I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr"

Transcript

1 I ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ i e

2

3 ΜΕΡΟΣ Ι ΟΡΙΣΜΟΣ - ΒΑΣΙΚΕΣ ΠΡΑΞΕΙΣ Α Ορισμός Ο ορισμός του συνόλου των Μιγαδικών αριθμών (C) βασίζεται στις εξής παραδοχές: Υπάρχει ένας αριθμός i για τον οποίο ισχύει i Το σύνολο C έχει ως στοιχεία Όλους τους πραγματικούς αριθμούς, Όλους τους φανταστικούς αριθμούς, δηλαδή τα γινόμενα i, όπου ο είναι ένας πραγματικός αριθμός, Όλα τα αθροίσματα της μορφής i, με, πραγματικούς αριθμούς 3 Ισότητα δύο μιγαδικών αριθμών: Δύο μιγαδικού αριθμοί είναι ίσοι αν και μόνο αν τα πραγματικά και τα φανταστικά μέρη τους είναι ίσα αντιστοίχως 0 i i, i Το άθροισμα δύο μιγαδικών αριθμών ορίζεται ως εξής: i i i, i i i 5 Το βαθμωτό γινόμενο ενός πραγματικού και ενός μιγαδικού ορίζεται ως εξής: i i 6 Το γινόμενο δύο μιγαδικών αριθμών ορίζεται ως εξής: i i i i i i 7 Ο αντίστροφος ενός μιγαδικού αριθμού i ορίζεται ως εξής: i i i i i i 8 Η διαίρεση δύο μιγαδικών αριθμών ορίζεται ως εξής: i i i i i, i i i όπου i 0 9 Συζυγής ενός μιγαδικού αριθμού i ορίζεται ο αριθμός i Όπως μπορεί να παρατηρήσει κανείς η έννοια του συζυγούς μιγαδικού αριθμού χρησιμοποιήθηκε για να εκφράσουμε το αποτέλεσμα της διαίρεσης δύο μιγαδικών (και της αντιστροφή μιγαδικού) στην κανονική μορφή (δηλαδή στη μορφή i ) 0 Το Πραγματικό Μέρος ενός μιγαδικού αριθμού, i Το Φανταστικό Μέρος ενός μιγαδικού αριθμού, i, είναι Re, είναι Im Παντελής Μπουμπούλης, MSc, PhD σελ 3 blogspotcom, bouboulismyschgr

4 Β Βασικές Ιδιότητες Μπορούμε εύκολα να αποδείξουμε τις παρακάτω ιδιότητες Δυνάμεις Μιγαδικών: Για να υπολογίσουμε τη δύναμη ενός μιγαδικού, εκτελούμε πράξεις όπως ακριβώς και στην περίπτωση των πραγματικών αριθμών, δηλαδή γενικά ισχύει: 0,,,, Ιδιαίτερα, για τις δυνάμεις του i έχουμε:, i, i i i i i, i, 3 Ιδιότητες Συζυγών:,,,, Η απόδειξη των παραπάνω ιδιοτήτων μπορεί να γίνει πολύ εύκολα κάνοντας τις πράξεις 3 Επίλυση της εξίσωσης 0, όπου οι α, β, γ είναι πραγματικοί αριθμοί και 0 Βήμα Υπολογίζουμε τη διακρίνουσα 4 Βήμα ανάλογα με το πρόσημο της διακρίνουσας Δ έχουμε τις εξής περιπτώσεις Αν 0, τότε η εξίσωση έχει δύο πραγματικές λύσεις:, Αν 0, τότε η εξίσωση έχει μια διπλή πραγματική λύση: i Αν 0, τότε η εξίσωση έχει δύο (συζυγείς) μιγαδικές λύσεις, 4 Γεωμετρική Παράσταση Μιγαδικών Re Im O είναι πραγματικός O είναι φανταστικός Κάθε μιγαδικός αριθμός, i, μπορεί να αναπαρασταθεί στο επίπεδο με τη βοήθεια του διανύσματος, i OM Το διάνυσμα αυτό ονομάζεται συνήθως διανυσματική ακτίνα του μιγαδικού Η κατανόηση της γεωμετρικής αναπαράστασης των μιγαδικών αριθμών είναι πολύ σημαντική, αφού μας δίνει δυνατότητα εποπτείας των αριθμών αυτών Το άθροισμα και η διαφορά δύο μιγαδικών μπορεί να δοθεί και με γεωμετρική μορφή όπως στα παρακάτω σχήματα Παντελής Μπουμπούλης, MSc, PhD σελ 4 blogspotcom, bouboulismyschgr

5 (α) Γεωμετρική αναπαράσταση της Πρόσθεσης δύο Μιγαδικών (γ) Γεωμετρική αναπαράσταση του Συζυγούς ενός Μιγαδικού (β) Γεωμετρική αναπαράσταση της Αφαίρεσης δύο Μιγαδικών ΠΡΟΣΟΧΗ! Η ισοδυναμία a b 0 a 0και b 0 δεν ισχύει στο σύνολο των μιγαδικών αριθμών! Η ισοδυναμία a b 0 a 0ήb 0 ισχύει και στο σύνολο των μιγαδικών αριθμών! Παντελής Μπουμπούλης, MSc, PhD σελ 5 blogspotcom, bouboulismyschgr

6 Γ Μεθοδολογία Ασκήσεων Ασκήσεις οι οποίες μας ζητάνε να εκτελέσουμε πράξεις και να φέρουμε έναν μιγαδικό στην κανονική του μορφή Σε αυτή την περίπτωση εκτελούμε τις πράξεις σύμφωνα με τους κανόνες που αναφέρθηκαν ανωτέρω Στην περίπτωση της διαίρεσης πολλαπλασιάζουμε αριθμητή και παρονομαστή με τον συζυγή του παρονομαστή Στο τέλος πρέπει να γράψουμε τον αριθμό στην μορφή i Παραδείγματα: Ασκήσεις 5Α, 6Α, 9Α, Β, σελίδες σχολικού βιβλίου Ασκήσεις στις οποίες μας ζητάνε να αποδείξουμε ότι δύο μιγαδικοί είναι ίσοι, ή μας ζητάνε να βρούμε υπό ποιές συνθήκες είναι ίσοι Σε αυτές τις ασκήσεις φέρνουμε τους δύο μιγαδικούς αριθμούς στην κανονική τους μορφή (δηλαδή στη μορφή i ), εκτελώντας όλες τις δυνατές πράξεις, και εξισώνουμε τα πραγματικά και τα φανταστικά τους μέρη αντίστοιχα Παραδείγματα: Ασκήσεις Α, 7Α, 7Β σελίδες σχολικού βιβλίου 3 Ασκήσεις στις οποίες μας ζητάνε να αποδείξουμε ότι ένας αριθμός είναι πραγματικός (ή φανταστικός), ή να εξετάσουμε υπό ποιές συνθήκες είναι πραγματικός (ή φανταστικός) Αφού φέρουμε τον αριθμό στην κανονική του μορφή, θα πρέπει είτε το φανταστικό του μέρος να είναι ίσο με μηδέν, αν θέλουμε ο αριθμός να είναι πραγματικός, είτε το πραγματικό του μέρος να είναι ίσο με το μηδέν, αν θέλουμε ο αριθμός να είναι φανταστικός Στην περίπτωση που έχουμε επιπλέον συνθήκες (για παράδειγμα μας ζητείται να αποδείξουμε ότι το πραγματικό μέρος είναι θετικό) τις λαμβάνουμε και αυτές υπ' όψη Επιπλέον, προσέξτε ότι: Ο είναι πραγματικός αριθμός αν και μόνο αν Ο είναι φανταστικός αριθμός αν και μόνο αν Παραδείγματα: Ασκήσεις Α, Α, Β, 6Β, 8Β σελίδες σχολικού βιβλίου 4 Ασκήσεις στις οποίες μας ζητάνε να αποδείξουμε ότι δύο αριθμοί είναι συζυγείς, ή να εξετάσουμε υπό ποιές συνθήκες είναι συζυγείς Εκτελούμε όλες πράξεις (όσες μπορούμε) Για να είναι δύο αριθμοί συζυγείς πρέπει να έχουν ίσα πραγματικά μέρη και αντίθετα φανταστικά μέρη 5 Ασκήσεις στις οποίες ζητείται να υπολογίσουμε ακέραιες δυνάμεις του i Διαιρούμε τον εκθέτη με τον αριθμό 4 και βρίσκουμε το πηλίκο ρ και το υπόλοιπο υ Χρησιμοποιώντας τη σχέση, i, i i i i i,, i, 3 υπολογίσουμε το ζητούμενο αποτέλεσμα Παντελής Μπουμπούλης, MSc, PhD σελ 6 blogspotcom, bouboulismyschgr

7 Αν έχουμε και πιο πολύπλοκες δυνάμεις, τότε εκτελούμε όλες τις δυνατές πράξεις Παραδείγματα: Ασκήσεις 8Α, 3Β, 4Β, σελίδες σχολικού βιβλίου 6 Ασκήσεις στις οποίες μας ζητάνε να λύσουμε εξισώσεις Α) Αν η εξίσωση είναι μια απλή πρωτοβάθμια εξίσωση της μορφής a b 0, τη λύνουμε με το συνήθη τρόπο (χωρίζουμε γνωστούς άγνωστους και διαιρούμε με το συντελεστή του αγνώστου) Δεν ξεχνάμε να φέρουμε την τελική λύση στην κανονική μορφή i Β) Αν η εξίσωση είναι ου βαθμού της μορφής 0, όπου οι α, β, γ είναι πραγματικοί αριθμοί και 0, ακολουθούμε τη μεθοδολογία που περιγράφηκε στις βασικές ιδιότητες: Βήμα Υπολογίζουμε τη διακρίνουσα 4 Βήμα ανάλογα με το πρόσημο της διακρίνουσας Δ έχουμε τις εξής περιπτώσεις Αν 0, τότε η εξίσωση έχει δύο πραγματικές λύσεις: Αν 0, τότε η εξίσωση έχει μια διπλή πραγματική λύση: Αν 0, τότε η εξίσωση έχει δύο (συζυγείς) μιγαδικές λύσεις, i, Γ) Αν έχουμε την απλή δευτεροβάθμια εξίσωση (δηλαδή ψάχνουμε τις τετραγωνικές ρίζες του ), τότε (αν και μπορούμε να ακολουθήσουμε τα προηγούμενα βήματα) η λύση προκύπτει ευκολότερα αν ακολουθήσουμε την παρακάτω μεθοδολογία:, τότε Αν 0 i i Επομένως i, ή i Αν ο R, τότε είτε ακολουθούμε την διαδικασία με τη διακρίνουσα, είτε αντικαθιστούμε τον άγνωστο μιγαδικό με x y i, εκτελούμε όλες τις δυνατές πράξεις και εξισώνουμε πραγματικά και φανταστικά μέρη αντίστοιχα Δ) Στην περίπτωση που έχουμε πιο πολύπλοκες εξισώσεις, εξετάζουμε αν μπορούμε να κάνουμε παραγοντοποίηση Τέλος, αν καμιά από τις προηγούμενες μεθοδολογίες δεν ωφελεί, αντικαθιστούμε τον άγνωστο μιγαδικό με x y i, εκτελούμε όλες τις δυνατές πράξεις και εξισώνουμε πραγματικά και φανταστικά μέρη αντίστοιχα Έτσι καταλήγουμε σε ένα σύστημα (πραγματικών αριθμών) το οποίο λύνουμε κατά τα γνωστά Ε) Συστήματα: Εφαρμόζουμε τις γνωστές μεθοδολογίες επίλυσης συστημάτων που ισχύουν και στους πραγματικούς αριθμούς Εναλλακτικά, μπορούμε να θέσουμε κάθε άγνωστο μιγαδικό με x y i και να δημιουργήσουμε ένα σύστημα με διπλάσιες εξισώσεις Παραδείγματα: Ασκήσεις 3Α, 4Β, σελίδες σχολικού βιβλίου 7 Ασκήσεις στις οποίες μας ζητάνε βρούμε τον γεωμετρικό τόπο ενός μιγαδικού, ο οποίος ικανοποιεί μια σχέση Αντικαθιστούμε τον μιγαδικό με x y i, εκτελούμε τις πράξεις και προσπαθούμε να βρούμε μια σχέση μεταξύ των x και y ώστε να βρούμε το ζητούμενο γεωμετρικό τόπο (ευθεία, κύκλος, έλλειψη, κλπ) Παραδείγματα: Ασκήσεις 9Β, σελίδες σχολικού βιβλίου Παντελής Μπουμπούλης, MSc, PhD σελ 7 blogspotcom, bouboulismyschgr

8 8 Ασκήσεις στις οποίες μας ζητάνε λύσουμε μια ανίσωση, ή να αποδείξουμε μια ανισωτική σχέση Προσοχή Το σώμα των μιγαδικών αριθμών δεν είναι διατεταγμένο Επομένως οι ανισότητες δεν έχουν νόημα Αν μας δοθεί μια τέτοια άσκηση, αυτό θα συνεπάγεται ότι ο αριθμός που ερευνούμε είναι πραγματικός και όχι μιγαδικός Άρα θα πρέπει πρώτα να αποδείξετε ότι ο αριθμός είναι μιγαδικός (ή να βρείτε υπό ποιές προϋποθέσεις γίνεται μιγαδικός) και στη συνέχεια να λύσετε την ανίσωση κατά τα γνωστά Παντελής Μπουμπούλης, MSc, PhD σελ 8 blogspotcom, bouboulismyschgr

9 Ασκήσεις Να γράψετε στη κανονική μορφή τους αριθμούς α) 3 3 i 4 i, β) i 4 i Να γραφούν στην μορφή i οι αριθμοί: α), β), i 3i 3i 3 Να τεθούν στη μορφή i οι παραστάσεις 5 03 α) i 3i i, β) i 5i i 3 4 Να αποδείξετε ότι για κάθε φυσικό αριθμό ν ισχύει: 3 i i i i 3 i i i i 6 5 Αν οι φυσικοί αριθμοί κ, λ, μ, ν διαιρούμενοι με το 4 αφήνουν το ίδιο υπόλοιπο δείξτε ότι α) i i i i β) i 6 7 Δείξτε ότι i i i Δείξτε ότι i i, για κάθε φυσικό αριθμό ν 0 ν αν ν περιττός αν ο νείναι πολλαπλάσιος του 4 αν ο νείναι άρτιος αλλά όχι πολλαπλάσιος του 8 Αν, x R, δείξτε ότι για κάθε φυσικό αριθμό ν ισχύει η σχέση x i xi 4 i x xi 4 9 Να βρείτε την τιμή της παράστασης A i i αριθμού ν 3 0 Να βρείτε τις τιμές της παράστασης φυσικού αριθμού ν για τις διάφορες τιμές του φυσικού i A i i i για τις διάφορες τιμές του 0 0 Αποδείξτε ότι για κάθε, C, ισχύει η σχέση i ( i) 0 Να βρείτε τους πραγματικούς αριθμούς x και y για τους οποίους ισχύει η σχέση x yi xi 3 Να προσδιοριστεί ο πραγματικός αριθμός λ ώστε οι ( i) i και w ( 4i) 3i να είναι ίσοι 4 4 Να προσδιοριστούν οι x, y R, ώστε ( i) x y( i) i Παντελής Μπουμπούλης, MSc, PhD σελ 9 blogspotcom, bouboulismyschgr

10 5 Δίνονται οι μιγαδικοί 3 i και ( ) i Να προσδιοριστεί ο R ώστε ο αριθμός να είναι α) Πραγματικός β) Φανταστικός 6 i Αν,, R *, δείξτε ότι ο αριθμός είναι φανταστικός αν και μόνο αν οι αριθμοί i,, είναι διαδοχικοί όροι γεωμετρικής προόδου 7 8 Να βρείτε τις τιμές του στην ευθεία y x x R ώστε η εικόνα του Να προσδιοριστεί ο x ώστε ο αριθμός i x i x i να είναι πραγματικός x xi 9 Αν x yi και y xi, να προσδιοριστούν τα x, y R ώστε 0 Να λύσετε στο C την εξίσωση i ( i) Να λύσετε τις παρακάτω εξισώσεις στο σύνολο των μιγαδικών αριθμών α) 0 β) γ) 3 0 Να λυθεί η εξίσωση i, στο σύνολο των μιγαδικών αριθμών i i 3 Να λυθεί η εξίσωση a 4(a ) a 4( ), ως προς, όπου a, C 4 Να λυθεί η εξίσωση ( i) i, στο σύνολο των μιγαδικών αριθμών στο μιγαδικό επίπεδο να ανήκει 5 Δίνεται η εξίσωση 4 0, όπου, R και C Να προσδιορίσετε τις παραμέτρους κ, λ, αν ο αριθμός i είναι λύση της εξίσωσης 6 Να λυθεί η εξίσωση 4 0, στο σύνολο των μιγαδικών αριθμών 7 Να λυθεί η εξίσωση ( i) 3 i 0, στο σύνολο των μιγαδικών αριθμών 8 Να λυθεί η εξίσωση ( x ) ( x x ) 0, i) Στο σύνολο των πραγματικών αριθμών, ii) στο σύνολο των μιγαδικών αριθμών 9 Να λυθεί η εξίσωση ( 4 5) i( ) 0, στο σύνολο των μιγαδικών αριθμών 30 Να λυθεί η εξίσωση ( 4 5) ( ) 0, στο σύνολο των μιγαδικών αριθμών 3 Να λυθούν στο σύνολο των μιγαδικών αριθμών οι εξισώσεις i) 3 0 ii) ( i ) i ( i) 0 Παντελής Μπουμπούλης, MSc, PhD σελ 0 blogspotcom, bouboulismyschgr

11 3 Να λυθεί η εξίσωση i i i 3 0 i 33 Θεωρούμε τη συνάρτηση f : C C : f ( ) a a, a C Να λύσετε την εξίσωση f ( ) (σταθερά σημεία της f) 34 Να βρεθούν μιγαδικοί αριθμοί και ω, τέτοιοι ώστε και 35 Να λύσετε στο C το σύστημα ( i) 3i 9 8i ( i) (7 i) 3 6i 36 Υπολογίστε αριθμούς, C, έτσι ώστε ( i ) i i 37 Να λυθεί το σύστημα (3 i) (4 iw 6i (4 i) ( 3i) w 5 4i 38 Να βρείτε όλους τους μιγαδικούς αριθμούς και ω για τους οποίους ισχύει η σχέση 0 39 Να βρείτε το γεωμετρικό τόπο των εικόνων των μιγαδικών αριθμών, που ικανοποιούν την ανίσωση 0 40 Να περιγράψετε γεωμετρικά το σύνολο των εικόνων των μιγαδικών αριθμών που ικανοποιούν τη σχέση 3 4 Να βρείτε το γεωμετρικό τόπο των εικόνων των μιγαδικών αριθμών για τους οποίους ο αριθμός w είναι πραγματικός 4 Να βρείτε τους μιγαδικούς αριθμούς που ικανοποιούν την ανίσωση Αν το άθροισμα και το γινόμενο δύο μη πραγματικών μιγαδικών αριθμών και w είναι πραγματικοί αριθμοί, να αποδείξετε ότι οι, w είναι συζυγείς μιγαδικοί 44 Να βρεθούν δύο μιγαδικοί αριθμοί με άθροισμα 4 και γινόμενο 8 45 Έστω ότι,, 3 C Αν, δείξτε ότι ( ) ( ) 3i 5 i Αποδείξτε ότι ο αριθμός Im είναι φανταστικός για κάθε C Επιπλέον, αποδείξτε ότι Παντελής Μπουμπούλης, MSc, PhD σελ blogspotcom, bouboulismyschgr

12 ΜΕΡΟΣ ΙΙ ΜΕΤΡΟ ΜΙΓΑΔΙΚΩΝ ΑΡΙΘΜΩΝ Α Ορισμός Έστω M ( x, y) η εικόνα του μιγαδικού αριθμού x y i στο μιγαδικό επίπεδο Ορίζουμε ως μέτρο του την απόσταση του Μ από την αρχή των αξόνων Ο Δηλαδή: Β Βασικές ιδιότητες Μέτρου OM x y Στην περίπτωση όπου R, το μέτρο του ταυτίζεται με την απόλυτη τιμή του πραγματικού αριθμού Η ποσότητα w εκφράζει την απόσταση των εικόνων των, w στο μιγαδικό επίπεδο Στο διπλανό σχήμα δίνεται η γεωμετρική ερμηνεία των παραπάνω εννοιών 3 4 ΤΡΙΓΩΝΙΚΗ ΑΝΙΣΟΤΗΤΑ Παντελής Μπουμπούλης, MSc, PhD σελ blogspotcom, bouboulismyschgr

13 ΒΑΣΙΚΟΙ ΓΕΩΜΕΤΡΙΚΟΙ ΤΟΠΟΙ Α Μεσοκάθετος: Β Κύκλος: 0 r Ο γεωμετρικός τόπος των μιγαδικών που Ο γεωμετρικός τόπος των μιγαδικών που ικανοποιούν την παραπάνω εξίσωση είναι η ικανοποιούν την παραπάνω εξίσωση είναι μεσοκάθετος του ευθύγραμμου τμήματος που κύκλος με κέντρο την εικόνα του μιγαδικού 0 συνδέει τις εικόνες των μιγαδικών και και ακτίνα r Γ Έλλειψη: a Σύμφωνα με τη γνωστή θεωρία από την Β Λυκείου, ο γεωμετρικός τόπος των μιγαδικών που ικανοποιούν την παραπάνω εξίσωση είναι η έλλειψη με εστίες τις εικόνες των μιγαδικών και, εστιακή απόσταση ίση με και μεγάλο άξονα ίσο με a Δ Ανισώσεις: : Το ημιεπίπεδο που ορίζει η μεσοκάθετος του ευθύγραμμου τμήματος που συνδέει τις εικόνες των μιγαδικών και, το οποίο περιέχει την εικόνα του 0 r : Το εσωτερικό του κυκλικού δίσκου 3 0 r : Το εξωτερικό του κυκλικού δίσκου 4 Με αντίστοιχο τρόπο δουλεύουμε και για άλλους γεωμετρικούς τόπους Παντελής Μπουμπούλης, MSc, PhD σελ 3 blogspotcom, bouboulismyschgr

14 ΙΔΙΑΙΤΕΡΟΙ ΓΕΩΜΕΤΡΙΚΟΙ ΤΟΠΟΙ (Δεν αναφέρονται στο σχολικό βιβλίο) Α Παραβολή: ΒΥπερβολή: a a Re( ) a ή Ο γεωμετρικός τόπος των μιγαδικών που a i Im( ) a (με a R) ικανοποιούν την παραπάνω εξίσωση είναι Ο γεωμετρικός τόπος των μιγαδικών που υπερβολή με εστίες τους και και μεγάλο ικανοποιούν μια από τις παραπάνω εξισώσεις άξονα a είναι είτε η παραβολή y 4 a x είτε η Αν μας δίνεται η εξίσωση παραβολή x 4 a y αντίστοιχα a, με a 0, τότε παίρνουμε μόνο το κομμάτι της υπερβολής που είναι εγγύτερα στην εστία Ομοίως, αν μας δίνεται η εξίσωση a a 0, τότε παίρνουμε μόνο το κομμάτι της υπερβολής που είναι εγγύτερα στην εστία με Παντελής Μπουμπούλης, MSc, PhD σελ 4 blogspotcom, bouboulismyschgr

15 Δ Μεθοδολογία Ασκήσεων Ασκήσεις μέτρα μιγαδικών, οι οποίες μας ζητάνε να εκτελέσουμε πράξεις Σε αυτή την περίπτωση εκτελούμε τις πράξεις σύμφωνα με τους γνωστούς κανόνες Δεν ξεχνάμε την πολύ βασική ιδιότητα:, όπως επίσης και τον ορισμό του μέτρου ενός μιγαδικού: Επιπλέον στις περιπτώσεις όπου γνωρίζουμε ότι Παραδείγματα: Άσκηση Α σχολικού βιβλίου r, τότε έχουμε: r r r x y Ασκήσεις στις οποίες μας ζητείται να λύσουμε μια εξίσωση η οποία περιέχει μέτρα μιγαδικών Σε αυτή την κατηγορία έχουμε διάφορες περιπτώσεις Α) Αν μας ζητείται η επίλυση μιας εξίσωσης της μορφής, πχ,, τότε μπορούμε να αντικαταστήσουμε τον μιγαδικό x y i και να εκτελέσουμε πράξεις Πρέπει να λάβουμε υπ' όψιν ότι το μέτρο ενός μιγαδικού είναι ένας θετικός πραγματικός αριθμός, επομένως το φανταστικό μέρος του + θα πρέπει να είναι ίσο με 0 Εκτελώντας πράξεις βρίσκουμε τις λύσεις Β) Αν η άσκηση μας δίνει μια πιο πολύπλοκη εξίσωση τότε υπάρχουν δύο πιθανοί δρόμοι Είτε χρησιμοποιούμε την ιδιότητα και προσπαθούμε με αλγεβρικές πράξεις (αναγωγές ομοίων όρων, παραγοντοποίηση, κλπ) να καταλήξουμε σε μια λύση, είτε αντικαθιστούμε τον μιγαδικό x y i και εκτελούμε πράξεις Παραδείγματα: Ασκήσεις 3Α, 4Α, σχολικού βιβλίου 3 Ασκήσεις στις οποίες μας ζητείται η απόδειξη κάποιων σχέσεων που περιέχουν μέτρα Σε τέτοιες ασκήσεις υπάρχουν πολλοί δρόμοι που μπορούμε να ακολουθήσουμε Δεν ξεχνάμε τις σχέσεις και τις ιδιότητες που γνωρίζουμε και κυρίως την ιδιότητα Αν η σχέση που πρέπει να αποδείξουμε περιέχει μέτρα, τότε μια πολύ καλή στρατηγική είναι να υψώσουμε στο τετράγωνο τη σχέση μας και να αντικαταστήσουμε κάθε τετράγωνο ενός μέτρου με το γινόμενο του μιγαδικού επί τον συζυγή του Αν μας δίνεται το μέτρο ενός μιγαδικού, r, και ζητείται να αποδειχθεί μια σχέση με τον μιγαδικό και τον συζυγή του τότε μπορούμε να εφαρμόσουμε τη στρατηγική που αναφέρθηκε και στην περίπτωση, δηλαδή: r r r Αν μας ζητείται να αποδείξουμε ότι μια ισότητα μιγαδικών δεν μπορεί να ισχύει ποτέ, μπορούμε να πάρουμε τα μέτρα των μιγαδικών και να αποδείξουμε ότι είναι πάντα διαφορετικά Παραδείγματα: Ασκήσεις 6Α, 9Α, Β, Β, 3Β, 4Β, σχολικού βιβλίου Παντελής Μπουμπούλης, MSc, PhD σελ 5 blogspotcom, bouboulismyschgr

16 4 Ασκήσεις με γεωμετρικούς τόπους Α) Αν η άσκηση ζητάει να βρούμε έναν απλό γεωμετρικό τόπο από μια εξίσωση της μορφής r (κύκλος) ή μια εξίσωση της μορφής (μεσοκάθετος), τότε απλά εφαρμόζουμε τα γνωστά από την θεωρία Υπάρχει περίπτωση να χρειαστεί να επεξεργαστούμε πρώτα τη σχέση που μας δίνεται ώστε να προκύψει ο ζητούμενος γεωμετρικός τόπος Για παράδειγμα οι μιγαδικοί που ικανοποιούν τη σχέση i, ανήκουν σε κύκλο, αφού i i i i i i i i Συμβουλευτείτε την ανάλυση που έχει προηγηθεί στις σελίδες 3, 4 Στην περίπτωση που έχουμε ανίσωση αντί για εξίσωση τότε: Αν r, ο γεωμετρικός τόπος είναι ο όλα τα σημεία του κυκλικού δίσκου εκτός της 0 περιφέρειας Αν του κύκλου 0 r, τότε ο γεωμετρικός τόπος είναι όλα τα σημεία έξω από την περιφέρεια Αν, τότε ο ζητούμενος γεωμετρικός τόπος αποτελείται από όλα τα σημεία του ημιεπιπέδου που ορίζεται από τη μεσοκάθετο του ευθύγραμου τμήματος, το οποίο ενώνει τις εικόνες των μιγαδικών, και περιέχει το σημείο Στην περίπτωση, ο γεωμετρικός τόπος είναι το ημιεπίπεδο που περιέχει το σημείο Β) Αν η άσκηση μας δίνει ότι ο μιγαδικός αριθμός κινείται σε ένα συγκεκριμένο γεωμετρικό τόπο και μας ζητάει να βρούμε το γεωμετρικό τόπο ενός άλλου μιγαδικού w f, που δίνεται ως συνάρτηση του, τότε ακολουθούμε τις παρακάτω στρατηγικές: Μπορούμε να υπολογίσουμε το μέτρο του w, ή το μέτρο της διαφοράς w w0, για κατάλληλη επιλογή του w 0 Αν το μέτρο αυτό είναι σταθερό και ίσο με r, τότε ο ζητούμενος γεωμετρικός τόπος είναι ο κύκλος με κέντρο το w 0 και ακτίνα r Τέτοιες περιπτώσεις είναι οι ασκήσεις όπου μας δίνεται πως ο ανήκει σε ένα κύκλο ακτίνας, ενώ ο w δίνεται από σχέση της μορφής w a b Σε τέτοιες περιπτώσεις, συνήθως επιλύουμε τη σχέση ως προς και στη συνέχεια w b αντικαθιστούμε στη δοσμένη σχέση Στο συγκεκριμένο παράδειγμα έχουμε, οπότε η a w b σχέση 0 r, δίνει τη σχέση 0 r w b a 0 r a, οπότε και ο w a ανήκει σε κύκλο 0 Σε πιο πολύπλοκες ασκήσεις, μπορούμε να θέσουμε x y i και να βρούμε τον γεωμετρικό τόπο που μας δίνεται για τα σημεία ως μια καμπύλη Στη συνέχεια θέτουμε w x y i και n n Παντελής Μπουμπούλης, MSc, PhD σελ 6 blogspotcom, bouboulismyschgr

17 αφού w f, βρίσκουμε τις σχέσεις μεταξύ x, y και x n, yn Αντικαθιστώντας στην αρχική καμπύλη τα x, y από τα x n, yn μπορούμε να βρούμε την εξίσωση που ικανοποιούν οι συντεταγμένες x n, yn της εικόνας του w στο μιγαδικό επίπεδο Από τις γνώσεις της Β Λυκείου καταλήγουμε στο συμπέρασμα ότι πρόκειται για ευθεία, έλλειψη, παραβολή, κλπ Για παράδειγμα: Ξέρουμε ότι ο κινείται σε κύκλο με κέντρο το Ο και ακτίνα Δηλαδή Αυτό σημαίνει ότι x y Από την άλλη μας δίνεται ότι δηλαδή w Τότε w x 3 y i, x n x και y n 3y Επομένως y x n 9 n Άρα ο w κινείται σε έλλειψη Γ) Σε κάθε άλλη περίπτωση μπορούμε πάντα να θέσουμε x y i και να εκτελέσουμε πράξεις Βρίσκουμε την εξίσωση της καμπύλης και από τις γνώσεις της Β Λυκείου καταλήγουμε στο συμπέρασμα ότι πρόκειται για ευθεία, έλλειψη, παραβολή, κλπ Δ) Στην περίπτωση που μας ζητείται να βρούμε ποιο από τα σημεία ενός γεωμετρικού τόπου έχει το μικρότερο και το μεγαλύτερο μέτρο, μπορούμε να ακολουθήσουμε τις εξής δύο στρατηγικές: Κάνοντας ένα σχήμα μπορούμε να βρούμε εύκολα (συνήθως) μέσω του σχήματος την απάντηση Αυτή είναι μια γεωμετρική λύση του προβλήματος Το σημείο με το μεγαλύτερο μέτρο θα είναι αυτό που βρίσκεται μακρύτερα ως προς την αρχή των αξόνων Το σημείο με το μικρότερο μέτρο θα είναι αυτό που βρίσκεται πιο κοντά στην αρχή των αξόνων Χρησιμοποιώντας την τριγωνική ανισότητα:, μπορούμε να πάρουμε το ίδιο αποτέλεσμα με αλγεβρικό τρόπο Για παράδειγμα ας υποθέσουμε ότι μας δίνεται το παρακάτω πρόβλημα: Ποιός από τους μιγαδικούς i έχει το μεγαλύτερο και ποιος το μικρότερο μέτρο; Η γεωμετρική επίλυση του προβλήματος αυτού μας δίνει εύκολα (δες σχήμα) την απάντηση Εναλλακτικά, ακολουθώντας την αλγεβρική μεθοδολογία παίρνουμε: i i i i 5 Επομένως, το μεγαλύτερο μέτρο των μιγαδικών που ικανοποιούν τη σχέση i είναι ίσο με 5 Αντίστοιχα i i i i 5 5 Επομένως, το μικρότερο μέτρο των μιγαδικών που ικανοποιούν τη σχέση i είναι ίσο με 5 Το μέγιστο και το ελάχιστο μέτρο εμφανίζονται όταν i ( i) ( ) i Επειδή υπολογίσαμε το μέτρο του, μπορούμε να βρούμε την παράμετρο λ Παντελής Μπουμπούλης, MSc, PhD σελ 7 blogspotcom, bouboulismyschgr

18 Ασκήσεις Να βρείτε το μέτρο των μιγαδικών αριθμών: 3 i i i,, 3 i i i 3 Αν,, είναι οι ρίζες της εξίσωσης 0, να βρείτε το μέτρο του μιγαδικού αριθμού w Να βρείτε τον μιγαδικό αριθμό για τον οποίο ισχύει: i i 4 Να προσδιοριστεί ο μιγαδικός αριθμός για τον οποίο ισχύει: i 5 Να λυθεί η εξίσωση , στο σύνολο των μιγαδικών αριθμών 6 Να λυθεί η εξίσωση Να βρεθεί ο μιγαδικός αν και i 8 Δείξτε ότι η εξίσωση i 03 i 3 δεν έχει πραγματικές ρίζες 3 i 9 Αν ο ν είναι θετικός ακέραιος, να αποδείξετε ότι δεν υπάρχει πραγματικός αριθμός x, για τον οποίο να ισχύει η εξίσωση i 3 i x 0 Να λυθεί η εξίσωση: Να λυθεί η εξίσωση Να λυθεί η εξίσωση i i 4 3 Αν γνωρίζετε ότι ο αριθμός i w i είναι φανταστικός, να δείξετε ότι ο έχει μέτρο Παντελής Μπουμπούλης, MSc, PhD σελ 8 blogspotcom, bouboulismyschgr

19 4 Αν ισχύει η σχέση 9 3, να αποδείξετε ότι η εικόνα του μιγαδικού αριθμού στο μιγαδικό επίπεδο διαγράφει κύκλο Να βρείτε την εξίσωση του κύκλου, το κέντρο και την ακτίνα του 5 Αν ισχύει ότι 3 3, να αποδείξετε ότι 3 6 Αν ισχύει ότι w, για, w C και ότι ο αριθμός i( w) v είναι πραγματικός, να αποδείξετε ότι w 7 Αν, w C και w w 8 Αν για τους, w C ισχύει ότι w και αντιστρόφως, τότε δείξτε ότι ο αριθμός w είναι φανταστικός w w, δείξτε ότι w w 9 Έστω C, x R με x 0 και x i Επιπλέον δίνεται και ο αριθμός xi w i x Α) Να αποδείξετε ότι ο w είναι φανταστικός αν και μόνο αν ο είναι φανταστικός αριθμός Β) Να αποδείξετε ότι w, αν και μόνο αν ο είναι πραγματικός αριθμός 0 Αν C, ν φυσικός αριθμός, 0 πραγματικός αριθμός, και i i, να αποδείξετε ότι ο είναι Αν οι εικόνες των μιγαδικών αριθμών,,, n, στο μιγαδικό επίπεδο βρίσκονται πάνω σε κύκλο κέντρου Ο και ακτίνας, να αποδείξετε ότι n n Αν, w C, αν αποδείξετε ότι για κάθε πραγματικό αριθμό x ισχύει 3 Αν, w C δείξτε ότι n w 0 x w x w w w 4 Αν οι εικόνες των μιγαδικών αριθμών, w, στο μιγαδικό επίπεδο είναι εσωτερικά σημεία του κύκλου x y, να αποδείξετε ότι w w 5 Αν x yi, x, y R, με y 0 και, δείξτε ότι υπάρχει λr, τέτοιος ώστε i i 6 Δείξτε ότι ο είναι πραγματικός αν και μόνο αν 3i 3i 7 Δείξτε ότι ο είναι φανταστικός αν και μόνο αν 3 3 Παντελής Μπουμπούλης, MSc, PhD σελ 9 blogspotcom, bouboulismyschgr

20 8 Αν, δείξτε ότι, αν και μόνο αν ο w είναι φανταστικός αριθμός 9 Δίνονται οι μη μηδενικοί μιγαδικοί αριθμοί, w Να αποδείξετε ότι το πηλίκο / w είναι φανταστικός αριθμός, αν και μόνο αν w w 30 Έστω x R και C, με x Δείξτε ότι Re x x x x 3 Αποδείξτε ότι για κάθε C ισχύει η σχέση 3 Αν, C, με 0, να αποδείξετε ότι οι εικόνες των αριθμών w, w και w3 i 3, στο μιγαδικό επίπεδο είναι κορυφές ισοπλεύρου τριγώνου 33 Αν οι, w είναι δύο διαφορετικοί μιγαδικοί αριθμοί, να αποδείξετε ότι ο αριθμός w v είναι φανταστικός, αν και μόνο αν w w 34 Αν C με 4, να βρείτε τον γεωμετρικό τόπο των εικόνων του στο μιγαδικό επίπεδο 35 Αν C με, να βρείτε τον γεωμετρικό τόπο των εικόνων του στο μιγαδικό επίπεδο 36 Έστω ότι η εικόνα του στο μιγαδικό επίπεδο ανήκει στην καμπύλη με εξίσωση x y 9 και w 5 i Να βρείτε τη μέγιστη και την ελάχιστη τιμή του w 37 Αν ισχύει ότι και, να αποδείξετε ότι 3 38 Έστω οι μιγαδικοί αριθμοί,,, και w για τους οποίους ισχύει k k w w Αν θέσουμε, για k,,, n n w w n, να αποδείξετε ότι 39 Να βρεθεί η μέγιστη και η ελάχιστη τιμή της παράστασης 3, όταν C και 4i 40 Αν για τον μιγαδικό ισχύει ότι Re( ) Im( ) 3, να βρεθεί η ελάχιστη τιμή της παράστασης 8 Παντελής Μπουμπούλης, MSc, PhD σελ 0 blogspotcom, bouboulismyschgr

2.1 2.2 ΕΝΝΟΙΑ ΤΟΥ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ ΠΡΑΞΕΙΣ ΣΤΟ ΣΥΝΟΛΟ ΤΩΝ ΜΙΓΑΔΙΚΩΝ

2.1 2.2 ΕΝΝΟΙΑ ΤΟΥ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ ΠΡΑΞΕΙΣ ΣΤΟ ΣΥΝΟΛΟ ΤΩΝ ΜΙΓΑΔΙΚΩΝ ΚΕΦΑΛΑΙΟ Ο : ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ - ΕΝΟΤΗΤΕΣ :.... ΕΝΝΟΙΑ ΤΟΥ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ ΠΡΑΞΕΙΣ ΣΤΟ ΣΥΝΟΛΟ ΤΩΝ ΜΙΓΑΔΙΚΩΝ ΜΕΘΟΔΟΛΟΓΙΑ : ΠΡΑΓΜΑΤΙΚΟ & ΦΑΝΤΑΣΤΙΚΟ ΜΕΡΟΣ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ Έστω ένας μιγαδικός αριθμός,

Διαβάστε περισσότερα

ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ

ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΕΥΡΙΠΙΔΟΥ 80 ΝΙΚΑΙΑ ΝΕΑΠΟΛΗ ΤΗΛΕΦΩΝΟ 0965897 ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ ΒΡΟΥΤΣΗ ΕΥΑΓΓΕΛΙΑ ΜΠΟΥΡΝΟΥΤΣΟΥ ΚΩΝ/ΝΑ ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ Η έννοια του μιγαδικού

Διαβάστε περισσότερα

2.3 ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ

2.3 ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ.ptetragono.gr Σελίδα. ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ Να βρεθεί το μέτρο των μιγαδικών :..... 0 0. 5 5 6.. 0 0. 5. 5 5 0 0 0 0 0 0 0 0 ΜΕΘΟΔΟΛΟΓΙΑ : ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ Αν τότε. Αν χρειαστεί

Διαβάστε περισσότερα

II. Συναρτήσεις. math-gr

II. Συναρτήσεις. math-gr II Συναρτήσεις Παντελής Μπουμπούλης, MSc, PhD σελ blogspotcom, bouboulismyschgr ΜΕΡΟΣ 1 ΣΥΝΑΡΤΗΣΕΙΣ Α Βασικές Έννοιες Ορισμός: Έστω Α ένα υποσύνολο του συνόλου των πραγματικών αριθμών R Ονομάζουμε πραγματική

Διαβάστε περισσότερα

math-gr Παντελής Μπουμπούλης, M.Sc., Ph.D. σελ. 2 math-gr.blogspot.com, bouboulis.mysch.gr

math-gr Παντελής Μπουμπούλης, M.Sc., Ph.D. σελ. 2 math-gr.blogspot.com, bouboulis.mysch.gr III Όριο Παντελής Μπουμπούλης, MSc, PhD σελ blogspotcom, bouboulismyschgr ΜΕΡΟΣ Πεπερασμένο Όριο στο Α Ορισμός Όριο στο : Όταν οι τιμές μιας συνάρτησης f προσεγγίζουν όσο θέλουμε έναν πραγματικό αριθμό,

Διαβάστε περισσότερα

Μιγαδικοί Αριθμοί. Μαθηματικά Γ! Λυκείου Θετική και Τεχνολογική Κατεύθυνση

Μιγαδικοί Αριθμοί. Μαθηματικά Γ! Λυκείου Θετική και Τεχνολογική Κατεύθυνση Μιγαδικοί Αριθμοί Μαθηματικά Γ! Λυκείου Θετική και Τεχνολογική Κατεύθυνση Θεωρία - Μέθοδοι Υποδειγματικά λυμένες ασκήσεις Ασκήσεις προς λύση Επιλεγμένα θέματα «Σας εύχομαι, καλό κουράγιο και μεγάλη δύναμη

Διαβάστε περισσότερα

2.3 ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ

2.3 ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ O z είναι πραγματικός, αν και μόνο αν Ο z είναι φανταστικός, αν και μόνο αν β) Αν και να αποδείξετε ότι ο αριθμός είναι πραγματικός, ενώ ο αριθμός είναι φανταστικός. 9. Να βρείτε το γεωμετρικό τόπο των

Διαβάστε περισσότερα

Παντελής Μπουμπούλης, M.Sc., Ph.D. σελ. 2 math-gr.blogspot.com, bouboulis.mysch.gr

Παντελής Μπουμπούλης, M.Sc., Ph.D. σελ. 2 math-gr.blogspot.com, bouboulis.mysch.gr VI Ολοκληρώματα Παντελής Μπουμπούλης, MSc, PhD σελ mth-grlogspotcom, ououlismyschgr ΜΕΡΟΣ Αρχική Συνάρτηση Ορισμός Έστω f μια συνάρτηση ορισμένη σε ένα διάστημα Δ Αρχική συνάρτηση ή παράγουσα της στο Δ

Διαβάστε περισσότερα

Μεθοδολογία στους Μιγαδικούς

Μεθοδολογία στους Μιγαδικούς ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ στους ΜΙΓΑΔΙΚΟΥΣ Α. ΜΙΓΑΔΙΚΟΙ.Περιγράψτε το σύνολο των μιγαδικών αριθμών και δώστε τους ορισμούς της πρόσθεσης, του πολ/σμού και της ισότητας δύο μιγαδικών αριθμών.(σελ. 86-87, τα μπλε

Διαβάστε περισσότερα

Κ ε φ α λ ά ( ) ( ) ηµθ + = ( )

Κ ε φ α λ ά ( ) ( ) ηµθ + = ( ) ΑΣΚΗΣΗ ίνονται οι µιγαδικοί αριθµοί z + 0i για τους οποίους ισχύει: z 4 =. z i. Να δείξετε ότι z =. ii. Αν επιπλέον ισχύει Re( z) Im( z) iii. = να υπολογίσετε τους παραπάνω µιγαδικούς αριθµούς. Για τους

Διαβάστε περισσότερα

ΜΙΓΑ ΙΚΟΙ ΑΡΙΘΜΟΙ. Ασκήσεις. Επιµέλεια.: Κάτσιος ηµήτρης. Μεθοδολογία Παραδείγµατα Ασκ ΜΕΘΟ ΟΛΟΓΙΑ 1

ΜΙΓΑ ΙΚΟΙ ΑΡΙΘΜΟΙ. Ασκήσεις. Επιµέλεια.: Κάτσιος ηµήτρης. Μεθοδολογία Παραδείγµατα Ασκ ΜΕΘΟ ΟΛΟΓΙΑ 1 εθοδολογία Παραδείγµατα σκ σκήσεις πιµέλεια.: άτσιος ηµήτρης Ρ ια να προσθέσουµε (ή να αφαιρέσουµε) δύο µιγαδικούς, προσθέτουµε (ή αφαιρούµε) τα πραγµατικά και τα φανταστικά τους µέρη, δηλαδή: ± = [Re

Διαβάστε περισσότερα

Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους

Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ Κεφάλαιο 1 ο ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ 1.1 Πράξεις με πραγματικούς αριθμούς Α. Οι πραγματικοί αριθμοί και οι πράξεις τους 1. Ποιοι αριθμοί ονομάζονται: α) ρητοί β) άρρητοι γ) πραγματικοί;

Διαβάστε περισσότερα

Μαθηματικά Γ Γυμνασίου

Μαθηματικά Γ Γυμνασίου Α λ γ ε β ρ ι κ έ ς π α ρ α σ τ ά σ ε ι ς 1.1 Πράξεις με πραγματικούς αριθμούς (επαναλήψεις συμπληρώσεις) A. Οι πραγματικοί αριθμοί και οι πράξεις τους Διδακτικοί στόχοι Θυμάμαι ποιοι αριθμοί λέγονται

Διαβάστε περισσότερα

Μιγαδικοί Αριθμοί. Στοιχεία Θεωρίας Μεθοδολογίες Λυμένα Παραδείγματα. Κωνσταντίνος Παπασταματίου

Μιγαδικοί Αριθμοί. Στοιχεία Θεωρίας Μεθοδολογίες Λυμένα Παραδείγματα. Κωνσταντίνος Παπασταματίου Κωνσταντίνος Παπασταματίου Μιγαδικοί Αριθμοί Στοιχεία Θεωρίας Μεθοδολογίες Λυμένα Παραδείγματα Φροντιστήριο Μ.Ε. «ΑΙΧΜΗ» Κ. Καρτάλη 8 (με Δημητριάδος) Βόλος Τηλ. 40598 Κεφ. ο ΠΊΝΑΚΑΣ ΠΕΡΙΕΧΟΜΈΝΩΝ. Η έννοια

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2014-2015 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΣΤΟΥΣ ΜΙΓΑΔΙΚΟΥΣ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2014-2015 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΣΤΟΥΣ ΜΙΓΑΔΙΚΟΥΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 04-05 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΣΤΟΥΣ ΜΙΓΑΔΙΚΟΥΣ Θεωρούμε τους μιγαδικούς C για τους οποίους ισχύει: - = + Im() και τη συνάρτηση f : w f ( w), όπου w C, w - και f (w) = w ) Να

Διαβάστε περισσότερα

ΜΙΓΑΔΙΚΟΙ - ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ

ΜΙΓΑΔΙΚΟΙ - ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ . ΜΙΓΑΔΙΚΟΙ - ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 4 α. Να βρείτε τον γεωμετρικό τόπο των εικόνων του. β. Αν Re ( ) 0, τότε: 4 i. Να αποδείξετε ότι ο μιγαδικός w = + είναι πραγματικός και ισχύει 4 w 4. ii. Να βρείτε τον

Διαβάστε περισσότερα

Κεφάλαιο 2ο: ΜΙΓΑ ΙΚΟΙ ΑΡΙΘΜΟΙ

Κεφάλαιο 2ο: ΜΙΓΑ ΙΚΟΙ ΑΡΙΘΜΟΙ Κεφάλαιο ο: ΜΙΓΑ ΙΚΟΙ ΑΡΙΘΜΟΙ Ερωτήσεις ανάπτυξης. ** Να βρείτε τους πραγµατικούς αριθµούς x και y ώστε να ισχύουν οι ισότητες: α) x - + y = - + - y β) y + = 3 - ( + ) x γ) 4y - 3y - x = - 5x + 9 δ) (x

Διαβάστε περισσότερα

1.2 Εξισώσεις 1 ου Βαθμού

1.2 Εξισώσεις 1 ου Βαθμού 1.2 Εξισώσεις 1 ου Βαθμού Διδακτικοί Στόχοι: Θα μάθουμε: Να κατανοούμε την έννοια της εξίσωσης και τη σχετική ορολογία. Να επιλύουμε εξισώσεις πρώτου βαθμού με έναν άγνωστο. Να διακρίνουμε πότε μια εξίσωση

Διαβάστε περισσότερα

IV. Συνέχεια Συνάρτησης. math-gr

IV. Συνέχεια Συνάρτησης. math-gr IV Συνέχεια Συνάρτησης mth-gr mth-gr Παντελής Μπουμπούλης, MSc, PhD σελ mth-grblogspotcom, bouboulismyschgr ΜΕΡΟΣ Συνέχεια Συνάρτησης Α Ορισμός Συνέχεια σε σημείο: Θα λέμε ότι μια συνάρτηση είναι συνεχής

Διαβάστε περισσότερα

Περιεχόμενα. Κεφάλαιο 3 Οι ιδιότητες των αριθμών... 37 3.1 Αριθμητικά σύνολα... 37 3.2 Ιδιότητες... 37 3.3 Περισσότερες ιδιότητες...

Περιεχόμενα. Κεφάλαιο 3 Οι ιδιότητες των αριθμών... 37 3.1 Αριθμητικά σύνολα... 37 3.2 Ιδιότητες... 37 3.3 Περισσότερες ιδιότητες... Περιεχόμενα Πρόλογος... 5 Κεφάλαιο Βασικές αριθμητικές πράξεις... 5. Τέσσερις πράξεις... 5. Σύστημα πραγματικών αριθμών... 5. Γραφική αναπαράσταση πραγματικών αριθμών... 6.4 Οι ιδιότητες της πρόσθεσης

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΨΗ ΣΤΟΥΣ ΜΙΓΑΔΙΚΟΥΣ

ΕΠΑΝΑΛΗΨΗ ΣΤΟΥΣ ΜΙΓΑΔΙΚΟΥΣ ΕΠΑΝΑΛΗΨΗ ΣΤΟΥΣ ΜΙΓΑΔΙΚΟΥΣ. Δίνεται η συνάρτηση f (). Να βρείτε για ποιες τιμές του δεν ορίζεται η συνάρτηση f. Να βρείτε τον αριθμό f ( ). Να δείξετε ότι f () I. Δίνεται η εξίσωση με η οποία έχει ρίζες

Διαβάστε περισσότερα

Θέµατα Μιγαδικών Αριθµών από τις Πανελλαδικές Εξετάσεις

Θέµατα Μιγαδικών Αριθµών από τις Πανελλαδικές Εξετάσεις Θέµατα Μιγαδικών Αριθµών από τις Πανελλαδικές Εξετάσεις γιατί συχνά, οι ιδέες επαναλαµβάνονται ΕΠΙΜΕΛΕΙΑ: ΠΑΠΠΑΣ ΑΘΑΝΑΣΙΟΣ Ο ΓΕΝ ΛΥΚΕΙΟ ΥΜΗΤΤΟΥ Σελίδα από 8 Επιµέλεια: Παππάς Αθανάσιος/o ΓΕΛ ΥΜΗΤΤΟΥ 00

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ Οι πραγματικοί αριθμοί αποτελούνται από τους ρητούς και τους άρρητους αριθμούς, τους φυσικούς και τους ακέραιους αριθμούς. Δηλαδή είναι το μεγαλύτερο σύνολο αριθμών που μπορούμε

Διαβάστε περισσότερα

ΤΑ ΔΙΑΝΥΣΜΑΤΑ, Η ΑΝΑΛΥΤΙΚΗ ΓΕΩΜΕΤΡΙΑ, ΟΙ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΚΑΙ Η ΣΟΦΙΑ!

ΤΑ ΔΙΑΝΥΣΜΑΤΑ, Η ΑΝΑΛΥΤΙΚΗ ΓΕΩΜΕΤΡΙΑ, ΟΙ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΚΑΙ Η ΣΟΦΙΑ! ΤΑ ΔΙΑΝΥΣΜΑΤΑ, Η ΑΝΑΛΥΤΙΚΗ ΓΕΩΜΕΤΡΙΑ, ΟΙ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΚΑΙ Η ΣΟΦΙΑ! - Κύριε, πόσο μας χρειάζονται αυτά που μάθαμε πέρσι στα μαθηματικά της κατεύθυνσης; - Σοφία, αν όχι όλα, αρκετά από αυτά. - Για πείτε

Διαβάστε περισσότερα

Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου

Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου Αριθμοί 1. ΑΡΙΘΜΟΙ Σύνολο Φυσικών αριθμών: Σύνολο Ακέραιων αριθμών: Σύνολο Ρητών αριθμών: ακέραιοι με Άρρητοι αριθμοί: είναι οι μη ρητοί π.χ. Το σύνολο Πραγματικών

Διαβάστε περισσότερα

Μιγαδική ανάλυση Μέρος Α Πρόχειρες σημειώσεις 1. Μιγαδικοί αριθμοί. ΤΕΤΥ Εφαρμοσμένα Μαθηματικά Μιγαδική Ανάλυση Α 1

Μιγαδική ανάλυση Μέρος Α Πρόχειρες σημειώσεις 1. Μιγαδικοί αριθμοί. ΤΕΤΥ Εφαρμοσμένα Μαθηματικά Μιγαδική Ανάλυση Α 1 ΤΕΤΥ Εφαρμοσμένα Μαθηματικά Μιγαδική Ανάλυση Α 1 Μιγαδική ανάλυση Μέρος Α Πρόχειρες σημειώσεις 1 Μιγαδικοί αριθμοί Τι είναι και πώς τους αναπαριστούμε Οι μιγαδικοί αριθμοί είναι μια επέκταση του συνόλου

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου Κεφάλαιο ο Αλγεβρικές Παραστάσεις ΛΕΜΟΝΙΑ ΜΠΟΥΤΣΚΟΥ Γυμνάσιο Αμυνταίου ΜΑΘΗΜΑ Α. Πράξεις με πραγματικούς αριθμούς ΑΣΚΗΣΕΙΣ ) ) Να συμπληρώσετε τα κενά ώστε στην κατακόρυφη στήλη

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ. ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ. ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ 1. Τι καλείται μεταβλητή; ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΑ Β ΓΥΜΝΑΣΙΟΥ ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ Μεταβλητή είναι ένα γράμμα (π.χ., y, t, ) που το χρησιμοποιούμε για να παραστήσουμε ένα οποιοδήποτε στοιχείο ενός συνόλου..

Διαβάστε περισσότερα

ΓΙΩΡΓΟΣ Α. ΚΑΡΕΚΛΙΔΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΘΕΩΡΙΑ ΑΣΚΗΣΕΙΣ ΜΕΘΟΔΟΛΟΓΙΑ

ΓΙΩΡΓΟΣ Α. ΚΑΡΕΚΛΙΔΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΘΕΩΡΙΑ ΑΣΚΗΣΕΙΣ ΜΕΘΟΔΟΛΟΓΙΑ ΓΙΩΡΓΟΣ Α. ΚΑΡΕΚΛΙΔΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΘΕΩΡΙΑ ΑΣΚΗΣΕΙΣ ΜΕΘΟΔΟΛΟΓΙΑ ΕΚΔΟΣΕΙΣ ΓΙΩΡΓΟΣ Α. ΚΑΡΕΚΛΙΔΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΘΕΩΡΙΑ ΑΣΚΗΣΕΙΣ ΜΕΘΟΔΟΛΟΓΙΑ τη ΘΕΩΡΙΑ με τις απαραίτητες διευκρινήσεις ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ

Διαβάστε περισσότερα

Θέματα από τους μιγαδικούς

Θέματα από τους μιγαδικούς 6/0/0 Θέματα από τους μιγαδικούς Μπάμπης Στεργίου Σεπτέμβριος 0 Θέμα ο ***Οι λύσεις έγιναν από τον Αλέξη Μιχαλακίδη Δίνονται τα σύνολα : A C/ και α) Να εκφράσετε γεωμετρικά το σύνολο Α BwC/w,A β) Να βρείτε

Διαβάστε περισσότερα

εξισώσεις-ανισώσεις Μαθηματικά α λυκείου Φροντιστήρια Μ.Ε. ΠΑΙΔΕΙΑ σύνολο) στα Μαθηματικά, τη Φυσική αλλά και σε πολλές επιστήμες

εξισώσεις-ανισώσεις Μαθηματικά α λυκείου Φροντιστήρια Μ.Ε. ΠΑΙΔΕΙΑ σύνολο) στα Μαθηματικά, τη Φυσική αλλά και σε πολλές επιστήμες Με τον διεθνή όρο φράκταλ (fractal, ελλ. μορφόκλασμα ή μορφοκλασματικό σύνολο) στα Μαθηματικά, τη Φυσική αλλά και σε πολλές επιστήμες ονομάζεται ένα γεωμετρικό σχήμα που επαναλαμβάνεται αυτούσιο σε άπειρο

Διαβάστε περισσότερα

ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΙΣΟΤΗΤΑ ΜΙΓΑΔΙΚΩΝ ΑΡΙΘΜΩΝ. α+βi =γ+δi α=γ και β=δ

ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΙΣΟΤΗΤΑ ΜΙΓΑΔΙΚΩΝ ΑΡΙΘΜΩΝ. α+βi =γ+δi α=γ και β=δ Το σύνολο C των μιγαδικών αριθμών είναι ένα υπερσύνολο του R, του συνόλου των πραγματικών αριθμών, στο οποίο ισχύουν: Επεκτείνονται οι πράξεις της πρόσθεσης του πολλαπλασιασμού έτσι ώστε, να έχουν τις

Διαβάστε περισσότερα

Θεώρημα Βolzano. Κατηγορία 1 η. 11.1 Δίνεται η συνάρτηση:

Θεώρημα Βolzano. Κατηγορία 1 η. 11.1 Δίνεται η συνάρτηση: Κατηγορία η Θεώρημα Βolzano Τρόπος αντιμετώπισης:. Όταν μας ζητούν να εξετάσουμε αν ισχύει το θεώρημα Bolzano για μια συνάρτηση f σε ένα διάστημα [, ] τότε: Εξετάζουμε την συνέχεια της f στο [, ] (αν η

Διαβάστε περισσότερα

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. Να εξετάσετε αν ισχύουν οι υποθέσεις του Θ.Μ.Τ. για την συνάρτηση στο διάστημα [ 1,1] τέτοιο, ώστε: C στο σημείο (,f( ))

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. Να εξετάσετε αν ισχύουν οι υποθέσεις του Θ.Μ.Τ. για την συνάρτηση στο διάστημα [ 1,1] τέτοιο, ώστε: C στο σημείο (,f( )) ΚΕΦΑΛΑΙΟ ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 6: ΘΕΩΡΗΜΑ ΜΕΣΗΣ ΤΙΜΗΣ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ (Θ.Μ.Τ.) [Θεώρημα Μέσης Τιμής Διαφορικού Λογισμού του κεφ..5 Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ Παράδειγμα. ΘΕΜΑ

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1 ο : ΔΙΑΝΥΣΜΑΤΑ 1 ΜΑΘΗΜΑ 1 ο +2 ο ΕΝΝΟΙΑ ΔΙΑΝΥΣΜΑΤΟΣ Διάνυσμα ορίζεται ένα προσανατολισμένο ευθύγραμμο τμήμα, δηλαδή ένα ευθύγραμμο τμήμα

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2014

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2014 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Γ ΛΥΚΕΙΟΥ 04 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 04 ΘΕΜΑ ο : * Θεωρούμε τους μιγαδικούς αριθμούς της μορφής xxi,

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος ΜEd: «Σπουδές στην εκπαίδευση» ΚΕΦΑΛΑΙΟ 1 Ο : Εξισώσεις - Ανισώσεις 1 1.1 Η ΕΝΝΟΙΑ ΤΗΣ ΜΕΤΑΒΛΗΤΗΣ ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΟΡΙΣΜΟΙ Μεταβλητή

Διαβάστε περισσότερα

ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. Η διαίρεση καλείται Ευκλείδεια και είναι τέλεια όταν το υπόλοιπο είναι μηδέν.

ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. Η διαίρεση καλείται Ευκλείδεια και είναι τέλεια όταν το υπόλοιπο είναι μηδέν. ΑΛΓΕΒΡΑ 1 ο ΚΕΦΑΛΑΙΟ ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ 1. Τι είναι αριθμητική παράσταση; Με ποια σειρά εκτελούμε τις πράξεις σε μια αριθμητική παράσταση ώστε να βρούμε την τιμή της; Αριθμητική παράσταση λέγεται κάθε

Διαβάστε περισσότερα

Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις

Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις 2 ΕΡΩΤΗΣΕΙΙΣ ΘΕΩΡΙΙΑΣ ΑΠΟ ΤΗΝ ΥΛΗ ΤΗΣ Β ΤΑΞΗΣ ΜΕΡΟΣ Α -- ΑΛΓΕΒΡΑ Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις Α. 1 1 1. Τι ονομάζεται Αριθμητική και τι Αλγεβρική παράσταση; Ονομάζεται Αριθμητική παράσταση μια παράσταση

Διαβάστε περισσότερα

Περιληπτικά, τα βήματα που ακολουθούμε γενικά είναι τα εξής:

Περιληπτικά, τα βήματα που ακολουθούμε γενικά είναι τα εξής: Αυτό που πρέπει να θυμόμαστε, για να μη στεναχωριόμαστε, είναι πως τόσο στις εξισώσεις, όσο και στις ανισώσεις 1ου βαθμού, που θέλουμε να λύσουμε, ακολουθούμε ακριβώς τα ίδια βήματα! Εκεί που πρεπει να

Διαβάστε περισσότερα

Α Τάξη Γυμνασίου Μ Α Θ Η Μ Α Τ Ι Κ Α. Ι. Διδακτέα ύλη

Α Τάξη Γυμνασίου Μ Α Θ Η Μ Α Τ Ι Κ Α. Ι. Διδακτέα ύλη Α Τάξη Γυμνασίου Από το βιβλίο «Μαθηματικά Α Γυμνασίου» των Ιωάννη Βανδουλάκη, Χαράλαμπου Καλλιγά, Νικηφόρου Μαρκάκη, Σπύρου Φερεντίνου, έκδοση 01. Κεφ. 1 ο : Οι φυσικοί αριθμοί 1. Πρόσθεση, αφαίρεση και

Διαβάστε περισσότερα

Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου

Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου Άλγεβρα 1.1 Β : Δυνάμεις πραγματικών αριθμών. 1. Πως ορίζεται η δύναμη ενός πραγματικού αριθμού ; Η δύναμη με βάση έναν πραγματικό αριθμό α και εκθέτη ένα

Διαβάστε περισσότερα

1 ΔΙΑΓΩΝΙΣΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΛΥΚΕΙΩΝ ΤΗΣ ΡΟΔΟΥ ΤΗΣ Α ΤΑΞΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ ΔΙΑΓΩΝΙΣΜΑ 1 Ο

1 ΔΙΑΓΩΝΙΣΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΛΥΚΕΙΩΝ ΤΗΣ ΡΟΔΟΥ ΤΗΣ Α ΤΑΞΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ ΔΙΑΓΩΝΙΣΜΑ 1 Ο 1 ΔΙΑΓΩΝΙΣΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΛΥΚΕΙΩΝ ΤΗΣ ΡΟΔΟΥ ΤΗΣ Α ΤΑΞΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ ΔΙΑΓΩΝΙΣΜΑ 1 Ο ΘΕΜΑ 1 ο α) Αν χ 1, χ ρίζες της εξίσωσης αχ +βχ+γ=0, 0 να δείξετε ότι S 1 και P 1 Μον. 10 β) Έστω η συνάρτηση

Διαβάστε περισσότερα

ΥΠΟΨΗΦΙΑ ΘΕΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ 2013

ΥΠΟΨΗΦΙΑ ΘΕΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ 2013 ΥΠΟΨΗΦΙΑ ΘΕΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ 3 Εισαγωγή Μέσα Μαΐου και ο πυρετός των Πανελλαδικών όλο και ανεβαίνει! Οι μαθητές ξεκοκαλίζουν τα βιβλία για να ανακαλύψουν δύσκολα θέματα διαφορετικά από αυτά που κυκλοφορούν

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ. 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις)

ΣΥΣΤΗΜΑΤΑ. 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις) 6 ΣΥΣΤΗΜΑΤΑ 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις) Η εξίσωση αx βy γ Στο Γυμνάσιο διαπιστώσαμε με την βοήθεια παραδειγμάτων ότι η εξίσωση αx βy γ, με α 0 ή β 0, που λέγεται γραμμική εξίσωση,

Διαβάστε περισσότερα

(a + b) + c = a + (b + c), (ab)c = a(bc) a + b = b + a, ab = ba. a(b + c) = ab + ac

(a + b) + c = a + (b + c), (ab)c = a(bc) a + b = b + a, ab = ba. a(b + c) = ab + ac Σημειώσεις μαθήματος Μ1212 Γραμμική Άλγεβρα ΙΙ Χρήστος Κουρουνιώτης ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ 2014 Κεφάλαιο 1 Διανυσματικοί Χώροι Στο εισαγωγικό μάθημα Γραμμικής Άλγεβρας ξεκινήσαμε μελετώντας

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Θετικής & Τεχνολογικής Κατεύθυνσης Β ΜΕΡΟΣ (ΑΝΑΛΥΣΗ) ΚΕΦ 1 ο : Όριο Συνέχεια Συνάρτησης

ΜΑΘΗΜΑΤΙΚΑ Θετικής & Τεχνολογικής Κατεύθυνσης Β ΜΕΡΟΣ (ΑΝΑΛΥΣΗ) ΚΕΦ 1 ο : Όριο Συνέχεια Συνάρτησης ΜΑΘΗΜΑΤΙΚΑ Θετικής & Τεχνολογικής Κατεύθυνσης Β ΜΕΡΟΣ (ΑΝΑΛΥΣΗ) ΚΕΦ ο : Όριο Συνέχεια Συνάρτησης Φυλλάδιο Φυλλάδι555 4 ο ο.α) ΕΝΝΟΙΑ ΣΥΝΑΡΤΗΣΗΣ - ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ.α) ΕΝΝΟΙΑ ΣΥΝΑΡΤΗΣΗΣ - ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ Β ΛΥΚΕΙΟΥ -- ΑΛΓΕΒΡΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ

ΑΣΚΗΣΕΙΣ Β ΛΥΚΕΙΟΥ -- ΑΛΓΕΒΡΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΑΣΚΗΣΕΙΣ Β ΛΥΚΕΙΟΥ -- ΑΛΓΕΒΡΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ Άσκηση η Γραμμικά συστήματα Δίνονται οι ευθείες : y3 και :y 5. Να βρεθεί το R, ώστε οι ευθείες να τέμνονται. Οι ευθείες και θα τέμνονται όταν το μεταξύ

Διαβάστε περισσότερα

Μαθηματικά Θετικής Τεχνολογικής Κατεύθυνσης Β Λυκείου

Μαθηματικά Θετικής Τεχνολογικής Κατεύθυνσης Β Λυκείου Μαθηματικά Θετικής Τεχνολογικής Κατεύθυνσης Β Λυκείου Κεφάλαιο ο : Κωνικές Τομές Επιμέλεια : Παλαιολόγου Παύλος Μαθηματικός ΚΕΦΑΛΑΙΟ Ο : ΚΩΝΙΚΕΣ ΤΟΜΕΣ. Ο ΚΥΚΛΟΣ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ Ένας κύκλος ορίζεται αν

Διαβάστε περισσότερα

Ε π ι μ έ λ ε ι α Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ

Ε π ι μ έ λ ε ι α Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ Ε π ι μ έ λ ε ι α Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ 1 Συναρτήσεις Όταν αναφερόμαστε σε μια συνάρτηση, ουσιαστικά αναφερόμαστε σε μια σχέση ή εξάρτηση. Στα μαθηματικά που θα μας απασχολήσουν, με απλά λόγια, η σχέση

Διαβάστε περισσότερα

Συναρτήσεις Όρια Συνέχεια

Συναρτήσεις Όρια Συνέχεια Κωνσταντίνος Παπασταματίου Μαθηματικά Γ Λυκείου Κατεύθυνσης Συναρτήσεις Όρια Συνέχεια Συνοπτική Θεωρία Μεθοδολογίες Λυμένα Παραδείγματα Επιμέλεια: Μαθηματικός Φροντιστήριο Μ.Ε. «ΑΙΧΜΗ» Κ. Καρτάλη 8 (με

Διαβάστε περισσότερα

Το βιβλίο που κρατάς στα χέρια σου, μοναδικό στην ελληνική βιβλιογραφία,

Το βιβλίο που κρατάς στα χέρια σου, μοναδικό στην ελληνική βιβλιογραφία, www.ziti.gr Πρόλογος Το βιβλίο που κρατάς στα χέρια σου, μοναδικό στην ελληνική βιβλιογραφία, θα σου φανεί χρήσιμο τις τελευταίες ημέρες της προετοιμασίας σου για τις πανελλαδικές εξετάσεις. Τα περιεχόμενά

Διαβάστε περισσότερα

1.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ

1.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ 1.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ Μέθοδοι επίλυσης γραμμικού συστήματος χ Γραφική επίλυση Σχεδιάζουμε τις ευθείες που αντιπροσωπεύουν οι εξισώσεις του συστήματος. Αν: - οι δύο ευθείες τέμνονται, τότε το σύστημα έχει

Διαβάστε περισσότερα

Η ΓΕΝΙΚΕΥΜΕΝΗ ΓΕΩΜΕΤΡΙΑ

Η ΓΕΝΙΚΕΥΜΕΝΗ ΓΕΩΜΕΤΡΙΑ Η ΓΕΝΙΚΕΥΜΕΝΗ ΓΕΩΜΕΤΡΙΑ ΕΙΣΑΓΩΓΗ Η Γενικευμένη Γεωμετρία, που θα αναπτύξουμε στα παρακάτω κεφάλαια, είναι μία «Νέα Γεωμετρία», η οποία προέκυψε από την ανάγκη να γενικεύσει ορισμένα σημεία της Ευκλείδειας

Διαβάστε περισσότερα

Μαθηματικα Γ Γυμνασιου

Μαθηματικα Γ Γυμνασιου Μαθηματικα Γ Γυμνασιου Θεωρια και παραδειγματα livemath.eu σελ. απο 9 Περιεχομενα Α ΜΕΡΟΣ: ΑΛΓΕΒΡΑ ΚΑΙ ΠΙΘΑΝΟΤΗΤΕΣ 4 ΣΥΣΤΗΜΑΤΑ Χ 4 ΜΟΝΩΝΥΜΑ & ΠΟΛΥΩΝΥΜΑ 5 ΜΟΝΩΝΥΜΑ 5 ΠΟΛΥΩΝΥΜΑ 5 ΡΙΖΑ ΠΟΛΥΩΝΥΜΟΥ 5 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ

Διαβάστε περισσότερα

ΝΙΚΟΛΑΟΣ Κ. ΣΑΜΠΑΝΗΣ. Η επανάληψη Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ

ΝΙΚΟΛΑΟΣ Κ. ΣΑΜΠΑΝΗΣ. Η επανάληψη Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΝΙΚΟΛΑΟΣ Κ. ΣΑΜΠΑΝΗΣ Η επανάληψη Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ 2015 Βασικά σημεία προσοχής για την τελευταία επανάληψη στην ύλη των Μαθηματικών Γ Λυκείου Θετικής Τεχνολογικής Κατεύθυνσης. Χρήσιμο βοήθημα για όλους

Διαβάστε περισσότερα

1.3 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ

1.3 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ ΚΕΦΑΛΑΙΟ Ο : ΔΙΑΝΥΣΜΑΤΑ - ΕΝΟΤΗΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ Ορισμός : αν λ πραγματικός αριθμός με 0 και μη μηδενικό διάνυσμα τότε σαν γινόμενο του λ με το ορίζουμε ένα διάνυσμα

Διαβάστε περισσότερα

αριθμούς Βασικές ασκήσεις Βασική θεωρία iii) φυσικοί; ii) ακέραιοι; iii) ρητοί;

αριθμούς Βασικές ασκήσεις Βασική θεωρία iii) φυσικοί; ii) ακέραιοι; iii) ρητοί; Πράξεις με πραγματικούς αριθμούς Βασικές ασκήσεις Βασική θεωρία Ρητοί και άρρητοι αριθμοί. α) Ποιοι αριθμοί ονομάζονται: iii) φυσικοί; ii) ακέραιοι; iii) ρητοί; iv) άρρητοι; v) πραγματικοί; β) Να βρείτε

Διαβάστε περισσότερα

B Γυμνασίου. Ενότητα 9

B Γυμνασίου. Ενότητα 9 B Γυμνασίου Ενότητα 9 Γραμμικές εξισώσεις με μία μεταβλητή Διερεύνηση (1) Να λύσετε τις πιο κάτω εξισώσεις και ακολούθως να σχολιάσετε το πλήθος των λύσεων που βρήκατε σε καθεμιά. α) ( ) ( ) ( ) Διερεύνηση

Διαβάστε περισσότερα

Κεφάλαιο 2ο: ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ

Κεφάλαιο 2ο: ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ Κεφάλαιο ο: ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ Ερωτήσεις του τύου «Σωστό - Λάθος». * Αν = α + βi, α, β R και = 0, τότε α = 0 και β = 0. Σ Λ. * Αν = α + βi και αβ 0, τότε = α β i. Σ Λ. * Αν = κ + λi κ, λ R, τότε Re () =

Διαβάστε περισσότερα

Μεθοδολογία Επίλυσης Προβλημάτων ============================================================================ Π. Κυράνας - Κ.

Μεθοδολογία Επίλυσης Προβλημάτων ============================================================================ Π. Κυράνας - Κ. Μεθοδολογία Επίλυσης Προβλημάτων ============================================================================ Π. Κυράνας - Κ. Σάλαρης Πολλές φορές μας δίνεται να λύσουμε ένα πρόβλημα που από την πρώτη

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2012

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2012 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Γ ΛΥΚΕΙΟΥ 0 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 0 ΘΕΜΑ ο : Έστω, C με Re( ) και Re( ) Αν f() ( )( )( )( ) και

Διαβάστε περισσότερα

1. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν γράφοντας την ένδειξη Σωστό ή Λάθος και να δικαιολογήσετε την απάντησή σας.

1. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν γράφοντας την ένδειξη Σωστό ή Λάθος και να δικαιολογήσετε την απάντησή σας. Κεφάλαιο Πραγματικοί αριθμοί. Οι πράξεις και οι ιδιότητές τους Κατανόηση εννοιών - Θεωρία. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν γράφοντας την ένδειξη Σωστό ή Λάθος και να δικαιολογήσετε την απάντησή

Διαβάστε περισσότερα

ΜΑΘΗΜΑ 7. 2.3 Μέτρο µιγαδικού Ασκήσεις Γεωµετρικών τόπων ΑΣΚΗΣΕΙΣ

ΜΑΘΗΜΑ 7. 2.3 Μέτρο µιγαδικού Ασκήσεις Γεωµετρικών τόπων ΑΣΚΗΣΕΙΣ ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑ 7.3 Μέτρο µιγαδικού Ασκήσεις Γεωµετρικών τόπων. Να βρείτε το γεωµετρικό τόπο των µιγαδικών z, για τους οποίους οι εικόνες των µιγαδικών z, i, iz είναι συνευθειακά σηµεία. Έστω z = x + i,

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 2: Πραγματικοί Αριθμοί

ΕΝΟΤΗΤΑ 2: Πραγματικοί Αριθμοί Ενδεικτικός Προγραμματισμός ΕΝΟΤΗΤΑ 2: Πραγματικοί Αριθμοί 12 περίοδοι Δείκτες επιτυχίας: Ορίζουν την έννοια της νιοστής ρίζας ενός αριθμού α και αποδεικνύουν τις ιδιότητες ριζών, όταν ν N, ν 0, 1, α R

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ. D x D / h x D δηλαδή. ισχύει για x 1, e ln x 1 e. e ln x e ln x e ln x e ln x 1 e ln x 1 f x f x

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ. D x D / h x D δηλαδή. ισχύει για x 1, e ln x 1 e. e ln x e ln x e ln x e ln x 1 e ln x 1 f x f x Λύση (ΘΕΜΑ ο ) Γ. Έστω οι συναρτήσεις : h ln με D 0, h f με D, h h h με 3 0, 0, ln h h D D / h D δηλαδή h3 h h ή D 0, h h h με 4 f,, h 3 D D / h D δηλαδή h4 h h ή D, Έτσι η εξίσωση h ln h f h 4 ισχύει

Διαβάστε περισσότερα

ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΕΙΑ ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ

ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΕΙΑ ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΕΙΑ ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ Φροντιστήριο Μ.Ε. «ΑΙΧΜΗ» Κ.Καρτάλη 8 Βόλος Τηλ. 43598 ΠΊΝΑΚΑΣ ΠΕΡΙΕΧΟΜΈΝΩΝ 3. Η ΕΝΝΟΙΑ ΤΗΣ ΠΑΡΑΓΩΓΟΥ... 5 ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ...

Διαβάστε περισσότερα

Συνοπτική Θεωρία Μαθηματικών Α Γυμνασίου

Συνοπτική Θεωρία Μαθηματικών Α Γυμνασίου Web page: www.ma8eno.gr e-mail: vrentzou@ma8eno.gr Η αποτελεσματική μάθηση δεν θέλει κόπο αλλά τρόπο, δηλαδή ma8eno.gr Συνοπτική Θεωρία Μαθηματικών Α Γυμνασίου Αριθμητική - Άλγεβρα Γεωμετρία Άρτιος λέγεται

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 ÔÑÉÐÔÕ Ï

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 ÔÑÉÐÔÕ Ï ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 3 Ε_3.Μλ3ΘΤ(ε) ΤΑΞΗ: ΚΑΤΕΥΘΥΝΣΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ

ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ Ε.1 I. 1. α 2 = 9 α = 3 ψ p: α 2 = 9, q: α = 3 Σύνολο αλήθειας της p: Α = {-3,3}, Σύνολο αλήθειας της q: B = {3} A B 2. α 2 = α α = 1 ψ p: α 2 = α, q: α = 1 Σύνολο

Διαβάστε περισσότερα

1.8 ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΘΕΩΡΗΜΑ BOLZANO A. ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ

1.8 ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΘΕΩΡΗΜΑ BOLZANO A. ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ .8 ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΘΕΩΡΗΜΑ BOLZANO A. ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΜΕΘΟΔΟΛΟΓΙΑ : ΣΥΝΕΧΗΣ ΣΥΝΑΡΤΗΣΗ - ΟΡΙΣΜΟΣ Όταν θέλουμε να εξετάσουμε ως προς τη συνέχεια μια συνάρτηση πολλαπλού τύπου, εργαζόμαστε ως εξής

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ

ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ Θα ξεκινήσουµε την παρουσίαση των γραµµικών συστηµάτων µε ένα απλό παράδειγµα από τη Γεωµετρία, το οποίο ϑα µας ϐοηθήσει στην κατανόηση των συστηµάτων αυτών και των συνθηκών

Διαβάστε περισσότερα

Συνέχεια συνάρτησης σε κλειστό διάστημα

Συνέχεια συνάρτησης σε κλειστό διάστημα 8 Συνέχεια συνάρτησης σε κλειστό διάστημα Α ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ 1 Μια συνάρτηση f θα λέμε ότι είναι: i Συνεχής σε ένα ανοιχτό διάστημα (α,β) όταν είναι συνεχής σε κάθε σημείο του διαστήματος (α,β)

Διαβάστε περισσότερα

ΜΕΛΕΤΗ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ

ΜΕΛΕΤΗ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ 5 ΜΕΛΕΤΗ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ Εισαγωγή Στο κεφάλαιο αυτό θα δούμε πώς, με τη βοήθεια των πληροφοριών που α- ποκτήσαμε μέχρι τώρα, μπορούμε να χαράξουμε με όσο το δυνατόν μεγαλύτερη ακρίβεια τη γραφική παράσταση

Διαβάστε περισσότερα

Διδακτέα-εξεταστέα ύλη μαθηματικών Ημερησίου και Εσπερινού ΓΕ.Λ. Ο Δ Η Γ Ο Σ ΔΙΔΑΚΤΕΑΣ-ΕΞΕΤΑΣΤΕΑΣ ΥΛΗΣ ΗΜΕΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΓΕΝΙΚΩΝ ΛΥΚΕΙΩΝ

Διδακτέα-εξεταστέα ύλη μαθηματικών Ημερησίου και Εσπερινού ΓΕ.Λ. Ο Δ Η Γ Ο Σ ΔΙΔΑΚΤΕΑΣ-ΕΞΕΤΑΣΤΕΑΣ ΥΛΗΣ ΗΜΕΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΓΕΝΙΚΩΝ ΛΥΚΕΙΩΝ Ο Δ Η Γ Ο Σ ΔΙΔΑΚΤΕΑΣ-ΕΞΕΤΑΣΤΕΑΣ ΥΛΗΣ ΜΑΘΗΜΑΤΙΚΩΝ ΗΜΕΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΓΕΝΙΚΩΝ ΛΥΚΕΙΩΝ Γενική Επιμέλεια: Καραγιάννης Ιωάννης Σχολικός Σύμβουλος Μαθηματικός Περιηγητής 1 ΠΕΡΙΕΧΟΜΕΝΑ 1. Διδακτέα-εξεταστέα

Διαβάστε περισσότερα

Υψώνουμε την δοσμένη σχέση στο τετράγωνο οπότε

Υψώνουμε την δοσμένη σχέση στο τετράγωνο οπότε ΑΠΑNTHΣΕΙΣ ΣΤA ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΠΑΝΕΛΛΑΔΙΚΕΣ ΘΕΜΑ A A Απόδειξη Σελ 53 Α Ορισμός Σελ 9 Α3 Ορισμός Σελ 58 Α4 α) Σ β) Σ γ) Λ δ) Λ ε) Λ ΘΕΜΑ Β Β 4 4 4 Άρα ο γεωμετρικός τόπος των εικόνων των μιγαδικών

Διαβάστε περισσότερα

Κεφάλαιο 4 Διανυσματικοί Χώροι

Κεφάλαιο 4 Διανυσματικοί Χώροι Κεφάλαιο Διανυσματικοί Χώροι Διανυσματικοί χώροι - Βασικοί ορισμοί και ιδιότητες Θεωρούμε τρία διαφορετικά σύνολα: Διανυσματικοί Χώροι α) Το σύνολο διανυσμάτων (πινάκων με μία στήλη) με στοιχεία το οποίο

Διαβάστε περισσότερα

Από το Γυμνάσιο στο Λύκειο... 7. 3. Δειγματικός χώρος Ενδεχόμενα... 42 Εύρεση δειγματικού χώρου... 46

Από το Γυμνάσιο στο Λύκειο... 7. 3. Δειγματικός χώρος Ενδεχόμενα... 42 Εύρεση δειγματικού χώρου... 46 ΠEΡΙΕΧΟΜΕΝΑ Από το Γυμνάσιο στο Λύκειο................................................ 7 1. Το Λεξιλόγιο της Λογικής.............................................. 11. Σύνολα..............................................................

Διαβάστε περισσότερα

Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. Θέμα 2 ο (150)

Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. Θέμα 2 ο (150) Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ Θέμα ο (150) -- Τράπεζα θεμάτων Άλγεβρας Α Λυκείου Φεργαδιώτης Αθανάσιος -3- Τράπεζα θεμάτων Άλγεβρας Α Λυκείου Φεργαδιώτης Αθανάσιος ΚΕΦΑΛΑΙΟ

Διαβάστε περισσότερα

ΙΑΝΥΣΜΑΤΑ ΘΕΩΡΙΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. Τι ονοµάζουµε διάνυσµα; αλφάβητου επιγραµµισµένα µε βέλος. για παράδειγµα, Τι ονοµάζουµε µέτρο διανύσµατος;

ΙΑΝΥΣΜΑΤΑ ΘΕΩΡΙΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. Τι ονοµάζουµε διάνυσµα; αλφάβητου επιγραµµισµένα µε βέλος. για παράδειγµα, Τι ονοµάζουµε µέτρο διανύσµατος; ΙΝΥΣΜΤ ΘΕΩΡΙ ΘΕΜΤ ΘΕΩΡΙΣ Τι ονοµάζουµε διάνυσµα; AB A (αρχή) B (πέρας) Στη Γεωµετρία το διάνυσµα ορίζεται ως ένα προσανατολισµένο ευθύγραµµο τµήµα, δηλαδή ως ένα ευθύγραµµο τµήµα του οποίου τα άκρα θεωρούνται

Διαβάστε περισσότερα

Κεφάλαιο 4: Διαφορικός Λογισμός

Κεφάλαιο 4: Διαφορικός Λογισμός ΣΥΓΧΡΟΝΗ ΠΑΙΔΕΙΑ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Κεφάλαιο 4: Διαφορικός Λογισμός Μονοτονία Συνάρτησης Tζουβάλης Αθανάσιος Κεφάλαιο 4: Διαφορικός Λογισμός Περιεχόμενα Μονοτονία συνάρτησης... Λυμένα παραδείγματα...

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. 118 ερωτήσεις θεωρίας με απάντηση 324 416 ασκήσεις για λύση. 20 συνδυαστικά θέματα εξετάσεων

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. 118 ερωτήσεις θεωρίας με απάντηση 324 416 ασκήσεις για λύση. 20 συνδυαστικά θέματα εξετάσεων ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ 118 ερωτήσεις θεωρίας με απάντηση 34 416 ασκήσεις για λύση ερωτήσεις κατανόησης λυμένα παραδείγματα 0 συνδυαστικά θέματα εξετάσεων Π Ε Ρ Ι Ε Χ Ο Μ Ε Ν Α Εισαγωγική ενότητα Το λεξιλόγιο

Διαβάστε περισσότερα

lim f(x) =, τότε f(x)<0 κοντά στο x Επιμέλεια : Ταμπούρης Αχιλλέας M.Sc. Mαθηματικός 1

lim f(x) =, τότε f(x)<0 κοντά στο x Επιμέλεια : Ταμπούρης Αχιλλέας M.Sc. Mαθηματικός 1 ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΔΕΥΤΕΡΑ 8 ΜΑΪΟΥ 0 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΤΕΣΣΕΡΙΣ (4) ΘΕΜΑ Α Α.

Διαβάστε περισσότερα

ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ B ΤΑΞΗΣ. χρησιμοποιήσουμε καθημερινά φαινόμενα όπως το θερμόμετρο, Θετικοί-Αρνητικοί αριθμοί.

ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ B ΤΑΞΗΣ. χρησιμοποιήσουμε καθημερινά φαινόμενα όπως το θερμόμετρο, Θετικοί-Αρνητικοί αριθμοί. ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ B ΤΑΞΗΣ ΑΛΓΕΒΡΑ (50 Δ. ώρες) Περιεχόμενα Στόχοι Οδηγίες - ενδεικτικές δραστηριότητες Οι μαθητές να είναι ικανοί: Μπορούμε να ΟΙ ΑΚΕΡΑΙΟΙ ΑΡΙΘΜΟΙ χρησιμοποιήσουμε καθημερινά φαινόμενα

Διαβάστε περισσότερα

2 ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ (1)

2 ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ (1) 2 ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ (1) 2.1 Η ΕΝΝΟΙΑ ΤΟΥ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ Εισαγωγή Η δημιουργία των μιγαδικών αριθμών οφείλεται στην προσπάθεια επίλυσης των εξισώσεων 3ου βαθμού. Αν στην αx 3 +βx 2 +γx + δ = 0 θέσουμε

Διαβάστε περισσότερα

Γενικό Ενιαίο Λύκειο Μαθ. Κατ. Τάξη B

Γενικό Ενιαίο Λύκειο Μαθ. Κατ. Τάξη B 151 Θέματα εξετάσεων περιόδου Μαΐου - Ιουνίου στα Μαθηματικά Κατεύθυνσης Τάξη - B Λυκείου 15 Α. Αν α, β, γ ακέραιοι ώστε α/β και α/γ, να δείξετε ότι α/(β + γ). Μονάδες 13 Β. α. Δώστε τον ορισμό της παραβολής.

Διαβάστε περισσότερα

3 η δεκάδα θεµάτων επανάληψης

3 η δεκάδα θεµάτων επανάληψης η δεκάδα θεµάτων επανάληψης. Έστω η συνάρτηση f() = 80 αν < < 0 αν 0 αν i ) Να υπολογιστεί η τιµή της παράστασης Α = f( ) + f(0) 5f() f + f( ) Αν Μ(, ) και Ν(, 0) να βρείτε την εξίσωση της ευθείας ΜΝ i

Διαβάστε περισσότερα

ΠΡΟΤΕΙΝΟΜΕΝΟΣ ΣΧΕΔΙΑΣΜΟΣ ΕΠΑΝΑΛΗΨΗΣ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΓΥΜΝΑΣΙΟΥ

ΠΡΟΤΕΙΝΟΜΕΝΟΣ ΣΧΕΔΙΑΣΜΟΣ ΕΠΑΝΑΛΗΨΗΣ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΓΥΜΝΑΣΙΟΥ ΕΚΠΑΙΔΕΥΤΗΡΙΑ ΓΥΜΝΑΣΙΟ ΑΜΑΡΟΥΣΙΟΥ ΠΡΟΤΕΙΝΟΜΕΝΟΣ ΣΧΕΔΙΑΣΜΟΣ ΕΠΑΝΑΛΗΨΗΣ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ Επαναληπτικές Ασκήσεις (από σχολικό βιβλίο) (από βοήθημα Γ Γυμνασίου Πετσιά-Κάτσιου) Κεφάλαιο 1ο 17,

Διαβάστε περισσότερα

Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα

Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7, α) Να αιτιολογήσετε γιατί η (α ν ) είναι αριθμητική πρόοδος και να βρείτε τον εκατοστό

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΑΠΟ ΤΗΝ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ

ΘΕΜΑΤΑ ΑΠΟ ΤΗΝ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ 3. Δίνεται ο πίνακας: 3 3 3 ΠΙΘΑΝΟΤΗΤΕΣ ΘΕΜΑ ο. Ένα κουτί περιέχει άσπρες, μαύρες, κόκκινες και πράσινες μπάλες. Οι άσπρες είναι 5, οι μαύρες είναι 9, ενώ οι κόκκινες και οι πράσινες μαζί είναι 6. Επιλέγουμε

Διαβάστε περισσότερα

Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 11 ο, Τμήμα Α. Γεωμετρία

Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 11 ο, Τμήμα Α. Γεωμετρία Μαθηματικά: ριθμητική και Άλγεβρα Μάθημα 11 ο, Τμήμα Γεωμετρία Η γεωμετρία σε σχέση με την άλγεβρα ή την αριθμητική έχει την εξής ιδιαιτερότητα: πρέπει να είμαστε πολύ ακριβείς στην περιγραφή μας (σκέψη

Διαβάστε περισσότερα

Κωνικές τομές. Προκύπτουν σαν τομές ορθού κυκλικού κώνου με επίπεδο που δεν διέρχεται από την κορυφή του

Κωνικές τομές. Προκύπτουν σαν τομές ορθού κυκλικού κώνου με επίπεδο που δεν διέρχεται από την κορυφή του Κωνικές τομές Προκύπτουν σαν τομές ορθού κυκλικού κώνου με επίπεδο που δεν διέρχεται από την κορυφή του ΚΥΚΛΟΣ το επίπεδο είναι κάθετο στον άξονα του κώνου ΠΑΡΑΒΟΛΗ το επίπεδο είναι παράλληλο σε μια γενέτειρα

Διαβάστε περισσότερα

1.5 Αξιοσημείωτες Ταυτότητες

1.5 Αξιοσημείωτες Ταυτότητες 1.5 Αξιοσημείωτες Ταυτότητες Ορισμός: Κάθε ισότητα που περιέχει μεταβλητές και αληθεύει για όλες τις τιμές των μεταβλητών της λέγεται ταυτότητα. Ταυτότητες που πρέπει να γνωρίζουμε: Τετράγωνο αθροίσματος

Διαβάστε περισσότερα

ΤΕΤΥ Εφαρμοσμένα Μαθηματικά 1. Τελεστές και πίνακες. 1. Τελεστές και πίνακες Γενικά. Τι είναι συνάρτηση? Απεικόνιση ενός αριθμού σε έναν άλλο.

ΤΕΤΥ Εφαρμοσμένα Μαθηματικά 1. Τελεστές και πίνακες. 1. Τελεστές και πίνακες Γενικά. Τι είναι συνάρτηση? Απεικόνιση ενός αριθμού σε έναν άλλο. ΤΕΤΥ Εφαρμοσμένα Μαθηματικά 1 Τελεστές και πίνακες 1. Τελεστές και πίνακες Γενικά Τι είναι συνάρτηση? Απεικόνιση ενός αριθμού σε έναν άλλο. Ανάλογα, τελεστής είναι η απεικόνιση ενός διανύσματος σε ένα

Διαβάστε περισσότερα

13 Μονοτονία Ακρότατα συνάρτησης

13 Μονοτονία Ακρότατα συνάρτησης 3 Μονοτονία Ακρότατα συνάρτησης Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Θεώρημα Αν μια συνάρτηση f είναι συνεχής σ ένα διάστημα Δ, τότε: Αν f ( ) > 0για κάθε εσωτερικό του Δ, η f είναι γνησίως αύξουσα στο Δ. Αν

Διαβάστε περισσότερα

ΑΡΙΘΜΗΤΙΚΗ ΠΡΟΟΔΟΣ. Σύμφωνα με τα παραπάνω, για μια αριθμητική πρόοδο που έχει πρώτο όρο τον ...

ΑΡΙΘΜΗΤΙΚΗ ΠΡΟΟΔΟΣ. Σύμφωνα με τα παραπάνω, για μια αριθμητική πρόοδο που έχει πρώτο όρο τον ... ΑΡΙΘΜΗΤΙΚΗ ΠΡΟΟΔΟΣ Ορισμός : Μία ακολουθία ονομάζεται αριθμητική πρόοδος, όταν ο κάθε όρος της, δημιουργείται από τον προηγούμενο με πρόσθεση του ίδιου πάντοτε αριθμού. Ο σταθερός αριθμός που προστίθεται

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ Δ Ι Α Γ Ω Ν Ι Σ Μ Α 1

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ Δ Ι Α Γ Ω Ν Ι Σ Μ Α 1 Δ Ι Α Γ Ω Ν Ι Σ Μ Α Θ έ μ α Α Α. α. Πότε η εξίσωση αx + βx + γ = 0, α 0 έχει διπλή ρίζα; Ποια είναι η διπλή ρίζα της; 4 μονάδες β. Ποια μορφή παίρνει το τριώνυμο αx + βx + γ, α 0, όταν Δ = 0; 3 μονάδες

Διαβάστε περισσότερα

Θαλής Α' Λυκείου 1995-1996

Θαλής Α' Λυκείου 1995-1996 Θαλής Α' Λυκείου 1995-1996 1. Δυο μαθητές Α και Β παίζουν το ακόλουθο παιχνίδι: Τους δίνεται ένα κανονικό πολύγωνο με άρτιο πλήθος πλευρών, μεγαλύτερο από 6 (π.χ. ένα 100-γωνο). Κάθε παίκτης συνδέει δυο

Διαβάστε περισσότερα

ΜΑΘΗΜΑ 8. B 2.3 Χρησιµοποιώντας Ευκλείδεια Γεωµετρία

ΜΑΘΗΜΑ 8. B 2.3 Χρησιµοποιώντας Ευκλείδεια Γεωµετρία ΜΑΘΗΜΑ 8. B.3 Χρησιµοποιώντας Ευκλείδεια Γεωµετρία Θεωρία Ασκήσεις γ. τόπου και µεγιστο ελάχιστου Στις ασκήσεις αυτού του µαθήµατος χρησιµοποιούµε ανισωτικές σχέσεις από την Ευκλείδεια Γεωµετρία. Θυµίζουµε

Διαβάστε περισσότερα