Πρόχειρες Σηµειώσεις Φυσικής Γ Λυκείου

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Πρόχειρες Σηµειώσεις Φυσικής Γ Λυκείου"

Transcript

1 Πρόχειρες Σηµειώσεις Φυσικής Γ Λυκείου Θετικής & Τεχνολογικής Κατεύθυνσης Μιχάλης Ε. Καραδηµητριου MSc Φυσικός Ηράκλειο Κρήτης 2η Εκδοση - Ιούλης 2013

2 2 Μιχάλης Ε. Καραδηµητρίου

3 Περιεχόµενα 1 Ταλαντώσεις Απλή Αρµονική Ταλάντωση Περιοδικά Φαινόµενα Οι εξισώσεις της Απλής Αρµονικής Ταλάντωσης Γραφικές παραστάσεις Παραδείγµατα Υπολογισµού Αρχικής ϕάσης Η ύναµη στην Απλή Αρµονική Ταλάντωση Το σύστηµα Μάζας - Ελατηρίου Η ενέργεια στην Απλή Αρµονική Ταλάντωση Ρυθµοί µεταβολής στην Απλή Αρµονική Ταλάντωση Η ιαφορά ϕάσης στην απλή αρµονική ταλάντωση Η αναπαράσταση του περιστρεφόµενου διανύσµατος Κρούση και Απλή Αρµονική Ταλάντωση Σώµατα που ϐρίσκονται σε επαφή και εκτελούν α.α.τ Ηλεκτρικές Ταλαντώσεις Το κύκλωµα L - C Οι εξισώσεις της Ηλεκτρικής Ταλάντωσης Γραφικές παραστάσεις Η ενέργεια στην Ηλεκτρική Ταλάντωση Φθίνουσες Ταλαντώσεις Μηχανικές Ταλαντώσεις Ηλεκτρικές Ταλαντώσεις Εξαναγκασµένες Ταλαντώσεις Μηχανικές Ταλαντώσεις Ηλεκτρικές Ταλαντώσεις Σύνθεση Ταλαντώσεων Κύµατα Ορισµός του κύµατος Τα είδη των κυµάτων Τα στοιχεία του τρέχοντος αρµονικού κύµατος Η εξίσωση του Αρµονικού Κύµατος Γραφική παράσταση του αρµονικού κύµατος Φάση του Αρµονικού Κύµατος Αρµονικό Κύµα µε αρχική ϕάση Συµβολή Κυµάτων Σύγχρονες και Σύµφωνες πηγές κυµάτων Στάσιµα Κύµατα Η εξίσωση του Στάσιµου Κύµατος Ηλεκτροµαγνητικά Κύµατα

4 Μιχάλης Ε. Καραδηµητρίου Το ϕάσµα της ηλεκτροµαγνητικής ακτινοβολίας Ανάκλαση - ιάθλαση - Ολική Ανάκλαση Ανάκλαση του ϕωτός ιάθλαση του ϕωτός Ολική Εσωτερική Ανάκλαση Μηχανική Στερεού Σώµατος Η κινηµατική της κυκλικής κίνησης Κινήσεις Στερών Σωµάτων Υλικό σηµείο και µηχανικό στερεό Ροπή ύναµης - Ισορροπία Στερεού Σώµατος Ροπή Αδράνειας Θεµελιώδης Νόµος της Στροφικής Κίνησης Εφαρµογή των Θεµελιωδών Νόµων στην κίνηση στερεού σώµατος Στροφορµή- ιατήρηση Στροφορµής ιατήρηση της Στροφορµής Κινητική Ενέργεια και Εργο στην Στροφική Κίνηση Κινητική Ενέργεια λόγω µεταφορικής Κίνησης Κινητική Ενέργεια λόγω περιστροφής Κινητική Ενέργεια σώµατος που εκτελεί σύνθετη κίνηση Εργο κατά την στροφική κίνηση Ισχύς δύναµης στη στροφική κίνηση Θεώρηµα Εργου- Ενέργειας στη στροφική κίνηση Η ιατήρηση της Μηχανικής Ενέργειας Κρούσεις Τα είδη της κρούσης, ανάλογα µε την διεύθυνση κίνησης των σωµάτων πριν συγκρουστούν Τα είδη της κρούσης ανάλογα µε την διατήρηση της κινητικής ενέργειας των συγκρουόµενων σωµάτων Η κεντρική Ελαστική κρούση Η Κεντρική Ανελαστική κρούση Η Πλάγια ελαστική κρούση υναµική Ενέργεια µέγιστης ελαστικής παραµόρφωσης Φαινόµενο Ντόµπλερ(Doppler) Ακίνητη πηγή - Ακίνητος παρατηρητής Ακίνητη πηγή - Κινούµενος παρατηρητής Κινούµενη πηγή - Ακίνητος παρατηρητής Γενικές παρατηρήσεις

5 Πρόχειρες Σηµειώσεις Γ Λυκείου I Σετ Ασκήσεων II Χρήσιµη Τριγωνοµετρία 329 5

6 6 Μιχάλης Ε. Καραδηµητρίου

7 Πρόλογος Οι «Πρόχειρες Σηµειώσεις» έχουν σαν στόχο να συνοδεύσουν την διδασκαλία του Μαθήµατος Φυσικής Κατεύθυνσης στους µαθητές της Γ Λυκείου. Ο όρος «πρόχειρες» είναι αναγκαίος γιατί κάθε χρόνο ϑα τίθενται σε αµφισβήτηση από τον συγγραφέα και τους αναγνώστες. Σηµειώνω ότι οι σηµειώσεις έχουν πάρει στοιχεία από διάφορα ϐοη- ϑήµατα Φυσικής που κυκλοφορούν στα ϐιβλιοπωλεία. Αναφέρω αυτά του Γιώργου ηµόπουλου, Άγγελου & Σπύρου Σαββάλα, Γιώργου Παναγιωτακόπουλου & Γιώργου Μαθιουδάκη που έχουν κάνει καταπληκτική δουλειά. Προφανώς ο στόχος των σηµειώσεων αυτών δεν είναι να υποκαταστήσουν κανένα ϐιβλίο, είναι απλά συνοδευτικές του µαθήµατος. Σε κάθε πα- ϱάγραφο άλλωστε υπάρχουν προτεινόµενες ασκήσεις από τα παραπάνω ϐιβλία για να µελετήσει ο µαθητής. Στο τέλος των σηµειώσεων υπάρχουν τα Σετ Ασκήσεων που δόθηκαν στους µαθητές µου κατά το σχολικό έτος και ϐασίζονται στο ψηφιακό ϐοήθηµα του Υπουργείου Παιδείας (http://www.study4exams.gr). Βέβαια όλο το υλικό είναι δηµοσιευµένο στο Μιχάλης Ε. Καραδηµητρίου, Msc Φυσικός

8 8 Μιχάλης Ε. Καραδηµητρίου

9 Κεφάλαιο 1 Ταλαντώσεις 1.1 Απλή Αρµονική Ταλάντωση Περιοδικά Φαινόµενα Ονοµάζονται τα ϕαινόµενα που επαναλαµβάνονται κατά τον ίδιο τρόπο σε ίσα χρονικά διαστήµατα. Τέτοια ϕαινόµενα είναι η κυκλική οµαλή κίνηση, η κίνηση του εκκρεµούς κ.ά. Κάθε περιοδικό ϕαινόµενο χαρακτηρίζεται από την Περίοδο (T ), τη Συχνότητα (f) και την γωνιακή συχνότητα (ω) ˆ Περίοδος (Τ) ενός περιοδικού ϕαινοµένου είναι ο χρόνος που απαιτείται για µια πλήρη επανάληψη του ϕαινοµένου. Αν σε χρόνο t γίνονται Ν επαναλήψεις του ϕαινοµένου, τότε η περίοδος είναι ίση µε το πηλίκο : T = t N (1.1) Μονάδα µέτρησης της περιόδου είναι το 1 s. ˆ Συχνότητα (f) ενός περιοδικού ϕαινοµένου ειναι το πηλίκο του αριθµού Ν των επαναλήψεων του ϕαινοµένου σε ορισµένο χρόνο t, προς το χρόνο t. ηλαδή : f = N t (1.2) Μονάδα µέτρησης της συχνότητας είναι το 1 Hz ή 1 s 1 Από τον ορισµό τους, τα µεγέθη περίοδος και συχνότητα είναι αντίστροφα και συνδέονται µε την σχέση : f = 1 T (1.3) ˆ Η γωνιακή συχνότητα (ω)είναι ένα µέγεθος που αναφέρεται σε όλα τα περιοδικά ϕαινόµενα και δίνεται από την σχέση : ω = 2π T = 2πf (1.4) Η γωνιακή συχνότητα είναι ίση µε το µέτρο της γωνιακής ταχύτητας στην οµαλή κυκλική κίνηση και εκφράζει τον αριθµό των επαναλήψεων ενός ϕαινοµένου σε χρόνο 2πsec. Μονάδα µέτρησης της συχνότητας είναι το 1rad/sec.

10 Μιχάλης Ε. Καραδηµητρίου Οι εξισώσεις της Απλής Αρµονικής Ταλάντωσης Ταλάντωση ονοµάζεται µια παλινδροµική περιοδική κίνηση.γραµµική ταλάντωση ονοµάζεται η ταλάντωση που εξελίσσεται πάνω σε ευθεία τροχιά. Μια ειδική περίπτωση γραµµικής ταλάντωσης είναι η απλή αρµονική ταλάντωση (α.α.τ.). Εστω ένα σώµα που κινείται παλινδροµικά πάνω σε ένα άξονα γύρω από την αρχή Ο του άξονα, που είναι το µέσον της τροχιάς του. Αν η αποµάκρυνση χ του σώµατος από το σηµείο Ο είναι αρµονική συνάρτηση του χρόνου t, δηλαδή δίνεται από την σχέση : x = Aηµ(ωt + φ 0 ) (1.5) τότε η κίνηση του σώµατος λέγεται απλή αρµονική ταλάντωση. Το Α είναι η µέγιστη αποµάκρυνση, δηλαδή η µέγιστη απόσταση από το σηµείο Ο στην οποία ϕτάνει το σώµα και ονοµάζεται Πλάτος της ταλάντωσης. Η γωνία φ = ωt + φ 0 που η τιµή της καθορίζει και την τιµή της αποµάκρυνσης χ του σώµατος την χρονική στιγµή t ονοµάζεται ϕάση της ταλάντωσης.το σηµείο Ο είναι η ϑέση ισορροπίας της ταλάντωσης. Η ϕάση αυξάνεται συνεχώς µε τον χρόνο και σε χρονικό διάστηµα t = T αντιστοιχεί σε αύξηση της ϕάσης κατά φ = 2πrad Η ποσότητα φ 0 είναι η ϕάση της ταλάντωσης για την χρονική στιγµή t = 0 και γιάυτό ονοµάζεται αρχική ϕάση. Ουσιαστικά η αρχική ϕάση καθορίζεται από τις αρχικές συνθήκες της απλής αρµονικής ταλάντωσης ( ϑέση, ταχύτητα, επιτάχυνση). Για την αρχική ϕάση ισχύει : 0 φ 0 < 2π Η ταχύτητα του σώµατος κάθε χρονική στιγµή δίνεται από την σχέση : υ = dx dt = υ maxσυν(ωt + φ 0 ) (1.6) όπου υ max = ωa η µέγιστη τιµή του µέτρου της ταχύτητας του σώµατος. Το σώµα έχει µέγιστη ταχύτητα, όταν διέρχεται από την ϑέση ισορροπίας Ο (x = 0). Η επιτάχυνση του σώµατος κάθε χρονική στιγµή δίνεται από την σχέση : α = dυ dt = α maxηµ(ωt + φ 0 ) (1.7) όπου α max = ω 2 A η µέγιστη τιµή του µέτρου της επιτάχυνσης του σώµατος. Το σώµα έχει µέγιστη επιτάχυνση, όταν ϐρισκεται στις ακραίες ϑέσης της ταλάντωσης (x = ±A). Οι χρονικές εξισώσεις (1.5),(1.6),(1.7) αποµάκρυνσης,ταχύτητας και επιτάχυνσης είναι η ταυτότητα της κάθε κίνησης στην µηχανική και συγκροτούν την Κινηµατική προσέγγιση του προβλήµατος. Για την περίπτωση της απλής αρµονικής ταλάντωσης οι εξισώσεις αυτές είναι περιοδικές συναρτήσεις του χρόνου 10

11 Πρόχειρες Σηµειώσεις Γ Λυκείου Σχέση στιγµιαίας επιτάχυνσης-αποµάκρυνσης (1.5) γράφεται : Η σχέση (1.7) µε την ϐοήθεια της α = α max ηµ(ωt) = ω 2 Aηµ(ωt) = ω 2 x (1.8) Από την τελευταία σχέση προκύπτει ότι η επιτάχυνση α και η αποµάκρυνση x του σώµατος έχουν πάντα αντίθετη ϕορά, ή µε άλλα λόγια, ότι η επιτάχυνση έχει πάντοτε ϕορά προς την ϑέση ισορροπίας Ο. Σχέση στιγµιαίας ταχύτητας-αποµάκρυνση Η αλγεβρική τιµή της ταχύτητας σε µια τυχαία χρονική στιγµή και της αποµάκρυνσης την ίδια χρονική στιγµή συνδέονται µε την σχέση : υ = ±ω A 2 x 2 (1.9) της σχέσης προκύπτει µε δύο τρόπους παραθέτω τον πρώτο παρα- η απόδειξη κάτω και x = Aηµ(ωt) x A υ = ωaσυν(ωt) = ηµ(ωt) x2 A 2 = ηµ2 (ωt) υ ωa = συν(ωt) υ2 ω 2 A 2 = συν2 (ωt) προσθέτοντας κατά µέλη τις παραπάνω σχέσεις προκύπτει : x 2 A + υ2 2 ω 2 A = 2 ηµ2 (ωt) + συν 2 (ωt) = 1 υ = ±ω A 2 x Γραφικές παραστάσεις Στα διαγράµµατα των παραπάνω σχηµάτων αποδίδεται η µεταβολή της αποµάκρυνσης, της ταχύτητας και της επιτάχυνσης σε συνάρτηση µε τον χρόνο για ένα σώµα που εκτελεί απλή αρµονική ταλάντωση µε φ 0 = 0. Τι πληροφορίες µπορούµε να πάρουµε από τις παραπάνω γραφικές παραστάσεις α) Η χρονική στιγµή t = 0 µας δίνει την αρχική ϕάση φ 0. ϐ) Η ταχύτητα του σώµατος µηδενίζεται στις ακραίες ϑέσεις, ενώ µεγιστοποιείται όταν το σώµα διέρχεται από την ϑέση ισορροπίας. γ) Η επιτάχυνση του σώµατος µηδενίζεται όταν το σώµα διέρχεται από την ϑέση ισορροπίας του, ενώ µεγιστοποιείται όταν το σώµα ϕτάνει σε ακραία ϑέση. 11

12 Μιχάλης Ε. Καραδηµητρίου Σχήµα 1.1: ιάγραµµα Αποµάκρυνσης - χρόνου Σχήµα 1.2: ιάγραµµα Ταχύτητας - χρόνου 12

13 Πρόχειρες Σηµειώσεις Γ Λυκείου Σχήµα 1.3: ιάγραµµα Επιτάχυνσης - χρόνου δ) Τα διανύσµατα της αποµάκρυνσης, της ταχύτητας και της επιτάχυνσης έχουν : ˆ Θετική αλγεβρική τιµή όταν έχουν ϕορά προς τα πάνω ή προς τα δεξιά. ˆ Αρνητική αλγεβρική τιµή όταν έχουν ϕορά προς τα κάτω ή αριστερά. Πολλές ϕορές η εκφώνηση της άσκησης καθορίζει την ϑετική ϕορά δ) Οταν το σώµα αποµακρύνεται από την ϑέση ισορροπίας, η ταχύτητα του ε- λαττώνεται κατά µέτρο( άρα επιτάχυνση αντίθετη στην ταχύτητα), ενώ όταν το σώµα πλησιάζει προς την ϑέση ισορροπίας, η ταχύτητα του αυξάνεται κατά µέτρο( άρα επιτάχυνση και ταχύτητα στην ίδια ϕορά) Παραδείγµατα Υπολογισµού Αρχικής ϕάσης π.χ.1 Ενα σώµα που εκτελεί απλή αρµονική ταλάντωση την χρονική στιγµή t = 0 ϐρίσκεται στην ακραία ϑετική ϑέση (x = +A). Να υπολογίσετε την αρχική ϕάση της ταλάντωσης. Λύση Αφού εκτελεί α.α.τ. x = Aηµ(ωt + φ 0 ) την χρονική στιγµή t = 0 +A = Aηµ(φ 0 ) ηµ(φ 0 ) = +1 φ 0 = 2kπ + π/2 φ 0 = π/2rad π.χ.2 Ενα σώµα που εκτελεί απλή αρµονική ταλάντωση ξεκινά την χρονική στιγµή t = 0 από την ϑέση ισορροπίας και κινείται µε ϕορά προς την ακραία αρνητική ϑέση.να υπολογίσετε την αρχική ϕάση της ταλάντωσης. 13

14 Μιχάλης Ε. Καραδηµητρίου Λύση Αφού εκτελεί α.α.τ. x = Aηµ(ωt + φ 0 ) την χρονική στιγµή t = 0 ϐρίσκεται στην ϑέση x = 0 0 = Aηµ(φ 0 ) ηµ(φ 0 ) = 0 φ 0 = 2kπ ή φ 0 = 2kπ+π. Ταυτόχρονα όµως για t = 0, υ = υ max συν(φ 0 ) = 1 φ 0 = πrad π.χ.3 Ενα σώµα που εκτελεί απλή αρµονική ταλάντωση ϐρίσκεται την χρονική στιγ- µή t = 0 στη ϑέση x = +A/2 και κινείται προς την ϑέση ισορροπίας. Να υπολογίσετε την αρχική ϕάση της ταλάντωσης. Λύση Αφού εκτελεί α.α.τ. x = Aηµ(ωt + φ 0 ) την χρονική στιγµή t = 0 ϐρίσκεται στην ϑέση x = +A/2 A/2 = Aηµ(φ 0 ) ηµ(φ 0 ) = 1/2 φ 0 = 2kπ+π/6 ή φ 0 = 2kπ + π π/6. Ταυτόχρονα όµως για t = 0, υ < 0 συν(φ 0 ) < 0 φ 0 = π π/6 = 5π/6rad(2ο τεταρτηµόριο) * Άν για την στιγµή t = 0 κινούνταν προς την ακραία ϑετική ϑέση τότε υ > 0 φ 0 = π/6rad Η ύναµη στην Απλή Αρµονική Ταλάντωση Οταν ένα σώµα µάζας m εκτελεί απλή αρµονική ταλάντωση, τότε σε µια τυχαία ϑέση της τροχιάς του έχει επιτάχυνση α, ανεξάρτητα από την κατεύθυνση της κίνησης του. Η συνολική δύναµη που δέχεται το σώµα και είναι υπεύθυνη για την επιτάχυνση του δίνεται από τον ϑεµελιώδη Νόµο της µηχανικής : ΣF = mα (1.10) όµως λόγω της σχέσης (1.8) προκύπτει ΣF = mω 2 x (1.11) Αν συµβολίσουµε D = mω 2, η παραπάνω σχέση γράφεται : ΣF = Dx (1.12) Η σταθερά αναλογίας D λέγεται σταθερά επαναφοράς της ταλάντωσης και η τιµή της εξαρτάται από τα χαρακτηριστικά του ταλαντούµενου συστήµατος. Από την σχέση (1.12) ϕαίνεται ότι όταν ένα σώµα εκτελεί απλή αρµονική ταλάντωση, η συνολική δύναµη που δέχεται : ˆ έχει ως ϕορέα την ευθεία πάνω στην οποία γίνεται η ταλάντωση του σώµατος, ˆ είναι ανάλογη µε την αποµάκρυνση του σώµατος από την Θέση Ισορροπίας Ο, ˆ έχει αντίθετη ϕορά απο την αποµάκρυνση του σώµατος και πάντοτε προς την ϑέση ισορροπίας ˆ στην ϑέση ισορροπίας ΣF = 0 14

15 Πρόχειρες Σηµειώσεις Γ Λυκείου Η σχέση (1.12) ονοµάζεται και ύναµη Επαναφοράς, αφού δρα έτσι ώστε να ε- πιταχύνει το σώµα πάντα προς την ϑέση ισορροπίας και παριστάνεται γραφικά στο διάγραµµα 1.4 Παρατήρηση: Η σχέση (1.12) αποτελεί ικανή και αναγκαία συν- Σχήµα 1.4: ιάγραµµα ύναµης Αποµάκρυνσης ϑήκη, ώστε ένα σώµα να εκτελεί απλή αρµονική ταλάντωση. Αυτό σηµαίνει πως όταν ϑέλουµε να αποδείξουµε ότι η γραµµική ταλάντωση που εκτελεί ένα σώµα είναι και αρµονική, µπορούµε να αποδείξουµε ότι σε κάθε ϑέση αποµάκρυνσης x από την ϑέση ισορροπίας η συνισταµένη δύναµη που δέχεται το σώµα είναι ανάλογη της απο- µάκρυνσης και έχει αντίθετη κατεύθυνση από αυτή. Φυσικά ισχύει και το αντίστροφο, δηλαδή αν ένα σώµα εκτελεί απλή αρµονική ταλάντωση, τότε η συνισταµένη δύναµη που δέχεται σε κάθε ϑέση αποµάκρυνσης x από την ϑέση ισορροπίας ικανοποιεί την σχέση (1.12). Σχέση Περιόδου- σταθεράς επαναφοράς Από την σχέση D = mω 2 προκύπτει : ω = D m από τον ορισµό της γωνιακής συχνότητας ω = 2π T προκύπτει : m T = 2π D (1.13) Από την τελευταία σχέση προκύπτει ότι η περίοδος Τ δεν εξαρτάται από το πλάτος Α της ταλάντωσης. Η δύναµη επαναφοράς ως συνάρτηση του χρόνου Από τις σχέσεις (1.12),(1.5) προκύπτει : ΣF = F max ηµ(ωt + φ 0 ) (1.14),µε την µέγιστη τιµή του µέτρου της δύναµης F max = DA 15

16 Μιχάλης Ε. Καραδηµητρίου Σχήµα 1.5: ιάγραµµα ύναµης - Χρόνου 1.2 Το σύστηµα Μάζας - Ελατηρίου Το ποιο χαρακτηριστικό πρόβληµα που ϑα αντιµετωπίσουµε στις µηχανικές ταλαντώσεις είναι το πρόβληµα της µάζας που είναι στερεωµένη στο άκρο ενός ιδανικού ελατηρίου. Ιδανικό ελατήριο είναι κάθε ελατήριο που µπορεί να ϑεωρηθεί ως αβαρές και υ- πακούει στον Νόµο του Hooke F ɛλ = k l όπου k είναι η σταθερά του ελατηρίου (εξαρτάται από το υλικό του ελατηρίου) και l είναι η επιµήκυνση ή συµπίεση του ελατηρίου από την Θέση Φυσικού µήκους του. Η δύναµη F ɛλ έχει τέτοια ϕορά ώστε να επαναφέρει το ελατήριο στην αρχική του κατάσταση ϕυσικού µήκους (l 0 ) Η ύναµη Ελατηρίου (F ɛλ ) συµπίπτει µε την δύναµη επαναφοράς µόνο στην πε- ϱίπτωση του οριζοντίου ελατηρίου, όπου η ϑέση ισορροπίας και η ϑέση ϕυσικού µήκους συµπίπτουν, αντίθετα στην περίπτωση του κατακόρυφου ή κεκλιµένου συστήµατος η ϑέση ισορροπίας και η ϑέση ϕυσικού µήκους είναι διαφορετικές, άρα δεν συµπίπτουν οι δύο δυνάµεις µεταξύ τους. Πώς αποδεικνύουµε ότι ένα σώµα το οποίο είναι δεµένο σε ελατήριο εκτελεί απλή αρµονική ταλάντωση, αν το διεγείρουµε από την κατάσταση ισορροπίας του ; 16

17 Πρόχειρες Σηµειώσεις Γ Λυκείου Βήµατα - µεθοδολογία σε προβλήµατα οριζοντίων και κατακόρυφων ελατηρίων που στο άκρο τους έχουν σώµα µάζας m 1ο : Σχεδιάζουµε το ελατήριο στο ϕυσικό του µήκος, το σώµα στην ϑέση ισορροπίας και το σώµα σε µια τυχαία ϑέση που απέχει x από την ϑέση ισορροπίας 2ο : Σχεδιάζουµε τις δυνάµεις που ασκούνται στην µάζα στην ϑέση ισορροπίας. Από την συνθήκη ισορροπίας (ΣF = 0) ϐρίσκουµε µια σχέση 3ο : Σχεδιάζουµε τις δυνάµεις που ασκούνται στην τυχαία ϑέση και υπολογίζουµε την ΣF. Προσέχουµε στον υπολογισµό της συνισταµένης δύναµης, από τις δυνάµεις που έχουν την ίδια ϕορά µε την αποµάκρυνση x να αφαιρούµε εκείνες που έχουν αντίθετη ϕορά. 4ο : Αφού καταλήξω σε σχέση της µορφής ΣF = Dx, µε D ϑετική σταθερά το σώµα ϑα εκτελεί απλή αρµονική ταλάντωση µε σταθερά επαναφοράς D. 5ο : Το πλάτος Α της ταλάντωσης είναι ίσο µε την αρχική αποµάκρυνση του σώµατος από την Θέση Ισορροπίας. Η περίοδος υπολογίζεται απο την σχέση (1.13) και η εξίσωση της αποµάκρυνσης δίνεται από την (1.5) µε την κατάλληλη αρχική ϕάση φ Η ενέργεια στην Απλή Αρµονική Ταλάντωση Η ενέργεια της ταλάντωσης Ε ενός συστήµατος που εκτελεί απλή αρµονική ταλάντωση ισούται µε την ενέργεια που προσφέραµε αρχικά στο σύστηµα για να το ϑέσουµε σε ταλάντωση. Η ενέργεια της ταλάντωσης υπολογίζεται από τον τύπο : E = 1 2 DA2 (1.15) Από την παραπάνω σχέση προκύπτει ότι το πλάτος Α καθορίζεται από την ενέργεια της ταλάντωσης, δηλαδή από την ενέργεια που προσφέραµε αρχικά στο σύστηµα ώστε να αρχίσει να ταλαντώνεται. Σε όλη την διάρκεια της ταλάντωσης η ενέργεια παραµένει σταθερή.άρα : Η ενέργεια µιας απλής αρµονικής ταλάντωσης είναι σταθερή και ανάλογη µε το τετράγωνο του πλάτους της. υναµική& Κινητική Ενέργεια Ταλάντωσης Στην διάρκεια της ταλάντωσης η ε- νέργεια εµφανίζεται ως δυναµική ενέργεια ταλάντωσης και ως κινητική ενέργεια ταλάντωσης. Η κινητική και η υναµική ενέργεια υπολογίζονται αντίστοιχα από τις σχέσεις : K = 1 2 mυ2 (1.16) U = 1 2 Dx2 (1.17) 17

18 , x, F F.,, Μιχάλης Ε. Καραδηµητρίου F = Dx...9 Απόδειξη της σχέσης U = 1 2 Dx2 : Αν το σώµα ϐρίσκεται ακίνητο στην ϑέση ι- σορροπίας Ο, για να µετακινηθεί F σε µια άλλη ϑέση πρέπει να του ασκηθεί κατάλληληf =f(x), εξωτερική δύναµη F ɛξ. Κατά την µετακίνηση αυτή ϑα ασκείται στο σώµα και η δύνα- 2 (.. 0) µη επαναφοράς. Για W να = µετακινηθεί Dx. το To σώµα στην ακραία ϑέση (x) F χωρίς ταχύτητα ϑα πρέπει το µέτρο της εξωτερικής 2 δύναµης να είναι ίσο µε το µέτρο της δύναµης επαναφοράς και να έχει αντίθετη ϕορά, σε κάθε χρονική στιγµή. ηλαδή ϑα πρέπει, να ισχύει : F ɛξ = ΣF = ( Dx) = Dx U = Dx 2 Το έργο της εξωτερικής δύναµης είναι ίσο και µε την προσφερόµενη ενέργεια (. 3) για να αποµακρύνουµε το σώµα κατά x από την 2 ϑέση ισορροπίας. Επειδή η δύναµη είναι µεταβλητού µέτρου το έργο της υπολογίζεται από το εµβαδόν της γραφικής παράστασης F ɛξ = f(x). 2 D = mω x = Aηµωt, (. 3) U = mω A ηµ ωt (. 4) 2 (. 2) (. 4) (.. ). Από το εµβαδόν προκύπτει η ενέργεια που προσφέρεται στο σύστηµα και αποθηκεύεται σάυτό ως υναµική Ενέργεια : W Fɛξ = E = 1 2 Dx2 (1.18) K, U ως συναρτήσεις του χρόνου : Αντικαθιστώντας E = K + στις U σχέσεις 1.16 και 1.17 της χρονικές εξισώσεις για την στιγµιαία αποµάκρυνση και στην στιγµιαία ταχύτητα (. 2) (. 4) E = mω A ( συν ωt + ηµ ωt) = mω A 2 2. x, F =D. DA 2 E DA mω A = mυ E = = = max

19 Πρόχειρες Σηµειώσεις Γ Λυκείου µπορούµε να οδηγηθούµε στις παρακάτω σχέσεις : K = 1 2 m(υ maxσυν(ωt)) 2 K = 1 2 mω2 A 2 συν 2 (ωt) K = 1 2 DA2 συν 2 (ωt) = Eσυν 2 (ωt) (1.19) U = 1 2 D(Aηµ(ωt))2 U = 1 2 DA2 ηµ(ωt) = Eηµ 2 (ωt) (1.20) Από τις σχέσεις 1.20 και 1.19 προκύπτει ότι η κινητική και η δυναµική ενέργεια ενός συστήµατος που εκτελεί απλή αρµονική ταλάντωση µεταβάλλονται περιοδικά µε τον χρόνο. Οι γραφικές παραστάσεις της Κινητικής, της υναµικής και της ολικής ενέργειας της ταλάντωσης σε συνάρτηση µε τον χρόνο ϕαίνονται στο διάγραµµα του παρακάτω σχήµατος : Σχήµα 1.6: E, K, U σε συνάρτηση µε τον χρόνο ιατήρησης της Ενέργειας : Η ολική ενέργεια Ε στην απλή αρµονική ταλάντωση παραµένει σταθερή και είναι κάθε στιγµή ίση µε το άθροισµα της υναµικής ενέργειας ταλάντωσης και της κινητικής ενέργειας. ηλαδή : K + U = E 1 2 mυ Dx2 = E,όπου ϐέβαια Ε=σταθερή και δίνεται από την σχέση 1.15 Από τα παραπάνω διαπιστώνουµε ότι : 19

20 Μιχάλης Ε. Καραδηµητρίου (α) Στην ϑέση ισορροπίας (x = 0) η υναµική ενέργεια είναι µηδέν, ενώ η Κινητική ενέργεια είναι µέγιστη και ίση µε την Ενέργεια ταλάντωσης. E = K max = 1 2 mυ2 max (ϐ) Στις ακραίες ϑέσεις (x = ±A) η Κινητική Ενέργεια είναι µηδέν, ενώ η υναµική ενέργεια είναι µέγιστη και ίση µε την ενέργεια της ταλάντωσης E = U max = 1 2 DA2 (γ) Σε οποιαδήποτε ενδιάµεση ϑέση( εκτός από την Θ.Ι.) το σύστηµα έχει και Κινητική και υναµική Ενέργεια και σε κάθε χρονική στιγµή ισχύει η Αρχή ιατήρησης της Ενέργειας 1 2 mυ Dx2 = E = 1 2 DA2 = 1 2 mυ2 max (1.21) Γνωρίζοντας την υναµική και την Κινητική Ενέργεια κατά την διάρκεια της απλής αρµονικής ταλάντωσης µπορούµε να περιγράψουµε την κίνηση του σώµατος, χωρίς να χρειάζεται απαραίτητα ο χρόνος. Αυτή η προσέγγιση είναι η Ενεργειακή προσέγγιση της κίνησης, που σε πολλές περιπτώσεις είναι χρησιµότερη από την Κινητική προσέγγιση που απαιτεί γνώση του χρόνου. Παρακάτω παρουσιάζω δύο ϐασικές αποδείξεις : Απόδειξη της σχέσης υ max = ωa : E = K max 1 2 DA2 = 1 2 mυ2 max A 2 = m D υ2 max A = όµως η σταθερά επαναφοράς είναι D = mω 2 υ max = ωa Απόδειξη της σχέσης υ = ±ω A 2 x 2 : m D υ max 1 2 mυ Dx2 = E = 1 D 2 DA2 mυ 2 = D(A 2 x 2 ) υ ± m (A2 x 2 ) όµως η σταθερά επαναφοράς είναι D = mω 2 υ = ±ω A 2 x 2 Τα διαγράµµατα U = f(x), K = f(x) στην απλή αρµονική ταλάντωση µική Ενέργεια της ταλάντωσης ϑα δίνεται από την σχέση : Η δυνα- U = 1 2 Dx2 µɛ A x +A Η κινητική Ενέργεια της ταλάντωσης ϑα δίνεται από την σχέση : E = K + U K = E 1 2 Dx2 µɛ A x +A (1.22) Άρα η γραφική παράσταση της υναµικής Ενέργειας και της Κινητικής Ενέργειας σε κοινό διάγραµµα σε συνάρτηση µε την αποµάκρυνση από την Θ.Ι. παρουσιάζεται στο Σχήµα 1.7: 20

21 // "$# %" ## &" " # Πρόχειρες Σηµειώσεις Γ Λυκείου!.1-1'.. & ' - $, $, &, & 2, & & * "#! Σχήµα 1.7: ιάγραµµα E, K, U µε την αποµάκρυνση! " * ) * )!"# +,-.$!!+,$.$ +,)$!! / 0,) / & Τα διαγράµµατα U = f(υ), K = f(υ) στην απλή ) αρµονική) ταλάντωση Η κινητική) 0 0 ) &, ενέργεια & της, 1ταλάντωσης ϑα δίνεται από την σχέση : ) ) K = 1 2 mυ2 µɛ υ max, & υ +υ max *(0 & Η δυναµική ενέργεια της ταλάντωσης ϑα δίνεται από την σχέση : E = K + U U = E 1 2 mυ2 µɛ υ max υ +υ max (1.23) Άρα η γραφική παράσταση της υναµικής Ενέργειας και της Κινητικής Ενέργειας σε κοινό διάγραµµα σε συνάρτηση!#! µε την απο την ταχύτητα παρουσιάζεται στο Σχήµα %& 1.8: Η ενέργεια στο Ιδανικό Ελατήριο : Στην περίπτωση του ιδανικού ελατηρίου που αναλύσαµε παραπάνω µπορούµε να υπολογίσουµε την υναµική Ενέργεια του ελατηρίου, η οποία χαρακτηρίζεται ώς δυναµική ενέργεια παραµόρφωσης. Υπολογίζεται από την σχέση : U ɛλ = 1 2 k( l)2 (1.24), όπου ϐέβαια k η σταθερά του ελατηρίου και l η επιµήκυνση ή συµπίεση του ελατηρίου από το ϕυσικό του µήκος. Προσοχή η υναµική Ενέργεια Ταλάντωσης 21

22 // "$# %" ## &" " # Μιχάλης Ε. Καραδηµητρίου!.1 (1-.. ' ( - $ *+, *+, 2 ' ' ' *+, ' *+, "#! Σχήµα 1.8: ιάγραµµα E, K, U µε την ταχύτητα &+, ) ( ) (!"# *+,-&!!*+ *+(!!../0 +(. ( ( συµπίπτει ( µε την Ενέργεια του Ελατηρίου µόνο στην περίπτωση του οριζοντίου ελατηρίου. +1 (./0./0 Το έργο ( της ύναµης ( του Ελατηρίου µπορεί να υπολογιστεί από την παρακάτω σχέση : *+, ' )0 ' W Fɛλ = U (αρχ) ɛλ U (τɛλ) ɛλ (1.25) Αντίστοιχα το έργο της δύναµης επαναφοράς µπορεί να υπολογιστεί µε τον ίδιο τρόπο, αν στην ϑέση της υναµικής Ενέργειας Ελατηρίου, ϐάλουµε την υναµική Ενέργεια Ταλάντωσης. Πρόταση Μελέτης Λύσε!#! από τον Α τόµο των Γ. Μαθιουδάκη & Γ. Παναγιωτακόπουλου τις ακόλουθες ασκήσεις : , , , %& , 1.160, 1.161, 1.172, 1.174, 1.176, 1.178, 1.179, 1.180, 1.183, 1.184, 1.186, 1.187, 1.188, Ρυθµοί µεταβολής στην Απλή Αρµονική Ταλάντωση Ο Ρυθµός µεταβολής είναι από τις ϐασικές έννοιες στην Φυσική καθώς µπορούν να µας δώσουν πληροφορίες για την συµπεριφορά µιας ϕυσικής ποσότητας. Στα µαθηµατικά Γ Λυκείου ϑα µάθουµε ότι ο ϱυθµός µεταβολής µιας συνάρτησης είναι η παράγωγος συνάρτηση. Παρακάτω παρουσιάζω ϱυθµούς µεταβολής ϐασικών µεγεθών στην απλή αρµονική ταλάντωση. 22

23 Πρόχειρες Σηµειώσεις Γ Λυκείου ˆ Ρυθµός µεταβολής της αποµάκρυνσης dx dt dx dt ˆ Ρυθµός µεταβολής της ταχύτητας dυ dt ˆ Ρυθµός µεταβολής της ορµης dp dt = υ = ωaσυν(ωt) (1.26) dυ dt = α = ω2 Aηµ(ωt) (1.27) dp dt = ΣF = DAηµ(ωt) (1.28) ˆ Ρυθµός µεταβολής της Κινητικής - υναµικής Ενέργειας dk dt, du dt Γνωρίζουµε ότι K + U = E d(k + U) = 0, αφού Ε=σταθερή, dk = du dk dt = du dt (1.29) επίσης dk dt = dw ΣF dt = ΣF dx dt = ΣF υ dk dt = D x υ (1.30) και σε συνάρτηση µε τον χρόνο, αντικαθιστώντας τις σχέσεις (1.5),(1.6) προκύπτει : dk dt = DAηµ(ωt)ωAσυν(ωt) dk dt = DAω2 ηµ(2ωt) (1.31) 2 άρα du dt = +DAω2 ηµ(2ωt) (1.32) Η ιαφορά ϕάσης στην απλή αρµονική ταλάντωση ιαφορά Φάσης φ δύο αρµονικά µεταβαλλόµενων µεγεθών λέγεται η διαφορά των ϕάσεων τους. Οταν τα δύο µεγέθη έχουν την ίδια γωνιακή συχνότητα ω,τότε η διαφορά ϕάσης είναι χρονικά σταθερή. Για να ϐρούµε την διαφορά ϕάσης δύο µεγεθών, πρέπει τα µεγέθη να εκφράζονται µε τον ίδιο τριγωνοµετρικό αριθµό. Στην περίπτωση της αποµάκρυνσης και της ταχύτητας µιας απλής αρµονικής ταλάντωσης έχουµε : x = Aηµ(ωt) και υ = υ max συν(ωt) υ = υ max ηµ(ωt + π 2 ) 23

24 Άρα η διαφορά ϕάσης µεταξύ των δύο µεγεθών είναι φ = π 2 ταχύτητα. Μιχάλης Ε. Καραδηµητρίου και προηγείται η Η ϕυσική σηµασία αυτής της διαφοράς ϕάσης είναι ότι όταν κάποια χρονική στιγ- µή η ταχύτητα έχει µια ορισµένη τιµή, η αποµάκρυνση ϑα πάρει την αντίστοιχη τιµή µετά από χρόνο t που αντιστοιχεί σε γωνία φ = π, δηλαδή µετά από χρόνο που 2 ϑα δίνεται απο την σχέση : φ = 2π t t = T T 4 Άρα αν για παράδειγµα η ταχύτητα πάρει την τιµή υ = +υ max, τότε η αποµάκρυνση ϑα πάρει την τιµή +A σε χρόνο T 4. Στην περίπτωση της αποµάκρυνσης και της επιτάχυνσης µιας απλής αρµονικής ταλάντωσης έχουµε : x = Aηµ(ωt) και α = α max ηµ(ωt) α = α max ηµ(ωt + π) Άρα η διαφορά ϕάσης µεταξύ των δύο µεγεθών είναι φ = π και προηγείται η επιτάχυνση. Η ϕυσική σηµασία αυτής της διαφοράς ϕάσης είναι ότι όταν κάποια χρονική στιγ- µή η επιτάχυνση έχει µια ορισµένη τιµή, η αποµάκρυνση ϑα πάρει την αντίστοιχη τιµή µετά από χρόνο t που αντιστοιχεί σε γωνία φ = π, δηλαδή µετά από χρόνο που ϑα δίνεται από την σχέση : φ = 2π T t t = T 2 Άρα αν για παράδειγµα η ταχύτητα πάρει την τιµή α = +α max /2, τότε η απο- µάκρυνση ϑα πάρει την τιµή +A/2 σε χρόνο T 2. Γενικά λέµε ότι δύο αρµονικά µεταβαλλόµενα µεγέθη δεν έχουν διαφορά ϕάσης όταν παίρνουν ταυτόχρονα τις µέγιστες και τις ελάχιστες τιµές τους Η αναπαράσταση του περιστρεφόµενου διανύσµατος Μια ακόµα έξυπνη µέθοδος για την επίλυση ασκήσεων στην απλή αρµονική ταλάντωση. Θα αποδείξουµε την ϕράση : Οταν ένα σώµα εκτελεί οµαλή κυκλική κίνηση τότε η προβολή του πάνω σε µια διάµετρο της κίνησης εκτελεί απλή αρµονική ταλάντωση. Από το σχήµα (1.9) έχουµε ότι : (ΟΣ )= (ΟΣ) ηµ(φ) x = ηµ(ωt) αφού ϐέβαια ισχύει ότι φ = ωt για το σώµα που εκτελεί οµαλή κυκλική κίνηση µε ω την γωνιακή ταχύτητα του. Άρα για κάθε σώµα που εκτελεί απλή αρµονική ταλάντωση µπορούµε να υπο- ϑέσουµε ότι υπάρχει ένα περιστρεφόµενο διάνυσµα µήκος Α και γωνιακής ταχύτητας ω. Παράλληλα σε κάθε τεταρτηµόριο είµαστε σε ϑέση να γνωρίζουµε και την ταχύτητα του σώµατος που εκτελεί απλή αρµονική ταλάντωση µε ϐάση το πρόσηµο του συν(φ). Η µέθοδος του περιστρεφόµενου διανύσµατος είναι αρκετά χρήσιµη στον υπολογισµό της αρχικής ϕάσης φ 0. 24

25 Θα αποδείξουµε ότι: Αν ένα σώµα Σ κάνει οµαλή κυκλική κίνηση σε κύκλο ακτίνας Α τότε η προβολή του Σ στον άξονα yy κάνει Α.Α.Τ. Πρόχειρες Σηµειώσεις Γ Λυκείου +Α Σ Σ x ωt Άξονας φάσεων -Α Άξονας ταλάντωσης Πράγµατι από το σχήµα έχουµε: Σχήµα 1.9: η αναπαράσταση του περιστρεφόµενου διανύσµατος ΟΣ = ΟΣηµφ Û x = Aηµφ Û x = Aηµωt Αφού φ=ωt λόγω της οµαλής κυκλικής κίνησης του Σ. Πρόταση Μελέτης Λύσε από τον Α τόµο των Γ. Μαθιουδάκη & Γ. Παναγιωτακόπουλου Αυτό µπορεί τιςνα ακόλουθες διατυπωθεί ασκήσεις διαφορετικά: : ,1.169, 1.191, 1.192, 1.194, 1.196, Αν 1.197, ένα σώµα 1.198, κάνει 1.200, Α.Α.Τ , µε 1.33 πλάτος , Α 1.83 µπορούµε , να υποθέσουµε ότι υπάρχει ένα άλλο σώµα το οποίο κάνει οµαλή κυκλική κίνηση σε 1.2.5κύκλο Κρούση ακτίνας και Α, µε Απλή κέντρο Αρµονική τη θέση ισορροπίας. Ταλάντωση ΣεΆρα: πολλά προβλήµατα εµφανίζεται το ϕαινόµενο της Κρούσης ανάµεσα σε σώµατα που εκτελούν Για κάθε απλή σώµα αρµονική που ταλάντωση κάνει ταλάντωση µετά ή πρινx την= κρούση. Aηµωt Ας µπορούµε εισάγουµενα την ϐασική υποθέσουµε ιδέα της Κρούσης ότι υπάρχει για µιαένα γρήγορη περιστρεφόµενο εφαρµογή σε διάνυσµα προβλήµαταµέτρου Ταλαντώσεων. Α και Η κρούση γωνιακής ϑα παρουσιαστεί ταχύτητας ω. αναλυτικά στο τελευταίο κεφάλαιο της ύλης, άρα εδώ ϑα µείνουµε στις κύριες ιδέες. Εστω ότι δύο σώµατα µε µάζες m 1, m 2 κινούνται πάνω στην ίδια ευθεία µε ταχύτητες υ 1, υ 2 αντίστοιχα. Ταυτόχρονα υποθέτουµε ότι η διάρκεια της κρούσης είναι πολύ µικρή. Παρατηρούµε δύο ϐασικές κατηγορίες κρούσεων. Ανελαστική Κρούση είναι Κώστας η περίπτωση Παρασύρης κρούσης Φυσικός κατά την οποία έχουµε απώλειες 14 ενέργειας,λόγω ανελαστικών δυνάµεων ή δυνάµεων πλαστικής παραµόρφωσης που ασκούνται κατά την διάρκεια της κρούσης. Αν µετά την κρούση οι νέες ταχύτητες των σωµάτων είναι υ 1, υ 2, αντίστοιχα τότε ϑα ισχύει η Αρχή ιατήρησης της Ορµής και της ενέργειας του συστήµατος. ηλαδή : και P oλ(αρχ) = P oλ(τɛλ) m 1 υ 1 + m 2 υ 2 = m 1 υ 1 + m 2 υ 2 (1.33) E oλ(αρχ) = E oλ(τɛλ) K 1 + K 2 = K 1 + K 2 + E απωλ (1.34) 25

26 Μιχάλης Ε. Καραδηµητρίου όπου E απωλ οι απώλειες ενέργειας λόγω της ανελαστικής παραµόρφωσης ή της ϑερµότητας. Σε αυτή την περίπτωση δεν διατηρείται σταθερή η Κινητική Ενέργεια του συστήµατος των σωµάτων (K oλ(αρχ) > K oλ(τɛλ) ) Στην περίπτωση ανελαστικής κρούσης που αµέσως µετά την κρούση προκύπτει συσσωµάτωµα η κρούση ϑα λέγεται Πλαστική Κρούση και ϑα ισχύουν πάλι οι πα- ϱαπάνω εξισώσεις. Ελαστική Κρούση είναι η περίπτωση κρούσης κατά την οποία διατηρείται σταθερή η Κινητική Ενέργεια του συστήµατος καθώς και η Ορµή του. Αν µετά την κρούση οι νέες ταχύτητες των σωµάτων είναι υ 1, υ 2, αντίστοιχα τότε ϑα ισχύει η σχέση (1.33)και η διατήρηση της Κινητικής Ενέργειας του συστήµατος : K oλ(αρχ) = K oλ(τɛλ) K 1 + K 2 = K 1 + K 2 (1.35) Και στις δύο περιπτώσεις κρούσης ισχύει η Αρχή της ιατήρησης της Ορµής για το σύστηµα των σωµάτων. Για την επίλυση κάθε προβλήµατος κρούσης µε απλή αρµονική ταλάντωση ακολουθούµε τα ακόλουθα ϐήµατα: 1ο: Σχεδιάζουµε το σώµα που εκτελεί α.α.τ. στην ϑέση ισορροπίας του ( αν υπάρχει ελατήριο το σχεδιάζουµε στην ϑέση ϕυσικού µήκους του) 2ο: Σχεδιάζουµε τις ϑέσεις των σωµάτων αµέσως πριν την κρούση και αµέσως µετά την κρούση και υπολογίζουµε τις ταχύτητες πριν την κρούση εφόσον δεν µας είναι γνωστές µε την χρήση µεθόδων που αναλύσαµε παραπάνω ( π.χ. αν γνωρίζουµε την αποµάκρυνση x από την ϑέση ισορροπίας πριν την κρούση ϐρίσκουµε την ταχύτητα µε την ϐοήθεια της Ενέργειας στην α.α.τ.) 3ο: Λύνουµε το σύστηµα που προκύπτει από τις σχέσεις (1.33),(1.35) αν έχουµε ελαστική κρούση και ϐρίσκουµε την ταχύτητα του ταλαντούµενου σώµατος µετά την κρούση. Αν η κρούση είναι πλαστική ή ανελαστική εφαρµόζουµε την (1.33 και ϐρίσκουµε την ταχύτητα του συσσωµατώµατος. 4ο: Υπολογίζουµε την Ενέργεια του ταλαντούµενου συστήµατος µετά την κρούση µε την χρήση της ιατήρησης της Ενέργειας µετά την κρούση E = K + U. 5ο: Υπολογίζουµε το νέο πλάτος της ταλάντωσης Α από την νέα Ενέργεια Ε Προσοχή γιατί υπάρχουν περιπτώσεις προβληµάτων που αλλάζει η ϑέση ισορροπίας του ταλαντούµενου συστήµατος αµέσως µετά την κρούση µε συνέπεια να αλλάζει και το πρόβληµα που µελετούµε. Οι περιπτώσεις αυτές είναι εκείνες της πλαστικής κρούσης σε κατακόρυφο ή κεκλιµένο σύστηµα ελατηρίου - µάζας. Στην περίπτωση αυτή σχεδιάζουµε την νέα ϑέση ισορροπίας µετά την κρούση, για να µπορέσουµε να προχωρήσουµε στο 4ο και 5ο ϐήµα. Τέλος στα προβλήµατα που µετά την κρούση δηµιουργείται συσσωµάτωµα (Πλαστική Κρούση) αλλάζει και η γωνιακή συχνότητα ω, άρα και η περίοδος της ταλάντωσης. 26

1 Απλή Αρµονική Ταλάντωση

1 Απλή Αρµονική Ταλάντωση ,Θετικής & Τεχνολογικής Κατεύθυνσης Καραδηµητρίου Ε. Μιχάλης http://perifysikhs.wordpress.com mixalis.karadimitriou@gmail.com Πρόχειρες Σηµειώσεις 2011-2012 1 Απλή Αρµονική Ταλάντωση 1.1 Περιοδικά Φαινόµενα

Διαβάστε περισσότερα

1 Απλή Αρµονική Ταλάντωση

1 Απλή Αρµονική Ταλάντωση Πρόχειρες Σηµειώσεις 011-01,Θετικής & Τεχνολογικής Κατεύθυνσης Καραδηµητρίου Ε. Μιχάλης http://perifysikhs.wordpress.com mixalis.karadimitriou@gmail.com Πρόχειρες Σηµειώσεις 011-01 1 Απλή Αρµονική Ταλάντωση

Διαβάστε περισσότερα

3 Φθίνουσες Ταλαντώσεις

3 Φθίνουσες Ταλαντώσεις 3 Φθίνουσες Ταλαντώσεις 3.1 Μηχανικές Ταλαντώσεις Οι ταλαντώσεις των οποίων το πλάτος µειώνεται µε τον χρόνο και τελικά µηδενίζεται λέγονται Φθίνουσες ή Αποσβεννύµενες. Ολες οι ταλαντώσεις στην ϕύση είναι

Διαβάστε περισσότερα

Πρόχειρες Σηµειώσεις Φυσικής Γ Λυκείου

Πρόχειρες Σηµειώσεις Φυσικής Γ Λυκείου Πρόχειρες Σηµειώσεις Φυσικής Γ Λυκείου Θετικής & Τεχνολογικής Κατεύθυνσης Μιχάλης Ε. Καραδηµητριου Msc Φυσικός Ηράκλειο Κρήτης Ιούνης 2012 2 Μιχάλης Ε. Καραδηµητρίου Περιεχόµενα 1 Ταλαντώσεις 7 1.1 Απλή

Διαβάστε περισσότερα

ΤΥΠΟΛΟΓΙΟ-ΒΑΣΙΚΟΙ ΟΡΙΣΜΟΙ ΚΕΦΑΛΑΙΟΥ 1

ΤΥΠΟΛΟΓΙΟ-ΒΑΣΙΚΟΙ ΟΡΙΣΜΟΙ ΚΕΦΑΛΑΙΟΥ 1 ΤΥΠΟΛΟΓΙΟ-ΒΑΣΙΚΟΙ ΟΡΙΣΜΟΙ ΚΕΦΑΛΑΙΟΥ ΠΕΡΙΟΔΙΚΑ ΦΑΙΝΟΜΕΝΑ Περίοδος (Τ) ενός περιοδικού φαινομένου είναι ο χρόνος που απαιτείται για μια πλήρη επανάληψη του φαινομένου. Αν σε χρόνο t γίνονται Ν επαναλήψεις

Διαβάστε περισσότερα

1 Απλή Αρµονική Ταλάντωση

1 Απλή Αρµονική Ταλάντωση ,Θετικής & Τεχνολογικής Κατεύθυνσης Καραδηµητρίου Ε. Μιχάλης http://perifysikhs.wordpress.com mixalis.karadimitriou@gmail.com Πρόχειρες Σηµειώσεις 011-01 1 Απλή Αρµονική Ταλάντωση 1.1 Περιοδικά Φαινόµενα

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 6-0- ΘΕΡΙΝΑ ΣΕΙΡΑ Α ΘΕΜΑ ο ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΛΥΣΕΙΣ Οδηγία: Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις -4 και δίπλα το γράµµα που αντιστοιχεί στη

Διαβάστε περισσότερα

3ο ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Κυριακή 19 Οκτώβρη 2014 Ταλαντώσεις - Πρόχειρες Λύσεις. Θέµα Α

3ο ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Κυριακή 19 Οκτώβρη 2014 Ταλαντώσεις - Πρόχειρες Λύσεις. Θέµα Α 3ο ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Κυριακή 19 Οκτώβρη 014 Ταλαντώσεις - Πρόχειρες Λύσεις Θέµα Α Α.1. Ηλεκτρικό κύκλωµα LC, αµελητέας ωµικής αντίστασης, εκτελεί η- λεκτρική ταλάντωση µε περίοδο T. Αν

Διαβάστε περισσότερα

Ο πυκνωτής είναι μια διάταξη αποθήκευσης ηλεκτρικού φορτίου, επομένως και ηλεκτρικής ενέργειας.

Ο πυκνωτής είναι μια διάταξη αποθήκευσης ηλεκτρικού φορτίου, επομένως και ηλεκτρικής ενέργειας. ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΗΛΕΚΤΡΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ Ο πυκνωτής Ο πυκνωτής είναι μια διάταξη αποθήκευσης ηλεκτρικού φορτίου, επομένως και ηλεκτρικής ενέργειας. Η απλούστερη μορφή πυκνωτή είναι ο επίπεδος πυκνωτής, ο οποίος

Διαβάστε περισσότερα

Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.

Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ. ΕΤΟΥΣ 03-0 ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α (ΛΥΣΕΙΣ) ΗΜΕΡΟΜΗΝΙΑ: 0/0/03 ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α-Α

Διαβάστε περισσότερα

ιαγώνισµα στις Ταλαντώσεις ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΤΑΙΧΜΙΟ 1

ιαγώνισµα στις Ταλαντώσεις ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΤΑΙΧΜΙΟ 1 ιαγώνισµα στις Ταλαντώσεις ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΤΑΙΧΜΙΟ 1 ΘΕΜΑ 1 0 Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση. 1. Το

Διαβάστε περισσότερα

Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.

Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ. ΕΤΟΥΣ 03-04 ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α ΗΜΕΡΟΜΗΝΙΑ: 0/0/03 ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α-Α4 και δίπλα

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ 1 ο ΕΚΦΩΝΗΣΕΙΣ

ΔΙΑΓΩΝΙΣΜΑ 1 ο ΕΚΦΩΝΗΣΕΙΣ ΔΙΑΓΩΝΙΣΜΑ ο ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α. Στις ημιτελείς προτάσεις - 4 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το γράμμα που αντιστοιχεί στη φράση, η οποία τη συμπληρώνει σωστά.. Το μέτρο της

Διαβάστε περισσότερα

Ερωτήσεις Πολλαπλής Επιλογής, Σωστό-Λάθος

Ερωτήσεις Πολλαπλής Επιλογής, Σωστό-Λάθος Ερωτήσεις Πολλαπλής Επιλογής, Σωστό-Λάθος 1. Ένα σώµα εκτελεί εξαναγκασµένη ταλάντωση. Ποιες από τις επόµενες προτάσεις είναι σωστές; Να αιτιολογήσετε την απάντησή σας. ί) Η συχνότητα της ταλάντωσης είναι

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ ΘΕΜΑ 1 Α. Ερωτήσεις πολλαπλής επιλογής 1. Σώμα εκτελεί Α.Α.Τ με περίοδο Τ και πλάτος Α. Αν διπλασιάσουμε το πλάτος της ταλάντωσης τότε η περίοδος της θα : α. παραμείνει

Διαβάστε περισσότερα

Πρόχειρες Λύσεις. Θέµα Α

Πρόχειρες Λύσεις. Θέµα Α ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Ταλαντώσεις Πρόχειρες Λύσεις Θέµα Α Α.1 Σε µια εξαναγκασµένη ταλάντωση η συχνότητα του διεγέρτη είναι µεγαλύτερη της ιδιοσυχνότητας του ταλαντωτή. Αν µειώνουµε συνεχώς

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΤΗΣ Γ ΛΥΚΕΙΟΥ

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΤΗΣ Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΤΗΣ Γ ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ ο : ΤΑΛΑΝΤΩΣΕΙΣ Θέµα ο ) Ενώ ακούµε ένα ραδιοφωνικό σταθµό που εκπέµπει σε συχνότητα 00MHz, θέλουµε να ακούσουµε το σταθµό που εκπέµπει σε 00,4MHz.

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1ο: ΜΗΧΑΝΙΚΕΣ ΗΛΕΚΤΡΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ.

ΚΕΦΑΛΑΙΟ 1ο: ΜΗΧΑΝΙΚΕΣ ΗΛΕΚΤΡΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ. ΤΟ ΥΛΙΚΟ ΕΧΕΙ ΑΝΤΛΗΘΕΙ ΑΠΟ ΤΑ ΨΗΦΙΑΚΑ ΕΚΠΑΙΔΕΥΤΙΚΑ ΒΟΗΘΗΜΑΤΑ ΤΟΥ ΥΠΟΥΡΓΕΙΟΥ ΠΑΙΔΕΙΑΣ http://www.study4exams.gr/ ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 3-0-0 ΘΕΡΙΝ ΣΕΙΡ ΘΕΜ ο ΔΙΓΩΝΙΣΜ ΣΤΗ ΦΥΣΙΚΗ ΚΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΛΥΣΕΙΣ Οδηγία: Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις -4 και δίπλα το γράµµα που αντιστοιχεί στη σωστή

Διαβάστε περισσότερα

Κάθε αντίτυπο φέρει την υπογραφή του συγγραφέα

Κάθε αντίτυπο φέρει την υπογραφή του συγγραφέα ΦΥΣΙΚΗ Κάθε αντίτυπο φέρει την υπογραφή του συγγραφέα Σειρά: Γενικό Λύκειο Θετικές Επιστήμες Φυσική Γ Λυκείου Θετική Τεχνολογική Κατεύθυνση Αναστασία Αγιαννιωτάκη Μάρκος Άρχων Υπεύθυνος Έκδοσης: Θεόδωρος

Διαβάστε περισσότερα

Οι ταλαντώσεις των οποίων το πλάτος ελαττώνεται με το χρόνο και τελικά μηδενίζονται λέγονται φθίνουσες

Οι ταλαντώσεις των οποίων το πλάτος ελαττώνεται με το χρόνο και τελικά μηδενίζονται λέγονται φθίνουσες ΦΘΙΝΟΥΣΕΣ ΤΑΛΑΝΤΩΣΕΙΣ Φθίνουσες μηχανικές ταλαντώσεις Οι ταλαντώσεις των οποίων το πλάτος ελαττώνεται με το χρόνο και τελικά μηδενίζονται λέγονται φθίνουσες ταλαντώσεις. Η ελάττωση του πλάτους (απόσβεση)

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 1.1: ΠΕΡΙΟΔΙΚΟ ΦΑΙΝΟΜΕΝΟ ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ (ΚΙΝΗΜΑΤΙΚΗ ΚΑΙ ΔΥΝΑΜΙΚΗ ΠΡΟΣΕΓΓΙΣΗ) ΣΗΜΕΙΩΣΕΙΣ

ΕΝΟΤΗΤΑ 1.1: ΠΕΡΙΟΔΙΚΟ ΦΑΙΝΟΜΕΝΟ ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ (ΚΙΝΗΜΑΤΙΚΗ ΚΑΙ ΔΥΝΑΜΙΚΗ ΠΡΟΣΕΓΓΙΣΗ) ΣΗΜΕΙΩΣΕΙΣ ΚΕΦΑΛΑΙΟ Ο : ΜΗΧΑΝΙΚΕΣ ΗΛΕΚΤΡΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΕΝΟΤΗΤΑ.: ΠΕΡΙΟΔΙΚΟ ΦΑΙΝΟΜΕΝΟ ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ (ΚΙΝΗΜΑΤΙΚΗ ΚΑΙ ΔΥΝΑΜΙΚΗ ΠΡΟΣΕΓΓΙΣΗ) ΣΗΜΕΙΩΣΕΙΣ x = A ηµω t F = D x ΙΚΑΝΗ ΚΑΙ ΑΝΑΓΚΑΙΑ ΣΥΝΘΗΚΗ ΓΙΑ ΝΑ

Διαβάστε περισσότερα

απόσβεσης, με τη βοήθεια της διάταξης που φαίνεται στο διπλανό σχήμα. Η σταθερά του ελατηρίου είναι ίση με k = 45 N/m και η χρονική εξίσωση της

απόσβεσης, με τη βοήθεια της διάταξης που φαίνεται στο διπλανό σχήμα. Η σταθερά του ελατηρίου είναι ίση με k = 45 N/m και η χρονική εξίσωση της 1. Ένα σώμα μάζας m =, kg εκτελεί εξαναγκασμένη ταλάντωση μικρής απόσβεσης, με τη βοήθεια της διάταξης που φαίνεται στο διπλανό σχήμα. Η σταθερά του ελατηρίου είναι ίση με k = 45 N/m και η χρονική εξίσωση

Διαβάστε περισσότερα

ΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΣΤΙΣ ΜΗΧΑΝΙΚΕΣ ΚΑΙ ΗΛΕΚΤΡΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ

ΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΣΤΙΣ ΜΗΧΑΝΙΚΕΣ ΚΑΙ ΗΛΕΚΤΡΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΣΤΙΣ ΜΗΧΑΝΙΚΕΣ ΚΑΙ ΗΛΕΚΤΡΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ Θέµα Α Στις ερωτήσεις 1-4 να βρείτε τη σωστή απάντηση. Α1. Για κάποιο χρονικό διάστηµα t, η πολικότητα του πυκνωτή και

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 3-0-0 ΘΕΡΙΝ ΣΕΙΡ ΘΕΜ ο ΔΙΓΩΝΙΣΜ ΣΤΗ ΦΥΣΙΚΗ ΚΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΛΥΣΕΙΣ Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις -4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή

Διαβάστε περισσότερα

ΛΥΣΕΙΣ. Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.

ΛΥΣΕΙΣ. Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. ΜΘΗΜ / ΤΞΗ: ΦΥΣΙΚΗ ΚΤΕΥΘΥΝΣΗΣ / Γ ΛΥΚΕΙΟΥ ΣΕΙΡ: η (ΘΕΡΙΝ) ΗΜΕΡΟΜΗΝΙ: /0/ ΘΕΜ ο ΛΥΣΕΙΣ Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις -4 και δίπλα το γράμμα που αντιστοιχεί

Διαβάστε περισσότερα

Διάρκεια 90 min. Στις ερωτήσεις 1-4 να επιλέξετε το γράµµα που αντιστοιχεί στη σωστή απάντηση:

Διάρκεια 90 min. Στις ερωτήσεις 1-4 να επιλέξετε το γράµµα που αντιστοιχεί στη σωστή απάντηση: 2ο ΓΕΛ ΠΕΙΡΑΙΑ Α Οµάδα ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΘΕΤΙΚΗΣ-ΤΕΧΝ/ΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Ονοµατεπώνυµο: Τµήµα: Ηµεροµηνία: 2/2/200 Διάρκεια 90 min Ζήτηµα ο Στις ερωτήσεις -4 να επιλέξετε το γράµµα που αντιστοιχεί στη σωστή

Διαβάστε περισσότερα

1. Η απομάκρυνση σώματος που πραγματοποιεί οριζόντια απλή αρμονική ταλάντωση δίδεται από την σχέση x = 0,2 ημ π t, (SI).

1. Η απομάκρυνση σώματος που πραγματοποιεί οριζόντια απλή αρμονική ταλάντωση δίδεται από την σχέση x = 0,2 ημ π t, (SI). 1. Η απομάκρυνση σώματος που πραγματοποιεί οριζόντια απλή αρμονική ταλάντωση δίδεται από την σχέση x = 0,2 ημ π t, (SI). Να βρείτε: α. το πλάτος της απομάκρυνσης, της ταχύτητας και της επιτάχυνσης. β.

Διαβάστε περισσότερα

Γ ΤΑΞΗ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ

Γ ΤΑΞΗ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ 1 Ονοματεπώνυμο.. Υπεύθυνος Καθηγητής: Γκαραγκουνούλης Ιωάννης Γ ΤΑΞΗ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ > Τρίτη 3-1-2012 2 ΘΕΜΑ 1ο Να γράψετε

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ 3 ο ΕΚΦΩΝΗΣΕΙΣ

ΔΙΑΓΩΝΙΣΜΑ 3 ο ΕΚΦΩΝΗΣΕΙΣ ΔΙΑΓΩΝΙΣΜΑ 3 ο ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α. Στις ημιτελείς προτάσεις 1-4 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το γράμμα που αντιστοιχεί στη φράση, η οποία τη συμπληρώνει σωστά. 1. Η σχέση

Διαβάστε περισσότερα

2 ο Επαναληπτικό διαγώνισμα στο 1 ο κεφάλαιο Φυσικής Θετικής Τεχνολογικής Κατεύθυνσης (Μηχανικές και Ηλεκτρικές ταλαντώσεις)

2 ο Επαναληπτικό διαγώνισμα στο 1 ο κεφάλαιο Φυσικής Θετικής Τεχνολογικής Κατεύθυνσης (Μηχανικές και Ηλεκτρικές ταλαντώσεις) ο Επαναληπτικό διαγώνισμα στο 1 ο κεφάλαιο Φυσικής Θετικής Τεχνολογικής Κατεύθυνσης (Μηχανικές και Ηλεκτρικές ταλαντώσεις) ΘΕΜΑ 1 ο Στις παρακάτω ερωτήσεις 1 4 επιλέξτε τη σωστή πρόταση 1. Ένα σώμα μάζας

Διαβάστε περισσότερα

ιδακτική Ενότητα: Μηχανικές Αρµονικές Ταλαντώσεις Ασκήσεις που δόθηκαν στις εξετάσεις των Πανελληνίων ως

ιδακτική Ενότητα: Μηχανικές Αρµονικές Ταλαντώσεις Ασκήσεις που δόθηκαν στις εξετάσεις των Πανελληνίων ως Τίτλος Κεφαλαίου: Μηχανικές & Ηλεκτρικές Ταλαντώσεις ιδακτική Ενότητα: Μηχανικές Αρµονικές Ταλαντώσεις Ασκήσεις που δόθηκαν στις εξετάσεις των Πανελληνίων ως Θέµα 3ο: (Ιούλιος 2010 - Ηµερήσιο) Σώµα Σ 1

Διαβάστε περισσότερα

Ασκήσεις Εμπέδωσης Μηχανικ ές ταλαντώέ σέις

Ασκήσεις Εμπέδωσης Μηχανικ ές ταλαντώέ σέις Ασκήσεις Εμπέδωσης Μηχανικ ές ταλαντώέ σέις Όπου χρειάζεται, θεωρείστε ότι g = 10m/s 2 1. Σε μία απλή αρμονική ταλάντωση η μέγιστη απομάκρυνση από την θέση ισορροπίας είναι Α = 30cm. Ο χρόνος που χρειάζεται

Διαβάστε περισσότερα

1ο ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Τετάρτη 12 Αυγούστου 2015 Απλή Αρµονική Ταλάντωση - Κρούσεις. Ενδεικτικές Λύσεις - Οµάδα Α.

1ο ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Τετάρτη 12 Αυγούστου 2015 Απλή Αρµονική Ταλάντωση - Κρούσεις. Ενδεικτικές Λύσεις - Οµάδα Α. ο ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Τετάρτη Αυγούστου 05 Απλή Αρµονική Ταλάντωση - Κρούσεις Ενδεικτικές Λύσεις - Οµάδα Α Θέµα Α Α.. Σε µια απλή αρµονική ταλάντωση η αποµάκρυνση και η επιτάχυνση την ίδια

Διαβάστε περισσότερα

ιδακτική Ενότητα: Μηχανικές Αρµονικές Ταλαντώσεις Ερωτήσεις που δόθηκαν στις εξετάσεις των Πανελληνίων ως

ιδακτική Ενότητα: Μηχανικές Αρµονικές Ταλαντώσεις Ερωτήσεις που δόθηκαν στις εξετάσεις των Πανελληνίων ως Τίτλος Κεφαλαίου: Μηχανικές & Ηλεκτρικές Ταλαντώσεις ιδακτική Ενότητα: Μηχανικές Αρµονικές Ταλαντώσεις Ερωτήσεις που δόθηκαν στις εξετάσεις των Πανελληνίων ως Θέµα ο: (Ηµερήσιο Μάιος 0) ύο όµοια ιδανικά

Διαβάστε περισσότερα

Ηλεκτρικές Ταλαντώσεις 2ο Σετ Ασκήσεων - Φθινόπωρο 2012

Ηλεκτρικές Ταλαντώσεις 2ο Σετ Ασκήσεων - Φθινόπωρο 2012 Ηλεκτρικές Ταλαντώσεις - Φθινόπωρο 2012 Επιµέλεια: Μιχάλης Ε. Καραδηµητρίου, M Sc Φυσικός http://perifysikhs.wordpress.com Α. Ερωτήσεις πολλαπλής επιλογής Α.1. Ποια µεταβολή ϑα έχουµε στην περίοδο ηλεκτρικών

Διαβάστε περισσότερα

ΙΑΓΩΝΙΣΜΑ. . Σύµφωνα µε την αρχή της επαλληλίας των κινήσεων, η αποµάκρυνση του σώµατος κάθε στιγµή, όπου: εφθ =

ΙΑΓΩΝΙΣΜΑ. . Σύµφωνα µε την αρχή της επαλληλίας των κινήσεων, η αποµάκρυνση του σώµατος κάθε στιγµή, όπου: εφθ = Βουλιαγµένης_07/0/00, ΙΓΩΝΙΣΜ Μάθηµα : ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΤΕΥΘΥΝΣΗΣ Γ' ΛΥΚΕΙΟΥ (ΕΠΝΛΗΠΤΙΚΟ ΙΓΩΝΙΣΜ ΣΤΙΣ ΤΛΝΤΩΣΕΙΣ & ΣΤ ΚΥΜΤ) Καθηγητής/τρια: Χρόνος: 3 ώρες Ονοµατεπώνυµο: Τµήµα: Γ ΘΕΜΤ Κάθε

Διαβάστε περισσότερα

3ο ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Κυριακή 19 Οκτώβρη 2014 Ταλαντώσεις

3ο ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Κυριακή 19 Οκτώβρη 2014 Ταλαντώσεις 3ο ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Κυριακή 19 Οκτώβρη 2014 Ταλαντώσεις Σύνολο Σελίδων: έξι (6) - ιάρκεια Εξέτασης: 3 ώρες Βαθµολογία % Ονοµατεπώνυµο: Θέµα Α Στις ηµιτελείς προτάσεις Α.1 Α.4 να γράψετε

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 9ο ΓΕΛ ΠΕΙΡΑΙΑ Διάρκεια 90 min ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Ονοµατεπώνυµο: Τµήµα: Γ θετ Ηµεροµηνία: 0//0 Ζήτηµα ο Σώµα Σ µε µάζα m είναι συνδεδεµένο στο ένα άκρο ιδανικού ελατηρίου σταθεράς κ,

Διαβάστε περισσότερα

Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση

Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση Ταλαντώσεις Θέμα Α Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση Α1. Αν μεταβληθεί η ολική ενέργεια της ταλάντωσης

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: 1η (ΘΕΡΙΝΑ) ΗΜΕΡΟΜΗΝΙΑ: 21/10/12

ΜΑΘΗΜΑ / ΤΑΞΗ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: 1η (ΘΕΡΙΝΑ) ΗΜΕΡΟΜΗΝΙΑ: 21/10/12 ΜΑΘΗΜΑ / ΤΑΞΗ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: 1η (ΘΕΡΙΝΑ) ΗΜΕΡΟΜΗΝΙΑ: 21/10/12 ΘΕΜΑ 1 ο Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράμμα

Διαβάστε περισσότερα

Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ε π α ν α λ η π τ ι κ ά θ έ µ α τ α 0 0 5 Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 1 ΘΕΜΑ 1 o Για τις ερωτήσεις 1 4, να γράψετε στο τετράδιο σας τον αριθµό της ερώτησης και δίπλα το γράµµα που

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ o ΔΙΑΓΩΝΙΣΜΑ ΔΕΚΕΜΒΡΙΟΣ 20: ΘΕΜΑΤΑ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ο ΔΙΑΓΩΝΙΣΜΑ ΘΕΜΑΤΑ ΘΕΜΑ Α Στις ημιτελείς προτάσεις - 4 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το γράμμα

Διαβάστε περισσότερα

1 ο ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ

1 ο ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ο ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΗΣ ΘΕΤΙΗΣ-ΤΕΧΝΟΛΟΓΙΗΣ ΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΕΙΟΥ Θέμα ο. ύλινδρος περιστρέφεται γύρω από άξονα που διέρχεται από το κέντρο μάζας του με γωνιακή ταχύτητα ω. Αν ο συγκεκριμένος κύλινδρος περιστρεφόταν

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΜΑ: Γ ΣΑΞΗ ΛΤΚΕΙΟΤ

ΔΙΑΓΩΝΙΜΑ: Γ ΣΑΞΗ ΛΤΚΕΙΟΤ ΔΙΑΓΩΝΙΜΑ: Γ ΣΑΞΗ ΛΤΚΕΙΟΤ Μ Α Θ Η Μ Α : Υ ΤΙΚΗ ΚΑΣΕΤΘΤΝΗ Ε Π Ω Ν Τ Μ Ο :..... Ο Ν Ο Μ Α :........ Σ Μ Η Μ Α :..... Η Μ Ε Ρ Ο Μ Η Ν Ι Α : 1 3 / 1 0 / 2 0 1 3 Ε Π Ι Μ Ε Λ Ε Ι Α Θ Ε Μ Α Σ Ω Ν : ΥΑΡΜΑΚΗ ΠΑΝΣΕΛΗ

Διαβάστε περισσότερα

ΤΑΛΑΝΤΩΣΕΙΣ. ενέργεια είναι ίση µε την κινητική ενέργεια. Σε αποµάκρυνση θα ισχύει: 1 της ολικής ενέργειας. t π cm/s.

ΤΑΛΑΝΤΩΣΕΙΣ. ενέργεια είναι ίση µε την κινητική ενέργεια. Σε αποµάκρυνση θα ισχύει: 1 της ολικής ενέργειας. t π cm/s. Ονοµατεπώνυµο: ιάρκεια: 3 ώρες ΤΑΛΑΝΤΩΣΕΙΣ ΘΕΜΑ 1 Οδηγία: Στις ερωτήσεις 1-4 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση. 1. Έστω ένα σωµα

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2006 ΕΚΦΩΝΗΣΕΙΣ

ΦΥΣΙΚΗ Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2006 ΕΚΦΩΝΗΣΕΙΣ ΦΥΣΙΚΗ Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 006 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ ο Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις - 4 και δίπλα το γράµµα που αντιστοιχεί στη σωστή

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 03-01-11 ΘΕΡΙΝΑ ΣΕΙΡΑ Α ΘΕΜΑ 1 ο ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ Οδηγία: Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράµµα που αντιστοιχεί στη

Διαβάστε περισσότερα

ΑΝΤΙΚΕΙΜΕΝΟ ΟΝΟΜ/ΜΟ: ΤΜΗΜΑ: ΘΕΜΑ 1 Ο. 1 ο κεφάλαιο: «ΤΑΛΑΝΤΩΣΕΙΣ» 1.1 Να επιλέξετε τη σωστή απάντηση: F(N) x(m) 1.2 Να επιλέξετε τη σωστή απάντηση:

ΑΝΤΙΚΕΙΜΕΝΟ ΟΝΟΜ/ΜΟ: ΤΜΗΜΑ: ΘΕΜΑ 1 Ο. 1 ο κεφάλαιο: «ΤΑΛΑΝΤΩΣΕΙΣ» 1.1 Να επιλέξετε τη σωστή απάντηση: F(N) x(m) 1.2 Να επιλέξετε τη σωστή απάντηση: ΑΝΤΙΚΕΙΜΕΝΟ 1 ο κεφάλαιο: «ΤΑΛΑΝΤΩΣΕΙΣ» ΟΝΟΜ/ΜΟ: ΤΜΗΜΑ: ΘΕΜΑ 1 Ο 1.1 Να επιλέξετε τη σωστή απάντηση: Σύστηµα ελατηρίου-µάζας εκτελεί Γ.Α.Τ. Στο διπλανό διάγραµµα φαίνεται η γραφική παράσταση της δύναµης

Διαβάστε περισσότερα

Φθίνουσες - Εξαναγκασµένες - Σύνθεση 3ο Σετ Ασκήσεων - Φθινόπωρο 2012

Φθίνουσες - Εξαναγκασµένες - Σύνθεση 3ο Σετ Ασκήσεων - Φθινόπωρο 2012 Φθίνουσες - Εξαναγκασµένες - Σύνθεση - Φθινόπωρο 2012 Επιµέλεια: Μιχάλης Ε. Καραδηµητριου, MSc Φυσικός http://perifysikhs.wordpress.com Α. Ερωτήσεις πολλαπλής επιλογής Α.1.Σε έναν ταλαντούµενο σύστηµα,

Διαβάστε περισσότερα

Ένα σύστημα εκτελεί ελεύθερη ταλάντωση όταν διεγερθεί κατάλληλα και αφεθεί στη συνέχεια ελεύθερο να

Ένα σύστημα εκτελεί ελεύθερη ταλάντωση όταν διεγερθεί κατάλληλα και αφεθεί στη συνέχεια ελεύθερο να ΕΞΑΝΑΓΚΑΣΜΕΝΕΣ ΤΑΛΑΝΤΩΣΕΙΣ Α. Εξαναγκασμένες μηχανικές ταλαντώσεις Ελεύθερη - αμείωτη ταλάντωση και ποια η συχνότητα και η περίοδος της. Ένα σύστημα εκτελεί ελεύθερη ταλάντωση όταν διεγερθεί κατάλληλα

Διαβάστε περισσότερα

Σύνολο Σελίδων: οκτώ (8) - ιάρκεια Εξέτασης: 3 ώρες Κυριακή 13 Νοέµβρη 2016 Βαθµολογία % Ονοµατεπώνυµο: Θέµα Α

Σύνολο Σελίδων: οκτώ (8) - ιάρκεια Εξέτασης: 3 ώρες Κυριακή 13 Νοέµβρη 2016 Βαθµολογία % Ονοµατεπώνυµο: Θέµα Α ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Ταλαντώσεις Σύνολο Σελίδων: οκτώ (8) - ιάρκεια Εξέτασης: 3 ώρες Κυριακή 13 Νοέµβρη 2016 Βαθµολογία % Ονοµατεπώνυµο: Θέµα Α Στις ηµιτελείς προτάσεις Α.1 Α.4 να γράψετε

Διαβάστε περισσότερα

Παρατηρήσεις σε Θέματα Α. Επιλεγμένα θέματα από το study4exams, για τα οποία δίδονται επεξηγήσεις

Παρατηρήσεις σε Θέματα Α. Επιλεγμένα θέματα από το study4exams, για τα οποία δίδονται επεξηγήσεις Παρατηρήσεις σε Θέματα Α Επιλεγμένα θέματα από το study4exams, για τα οποία δίδονται επεξηγήσεις 1. Αν μεταβληθεί η σταθερά αυτεπαγωγής του πηνίου σε ένα κύκλωμα L με αντιστάτη και πηγή εναλλασσόμενης

Διαβάστε περισσότερα

Φυσική Γ Λυκείου Κατεύθυνσης. Προτεινόμενα Θέματα

Φυσική Γ Λυκείου Κατεύθυνσης. Προτεινόμενα Θέματα Φυσική Γ Λυκείου Κατεύθυνσης Προτεινόμενα Θέματα Θέμα ο Ένα σώμα εκτελεί απλή αρμονική ταλάντωση πλάτους Α. Η φάση της ταλάντωσης μεταβάλλεται με το χρόνο όπως δείχνει το παρακάτω σχήμα : φ(rad) 2π π 6

Διαβάστε περισσότερα

1. Κατά τη σύνθεση δύο ΑΑΤ, που γίνονται στην ίδια διεύθυνση και γύρω από την ίδια

1. Κατά τη σύνθεση δύο ΑΑΤ, που γίνονται στην ίδια διεύθυνση και γύρω από την ίδια ΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ((ΑΠΟΦΟΙΤΟΙ)) 9 0-0 Θέμα ο. Κατά τη σύνθεση δύο ΑΑΤ, που γίνονται στην ίδια διεύθυνση και γύρω από την ίδια θέση ισορροπίας, προκύπτει μια νέα ΑΑΤ σταθερού πλάτους,

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 03-01-11 ΘΕΡΙΝΑ ΣΕΙΡΑ Α ΘΕΜΑ 1 ο ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΛΥΣΕΙΣ Οδηγία: Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράµµα που αντιστοιχεί

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 22 ΜΑΪΟΥ 2013 ΕΚΦΩΝΗΣΕΙΣ ÓÕÃ ÑÏÍÏ

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 22 ΜΑΪΟΥ 2013 ΕΚΦΩΝΗΣΕΙΣ ÓÕÃ ÑÏÍÏ Θέµα Α ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β ΜΑΪΟΥ 03 ΕΚΦΩΝΗΣΕΙΣ Στις ερωτήσεις Α-Α να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη φράση, η οποία συµπληρώνει

Διαβάστε περισσότερα

Θ έ μ α τ α γ ι α Ε π α ν ά λ η ψ η Φ υ σ ι κ ή Κ α τ ε ύ θ υ ν σ η ς Γ Λ υ κ ε ί ο υ

Θ έ μ α τ α γ ι α Ε π α ν ά λ η ψ η Φ υ σ ι κ ή Κ α τ ε ύ θ υ ν σ η ς Γ Λ υ κ ε ί ο υ Θ έ μ α τ α γ ι α Ε π α ν ά λ η ψ η Φ υ σ ι κ ή Κ α τ ε ύ θ υ ν σ η ς Γ Λ υ κ ε ί ο υ Αφού επαναληφθεί το τυπολόγιο, να γίνει επανάληψη στα εξής: ΚΕΦΑΛΑΙΟ 1: ΤΑΛΑΝΤΩΣΕΙΣ Ερωτήσεις: (Από σελ. 7 και μετά)

Διαβάστε περισσότερα

Διαγώνισμα Φυσική Κατεύθυνσης Γ Λυκείου

Διαγώνισμα Φυσική Κατεύθυνσης Γ Λυκείου Διαγώνισμα Φυσική Κατεύθυνσης Γ Λυκείου Ζήτημα 1 ον 1.. Ένα σώμα εκτελεί ταυτόχρονα τις ταλαντώσεις με εξισώσεις x1 A2 f1t και x1 A2 f2t. Οι ταλαντώσεις έχουν την ίδια διεύθυνση, την ίδια θέση ισορροπίας

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2014. ÄÉÁÍüÇÓÇ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2014. ÄÉÁÍüÇÓÇ ΤΑΞΗ: ΚΑΤΕΥΘΥΝΣΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Ηµεροµηνία: Τετάρτη 23 Απριλίου 2014 ιάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ Στις ηµιτελείς προτάσεις Α1 Α4 να γράψετε

Διαβάστε περισσότερα

Κυκλώµατα µε αντίσταση και πυκνωτή ή αντίσταση και πηνίο σε σειρά και πηγή συνεχούς τάσης

Κυκλώµατα µε αντίσταση και πυκνωτή ή αντίσταση και πηνίο σε σειρά και πηγή συνεχούς τάσης Κυκλώµατα µε αντίσταση και πυκνωτή ή αντίσταση και πηνίο σε σειρά και πηγή συνεχούς τάσης Το κύριο χαρακτηριστικό των κυκλωµάτων αυτών είναι ότι ο χρόνος στον οποίο η τάση, ή η ένταση παίρνει ορισµένη

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ Θεωρία, Ερωτήσεις, Ασκήσεις

ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ Θεωρία, Ερωτήσεις, Ασκήσεις ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ Θεωρία, Ερωτήσεις, Ασκήσεις ΚΕΦΑΛΑΙΟ 1 - ΤΑΛΑΝΤΩΣΕΙΣ ΜΠΕΝΑΚΗΣ ΜΑΝΩΛΗΣ Φυσικός Φυσική γ Λυκείου / ΤΑΛΑΝΤΩΣΕΙΣ ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΤΑΛΑΝΤΩΣΕΙΣ ΜΕΘΟΔΟΛΟΓΙΑ

Διαβάστε περισσότερα

ΘΕΜΑ 1 0. Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις 1-5 και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση.

ΘΕΜΑ 1 0. Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις 1-5 και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση. Επαναληπτικό διαγώνισµα Φυσικής Κατεύθυνσης Γ λυκείου 009 ΘΕΜΑ 0 Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις -5 και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση.. Σώµα

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2014

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2014 ΤΑΞΗ: ΚΑΤΕΥΘΥΝΣΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Ηµεροµηνία: Τετάρτη 3 Απριλίου 014 ιάρκεια Εξέτασης: 3 ώρες ΑΠΑΝΤΗΣΕΙΣ Α1. δ Α. γ Α3. α Α4. β Α5. α. Σωστό, β.

Διαβάστε περισσότερα

ΘΕΜΑ Α : α. 3000 V/m β. 1500 V/m γ. 2000 V/m δ. 1000 V/m

ΘΕΜΑ Α : α. 3000 V/m β. 1500 V/m γ. 2000 V/m δ. 1000 V/m ΑΡΧΗ 1 ΗΣ ΣΕΛΙ ΑΣ Γ ΛΥΚΕΙΟΥ ΦΡΟΝΤΙΣΤΗΡΙΑ ΘΕΩΡΙΑ ΚΑΙ ΠΡΑΞΗ ΕΠΑΝΑΛΗΠΤΙΚΟ ΙΑΓΩΝΙΣΜΑ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α : Για να απαντήσετε στις παρακάτω ερωτήσεις πολλαπλής επιλογής αρκεί να γράψετε

Διαβάστε περισσότερα

ΘΕΜΑ 1 ο Στις ερωτήσεις 1 4 να γράψετε τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση

ΘΕΜΑ 1 ο Στις ερωτήσεις 1 4 να γράψετε τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 2013 Γ Λυκείου Θετική & Τεχνολογική Κατεύθυνση ΦΥΣΙΚΗ ΘΕΜΑ 1 ο Στις ερωτήσεις 1 4 να γράψετε τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση 1. Σώμα

Διαβάστε περισσότερα

α) = β) Α 1 = γ) δ) Μονάδες 5

α) = β) Α 1 = γ) δ) Μονάδες 5 ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α ΗΜΕΡΟΜΗΝΙΑ: 19-10-2014 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ-ΤΖΑΓΚΑΡΑΚΗΣ ΓΙΑΝΝΗΣ-ΚΥΡΙΑΚΑΚΗΣ ΓΙΩΡΓΟΣ ΘΕΜΑ Α Οδηγία: Στις ερωτήσεις Α1 Α4 να γράψετε

Διαβάστε περισσότερα

α) 0,1 cm/s. β) 1 cm/s. γ) 2 cm/s.

α) 0,1 cm/s. β) 1 cm/s. γ) 2 cm/s. ΠΡΟΣΟΜΟΙΩΣΗ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΥΡΙΑΚΗ 6 ΑΠΡΙΛΙΟΥ 015 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ - ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α (Μονάδες 5) A1. ιακρότηµα δηµιουργείται µετά

Διαβάστε περισσότερα

δ) µειώνεται το µήκος κύµατός της (Μονάδες 5)

δ) µειώνεται το µήκος κύµατός της (Μονάδες 5) ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ. ΕΤΟΥΣ 011-01 ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ/Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: 1 η (ΘΕΡΙΝΑ) ΗΜΕΡΟΜΗΝΙΑ: 30/1/11 ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ 1 ο Οδηγία: Να γράψετε στο τετράδιό σας τον αριθµό κάθε µίας από τις παρακάτω

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2008 ΕΚΦΩΝΗΣΕΙΣ

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2008 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ ο ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 00 ΕΚΦΩΝΗΣΕΙΣ Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις -4 και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση.. Τα

Διαβάστε περισσότερα

α. Ηλεκτρικού πεδίου του πυκνωτή σε ενέργεια μαγνητικού πεδίου

α. Ηλεκτρικού πεδίου του πυκνωτή σε ενέργεια μαγνητικού πεδίου ΙΙΑΓΓΩΝΙΙΣΜΑ ΦΦΥΥΣΙΙΚΚΗΣ ΚΚΑΤΕΕΥΥΘΥΥΝΣΗΣ ΓΓ ΛΥΥΚΚΕΕΙΙΟΥΥ ((Α ΟΜΑ Α)) 77 1111 -- 22001100 Θέμα 1 ο (Μονάδες 25) 1. Η εξίσωση που δίνει την ένταση του ρεύματος σε ιδανικό κύκλωμα ηλεκτρικών ταλαντώσεων LC

Διαβάστε περισσότερα

ΕΚΦΩΝΗΣΕΙΣ. Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση.

ΕΚΦΩΝΗΣΕΙΣ. Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση. Επαναληπτικά Θέµατα ΟΕΦΕ 008 1 Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΕΚΦΩΝΗΣΕΙΣ ΦΥΣΙΚΗ ΘΕΜΑ 1 ο Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράµµα που

Διαβάστε περισσότερα

ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ. Το ιδανικό κύκλωμα LC του σχήματος εκτελεί αμείωτες ηλεκτρικές ταλαντώσεις, με περίοδο

ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ. Το ιδανικό κύκλωμα LC του σχήματος εκτελεί αμείωτες ηλεκτρικές ταλαντώσεις, με περίοδο ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ Άσκηση 1. Ιδανικό κύκλωμα LC εκτελεί αμείωτες ηλεκτρικές ταλαντώσεις. Να αποδείξετε ότι η στιγμιαία τιμή i της έντασης του ρεύματος στο κύκλωμα δίνεται σε συνάρτηση με το στιγμιαίο

Διαβάστε περισσότερα

ΘΕΜΑ 1ο. Να γράψετε στο τετράδιό σας τον αριθμό καθεμίας από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.

ΘΕΜΑ 1ο. Να γράψετε στο τετράδιό σας τον αριθμό καθεμίας από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. ΘΕΜΑ 1ο Να γράψετε στο τετράδιό σας τον αριθμό καθεμίας από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση 1 Ένα σώμα εκτελεί αρμονική ταλάντωση με ακραίες θέσεις που

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΗ ΥΛΗ:ΗΛΕΚΤΡΙΚΕΣ-ΜΗΧΑΝΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΘΕΜΑ 1 Ο Στις ερωτήσεις 1-4 να επιλέξετε τη σωστή πρόταση. 1.Σώμα εκτελεί απλή αρμονική ταλάντωση και κάποια

Διαβάστε περισσότερα

U I = U I = Q D 1 C. m L

U I = U I = Q D 1 C. m L Από την αντιστοιχία της µάζας που εκτελεί γ.α.τ. µε περίοδο Τ και της εκφόρτισης πυκνωτή µέσω πηνίου L, µπορούµε να ανακεφαλαιώσουµε τις αντιστοιχίες των µεγεθών τους. Έχουµε: ΜΑΖΑ ΠΟΥ ΕΚΤΕΛΕΙ γ.α.τ..

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΚΕΦΑΛΑΙΟ: ΤΑΛΑΝΤΩΣΕΙΣ

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΚΕΦΑΛΑΙΟ: ΤΑΛΑΝΤΩΣΕΙΣ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΚΕΦΑΛΑΙΟ: ΤΑΛΑΝΤΩΣΕΙΣ ΘEMA 1 Να γράψετε στη κόλλα σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. 1.1 Το αποτέλεσμα της σύνθεσης δύο αρμονικών

Διαβάστε περισσότερα

Επαναληπτικό διαγώνισµα Ταλαντώσεις Στερεό σώµα

Επαναληπτικό διαγώνισµα Ταλαντώσεις Στερεό σώµα Επαναληπτικό διαγώνισµα Ταλαντώσεις Στερεό σώµα Θέµα ο Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις -4 και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση.. Ένα σηµειακό

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ Απρίλιος 2015

ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ Απρίλιος 2015 ΘΕΜΑ Α ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ Απρίλιος 2015 Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω προτάσεις, Α1-Α3, και δίπλα της το γράμμα που αντιστοιχεί στη σωστή απάντηση.

Διαβάστε περισσότερα

ÊÏÑÕÖÇ ÊÁÂÁËÁ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΦΥΣΙΚΗ

ÊÏÑÕÖÇ ÊÁÂÁËÁ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΦΥΣΙΚΗ Επαναληπτικά Θέµατα ΟΕΦΕ 007 Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΦΥΣΙΚΗ ZHTHMA Στις ερωτήσεις έως 4 να γράψετε στο τετράδιο σας τον αριθµό της ερώτησης και δίπλα σε κάθε αριθµό το γράµµα που αντιστοιχεί

Διαβάστε περισσότερα

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Απλή Αρµονική Ταλάντωση ΙΙ - Κρούσεις Ενδεικτικές Λύσεις Θέµα Α

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Απλή Αρµονική Ταλάντωση ΙΙ - Κρούσεις Ενδεικτικές Λύσεις Θέµα Α ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Απλή Αρµονική Ταλάντωση ΙΙ - Κρούσεις Ενδεικτικές Λύσεις Θέµα Α Α.1. Η απλή αρµονική ταλάντωση είναι κίνηση : (δ) ευθύγραµµη περιοδική Α.2. Σώµα εκτελεί απλή αρµονική

Διαβάστε περισσότερα

ΚΡΙΤΗΡΙΟ ΑΞΙΟΛΟΓΗΣ ΣΤΙΣ ΤΑΛΑΝΤΩΣΕΙΣ

ΚΡΙΤΗΡΙΟ ΑΞΙΟΛΟΓΗΣ ΣΤΙΣ ΤΑΛΑΝΤΩΣΕΙΣ ΚΡΙΤΗΡΙΟ ΑΞΙΟΛΟΓΗΣ ΣΤΙΣ ΤΑΛΑΝΤΩΣΕΙΣ ΘΕΜΑ Α. (Για τις ερωτήσεις Α. έως και Α. να γράψετε στο τετράδιό σας τον αριθµό της πρότασης και δίπλα το γράµµα που αντιστοιχεί στη σωστή πρόταση.) Α. Ένας απλός αρµονικός

Διαβάστε περισσότερα

Ε Ρ Ω Τ Η Σ Ε Ι Σ Σ Τ Ι Σ Φ Θ Ι Ν Ο Υ Σ Ε Σ Τ Α Λ Α Ν Τ Ω Σ Ε Ι Σ

Ε Ρ Ω Τ Η Σ Ε Ι Σ Σ Τ Ι Σ Φ Θ Ι Ν Ο Υ Σ Ε Σ Τ Α Λ Α Ν Τ Ω Σ Ε Ι Σ Ε Ρ Ω Τ Η Σ Ε Ι Σ Σ Τ Ι Σ Φ Θ Ι Ν Ο Υ Σ Ε Σ Τ Α Λ Α Ν Τ Ω Σ Ε Ι Σ 1. Η σταθερά απόσβεσης σε μια μηχανική ταλάντωση που γίνεται μέσα σε κάποιο μέσο είναι: α) ανεξάρτητη των ιδιοτήτων του μέσου β) ανεξάρτητη

Διαβάστε περισσότερα

προπαρασκευή για Α.Ε.Ι. & Τ.Ε.Ι. ΙΑΓΩΝΙΣΜΑΤΑ ΠΕΡΙΟ ΟΥ ΝΟΕΜΒΡΙΟΥ- ΕΚΕΜΒΡΙΟΥ 2014 ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

προπαρασκευή για Α.Ε.Ι. & Τ.Ε.Ι. ΙΑΓΩΝΙΣΜΑΤΑ ΠΕΡΙΟ ΟΥ ΝΟΕΜΒΡΙΟΥ- ΕΚΕΜΒΡΙΟΥ 2014 ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ σύγχρονο Φάσµα Group προπαρασκευή για Α.Ε.Ι. & Τ.Ε.Ι. µαθητικό φροντιστήριο Γραβιάς 85 ΚΗΠΟΥΠΟΛΗ 50.51.557 50.56.296 25ης Μαρτίου 111 ΠΕΤΡΟΥΠΟΛΗ 50.27.990 50.20.990 25ης Μαρτίου 74 Πλ.ΠΕΤΡΟΥΠΟΛΗΣ 50.50.658

Διαβάστε περισσότερα

ΠΕΡΙΛΗΨΗ ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ 1. ΜΗΧΑΝΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ Χαρακτηριστικά μεγέθη περιοδικών φαινομένων

ΠΕΡΙΛΗΨΗ ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ 1. ΜΗΧΑΝΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ Χαρακτηριστικά μεγέθη περιοδικών φαινομένων ΠΕΡΙΛΗΨΗ ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ. ΜΗΧΑΝΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ Χαρακτηριστικά μεγέθη περιοδικών φαινομένων Περίοδος Τ (s) Τ = N t Συχνότητα f (Hz) f = t N Σχέση περιόδου και συχνότητας Τ = f T Γωνιακή

Διαβάστε περισσότερα

ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ. B κύματος. Γνωρίζουμε ότι το σημείο Α έχει μικρότερη φάση από το x x σημείο Β. Συνεπώς το σημείο Γ του

ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ. B κύματος. Γνωρίζουμε ότι το σημείο Α έχει μικρότερη φάση από το x x σημείο Β. Συνεπώς το σημείο Γ του ΑΡΧΗ ης ΣΕΛΙΔΑΣ Προτεινόμενο Τελικό Διαγώνισμα Στη Φυσική Θετικής και Τεχνολογικής Κατεύθυσης Γ Λυκείου Διάρκεια: 3ώρες ΘΕΜΑ A Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ-ΟΜΟΓΕΝΩΝ 25/7/2015

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ-ΟΜΟΓΕΝΩΝ 25/7/2015 ΕΠΩΝΥΜΟ:... ΟΝΟΜΑ:... ΤΜΗΜΑ:... ΗΜΕΡΟΜΗΝΙΑ:... ΤΣΙΜΙΣΚΗ &ΚΑΡΟΛΟΥ ΝΤΗΛ ΓΩΝΙΑ THΛ: 270727 222594 ΑΡΤΑΚΗΣ 12 - Κ. ΤΟΥΜΠΑ THΛ: 919113 949422 www.syghrono.gr ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ-ΟΜΟΓΕΝΩΝ

Διαβάστε περισσότερα

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΥΤΕΡΑ 25 ΜΑΙΟΥ 2009 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ - ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΥΤΕΡΑ 25 ΜΑΙΟΥ 2009 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ - ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΥΤΕΡΑ 25 ΜΑΙΟΥ 2009 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ - ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ 1 ο Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω

Διαβάστε περισσότερα

ΘΕΜΑ Α Στις ερωτήσεις Α1 Α5 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.

ΘΕΜΑ Α Στις ερωτήσεις Α1 Α5 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. Γ ΤΑΞΗ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΚΥΡΙΑΚΗ 24/04/2016 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ (ΑΠΟΦΟΙΤΟΙ) ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΔΕΚΑΠΕΝΤΕ (15) ΘΕΜΑ Α Στις ερωτήσεις Α1 Α5 να γράψετε στο τετράδιο σας

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΦΥΣΙΚΗ Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΦΥΣΙΚΗ Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ ο Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις - 4 και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση..

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2003

ΦΥΣΙΚΗ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2003 ΦΥΣΙΚΗ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 003 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ 1ο Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράµµα που αντιστοιχεί

Διαβάστε περισσότερα

ιδακτική Ενότητα: Μηχανικές Αρµονικές Ταλαντώσεις Ερωτήσεις που δόθηκαν στις εξετάσεις των Πανελληνίων ως

ιδακτική Ενότητα: Μηχανικές Αρµονικές Ταλαντώσεις Ερωτήσεις που δόθηκαν στις εξετάσεις των Πανελληνίων ως Τίτλος Κεφαλαίου: Μηχανικές & Ηλεκτρικές Ταλαντώσεις ιδακτική Ενότητα: Μηχανικές Αρµονικές Ταλαντώσεις Ερωτήσεις που δόθηκαν στις εξετάσεις των Πανελληνίων ως Θέµα ο: ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ Στις ηµιτελείς

Διαβάστε περισσότερα

1. Ιδανικό κύκλωμα LC εκτελεί ηλεκτρικές ταλαντώσεις και η χρονική εξίσωση του φορτίου του πυκνωτή

1. Ιδανικό κύκλωμα LC εκτελεί ηλεκτρικές ταλαντώσεις και η χρονική εξίσωση του φορτίου του πυκνωτή Εισαγωγικές ασκήσεις στις ηλεκτρικές ταλαντώσεις 1. Ιδανικό κύκλωμα L εκτελεί ηλεκτρικές ταλαντώσεις και η χρονική εξίσωση του φορτίου του πυκνωτή δίνεται από τη σχέση q = 10 6 συν(10 ) (S.I.). Ο συντελεστής

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΞΕΤΑΖΟΜΕΝΗ ΥΛΗ: ΜΗΧΑΝΙΚΕΣ ΚΑΙ ΗΛΕΚΤΡΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ 4/11/2012

ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΞΕΤΑΖΟΜΕΝΗ ΥΛΗ: ΜΗΧΑΝΙΚΕΣ ΚΑΙ ΗΛΕΚΤΡΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ 4/11/2012 ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΞΕΤΑΖΟΜΕΝΗ ΥΛΗ: ΜΗΧΑΝΙΚΕΣ ΚΑΙ ΗΛΕΚΤΡΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ 4/11/01 ΘΕΜΑ 1 ο Στις ερωτήσεις 1-5 να γράψετε στο φύλλο απαντήσεων τον αριθμό της ερώτησης και

Διαβάστε περισσότερα

Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ ΕΚΦΩΝΗΣΕΙΣ

Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ ΕΚΦΩΝΗΣΕΙΣ Επαναληπτικά Θέµατα ΟΕΦΕ 009 Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ ΘΕΜΑ ο ΕΚΦΩΝΗΣΕΙΣ Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις -4 και δίπλα το γράµµα που αντιστοιχεί

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΟ ΙΑΓΩΝΙΣΜΑ Φυσική Γ Λυκείου (Θετικής & Τεχνολογικής κατεύθυνσης)

ΕΠΑΝΑΛΗΠΤΙΚΟ ΙΑΓΩΝΙΣΜΑ Φυσική Γ Λυκείου (Θετικής & Τεχνολογικής κατεύθυνσης) Θέµα 1 ο ΕΠΑΝΑΛΗΠΤΙΚΟ ΙΑΓΩΝΙΣΜΑ Φυσική Γ Λυκείου (Θετικής & Τεχνολογικής κατεύθυνσης) 1.1 Πολλαπλής επιλογής A. Ελαστική ονοµάζεται η κρούση στην οποία: α. οι ταχύτητες των σωµάτων πριν και µετά την κρούση

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 5 ΙΑΝΟΥΑΡΙΟΥ 2005

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 5 ΙΑΝΟΥΑΡΙΟΥ 2005 ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 5 ΙΑΝΟΥΑΡΙΟΥ 5 Επίθετο: Όνομα: Τμήμα: ΘΕΜΑ Ο Στις ερωτήσεις που ακολουθούν να βάλετε σε κύκλο το γράμμα της απάντησης που θεωρείτε σωστή..ένα σώμα εκτελεί απλή

Διαβάστε περισσότερα

Θέμα 1 ο (Μονάδες 25)

Θέμα 1 ο (Μονάδες 25) ΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ((ΑΠΟΦΟΙΤΟΙ)) 10 01-011 Θέμα 1 ο (Μονάδες 5) 1. Κατά τη σύνθεση δύο ΑΑΤ, που γίνονται στην ίδια διεύθυνση και γύρω από την ίδια θέση ισορροπίας, προκύπτει μια νέα

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2003

ΦΥΣΙΚΗ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2003 ΦΥΣΙΚΗ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 003 ΘΕΜΑ 1ο Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις 1 4 και δίπλα το γράµµα που αντιστοιχεί στη σωστή

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 29 ΜΑΪOY 2015 ΕΚΦΩΝΗΣΕΙΣ

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 29 ΜΑΪOY 2015 ΕΚΦΩΝΗΣΕΙΣ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 9 ΜΑΪOY 01 ΕΚΦΩΝΗΣΕΙΣ Θέµα Α Στις ερωτήσεις Α1-Α4 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και, δίπλα, το γράµµα που αντιστοιχεί στη φράση η οποία συµπληρώνει

Διαβάστε περισσότερα