΕΦ 1 ο : Όριο Συνέχεια Συνάρτησης

ΜΑΘΗΜΑΤΙΚΑ Θετικής & Τεχνολογικής Κατεύθυνσης Β ΜΕΡΟΣ (ΑΝΑΛΥΣΗ) ΚΕΦ 1 ο : Όριο Συνέχεια Συνάρτησης ΜΑΘΗΜΑΤΙΚΑ Θετικής & Τεχνολογικής Κατεύθυνσης Β ΜΕΡΟΣ (ΑΝΑΛΥΣΗ) ΚΕΦ ο : Όριο Συνέχεια Συνάρτησης Φυλλάδιο Φυλλάδι555 4 ο ο.α) ΕΝΝΟΙΑ ΣΥΝΑΡΤΗΣΗΣ - ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ.α) ΕΝΝΟΙΑ ΣΥΝΑΡΤΗΣΗΣ - ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΑΠΟ ΤΗΝ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ

ΘΕΜΑΤΑ ΑΠΟ ΤΗΝ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ 3. Δίνεται ο πίνακας: 3 3 3 ΠΙΘΑΝΟΤΗΤΕΣ ΘΕΜΑ ο. Ένα κουτί περιέχει άσπρες, μαύρες, κόκκινες και πράσινες μπάλες. Οι άσπρες είναι 5, οι μαύρες είναι 9, ενώ οι κόκκινες και οι πράσινες μαζί είναι 6. Επιλέγουμε

Διαβάστε περισσότερα

4 η δεκάδα θεµάτων επανάληψης

4 η δεκάδα θεµάτων επανάληψης 4 η δεκάδα θεµάτων επανάληψης 31. Έστω Α, Β δύο ενδεχόµενα του ίδιου δειγµατικού χώρου. Αν Ρ(Α ) 0,8 και Ρ(Β ) 0,71 δείξτε ότι Ρ( Α Β) 1,01 Ρ( Α Β) i Το ενδεχόµενο Έχουµε Α Βδεν είναι το κενό. Ρ( Α Β)

Διαβάστε περισσότερα

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) Άσκηση 1102 Δίνονται δύο ενδεχόμενα ενός δειγματικού χώρου Ω και οι πιθανότητες α) Να υπολογίσετε την (Μονάδες 9) β) i) Να υπολογίσετε με διάγραμμα Venn και να γράψετε στη γλώσσα των συνόλων το ενδεχόμενο:

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ - 4 ο ΘΕΜΑ

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ - 4 ο ΘΕΜΑ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ - 4 ο ΘΕΜΑ ΚΕΦΑΛΑΙΟ ο : ΠΙΘΑΝΟΤΗΤΕΣ. Σε μια ομάδα που αποτελείται από 7 άνδρες και 3 γυναίκες, 4 από τους άνδρες και από τις γυναίκες παίζουν σκάκι. Επιλέγουμε τυχαία ένα από τα άτομα αυτά.

Διαβάστε περισσότερα

Συνέχεια συνάρτησης σε κλειστό διάστημα

Συνέχεια συνάρτησης σε κλειστό διάστημα 8 Συνέχεια συνάρτησης σε κλειστό διάστημα Α ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ 1 Μια συνάρτηση f θα λέμε ότι είναι: i Συνεχής σε ένα ανοιχτό διάστημα (α,β) όταν είναι συνεχής σε κάθε σημείο του διαστήματος (α,β)

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 4: ΕΜΒΑΔΟΝ ΕΠΙΠΕΔΟΥ ΧΩΡΙΟΥ [Κεφ.3.7 Μέρος Β του σχολικού βιβλίου]. ΑΣΚΗΣΕΙΣ

ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 4: ΕΜΒΑΔΟΝ ΕΠΙΠΕΔΟΥ ΧΩΡΙΟΥ [Κεφ.3.7 Μέρος Β του σχολικού βιβλίου]. ΑΣΚΗΣΕΙΣ ΚΕΦΑΛΑΙΟ ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ : ΕΜΒΑΔΟΝ ΕΠΙΠΕΔΟΥ ΧΩΡΙΟΥ [Κεφ..7 Μέρος Β του σχολικού βιβλίου]. ΑΣΚΗΣΕΙΣ ΘΕΜΑ Β Άσκηση. Να υπολογίσετε το εμβαδόν του χωρίου που περικλείεται από τη γραφική

Διαβάστε περισσότερα

= και g ( x) = x +, x R. Δίνονται η συνάρτηση ( ) α) Να αποδείξετε ότι η γραφική παράσταση C

= και g ( x) = x +, x R. Δίνονται η συνάρτηση ( ) α) Να αποδείξετε ότι η γραφική παράσταση C ΘΕΜΑ Δίνονται η συνάρτηση ( ) ΘΕΜΑ 4 f x = x + x +, x R. α) Να αποδείξετε ότι η γραφική παράσταση C f της συνάρτησης f δεν τέμνει τον άξονα xx. (Μονάδες 5) β) Να βρείτε τις τετμημένες των σημείων της Cfπου

Διαβάστε περισσότερα

6. α) Να λύσετε την εξίσωση 2x 1 =3. β) Αν α, β με α< β είναι οι ρίζες της εξίσωσης του ερωτήματος (α), τότε να λύσετε την εξίσωση αx 2 +βx+3=0.

6. α) Να λύσετε την εξίσωση 2x 1 =3. β) Αν α, β με α< β είναι οι ρίζες της εξίσωσης του ερωτήματος (α), τότε να λύσετε την εξίσωση αx 2 +βx+3=0. ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ, ΕΞΙΣΩΣΕΙΣ. Δίνεται η εξίσωση λx=x+λ, με λr. α) Να αποδείξετε ότι η παραπάνω εξίσωση γράφεται ισοδύναμα (λ )x=(λ )(λ+), λr. β) Να βρείτε τις τιμές του λ για τις οποίες η παραπάνω εξίσωση

Διαβάστε περισσότερα

Εκφωνήσεις και λύσεις των ασκήσεων της Τράπεζας Θεμάτων στην Άλγεβρα Α ΓΕΛ

Εκφωνήσεις και λύσεις των ασκήσεων της Τράπεζας Θεμάτων στην Άλγεβρα Α ΓΕΛ Κοίταξε τις µεθόδους, τις λυµένες ασκήσεις και τις ασκήσεις προς λύση των ενοτήτων 6, 7 του βοηθήµατος Μεθοδολογία Άλγεβρας και Στοιχείων Πιθανοτήτων Α Γενικού Λυκείου των Ευσταθίου Μ. και Πρωτοπαπά Ελ.

Διαβάστε περισσότερα

ΕΞΙΣΩΣΕΙΣ - 2 ου ΒΑΘΜΟΥ ΑΣΚΗΣΕΙΣ. 9). Να λυθούν οι εξισώσεις :

ΕΞΙΣΩΣΕΙΣ - 2 ου ΒΑΘΜΟΥ ΑΣΚΗΣΕΙΣ. 9). Να λυθούν οι εξισώσεις : ΕΞΙΣΩΣΕΙΣ - ου ΒΑΘΜΟΥ ΑΣΚΗΣΕΙΣ ). Να λυθούν οι εξισώσεις: α). + ( 3 ) 6 = 0 β). 4 ( 3 ) + 3 = 0 γ). + ( ) = 0 δ). 5 + 5 = 0 ε). 4( 3) + 5 + 6 6 = 0 στ).( + 3 ) ( 3 + ) ( 3 ) = 0 η). + (3 ) + (4 3 ) = 0

Διαβάστε περισσότερα

2ογελ ΣΥΚΕΩΝ 2ογελ ΣΥΚΕΩΝ ΠΟΛΥΩΝΥΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ Β Λυκει(ου ΠΟΛΥΩΝΥΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ

2ογελ ΣΥΚΕΩΝ 2ογελ ΣΥΚΕΩΝ ΠΟΛΥΩΝΥΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ Β Λυκει(ου ΠΟΛΥΩΝΥΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ογελ ΣΥΚΕΩΝ ογελ ΣΥΚΕΩΝ ΠΟΛΥΩΝΥΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ Β Λυκει(ου ο ΓΕΛ ΣΥΚΕΩΝ ΠΟΛΥΩΝΥΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ Β ΛΥΚΕΙΟΥ ογελ ΣΥΚΕΩΝ ογελ ΣΥΚΕΩΝ ΣΧΟΛΙΚΟ ΕΤΟΣ -4 ΠΟΛΥΩΝΥΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ Επιμέλεια: ΧΑΛΑΤΖΙΑΝ ΠΑΥΛΟΣ

Διαβάστε περισσότερα

3 η δεκάδα θεµάτων επανάληψης

3 η δεκάδα θεµάτων επανάληψης η δεκάδα θεµάτων επανάληψης. Έστω η συνάρτηση f() = 80 αν < < 0 αν 0 αν i ) Να υπολογιστεί η τιµή της παράστασης Α = f( ) + f(0) 5f() f + f( ) Αν Μ(, ) και Ν(, 0) να βρείτε την εξίσωση της ευθείας ΜΝ i

Διαβάστε περισσότερα

Επαναληπτικά θέματα στα Μαθηματικά προσανατολισμού-ψηφιακό σχολείο ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ

Επαναληπτικά θέματα στα Μαθηματικά προσανατολισμού-ψηφιακό σχολείο ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΚΕΦΑΛΑΙΟ 1 ο -ΣΥΝΑΡΤΗΣΕΙΣ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ Απο το Ψηφιακό Σχολείο του ΥΠΠΕΘ Επιμέλεια: Συντακτική Ομάδα mathpgr Συντονιστής:

Διαβάστε περισσότερα

ΓΕΝΙΚΟ ΛΥΚΕΙΟ Λ. ΑΙΔΗΨΟΥ ΣΧΟΛ. ΕΤΟΣ ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ ΙΟΥΝΙΟΥ ΑΛΓΕΒΡΑ Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ

ΓΕΝΙΚΟ ΛΥΚΕΙΟ Λ. ΑΙΔΗΨΟΥ ΣΧΟΛ. ΕΤΟΣ ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ ΙΟΥΝΙΟΥ ΑΛΓΕΒΡΑ Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΓΕΝΙΚΟ ΛΥΚΕΙΟ Λ. ΑΙΔΗΨΟΥ ΣΧΟΛ. ΕΤΟΣ 01-013 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ ΙΟΥΝΙΟΥ ΑΛΓΕΒΡΑ Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Θέμα 1 ο Α. Έστω a ένας πραγματικός αριθμός. Να δώσετε τον ορισμό της απόλυτης

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Β ΛΥΚΕΙΟΥ. , ισχύει ότι:. α. Να υπολογίσετε όλους τους τριγωνομετρικούς αριθμούς της γωνίας ω.

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Β ΛΥΚΕΙΟΥ. , ισχύει ότι:. α. Να υπολογίσετε όλους τους τριγωνομετρικούς αριθμούς της γωνίας ω. ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Β ΛΥΚΕΙΟΥ 1. Έστω ότι για μια γωνία ω, όπου, ισχύει ότι:. 1 α. Να υπολογίσετε όλους τους τριγωνομετρικούς αριθμούς της γωνίας ω. β. Να υπολογίσετε την τιμή της παράστασης:

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΚΑΤΑ Ι ΑΚΤΙΚΗ ΕΝΟΤΗΤΑ ΤΟΥ ΚΕΦΑΛΑΙΟΥ 4

ΕΡΩΤΗΣΕΙΣ ΚΑΤΑ Ι ΑΚΤΙΚΗ ΕΝΟΤΗΤΑ ΤΟΥ ΚΕΦΑΛΑΙΟΥ 4 ΕΡΩΤΗΣΕΙΣ ΚΑΤΑ Ι ΑΚΤΙΚΗ ΕΝΟΤΗΤΑ ΤΟΥ ΚΕΦΑΛΑΙΟΥ 4 ΛΥΣΗ ΤΗΣ ΕΞΙΣΩΣΗΣ α + β + γ = 0 α 0 Η ΕΝΝΟΙΑ ΤΗΣ ΙΑΚΡΙΝΟΥΣΑΣ 1. Να λυθούν οι παρακάτω εξισώσεις ως προς ή y: α) - 4 = 0 β) 3 = 4 γ) + - 15 = 0 δ) 5-18 -

Διαβάστε περισσότερα

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος ΜEd: «Σπουδές στην εκπαίδευση»

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος ΜEd: «Σπουδές στην εκπαίδευση» 1 2.1 ΟΙ ΠΡΑΞΕΙΣ ΚΑΙ ΟΙ ΙΔΙΟΤΗΤΕΣ ΤΟΥΣ Ιδιότητες των πράξεων Στους πραγματικούς αριθμούς ορίστηκαν οι πράξεις της πρόσθεσης και του πολλαπλασιασμού και με την οήθειά τους η αφαίρεση και η διαίρεση. Για

Διαβάστε περισσότερα

αβ (, ) τέτοιος ώστε f(x

αβ (, ) τέτοιος ώστε f(x ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ ο: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΘΕΜΑ Α Άσκηση α) Έστω μια συνάρτηση f, η οποία είναι ορισμένη σε ένα κλειστό διάστημα [ αβ., ] Αν η f είναι συνεχής στο [ αβ, ]

Διαβάστε περισσότερα

A. ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ

A. ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ 8Α ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ A ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ Πότε μια συνάρτηση λέγεται συνεχής σε ένα σημείο του πεδίου ορισμού o της ; Απάντηση : ( ΟΜΟΓ, 6 ΟΜΟΓ, 9 Β, ΟΜΟΓ, 5 Έστω μια συνάρτηση και ένα σημείο του πεδίου

Διαβάστε περισσότερα

1.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ

1.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ . ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ : ΓΡΑΜΜΙΚΗ ΕΞΙΣΩΣΗ Η εξίσωση με και 0 ή 0 λέγεται γραμμική εξίσωση. Οι μεταβλητές είναι οι άγνωστοι της εξίσωσης αυτής. Οι αριθμοί λέγονται συντελεστές των αγνώστων

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ 3ο: ΠΙΘΑΝΟΤΗΤΕΣ ΘΕΜΑ Α. α) Τι λέγεται δειγματικός χώρος και τι ενδεχόμενο ενός πειράματος τύχης;

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ 3ο: ΠΙΘΑΝΟΤΗΤΕΣ ΘΕΜΑ Α. α) Τι λέγεται δειγματικός χώρος και τι ενδεχόμενο ενός πειράματος τύχης; ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ ο: ΠΙΘΑΝΟΤΗΤΕΣ ΘΕΜΑ Α Ερώτηση θεωρίας α) Τι λέγεται δειγματικός χώρος και τι ενδεχόμενο ενός πειράματος τύχης; =. β) Για δύο συμπληρωματικά ενδεχόμενα Α και Α να αποδείξετε

Διαβάστε περισσότερα

Στέλιος Μιχαήλογλου - Δημήτρης Πατσιμάς

Στέλιος Μιχαήλογλου - Δημήτρης Πατσιμάς Μεθοδική Επανάληψη www.askisopolis.gr Στέλιος Μιχαήλογλου - Δημήτρης Πατσιμάς Ε. Σύνολα i. Τι είναι το σύνολο; ii. Ποιοι είναι οι βασικοί τρόποι παράστασης συνόλων και τι γνωρίζετε γι αυτούς; iii. Πότε

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 5 ΑΚΟΛΟΥΘΙΕΣ ΑΡΙΘΜΗΤΙΚΗ ΓΕΩΜΕΤΡΙΚΗ ΠΡΟΟΔΟΣ

ΚΕΦΑΛΑΙΟ 5 ΑΚΟΛΟΥΘΙΕΣ ΑΡΙΘΜΗΤΙΚΗ ΓΕΩΜΕΤΡΙΚΗ ΠΡΟΟΔΟΣ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 5 ΑΚΟΛΟΥΘΙΕΣ ΑΡΙΘΜΗΤΙΚΗ ΓΕΩΜΕΤΡΙΚΗ ΠΡΟΟΔΟΣ ΓΙΑΝΝΗΣ ΠΑΤΕΡΑΣ ΜΑΘΗΜΑΤΙΚΟΣ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ ΑΚΟΛΟΥΘΙΕΣ ΚΕΦΑΛΑΙΟ 5 ΑΡΙΘΜΗΤΙΚΗ ΠΡΟΟΔΟΣ ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Ακολουθία ονομάζουμε

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 5: ΘΕΩΡΗΜΑ ROLLE [Θεώρημα Rolle του κεφ.2.5 Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ

ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 5: ΘΕΩΡΗΜΑ ROLLE [Θεώρημα Rolle του κεφ.2.5 Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 5: ΘΕΩΡΗΜΑ ROLLE [Θεώρημα Rolle του κεφ..5 Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β Παράδειγμα. Να εξετάσετε από τις παρακάτω συναρτήσεις ποιές ικανοποιούν

Διαβάστε περισσότερα

A. ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ

A. ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ 8Α ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ A ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ Πότε μια συνάρτηση λέγεται συνεχής σε ένα σημείο του πεδίου ορισμού o της ; Απάντηση : ( ΟΜΟΓ, 6 ΟΜΟΓ, 9 Β, ΟΜΟΓ, 5 Έστω μια συνάρτηση και ένα σημείο του πεδίου

Διαβάστε περισσότερα

3.1 ΕΞΙΣΩΣΕΙΣ 1 ΟΥ ΒΑΘΜΟΥ

3.1 ΕΞΙΣΩΣΕΙΣ 1 ΟΥ ΒΑΘΜΟΥ ΚΕΦΑΛΑΙΟ : ΕΞΙΣΩΣΕΙΣ. ΕΞΙΣΩΣΕΙΣ ΟΥ ΒΑΘΜΟΥ ΜΕΘΟΔΟΛΟΓΙΑ : ΑΠΛΗ ΜΟΡΦΗ Κάθε εξίσωση που έχει ή μπορεί να πάρει τη μορφή : α+β=0 ή α=-β () λέγεται εξίσωση ου βαθμού (ή πρωτοβάθμια εξίσωση), με άγνωστο το, ενώ

Διαβάστε περισσότερα

Εξισώσεις. Κώστας Γλυκός. Τράπεζα θεμάτων ΜΑΘΗΜΑΤΙΚΟΣ. εκδόσεις / 1 0 /

Εξισώσεις. Κώστας Γλυκός. Τράπεζα θεμάτων ΜΑΘΗΜΑΤΙΚΟΣ. εκδόσεις / 1 0 / Εξισώσεις Κώστας Γλυκός Τράπεζα θεμάτων ΙΙ Ι δδ ιι ι αα ίί ί ττ εε ρρ αα μμ αα θθ ήή μμ αα ττ αα 6 9 7. 3 0 0. 8 8. 8 8 Kgllykos..gr 5 / 0 / 0 6 εκδόσεις Ασκήσεις Πιθανότητες Τράπεζα θεμάτων. Δίνεται η

Διαβάστε περισσότερα

Τάξη A Μάθημα: Άλγεβρα

Τάξη A Μάθημα: Άλγεβρα Τάξη A Μάθημα: Άλγεβρα Ερωτήσεις Θεωρίας Θέματα Εξετάσεων Επαναληπτικά Θέματα Επαναληπτικά Διαγωνίσματα Περιεχόμενα Α. Θεωρία - Αποδείξεις.. Σελ. Β. Θεωρία-Ορισμοί. Σελ.16 Γ. Ερωτήσεις Σωστού Λάθους...

Διαβάστε περισσότερα

1. Συµπλήρωσε τον πίνακα µε την κατάλληλη µαθηµατική έκφραση:

1. Συµπλήρωσε τον πίνακα µε την κατάλληλη µαθηµατική έκφραση: ΕΡΩΤΗΣΕΙΣ ΑΝΤΙΚΕΙΜΕΝΙΚΟΥ ΤΥΠΟΥ Ερωτήσεις συµπλήρωσης 1. Συµπλήρωσε τον πίνακα µε την κατάλληλη µαθηµατική έκφραση: Φυσική γλώσσα Μαθηµατική γλώσσα ύο αριθµοί x, y διαφέρουν κατά και έχουν γινόµενο x (x

Διαβάστε περισσότερα

Κ Ε Φ Α Λ Α Ι Ο 3 ο : Ε ξ ι σ ώ σ ε ι ς. 3.1 Εξισώσεις 1 ου Βαθμού. 3.2 Η εξίσωση x. 3.3 Εξισώσεις 2 ου Βαθμού. ρωτήσεις αντικειμενικού τύπουθέμα Α1-

Κ Ε Φ Α Λ Α Ι Ο 3 ο : Ε ξ ι σ ώ σ ε ι ς. 3.1 Εξισώσεις 1 ου Βαθμού. 3.2 Η εξίσωση x. 3.3 Εξισώσεις 2 ου Βαθμού. ρωτήσεις αντικειμενικού τύπουθέμα Α1- 3. Εξισώσεις ου Βαθμού 3. Η εξίσωση 3.3 Εξισώσεις ου Βαθμού Διδακτικό υλικό Άλγεβρας Α Λυκείου (Κεφάλαιο 3 ο ) Κ Ε Φ Α Λ Α Ι Ο 3 ο : Ε ξ ι σ ώ σ ε ι ς ρωτήσεις αντικειμενικού τύπουθέμα Α- Εξεταστέα ύλη

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 1: ΟΡΙΣΜΟΣ ΠΕΔΙΟ ΟΡΙΣΜΟΥ ΠΡΑΞΕΙΣ ΣΥΝΑΡΤΗΣΕΩΝ ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ

ΚΕΦΑΛΑΙΟ 1ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 1: ΟΡΙΣΜΟΣ ΠΕΔΙΟ ΟΡΙΣΜΟΥ ΠΡΑΞΕΙΣ ΣΥΝΑΡΤΗΣΕΩΝ ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ ΚΕΦΑΛΑΙΟ 1ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 1: ΟΡΙΣΜΟΣ ΠΕΔΙΟ ΟΡΙΣΜΟΥ ΠΡΑΞΕΙΣ ΣΥΝΑΡΤΗΣΕΩΝ ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ H Έννοια της Συνάρτησης H έννοια του συνόλου Ορισμός: Σύνολο είναι κάθε συλλογή

Διαβάστε περισσότερα

ΘΕΜΑ 2 (996) A = x 1 + y 3, με x, y πραγματικούς αριθμούς, για τους οποίους. Δίνεται η παράσταση:

ΘΕΜΑ 2 (996) A = x 1 + y 3, με x, y πραγματικούς αριθμούς, για τους οποίους. Δίνεται η παράσταση: ΘΕΜΑ 2 (996) Δίνεται η παράσταση: A = x 1 + y 3, με x, y πραγματικούς αριθμούς, για τους οποίους ισχύει: 1 < x < 4 και 2 < y < 3. Να αποδείξετε ότι: α) A = x y +2. (Μονάδες 12) β) 0 < A < 4. (Μονάδες 13)

Διαβάστε περισσότερα

ΠΟΛΥΩΝΥΜΑ ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ

ΠΟΛΥΩΝΥΜΑ ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΠΟΛΥΩΝΥΜΑ ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ Έννοια του πολυωνύμου. Ας υποθέσουμε ότι έχουμε μια μεταβλητή x που μπορεί να πάρει κάθε πραγματική τιμή. Μονώνυμο του x, είναι κάθε παράσταση της μορφής : x όπου α είναι

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. 8. Πότε το γινόμενο δύο ή περισσοτέρων αριθμών παραγόντων είναι ίσο με το μηδέν ;

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. 8. Πότε το γινόμενο δύο ή περισσοτέρων αριθμών παραγόντων είναι ίσο με το μηδέν ; ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ ο : ( ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ) ΠΑΡΑΤΗΡΗΣΗ : Το κεφάλαιο αυτό περιέχει πολλά θέματα που είναι επανάληψη εννοιών που διδάχθηκαν στο Γυμνάσιο γι αυτό σ αυτές δεν θα επεκταθώ αναλυτικά

Διαβάστε περισσότερα

OΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ

OΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ Ο ΚΕΦΑΛΑΙΟ : ΟΡΙΟ ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ OΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ ΣΥΝΑΡΤΗΣΕΙΣ Έστω Α ένα υποσύνολο του Τι ονομάζουμε πραγματική συνάρτηση με πεδίο ορισμού το Α ; Απάντηση : ΕΣΠ Β Έστω

Διαβάστε περισσότερα

Διαγωνίσματα ψηφιακού βοηθήματος σχολικού έτους

Διαγωνίσματα ψηφιακού βοηθήματος σχολικού έτους ΨΗΦΙΑΚΌ ΒΟΗΘΗΜΑ ΥΠΠΕΘ Διαγωνίσματα ψηφιακού βοηθήματος σχολικού έτους 7-8 Με τις λύσεις τους o ΔΙΑΓΩΝΙΣΜΑ ΝΟΕΜΒΡΙΟΣ 7: ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΣΠΟΥΔΩΝ

Διαβάστε περισσότερα

1 η δεκάδα θεµάτων επανάληψης

1 η δεκάδα θεµάτων επανάληψης 1 η δεκάδα θεµάτων επανάληψης 1. Έστω η εξίσωση (k 5k+ 4) x (k 1)x + 1= 0 Να βρείτε την τιµή του k ώστε η εξίσωση να έχει µία µόνο ρίζα την οποία ρίζα να προσδιορίσετε i Να βρείτε την τιµή του k ώστε η

Διαβάστε περισσότερα