ibemo Kazakhstan Republic of Kazakhstan, West Kazakhstan Oblast, Aksai, Pramzone, BKKS office complex Phone: ; Fax:
|
|
- Ἀριδαίος Μαυρογένης
- 8 χρόνια πριν
- Προβολές:
Transcript
1
2
3
4
5
6
7
8
9
10
11 ϕ η
12
Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α
Α Ρ Χ Α Ι Α Ι Σ Τ Ο Ρ Ι Α Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α Σ η µ ε ί ω σ η : σ υ ν ά δ ε λ φ ο ι, ν α µ ο υ σ υ γ χ ω ρ ή σ ε τ ε τ ο γ ρ ή γ ο ρ ο κ α ι α τ η µ έ λ η τ ο ύ
Παρασκευή 1 Νοεμβρίου 2013 Ασκηση 1. Λύση. Παρατήρηση. Ασκηση 2. Λύση.
(, ) =,, = : = = ( ) = = = ( ) = = = ( ) ( ) = = ( ) = = = = (, ) =, = = =,,...,, N, (... ) ( + ) =,, ( + ) (... ) =,. ( ) = ( ) = (, ) = = { } = { } = ( ) = \ = { = } = { = }. \ = \ \ \ \ \ = = = = R
Α Ρ Ι Θ Μ Ο Σ : 6.913
Α Ρ Ι Θ Μ Ο Σ : 6.913 ΠΡΑΞΗ ΚΑΤΑΘΕΣΗΣ ΟΡΩΝ ΔΙΑΓΩΝΙΣΜΟΥ Σ τ η ν Π ά τ ρ α σ ή μ ε ρ α σ τ ι ς δ ε κ α τ έ σ σ ε ρ ι ς ( 1 4 ) τ ο υ μ ή ν α Ο κ τ ω β ρ ί ο υ, η μ έ ρ α Τ ε τ ά ρ τ η, τ ο υ έ τ ο υ ς δ
2. Α ν ά λ υ σ η Π ε ρ ι ο χ ή ς. 3. Α π α ι τ ή σ ε ι ς Ε ρ γ ο δ ό τ η. 4. Τ υ π ο λ ο γ ί α κ τ ι ρ ί ω ν. 5. Π ρ ό τ α σ η. 6.
Π Ε Ρ Ι Ε Χ Ο Μ Ε Ν Α 1. Ε ι σ α γ ω γ ή 2. Α ν ά λ υ σ η Π ε ρ ι ο χ ή ς 3. Α π α ι τ ή σ ε ι ς Ε ρ γ ο δ ό τ η 4. Τ υ π ο λ ο γ ί α κ τ ι ρ ί ω ν 5. Π ρ ό τ α σ η 6. Τ ο γ ρ α φ ε ί ο 1. Ε ι σ α γ ω
! #! # # % & % # # # # %!! ( &) & #& % %!! # # # # +,! % # )! #! ) # # # ( # % # # + ) # + # ( ( & ) # &! #!. % #! /! # ) & #! & # # ) ) # + # % # ( # ) & #!! # + & % # / # + # & #! ) 0. & ( %.1! 2 2 #
!"#$ %&#'($)"!"#$# %"& '(")*+#, )* +,-./0 ΖΖΖ.ΛΨ ΘςΩ ΠΗΘΡΨ.ΦΡΠ 2010
ΖΖΖΛΨ ΘςΩ ΠΗΘΡΨΦΡΠ ± ±,6%1 ± ± ± ± ± ± ± ± ± ± ±± ± ± ± ± ± ± ± ±± ± ± ± ± ϕ ± ± ±± 9< + ± ± 9< +± ± ± ± ± ±± ± ± ± ±± ± ± ± ± ± ± ± Η ± ± ± ± ± ± ± ± ± ± ± ± ±±± ± ±± ± ± ± ± ± ± ± ± ± ± ± ± ±
!#$%!& '($) *#+,),# - '($) # -.!, '$%!%#$($) # - '& %#$/0#!#%! % '$%!%#$/0#!#%! % '#%3$-0 4 '$%3#-!#, '5&)!,#$-, '65!.#%
" #$%& '($) *#+,),# - '($) # -, '$% %#$($) # - '& %#$0##% % '$% %#$0##% % '1*2)$ '#%3$-0 4 '$%3#-#, '1*2)$ '#%3$-0 4 @ @ @
* * * * * * * * * * * * * * * * * * * * * * * * * Ν ΖΖ.ΖΖΖΖΖ.ΖΖΖΖΖΖΖ Ν.ΖΖΖΖ.ΖΖΖΖΖΖΖΖΖΖΖΖΖ
. Ν, Φ Γ Ω ( υ α α α α α υ ) * * * * * * * * * * * * * * * * * * * * * * * * * Χ. Ω Ν Γ ΖΖΖΖΖΖΖΖΖΖΖΖΖΖΖ.ΖΖΖ.ΖΖ.Ζ 2-8 Ν Ω Θ Ζ..ΖΖ.. 8-23 Ν ΖΖ.ΖΖΖΖΖ.ΖΖΖΖΖΖΖ. 23-29 Ν.ΖΖΖΖ.ΖΖΖΖΖΖΖΖΖΖΖΖΖ. 29-51 Ν Φ ΖΖΖΖΖΖΖΖΖΖΖΖ.ΖΖΖΖ.ΖΖ.
Α Ρ Η Θ Μ Ο : ΠΡΑΞΗ ΣΡΟΠΟΠΟΙΗΗ ΠΡΑΞΗ ΚΑΣΑΘΕΗ ΟΡΩΝ
Α Ρ Η Θ Μ Ο : 6.984 ΠΡΑΞΗ ΣΡΟΠΟΠΟΙΗΗ ΠΡΑΞΗ ΚΑΣΑΘΕΗ ΟΡΩΝ ΔΙΑΓΩΝΙΜΟΤ η ε λ Π ά η ξ α ζ ή κ ε ξ α ζ η η ο ε ί θ ν ζ η κ ί α ( 2 1 ) η ν π κ ή λ α Μ α ξ η ί ν π, ε κ έ ξ α Γ ε π η έ ξ α, η ν π έ η ν π ο δ
T : g r i l l b a r t a s o s Α Γ Ί Α Σ Σ Ο Φ Ί Α Σ 3, Δ Ρ Α Μ Α. Δ ι α ν ο μ έ ς κ α τ ο ί κ ο ν : 1 2 : 0 0 έ ω ς 0 1 : 0 0 π μ
Α Γ Ί Α Σ Σ Ο Φ Ί Α Σ 3, Δ Ρ Α Μ Α g r i l l b a r t a s o s Δ ι α ν ο μ έ ς κ α τ ο ί κ ο ν : 1 2 : 0 0 έ ω ς 1 : 0 π μ Δ ι α ν ο μ έ ς κ α τ ο ί κ ο ν : 1 2 : 0 0 έ ω ς 0 1 : 0 0 π μ T ortiyas Σ ο υ
ΠΕ ΙΑΤΡΩΝ ΕΙΔΙΚΟΤΗΤΑΣ ΓΕΝΙΚΗΣ ΙΑΤΡΙΚΗΣ Αριθμός Πρωτοκόλου Ηλεκτρονικής Α/Α Αίτησης
ΚΩΔ. ΘΕΣΗΣ: 251 ΠΕ ΙΑΤΡΩΝ ΕΙΔΙΚΟΤΗΤΑΣ ΓΕΝΙΚΗΣ ΙΑΤΡΙΚΗΣ ΠΕ ΙΑΤΡΩΝ ΕΙΔΙΚΟΤΗΤΑΣ ΓΕΝΙΚΗΣ ΙΑΤΡΙΚΗΣ 1 21/29449 ΕΛΛΙΠΗ Ή ΕΣΦΑΛΜΕΝΑ ΔΙΚΑΙΟΛΟΓΗΤΙΚΑ 2 21/24230 X373738 ΕΛΛΙΠΗ Ή ΕΣΦΑΛΜΕΝΑ ΔΙΚΑΙΟΛΟΓΗΤΙΚΑ 3 21/3495
Gapso t e q u t e n t a g ebra P open parenthesis N closing parenthesis fin i s a.. pheno mno nd iscovere \ centerline
G q v v G q v H 4 q 4 q v v ˆ ˆ H 4 ] 4 ˆ ] W q K j q G q K v v W v v H 4 z ] q 4 K ˆ 8 q ˆ j ˆ O C W K j ˆ [ K v ˆ [ [; 8 ] q ˆ K O C v ˆ ˆ z q [ R ; ˆ 8 ] R [ q v O C ˆ ˆ v - - ˆ - ˆ - v - q - - v -
?=!! #! % &! & % (! )!! + &! %.! / ( + 0. 1 3 4 5 % 5 = : = ;Γ / Η 6 78 9 / : 7 ; < 5 = >97 :? : ΑΒ = Χ : ΔΕ Φ8Α 8 / Ι/ Α 5/ ; /?4 ϑκ : = # : 8/ 7 Φ 8Λ Γ = : 8Φ / Η = 7 Α 85 Φ = :
ΕΘΝΙΚΟΝ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟΝ ΠΑΝΕΠΙΣΤΗΜΙΟΝ ΑΘΗΝΩΝ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΏΝ
ΕΘΝΙΚΟΝ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟΝ ΠΑΝΕΠΙΣΤΗΜΙΟΝ ΑΘΗΝΩΝ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΏΝ Βαθμολόγιo για το ακαδ. έτος 2016-2017 και περίοδο ΕΞ(Χ) 2016-2017 Για το μάθημα ΒΑΣΙΚΗ ΑΛΓΕΒΡΑ (12421) Διδάσκoντες:Χ.Αθανασιάδης,Ι.Εμμανουήλ,
ΠΙΝΑΚΑΣ ΚΑΤΑΤΑΞΗΣ & ΒΑΘΜΟΛΟΓΙΑΣ (άρθρο 21 παρ.11 του Ν.2190/94) ΥΠΟΨΗΦΙΩΝ ΚΑΤΗΓΟΡΙΑΣ YΕ ΚΩΔΙΚΟΣ ΘΕΣΗΣ : 101. Ειδικότητα: ΥΕ ΚΑΘΑΡΙΟΤΗΤΑΣ ΚΡΙΤΗΡΙΑ
sort 26 Κ Σ -- Τ051676 Οχι 8 37 67 0 400 0 0 0 727 0 0 134 Οχι 1.261,00 1 68 Χ Π -- Σ134727 Οχι 14 2 72 225 0 0 60 0 972 0 0 0 Οχι 1.257,00 2 32 Κ Μ -- Σ617814 Οχι 10 5 3 39 175 250 0 60 0 741 0 0 0 Οχι
www.smarterglass.com 978 65 6190 sales@smarterglass.com &&$'()!"#$%$# !!"# "#$%&'! &"# $() &() (, -. #)/ 0-.#! 0(, 0-. #)/ 1!2#! 13#25 631% -. #)/ 013#7-8(,83%&)( 2 %! 1%!#!#2!9&8!,:!##!%%3#9&8!,:!#,#!%63
Ν Κ Π 6Μ Θ 5 ϑ Μ % # =8 Α Α Φ ; ; 7 9 ; ; Ρ5 > ; Σ 1Τ Ιϑ. Υ Ι ς Ω Ι ϑτ 5 ϑ :Β > 0 1Φ ς1 : : Ξ Ρ ; 5 1 ΤΙ ϑ ΒΦΓ 0 1Φ ς1 : ΒΓ Υ Ι : Δ Φ Θ 5 ϑ Μ & Δ 6 6
# % & ( ) +, %. / % 0 1 / 1 4 5 6 7 8 # 9 # : ; < # = >? 1 :; < 8 > Α Β Χ 1 ; Δ 7 = 8 1 ( 9 Ε 1 # 1 ; > Ε. # ( Ε 8 8 > ; Ε 1 ; # 8 Φ? : ;? 8 # 1? 1? Α Β Γ > Η Ι Φ 1 ϑ Β#Γ Κ Λ Μ Μ Η Ι 5 ϑ Φ ΒΦΓ Ν Ε Ο Ν
Ε Π Ι Μ Ε Λ Η Τ Η Ρ Ι Ο Κ Υ Κ Λ Α Δ Ω Ν
Ε ρ μ ο ύ π ο λ η, 0 9 Μ α ρ τ ί ο υ 2 0 1 2 Π ρ ο ς : Π ε ρ ιφ ε ρ ε ι ά ρ χ η Ν ο τ ίο υ Α ιγ α ί ο υ Α ρ ι θ. Π ρ ω τ. 3 4 2 2 κ. Ι ω ά ν ν η Μ α χ α ι ρ ί δ η F a x : 2 1 0 4 1 0 4 4 4 3 2, 2 2 8 1
Α θ ή ν α, 7 Α π ρ ι λ ί ο υ
Α θ ή ν α, 7 Α π ρ ι λ ί ο υ 2 0 1 6 Τ ε ύ χ ο ς Δ ι α κ ή ρ υ ξ η ς Α ν ο ι κ τ ο ύ Δ ι ε θ ν ο ύ ς Δ ι α γ ω ν ι σ μ ο ύ 0 1 / 2 0 1 6 μ ε κ ρ ι τ ή ρ ι ο κ α τ α κ ύ ρ ω σ η ς τ η ν π λ έ ο ν σ υ μ
# % % % % % # % % & %
! ! # % % % % % % % # % % & % # ( ) +,+.+ /0)1.2(3 40,563 +(073 063 + 70,+ 0 (0 8 0 /0.5606 6+ 0.+/+6+.+, +95,.+.+, + (0 5 +//5: 6+ 56 ;2(5/0 < + (0 27,+/ +.0 10 6+ 7 0, =7(5/0,> 06+?;, 6+ (0 +9)+ 5+ /50
ΣΤΗΝ ΒΑΣΙΚΗ ΤΟΥΣ ΕΚΔΟΣΗ
4 ΣΤΗΝ ΒΑΣΙΚΗ ΤΟΥΣ ΕΚΔΟΣΗ ΜΟΤΕΡ 800m 3 ΔΥΟ ΕΙΣΟΔΩΝ ΤΡΕΙΣ ΠΕΡΣΙΔΕΣ ΑΛΟΥΜΙΝΙΟΥ ΕΣΩΤΕΡΙΚΕΣ ΗΛΕΚΤΡΟΝΙΚΟΣ ΘΕΡΜΟΣΤΑΤΗΣ ΜΙΑ ΠΕΡΣΙΔΑ ΕΚΤΟΝΩΣΗΣ ΠΕΡΣΙΔΑ ΑΛΟΥΜΙΝΙΟΥ ΕΞΩΤΕΡΙΚΗ ΣΩΛΗΝΕΣ ΑΛΟΥΜΙΝΙΟΥ Φ120 ΚΕΡΑΜΙΚΑ ΚΡΥΣΤΑΛΛΑ
ΥΠΗΡΕΣΙΕΣ ΠΡΟΣΩΠΙΚΟΥ ΔΙΑΧΕΙΡΙΣΗ ΑΠΟΔΟΣΗΣ ΚΑΙ ΣΤΕΛΕΧΩΣΗ
ΥΠΗΡΕΣΙΕΣ ΠΡΟΣΩΠΙΚΟΥ ΔΙΑΧΕΙΡΙΣΗ ΑΠΟΔΟΣΗΣ ΚΑΙ ΣΤΕΛΕΧΩΣΗ ΚΑΤΑΛΟΓΟΣ ΑΠΟΤΕΛΕΣΜΑΤΩΝ ΗΛΕΚΤΡΟΝΙΚΟΥ ΤΕΣΤ ΙΚΑΝΟΤΗΤΩΝ ΓΙΑ ΤΙΣ ΘΕΣΕΙΣ ΩΡΟΜΙΣΘΙΟΥ ΠΡΟΣΩΠΙΚΟΥ ΒΟΗΘΟΙ ΤΗΛΕΞΥΠΗΡΕΤΗΣΗΣ (ΑΡ. ΠΡΟΚΗΡΥΞΗΣ: 2/2017) (ΛΕΥΚΩΣΙΑ
< = ) Τ 1 <Ο 6? <? Ν Α <? 6 ϑ<? ϑ = = Χ? 7 Π Ν Α = Ε = = = ;Χ? Ν !!! ) Τ 1. Ο = 6 Μ 6 < 6 Κ = Δ Χ ; ϑ = 6 = Σ Ν < Α <;< Δ Π 6 Χ6 Ο = ;= Χ Α
# & ( ) ) +,. /, 1 /. 23 / 4 (& 5 6 7 8 8 9, :;< = 6 > < 6? ;< Β Γ Η. Ι 8 &ϑ Ε ; < 1 Χ6 Β 3 / Κ ;Χ 6 = ; Λ 4 ϑ < 6 Χ ; < = = Χ = Μ < = Φ ; ϑ =
! # !! # % % & ( ) + & # % #&,. /001 2 & 3 4
! #!! # % % & ( ) + & # % #&,. /001 2 & 3 4 ! # % & (! ) & (! (! + & (!, % (! +.! / 0 1 0 2 3 4 1 0 5 6 % 7 8!, %! + 0! # % 0 1 9. 2! 1. 2 8 2 5 : ; 0 % &! & ( ) ; < =2 8 0 ; 0/ =2 8 0 8 2 8 & 8 2 0 8
FCA Bank Gesellschaft m.b.h.
ΣΥΝΟΠΤΙΚΗ ΜΗΝΙΑΙΑ ΛΟΓΙΣΤΙΚΗ ΚΑΤΑΣΤΑΣΗ ΤΗΣ 31ης ΙΑΝΟΥΑΡΙΟΥ 2017 1. Ταµείο και διαθέσιµα στην Κεντρική Τράπεζα 3.314,34 1. Υποχρεώσεις προς Πιστωτικά Ιδρύματα 20.500.000,00 3. Απαιτήσεις κατά πιστωτικών
XAΡ Τ Η Σ Ε Τ Α Ι ΡΙ ΚΗ Σ Δ Ι Α Κ Υ Β Ε Ρ Ν Η ΣΗ Σ ΤΗΣ V I O H A L C O SA
XAΡ Τ Η Σ Ε Τ Α Ι ΡΙ ΚΗ Σ Δ Ι Α Κ Υ Β Ε Ρ Ν Η ΣΗ Σ ΤΗΣ V I O H A L C O SA ό π ω ς ε γ κ ρ ί θ η κ ε α π ό τ ο δ ι ο ι κ η τ ι κ ό σ υ μ β ο ύ λ ι ο τ η ς ε τ α ι ρ ί α ς τ η ν 30 η Μ α ρ τ ί ο υ 2 0 1
ΑΙΤΗΣΗ ΠΡΟΣ Δ/ΝΣΗ ΑΔΕΙΩΝ ΚΑΤΑΣΤΗΜΑΤΩΝ ΚΑΙ ΘΕΑΜΑΤΩΝ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΝΟΜΟΣ ΑΤΤΙΚΗΣ ΔΗΜΟΣ ΑΘΗΝΑΙΩΝ ΣΤΟΙΧΕΙΑ ΑΙΤΟΥΝΤΟΣ (Εκδιδόμενου με αμοιβή προσώπου) ΑΙΤΗΣΗ ΠΡΟΣ Δ/ΝΣΗ ΑΔΕΙΩΝ ΚΑΤΑΣΤΗΜΑΤΩΝ ΚΑΙ ΘΕΑΜΑΤΩΝ ΓΡΑΦΕΙΟ ΟΙΚΩΝ ΑΝΟΧΗΣ Επώνυμο.. Παρακαλώ να μου χορηγήσετε
Φροντιστήριο 2 Λύσεις
Φροντιστήριο 2 Λύσεις Άσκηση 1 1. p ( p r) προϋπόθεση 2. r προϋπόθεση 3. q προσωρινή υπόθεση 4. p προσωρινή υπόθεση 5. p r ΜP 6. p προσωρινή υπόθεση r προσωρινή υπόθεση 7. i 4, 6 8. r e 9. r e 5, 8, 6
! # %& # () & +( (!,+!,. / #! (!
! # %& # () & +( (!,+!,. / #! (! 0 1 12!, ( #& 34!5 6( )+(, 7889 / # 4 & #! # %& , & ( () & :;( 4#! /! # # +! % # #!& ( &6& +!, ( %4,!! ( 4!!! #& /
! # % ) + +, #./ )
! # % & ( ) + +, #./0. 1 + 2 + 2 5 2 3 40. ) 6 1+ + + 7 ! # % (% ) + # #, %. / 0 # 1 2, 3 4 5 6 3 7 00 5 8, 6 8 3 9 0: 5.;, 6 #! #, 8, 3 04 5 6 < ; = >!? >, 3? 5! # % & ( Α! 1 6, 3 7 2 Α0 : 6 Β Χ Α :,
Δεν αποδεικνύεται η τουλάχιστον πολύ καλή γνώση της αγγλικής ή της γαλλικής ή της γερμανικής γλώσσας.
Πίνακας απορριπτέων A ομάδας (κωδ. 1-2 & 4-12) ΕΙΔΙΚΟ ΣΥΜΒΟΥΛΙΟ ΕΠΙΛΟΓΗΣ ΠΡΟΪΣΤΑΜΕΝΩΝ (ΕΙ.Σ.Ε.Π.) 1 AK152406 Παρέλκει η εξέταση της αίτησης υποψηφιότητας της εν λόγω υπαλλήλου, δεδομένου ότι κατέθεσε την
+ (!, &. /+ /# 0 + /+ /# ) /+ /# 1 /+ /# # # # 6! 9 # ( 6 & # 6
# % ( + (!, &. /+ /# 0 + /+ /# ) /+ /# 1 /+ /# 2 + + 3 + 4 5 # 6 5 7 + 8 # # 6 (! 9 # ( 6 & 0 6 ) 1 5 + # 6 2 # # + 6 # # 6 # + # # + 6 + # #! 5 # # 6 & # : # # : 6 0 ) 5 + 6 1 # # 2 + # + # # 4 + # 6
Ερωτήσεις αντιστοίχισης
Ερωτήσεις αντιστοίχισης. * Σε κάθε γραφική παράσταση C f της στήλης Α του πίνακα Ι να αντιστοιχίσετε τη γραφική παράσταση C f από τη στήλη Β, συµπληρώνοντας τον πίνακα ΙΙ. : C f : C f. - α. 2. β. 2π 3.
ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΕΞΙΣΩΣΕΙΣ
Εξισώσεις χωρίς κλάσματα ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΕΞΙΣΩΣΕΙΣ.Να λυθούν οι εξισώσεις: i) +6 = ii) 8 = iii) - = iv) + = v) - = 0 vi) 9- =.Να λυθούν οι εξισώσεις: i) = ii) = 8 iii) = -98 iv) -6 = -6 v) - = -9 vi) 0 =
ΑΝΑΡΤΗΣΗ ΣΤΟΙΧΕΙΩΝ ΕΚΤΕΛΕΣΗΣ ΠΡΟΫΠΟΛΟΓΙΣΜΟΥ (Φ. 9040/Ε.Φ 181)
Δ/ΝΣΗ ΠΡΩΤ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΜΕΣΣΗΝΙΑΣ Α.Π. 4258/6.7.2017 ΑΝΑΡΤΗΣΗ ΣΤΟΙΧΕΙΩΝ ΕΚΤΕΛΕΣΗΣ ΠΡΟΫΠΟΛΟΓΙΣΜΟΥ (Φ. 9040/Ε.Φ 181) Α) ΕΣΟΔΑ ΔΕΝ ΥΠΑΡΧΟΥΝ Β) ΕΞΟΔΑ ΜΗΝΑΣ ΙΑΝΟΥΑΡΙΟΣ 2017 Ξ0288 Καταβολή αποδοχών, επιδομάτων
Θέμα Α Α. Θεωρία (Σχ.Βιβλίο σελ.34) Α2. Θεωρία (Σχ.Βιβλίο σελ.279) Α3. Θεωρία (Σχ.Βιβλίο σελ.273) Μαθηματικά Θετικής & Τεχνολογικής Κατεύθυνσης Γ Λυκείου Τετάρτη 9 Μαΐου 2 Α4. (α)- Σ ( β)- Σ ( γ)- Λ (
Τίτλος Διδακτικού Σεναρίου: «[Το φαινόμενο Doppler]»
Τίτλος Διδακτικού Σεναρίου: «[Το φαινόμενο Doppler]» Φάση «[4]» Τίτλος Φάσης: «[Συζήτηση-Συμπεράσματα- Εφαρμογές-Μεταγνώση]» Συμπληρωμένο φύλλο εργασίας για τη δραστηριότητα 4.3 Δραστηριότητα 4.3 Τα σύμβολα
FCA Bank Gesellschaft m.b.h.
ΣΥΝΟΠΤΙΚΗ ΜΗΝΙΑΙΑ ΛΟΓΙΣΤΙΚΗ ΚΑΤΑΣΤΑΣΗ ΤΗΣ 31ης IOYΛΙΟΥ 2016 1. Ταµείο και διαθέσιµα στην Κεντρική Τράπεζα 553.140,59 1. Υποχρεώσεις προς Πιστωτικά Ιδρύματα 23.900.000,00 3. Απαιτήσεις κατά πιστωτικών ιδρυµάτων
Στοιχεία Συναρτήσεων. 1. Να βρεθεί το πεδίο ορισμού των παρακάτω συναρτήσεων: στ. x 1
Στοιχεία Συναρτήσεων 1. Να βρεθεί το πεδίο ορισμού των παρακάτω συναρτήσεων: 1 α. f() β. f() 3 6 8 3 1 γ. g() δ. g() ( 6)( 5) 4 ε. h() 4 στ. h() 4 ζ. ε. στ. 1 φ() η. 1 1 1 r() 5 6 1 r() 1 5 6 φ() 5. Στις
o-r sub ff i-d m e s o o t h-e i-l mtsetisequa tob t-h-colon sub t e b x c u t-n n g dmenson.. ndp a
M M - - - - q -- x - K - W q - - x x - M q j x j x K W D M K q 6 W x x A j ˆ K ė j x ˆ D M [ 6 C ˆ j ˆ ˆ ˆ ˆ j M ˆ x ˆ A - D ˆ ˆ D M ˆ ˆ K x [ 6 ˆ C + M D ˆ ˆ + + D ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ + x 9 M S C : 4 R 9
Να βρείτε ποιες από τις παρακάτω συναρτήσεις είναι γνησίως αύξουσες και ποιες γνησίως φθίνουσες. i) f(x) = 1 x. ii) f(x) = 2ln(x 2) 1 = (, 1] 1 x
. Ασκήσεις σχολικού βιβλίου σελίδας 56 57 A µάδας. Να βρείτε ποιες από τις παρακάτω συναρτήσεις είναι γνησίως αύξουσες και ποιες γνησίως φθίνουσες. i) () = ii) () = ln( ) iii) () = e + iv) () = ( ), i)
β. Το πλάτος της σύνθετης ταλάντωσης είναι : Α = (Α 1 ² + Α 2 ² + 2 Α 1 Α 2 συν φ) (φ = π rad) Α = (Α 1 ² + Α 2 ² + 2 Α 1 Α 2 συν π) Α = [Α 1 ² + Α 2
1) Ένα κινητό εκτελεί συγχρόνως δύο απλές αρμονικές ταλαντώσεις που γίνονται στην ίδια διεύθυνση και γύρω από την θέση ισορροπίας με εξισώσεις : x 1 = 3 ημ [(2 π) t] και x 2 = 4 ημ [(2 π) t + φ], (S.I.).
*❸341❸ ❸➈❽❻ ❸&❽❼➅❽❼❼➅➀*❶❹❻❸ ➅❽❹*➃❹➆❷❶*➈❹1➈. Pa X b P a µ b b a ➁❽❽❷➂➂%&'%➁❽➈❽)'%➁❽❽'*➂%➁❽➄,-➂%%%,❹❽➀➂'❹➄%,❹❽❹'&,➅❸%&❹-❽❻ ,❹❽➀➂'❹➄%,❹❽❹'&,➅❸%&❹-❽❻
*❸34❸ ➁❽❽❷➂➂%&'%➁❽➈❽)'%➁❽❽'*➂%➁❽➄,-➂%%%,❹❽➀➂'❹➄%,❹❽❹'&,➅❸%&❹-❽❻,❹❽➀➂'❹➄%,❹❽❹'&,➅❸%&❹-❽❻ -3*98❻➀*➁❽4❹❹** ~ N( µσ, )**σ **-❹➄❹8❹* µ*➆4❹➂➂*➁➆*❽➀➂❹➄*➂➂* *➁3 Pa ( < b) * ➀8*-9❼4➂❸*-❹❶➀➈-❸❸*-❽4&➄❹➈*➀8*-❹3➀9❼*8❽*-❽❼➄➂➀3*❸❽4&➄❹➈*❹➄❽3*➀&❼➄❽3❸❹*❻3➂
ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΠΑΡΑΣΚΕΥΗ 9 ΙΟΥΝΙΟΥ 2017 Ενδεικτικές απαντήσεις
ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΠΑΡΑΣΚΕΥΗ 9 ΙΟΥΝΙΟΥ 7 Ενδεικτικές απαντήσεις Θέμα Α Α. Σχολικό βιβλίο σελίδα 35 Α. α. Ψ β. Παράδειγμα η συνάρτηση f ( ) είναι συνεχής στο αλλά όχι παραγωγίσιμη σε αυτό. Α3. Σχολικό
8 ) / 9! # % & ( ) + )! # 2. / / # % 0 &. # 1& / %. 3 % +45 # % ) 6 + : 9 ;< = > +? = < + Α ; Γ Δ ΓΧ Η ; < Β Χ Δ Ε Φ 9 < Ε & : Γ Ι Ι & Χ : < Η Χ ϑ. Γ = Φ = ; Γ Ν Ι Μ Κ Λ Γ< Γ Χ Λ =
6< 7 4) ==4>)? ) >) ) Α< = > 6< 7<)Β Χ< Α< = > ) = ) 6 >) 7<)Ε > 7 ) ) ) ; + ; # % & () & :,% 3 + ;; 7 8 )+, ( ! # % & % ( )! +, % & &.
6< 7 4) ==4>)? ) >) )Α< = > 6< 7 )= )6 >) 7 7 ) ) ) ; + ; # % & () 4 5 6 & 7 8 9 & :,% 3+ ;;7 8 )+, (! # % & % ( )! +, % & &. /0 121, 3 &./012 34,51 65 57.8,57 9,(% #85% :;
Υπ' αριθμ. Σ.Ο.Χ. : 2/2016
Φορέας : ΔΗΜΟΣ ΧΑΛΑΝΔΡΙΟΥ ΠΡΟΣΛΗΨΗ ΠΡΟΣΩΠΙΚΟΥ ΜΕ ΣΥΜΒΑΣΗ ΟΡΙΣΜΕΝΟΥ ΧΡΟΝΟΥ Ανακοίνωση : Υπηρεσία : Δομές ΤΜΗΜΑΤΩΝ ΠΡΟΣΧΟΛΙΚΗΣ ΑΓΩΓΗΣ (Παιδικοί Σταθμοί) του Δήμου Χαλανδρίου Έδρα Υπηρεσίας : ΧΑΛΑΝΔΡΙ Διάρκεια
ΣΥΜΒΑΣΗ ΕΡΓΑΣΙΑΣ ΟΡΙΣΜΕΝΟΥ ΧΡΟΝΟΥ (Π.Δ. 156/94, ΦΕΚ 102, τευχος Α' της 5/7/94)
ΜΑΡΚΑΚΗΣ ΔΗΜΗΤΡΙΟΣ Κεντρικό ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΑΓΙΟΥ ΙΩΑΝΝΟΥ 21 ΑΓΙΑ ΠΑΡΑΣΚΕΥΗ 118067027 9306217988 ΜΑΡΚΑΚΗΣ ΔΗΜΗΤΡΙΟΣ ΑΓΙΟΥ ΙΩΑΝΝΟΥ 21 15342 ΣΤΟΙΧ. ΤΑΥΤΟΤΗΤΑΣ ΑΚ620892 20/12/2012 ΤΑ ΑΓΙΑΣ
1. Το πολυώνυµο P (x) = 3 (x - 1) 2-3x είναι Α. µηδενικού βαθµού Β. πρώτου βαθµού Γ. δευτέρου βαθµού. το µηδενικό πολυώνυµο Ε.
Ερωτήσεις πολλαπλής επιλογής 1. Το πολυώνυµο P (x) = 3 (x - 1) 2-3x 2 + 5 είναι Α. µηδενικού βαθµού Β. πρώτου βαθµού Γ. δευτέρου βαθµού. το µηδενικό πολυώνυµο Ε. τρίτου βαθµού 2. Αν το πολυώνυµο P (x)
Ερωτήσεις αντιστοίχισης
Ερωτήσεις αντιστοίχισης. * Να συµπληρώσετε τον πίνακα ΙΙ, έτσι ώστε σε κάθε γραφική παράσταση συνάρτησης f της στήλης Α του πίνακα Ι να αντιστοιχεί η γραφική παράσταση της παράγουσάς της από τη στήλη Β.
2.1 ΜΟΝΟΤΟΝΙΑ ΑΚΡΟΤΑΤΑ ΣΥΜΜΕΤΡΙΕΣ ΣΥΝΑΡΤΗΣΗ
ΚΕΦΑΛΑΙΟ Ο : ΙΔΙΟΤΗΤΕΣ ΣΥΝΑΡΤΗΣΕΩΝ. ΜΟΝΟΤΟΝΙΑ ΑΚΡΟΤΑΤΑ ΣΥΜΜΕΤΡΙΕΣ ΣΥΝΑΡΤΗΣΗΣ ΟΡΙΣΜΟΣ ΣΥΝΑΡΤΗΣΗΣ Συνάρτηση από ένα σύνολο Α σε ένα σύνολο Β λέγεται μια διαδικασία (κανόνας), με την οποία κάθε στοιχείο του
ΕΘΝΙΚΗ ΣΧΟΛΗ ΤΟΠΙΚΗΣ ΑΥΤΟ ΙΟΙΚΗΣΗΣ
ΕΘΝΙΚΗ ΣΧΟΛΗ ΤΟΠΙΚΗΣ ΑΥΤΟ ΙΟΙΚΗΣΗΣ ιπλ ωµατ ική Εργασία του Φοιτητή ιονύση Παππά Τ µ ή µ α Μ ε τ α ν α σ τ ε υ τ ι κ ή ς π ο λ ι τ ι κ ή ς Τίτλος Εργασίας: Η Συµβολή της Τοπικής Αυτοδιοίκησης στην καταπολέµηση
ιαγωνισµός στη µνήµη του καθηγητή: Βασίλη Ξανθόπουλου
Σύλλογος Θετικών Επιστηµόνων ράµας ιαγωνισµός στη µνήµη του καθηγητή: Βασίλη Ξανθόπουλου Μαθηµατικά : Τάξη: Γ ράµα Απριλίου Θέµα ο ίνεται η συνάρτηση :, δύο φορές παραγωγίσιµη για την οποία ισχύει: ) )
Διοικητική Υπηρεσία: 1. Ωράριο εξυπηρέτησης: Συχνότητα Ποσοστό Καθόλου 0 0% Λίγο 0 0% Μέτρια 7 21% Πολύ 13 38% Πάρα πολύ 14 41% Δ/Α 0 0% Σύνολο 34
ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΠΙΝΑΚΕΣ ΣΥΧΝΟΤΗΤΩΝ ΚΑΙ ΡΑΒΔΟΓΡΑΜΜΑΤΑ Α. Ποιότητα παρεχόμενων υπηρεσιών 1. Ωράριο εξυπηρέτησης: Καθόλου 0 Λίγο 0 Μέτρια 7 Πολύ 13 38% Πάρα 14 41% 0 2. Ευκολία πρόσβασης στον/στην
ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΗΡΑΚΛΕΙΤΟΣ ΚΩΛΕΤΤΗ
ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β') ΔΕΥΤΕΡΑ 5 ΜΑΪΟΥ 5 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ & ΤΕΧΝΟΛΟΓΙΚΉΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΑΙ ΤΩΝ ΔΥΟ ΚΥΚΛΩΝ) Ε Ν Δ Ε
ΜΑΘΗΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2 ΙΟΥΝΙΟΥ
ΥΠΟ ΕΙΞΕΙΣ ΛΥΣΕΩΝ ΘΕΜΑ Α Α. Σχολικό βιβλίο σελ 5 Α. Σχολικό βιβλίο σελ 73 Α3. Σχολικό βιβλίο σελ 5 Α4. α) Λάθος β) Σωστό γ) Σωστό δ) Σωστό ε) Λάθος ΘΕΜΑ Β Β. z + ( z + z) i 4 z i 4 i + ( z ) ( ) i + (
Δοκιμαστική Ερώτηση 1: Στην παρακάτω ακολουθία υπάρχει ένας αριθμός που δεν ταιριάζει. Ποιος είναι αυτός;
Δοκιμαστική Ερώτηση 1: Στην παρακάτω ακολουθία υπάρχει ένας αριθμός που δεν ταιριάζει. Ποιος είναι αυτός; Δοκιμαστική Ερώτηση 1: Στην παρακάτω ακολουθία υπάρχει ένας αριθμός που δεν ταιριάζει. Ποιος είναι
Θ έ λ ω ξ ε κ ι ν ώ ν τ α ς ν α σ α ς μ ε τ α φ έ ρ ω α υ τ ό π ο υ μ ο υ ε ί π ε π ρ ι ν α π ό μ ε ρ ι κ ά χ ρ ό ν ι α ο Μ ι χ ά λ η ς
9. 3. 2 0 1 6 A t h e n a e u m I n t e r C o Ο μ ι λ ί α κ υ ρ ί ο υ Τ ά σ ο υ Τ ζ ή κ α, Π ρ ο έ δ ρ ο υ Δ Σ Σ Ε Π Ε σ τ ο ε π ί σ η μ η δ ε ί π ν ο τ ο υ d i g i t a l e c o n o m y f o r u m 2 0 1
Τμήμα Μηχανικών Πληροφορικής, Ωρολόγιο Πρόγραμμα Εαρινού Εξαμήνου Ακ. Έτους , 2 ο Εξάμηνο
Τμήμα Μηχανικών Πληροφορικής, Ωρολόγιο Πρόγραμμα Εαρινού Εξαμήνου Ακ. Έτους 20, 2 ο Εξάμηνο 9-10 Αρχές Επικοινωνιών, Θεωρία, ΔΙΑΛ.1, Ο. 11-12 Αρχές Επικοινωνιών, Α.Π., ΔΙΑΛ.1, Ομάδα Α, Ο. Δομές Δεδομένων
Κατακόρυφη - Οριζόντια μετατόπιση καμπύλης
1 Κατακόρυφη - Οριζόντια μετατόπιση καμπύλης Έστω ότι έχουμε την συνάρτηση: f(x) = x + 3x 1 H γραφική της παράσταση είναι: Και την συνάρτηση f(x) = x + 3x + η οποία έχει προκύψει από την προηγούμενη αφού
t = (iv) A B (viii) (B Γ) A
Διακριτά Μαθηματικά Review για τα Διακριτά Μαθηματικά 1. Να κατασκευάσετε το δένδρο ανάλυσης και τον πίνακα αλήθειας για τις παρακάτω προτάσεις: (i) (ϕ = ψ) ( ( ψ) ϕ ) (ii) (p q) = ( (p q) ) (iii) ( a
f a o gy s m a l nalg d co h n to h e y o m ia lalg e br coh the oogy lagebr
- - - * k ˆ v ˆ k ˆ ˆ E x ˆ ˆ [ v ˆ ˆ ˆ ˆ ˆ E x ˆ ˆ ˆ ˆ v ˆ Ex U U ˆ ˆ ˆ ˆ ˆ ˆ v ˆ M v ˆ v M v ˆ ˆ I U ˆ I 9 70 k k ˆ ˆ - I I 9ˆ 70 ˆ [ ˆ - v - - v k k k ˆ - ˆ k ˆ k [ ˆ ˆ D M ˆ k k 0 D M k [ 0 M v M ˆ
ΕΡΓΑΣΙΑ 8 ΚΙΝΗΣΗ ΜΕ ΔΥΝΑΜΕΙΣ ΠΟΥ ΔΕΝ ΕΧΟΥΝ ΤΗΝ ΙΔΙΑ ΔΙΕΥΘΥΝΣΗ ΚΑΙ ΤΡΙΒΗ
ΕΡΓΑΣΙΑ 8 ΚΙΝΗΣΗ ΜΕ ΔΥΝΑΜΕΙΣ ΠΟΥ ΔΕΝ ΕΧΟΥΝ ΤΗΝ ΙΔΙΑ ΔΙΕΥΘΥΝΣΗ ΚΑΙ ΤΡΙΒΗ 1. Σώμα μάζας m=2kg είναι ακίνητο πάνω σε οριζόντιο επίπεδο. Στο σώμα ασκείται οριζόντια δύναμη F με φορά προς τα δεξιά. Να βρεθεί
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΟΛΙΤΙΣΜΟΥ, ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ Πάτρα, 31 Ιουλίου 2015 ΠΕΡΙΦΕΡΕΙΑΚΗ Δ/ΝΣΗ Π. & Δ.
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΟΛΙΤΙΣΜΟΥ, ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- Πάτρα, 31 Ιουλίου 2015 ΠΕΡΙΦΕΡΕΙΑΚΗ Δ/ΝΣΗ Π. & Δ. ΕΚΠΑΙΔΕΥΣΗΣ Αρ. Πρωτ.: Φ.14.1/5961 ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΥΠΗΡΕΣΙΑ ΔΙΟΙΚΗΤΙΚΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΚΗΣ
Φυσική Β Γυμνασίου Κεφάλαιο 3 Δυνάμεις
Φυσική Β Γυμνασίου Κεφάλαιο 3 Δυνάμεις Σχέσεις Σύνθεση Ισορροπία Ίσες Δυνάμεις Δυο δυνάμεις F 1 και F 2 είναι ίσες αν και μόνο αν έχουν την ίδια διεύθυνση, την ίδια φορά και το ίδιο μέτρο. F = F Στην περίπτωση
Πανελλαδικές εξετάσεις 2017
Πανελλαδικές εξετάσεις 7 Ενδεικτικές απαντήσεις στο μάθημα «Μαθηματικά ΟΠ» Θέμα Α Α Θεωρία σχολικού βιβλίου σελ 36 Α α) Λ β) H συνάρτηση ( ) είναι παραγωγίσιμη σε αυτό αφού: ( ) () lim lim είναι συνεχής
ΣΥΝΘΕΣΗ ΔΥΟ ΑΠΛΩΝ ΑΡΜΟΝΙΚΩΝ ΤΑΛΑΝΤΩΣΕΩΝ ΠΟΥ ΕΧΟΥΝ ΤΗΝ ΙΔΙΑ ΔΙΕΥΘΥΝΣΗ ΤΑΛΑΝΤΩΣΗΣ, ΙΔΙΑ ΣΥΧΝΟΤΗΤΑ ΚΑΙ ΙΔΙΑ ΘΕΣΗ ΙΣΟΡΡΟΠΙΑΣ.
ΣΥΝΘΕΣΗ ΔΥΟ ΑΠΛΩΝ ΑΡΜΟΝΙΚΩΝ ΤΑΛΑΝΤΩΣΕΩΝ ΠΟΥ ΕΧΟΥΝ ΤΗΝ ΙΔΙΑ ΔΙΕΥΘΥΝΣΗ ΤΑΛΑΝΤΩΣΗΣ, ΙΔΙΑ ΣΥΧΝΟΤΗΤΑ ΚΑΙ ΙΔΙΑ ΘΕΣΗ ΙΣΟΡΡΟΠΙΑΣ. ΜΕΘΟΔΟΛΟΓΙΑ Έστω ότι δύο ταλαντώσεις έχουν αντίστοιχα εξισώσεις: 1 η περίπτωση:
ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΕΡΓΑΣΙΑ 7
ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΕΡΓΑΣΙΑ 7 3 ος ΝΟΜΟΣ ΝΕΥΤΩΝΑ-ΣΥΝΙΣΤΑΜΕΝΗ-ΑΝΑΛΥΣΗ ΔΥΝΑΜΗΣ ΚΑΙ ΙΣΟΡΡΟΠΙΑ ΣΤΟ ΕΠΙΠΕΔΟ 1. Δύο σώματα με μάζες m 1 =8Kg και m 2 =5Kg που κινούνται σε οριζόντιο επίπεδο με αντίθετες κατευθύνσεις,
1. * Η γραφική παράσταση µιας συνάρτησης f έχει εφαπτοµένη στο x 0 την ευθεία y = αx + β, µε α 0, όταν. είναι + είναι -
Ερωτήσεις πολλαπλής επιλογής. * Η γραφική παράσταση µιας συνάρτησης f έχει εφαπτοµένη στο την ευθεία = α + β, µε α, όταν Α. ( Β. η f είναι συνεχής στο = α R Γ. η f δεν είναι συνεχής στο. το όριο Ε. το
και δεν είναι παραγωγίσιμη σε αυτό, σχολικό βιβλίο σελ. 99 Α3. Ορισμός σελ. 73 Α4. α) Λ β) Σ γ) Λ δ) Σ ε) Σ , δηλαδή αρκεί x 1 x
ΘΕΜΑ Α Α1. Απόδειξη σχολικού βιβλίου σελ. 15 Α. α) Ψ β) Σχήμα 1 και μελέτη της f, όπου η f είναι συνεχής στο και δεν είναι παραγωγίσιμη σε αυτό, σχολικό βιβλίο σελ. 99 Α. Ορισμός σελ. 7 Α. α) Λ β) Σ γ)
Τμήμα Μηχανικών Πληροφορικής, Ωρολόγιο Πρόγραμμα Εαρινού Εξαμήνου Ακ. Έτους , 2 ο Εξάμηνο
Τμήμα Μηχανικών Πληροφορικής, Ωρολόγιο Πρόγραμμα Εαρινού Εξαμήνου Ακ. Έτους 20, 2 ο Εξάμηνο Ξένη Γλώσσα ΙΙ, Θεωρία, ΔΙΑΛ.1, Ε. Σπαπή Θεωρία, Αμφιθέατρο, Κ. Χαϊκάλης Αρχές Επικοινωνιών, Θεωρία, Αμφιθέατρο,
Τμήμα Μηχανικών Πληροφορικής, Ωρολόγιο Πρόγραμμα Εαρινού Εξαμήνου Ακ. Έτους , 2 ο Εξάμηνο
9-10 Ξένη Γλώσσα ΙΙ, Θεωρία, ΔΙΑΛ.1, Ε. Σπαπή 11-12 Θεωρία, Αμφιθέατρο, Κ. Χαϊκάλης Αρχές Επικοινωνιών, Θεωρία, Αμφιθέατρο, K. Χαϊκάλης 15-16 Αρχές Επικοινωνιών, Α.Π., ΔΙΑΛ.3, K. Χαϊκάλης Τμήμα Μηχανικών
ΠΙΝΑΚΑΣ ΚΑΤΑΤΑΞΗΣ & ΒΑΘΜΟΛΟΓΙΑΣ ΥΠΟΨΗΦΙΩΝ ΚΑΤΗΓΟΡΙΑΣ ΥΕ ΚΩΔΙΚΟΣ ΘΕΣΗΣ: 200 ΔΙΑΡΚΕΙΑ ΣΥΜΒΑΣΗΣ: 2 ΜΗΝΕΣ
ΜΑΡΚΟΠΟΥΛΟΥ ΜΕΣΟΓΑΙΑΣ ΑΤΤΙΚΗΣ (Κ.Δ.Ε.Μ.) ΠΙΝΑΚΑΣ ΚΑΤΑΤΑΞΗΣ & Σ ΚΩΔΙΚΟΣ ΘΕΣΗΣ: 200 ΕΙΔΙΚΟΤΗΤΑ: ΥΕ ΕΡΓΑΤΕΣ/ΤΡΙΕΣ ΚΑΘΑΡΙΟΤΗΤΑΣ ΕΞΩΤΕΡΙΚΩΝ ΧΩΡΩΝ ΠΑΤΡΟΣ ΕΜΠΕΙΡΙΑ (4) ή (5) sort 671 ΧΑΛΙΜΟΣ ΝΙΚΟΛΑΟΣ ΓΕΩ Π376877
ΤΡΙΑΞΟΝΙΚΗ ΦΟΡΤΙΣΗ UU
ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ ΓΕΩΤΡΗΣΗ: ΒΑΘΟΣ ΔΕΙΓΜΑΤΟΣ : ΠΕΡΙΓΡΑΦΗ: ΣΥΓΚΕΝΤΡΩΤΙΚΟΣ ΠΙΝΑΚΑΣ ΣΤΟΙΧΕΙΩΝ ΔΟΚΙΜΗΣ 1 (πλευρική τάση σ 3 =100kPa) Δοκίμιο: Αδιατάρακτο Διαμορφωμένο Χ Σταθερά μηκ/τρου μετακ.
ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ. Μ. Παπαδρακάκης Στατική ΙΙΙ : Σύγχρονες Μέθοδοι Αναλύσεως Φορέων. Στοιχείο Χωρικού Πλαισίου (S2) j k x1
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Στοιχείο Χωρικού Πλαισίου (S) 5 6 4 x 8 9 ( ) 7 0 F 4 5 6 7 8 9 0 u F 4 5 6 7 8 9 0 u F 4 5 6 7 8 9 0 u M 4 4 4 44 45 46 47 48 49 40 4 4 θ M 5 5 5
Unitair ΕΠΕ Σπ. Πάτση 20, Βοτανικός, 10447, Αθήνα. Διάφορα ρακόρ συνδέσεων. Τηλ: Fax:
Διάφορα ρακόρ συνδέσεων Τάπα αρσενική ορειχάλκινη Τάπες εξάγωνες με αρσενικό σπείρωμα από G1/8" έως G1/2" Νίπελ απλό ορειχάλκινο Νίπελ συνδέσεως ορειχάλκινα με ίδια αρσενικά σπειρώματα από Μ5 έως G1" Συστολή
Αθήνα, 1/07/2016 Αρ. Πρωτ. ΕΣΔΥ/οικ1813
www.esdy.edu.gr ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΥΓΕΙΑΣ Λ.ΑΛΕΞΑΝΔΡΑΣ 196, 115 21 Αθήνα Τ. +30 213 2010105, 106, 108 Φ. +30 210 6460658 Ε. education@esdy.edu.gr Διεύθυνση Γραμματείας / Γραφείο Εκπαίδευσης
Άσκηση 1 η ίνονται οι δύο παρακάτω φορείς, µε αριθµηµένους τους ενεργούς βαθµούς ελευθερίας τους:
Άσκηση 1 η ίνονται οι δύο παρακάτω φορείς, µε αριθµηµένους τους ενεργούς βαθµούς ελευθερίας τους: (α) Επίπεδο δικτύωµα (β) Επίπεδο πλαίσιο Ζητείται να µορφωθούν συµβολικά τα µητρώα στιβαρότητας των δύο
ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΔΙΑΓΩΝΙΣΜΑΤΟΣ ΑΛΓΕΒΡΑΣ Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΥΡΙΑΚΗ 7 ΔΕΚΕΜΒΡΙΟΥ 2014
ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΔΙΑΓΩΝΙΣΜΑΤΟΣ ΑΛΓΕΒΡΑΣ Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΥΡΙΑΚΗ 7 ΔΕΚΕΜΒΡΙΟΥ 04 ΘΕΜΑ Α Α. Θεωρία από το σχολικό βιβλίο σελίδα 60. Α. α) Θεωρία από το σχολικό βιβλίο σελίδα 3. β) Θεωρία από το σχολικό
Ερωτήσεις αντιστοίχισης
Ερωτήσεις αντιστοίχισης 1. ** Να αντιστοιχίσετε κάθε ευθεία που η εξίσωσή της βρίσκεται στη του πίνακα (Ι) µε τον συντελεστή της που βρίσκεται στη, συµπληρώνοντας τον πίνακα (ΙΙ) (α, β 0). 1. ε 1 : y =
- ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 2: ΜΟΝΟΤΟΝΙΑ ΣΥΝΑΡΤΗΣΗΣ ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΗΣ
ΚΕΦΑΛΑΙΟ 2ο: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 2: ΜΟΝΟΤΟΝΙΑ ΣΥΝΑΡΤΗΣΗΣ ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΗΣ [Κεφ. 1.3: Μονότονες Συναρτήσεις - Αντίστροφη Συνάρτηση σχολικού βιβλίου]. ΣΗΜΕΙΩΣΕΙΣ Μονοτονία
Προσδιοριστικοί όροι και μοναδιαία ρίζα (από κοινού υποθέσεις)
ΜΑΘΗΜΑ 6ο Προσδιοριστικοί όροι και μοναδιαία ρίζα (από κοινού υποθέσεις) Είδαμε στους παραπάνω ελέγχους (DF και ADF) που κάναμε προηγουμένως ότι εξετάζουμε στη μηδενικήυπόθεσημόνοτοσυντελεστήδ 2. Δεν αναφερόμαστε
ΠΡΟΓΡΑΜΜΑ ΓΡΑΠΤΩΝ ΕΞΕΤΑΣΕΩΝ ΕΦ' ΟΛΗΣ ΤΗΣ ΥΛΗΣ ΤΩΝ ΥΠΟΨΗΦΙΩΝ ΔΙΔΑΚΤΟΡΩΝ ΑΙΘΟΥΣΑ ΣΥΝΕΔΡΙΑΣΕΩΝ ΤΜΗΜΑΤΟΣ Ο.Δ.Ε., ΚΤΙΡΙΟ Θ, 3ος ΟΡΟΦΟΣ
1. ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ (Κ. ) ΔΕΥΤΕΡΑ 2. ΑΝΑΛΥΣΗ ΚΑΙ ΣΧΕΔΙΑΣΜΟΣ ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ (Κ. ) M. AΛΤΑ Β.ΚΥΡΟΥ (ΑΝΑΠΛΗΡΩΜΑΤΙΚΗ) 15/10/2012 3. ΤΕΧΝΙΚΕΣ ΠΡΟΣΟΜΟΙΩΣΗΣ (Α. ΓΕΩΡΓΙΟΥ) ΚΑΤΑΘΕΣΗ ΒΑΘΜΟΛΟΓΙΑΣ ΜΕΧΡΙ
.. ntsets ofa.. d ffeom.. orp ism.. na s.. m ooth.. man iod period I n open square. n t s e t s ofa \quad d ffeom \quad orp ism \quad na s \quad m o
G G - - -- - W - - - R S - q k RS ˆ W q q k M G W R S L [ RS - q k M S 4 R q k S [ RS [ M L ˆ L [M O S 4] L ˆ ˆ L ˆ [ M ˆ S 4 ] ˆ - O - ˆ q k ˆ RS q k q k M - j [ RS ] [ M - j - L ˆ ˆ ˆ O ˆ [ RS ] [ M
λ π λ π λ λ Ε σ ρ σ ρ "'(4$ GPy t#"$!/"'"4.94(&1&$+ &1+ 9#/$ '5+ ~4-1+ 3"$ &,9+!#3$Q(%!4,9+ -&14 /!#",?5 &4 #$.",-9?4,&5&4 RFEH GEE UP $ (#"$.74,4&$" -! &"%@+ @4&$-1+
14SYMV
Η Ι Η Η Ο Α ΙΑ Α Ο Α Η Ο Α Ο Α ι ό βα : 1 / 2014 Α Η #14.760,00# Ο Η Η Α Α Ο Ι Ι Ω Ω βα ό α η ο ι αιά α 1 β ίο α : 1) Αφ ό ο α α ο ο.... ία «Α ΙΟ Α Ω Η Ι Ι Ο Ω Α Ο» (.Α...), ο ό ι α ο ί αι α ό ο ό ο ο
Ερωτήσεις πολλαπλής επιλογής
Ερωτήσεις πολλαπλής επιλογής. * Το θεώρηµα µέσης τιµής του διαφορικού λογισµού για κάθε α, β R και τη συνάρτηση f () = e εξασφαλίζει την ύπαρξη ενός αριθµού κ R, ώστε να ισχύει Α. e α-β = e κ (α - β) Β.
Α. : /2614/ SYMV
α. /.Y/14 Α. : /2614/24-06-2014 Α Α Α Α Ω Α Α Ω Α Α Α Ϋ Α Ω Α Α.... Α Α Α Ω 14SYMV002275566 2014-09-05 Α α α ι 13/06/2014, α ο αφό α ο α βα, αφ ό ο...., ία «α ίο ό οια ι ι ο ο α Α.... - ο α ό οια α ο α
Μ Δ Δ Κ Α Ι Τ Φ Η Λ Δ Α Κ Ο Ο Μ Δ Σ Ρ Ι Κ Δ Τ Υ Ν Ο Σ Η Σ Δ Γ Ι Γ Α Κ Σ Ο Ρ Ι Κ Η Γ Ι Α Σ Ρ Ι Β Η ΣΟΤ Π Τ Ρ Ο Π Ο Τ Λ Ο Τ Κ Χ Ν Σ Α Ν Σ Ι Ν Ο Τ
ΠΑΝΔΠΙΣΗΜΙΟ ΠΑΣΡΧΝ ΥΟΛΗ ΔΠΙΣΗΜΧΝ ΤΓΔΙΑ Σ Μ ΗΜΑ ΙΑΣΡΙΚΗ Χ Σ ΟΡΙΝΟΛΑΡΤΓΓΟΛΟΓΙΚΗ ΚΛΙΝΙΚΗ Γ Ι Δ Τ Θ Τ Ν Σ Η : Κ Α Θ Η Γ Η Σ Η Π. Γ. Γ Κ Ο Τ Μ Α Δ Π Ι Γ Ρ Α Η Σ Η Υ Ρ Η Η Α Ν Σ Ι Β Ι Ο Σ Ι Κ Χ Ν Σ Ι Μ Δ Δ Κ
Έσοδα - Έξοδα Οδηγίες διαχείρισης αγοράς εμπορευμάτων ηλεκτρονικού εξοπλισμού βάση ΠΟΛ1150/2017 (Άρθρο 39α)
Έσοδα - Έξοδα Οδηγίες διαχείρισης αγοράς εμπορευμάτων ηλεκτρονικού εξοπλισμού βάση ΠΟΛ1150/2017 (Άρθρο 39α) Data Communication A.E. 1 ΑΓΟΡΑ ΗΛΕΚΤΡΟΝΙΚΟΥ ΕΞΟΠΛΙΣΜΟΥ ΒΑΣΗ ΠΟΛ.1150/2017 Άρθρο 39α Για να καλύψετε
Σειρά Προβλημάτων 4 Ημερομηνία Παράδοσης: 13/11/13
Σειρά Προβλημάτων 4 Ημερομηνία Παράδοσης: 13/11/13 Άσκηση 1 (20 μονάδες) Οι ιδιότητες διατυπώνοντας στην PLTL ως εξής: (α) Αν ο καταχωρητής Κ 1 κάποια στιγμή πάρει την τιμή 1 θα διατηρήσει την τιμή αυτή
ΑΔΑ: ΒΙΕΡ4691Ω3-ΗΟΒ. ΥΠΟΔΕΙΓΜΑ Α : Διαγραφέντες από τα Μητρώα Ασφαλισμένων
ΥΠΟΔΕΙΓΜΑ Α : Διαγραφέντες από τα Μητρώα Ασφαλισμένων ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΕΡΓΑΣΙΑΣ, ΚΟΙΝΩΝΙΚΗΣ ΑΣΦΑΛΙΣΗΣ & ΠΡΟΝΟΙΑΣ Οργανισμός Ασφάλισης Ο.Α.Ε.Ε. Ελευθέρων Επαγγελματιών ΔΙΕΥΘΥΝΣΗ: ΤΜΗΜΑ:. Ταχ.
ÈÅÌÅËÉÏ ÅËÅÕÓÉÍÁ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α. Α1. Θεωρία (θεώρηµα Fermat) σχολικό βιβλίο, σελ Α2. Θεωρία (ορισµός) σχολικό βιβλίο, σελ Α3.
ΘΕΜΑ Α ΑΠΑΝΤΗΣΕΙΣ Α Θεωρία (θεώρηµα Frmat) σχολικό βιβλίο, σελ 6-6 Α Θεωρία (ορισµός) σχολικό βιβλίο, σελ 8 Α3 ΘΕΜΑ Β α β γ δ ε Σ Σ Λ Λ Σ B Έχουµε από υπόθεση ότι: z 3i z 3i () Όµως z 3i z 3i z 3 i ()
Α α ία Ά α Αχαΐα οιω ία
ό ο ο Α ο α ο ια ι, ι ο Α. α α ο, α ί αι ο φιο Α αΐα αι Α. Α α Α Α ό ο, α οβά ια αί Α ά ο α ί ο, Α ι ο α Α ό ο ο Ά ο, ο α α ία Α ι ο ί ο α ία, ι ο ο ο ό ο α, α ιο ο ο ίο α α ί ο οι Α ά α α ί ο, ι ο ο ο
7.2 ΜΕΛΕΤΗ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ f(x) = x
7. ΜΕΛΕΤΗ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ () = α ΘΕΩΡΙΑ. Μορφή της συνάρτησης (Ισοσκελής υπερβολή) Ιδιότητες Πεδίο ορισµού g() = R = (, 0) (0, + ) Είναι περιττή, άρα συµµετρική ως προς την αρχή των αξόνων Είναι γν.φθίνουσα
ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΤΗΣ Γ' ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ
ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΤΗΣ Γ' ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΟΙ ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ ΑΠΟ ΤΟΝ ΚΑΘΗΓΗΤΗ κύριο ΦΟΥΝΤΟΥΛΑΚΗ ΜΑΝΩΛΗ του ΦΡΟΝΤΙΣΤΗΡΙΟΥ www.orionidf.gr ΘΕΜΑ Α Α. Απόδειξη
ΥΠΟΔΕΙΓΜΑ 1 AΙΤΗΣΗ - ΔΗΛΩΣΗ. Επώνυμο ή Επωνυμία:.. 2. Παρακαλώ να μου εγκρίνετε την απαλλαγή
ΥΠΟΔΕΙΓΜΑ 1 AΙΤΗΣΗ - ΔΗΛΩΣΗ Προς Τη Δ.Ο.Υ. Επώνυμο ή Επωνυμία:.. 2. Παρακαλώ να μου εγκρίνετε την απαλλαγή........ από το Φ.Π.Α. με την χρήση «Ειδικού Διπλοτύπου Δελτίου Απαλλαγής από το Φ.Π.Α.» για την
Τριγωνοµετρική (ή πολική) µορφή µιγαδικού αριθµού. Έστω z = x+ yi ένας µη µηδενικός µιγαδικός αριθµός και OM
1 Τριγωνοµετρική (ή πολική µορφή µιγαδικού αριθµού Έστω z = x+ yi ένας µη µηδενικός µιγαδικός αριθµός και OM η αντίστοιχη διανυσµατική ακτίνα του Ονοµάζοµε όρισµα του µιγαδικού αριθµού z κάθε µια από τις
z - 3i + z + 3i = 2 z - 3i + z - 3i = 2 2 z - 3i = 2 z - 3i = 1 άρα ο γ.τ. των εικόνων του z είναι
ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 6 ΜΑΪΟΥ ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α A. Σχολικό βιβλίο σελίδες 6-6 Α. Σχολικό βιβλίο σελίδα 8 Α3.
ΑΛΓΕΒΡΑ Β Λυκείου ( ) ΑΣΚΗΣΕΙΣ. 1. Να λύσετε τις παρακάτω εξισώσεις : 2 4y. x x 1. στ) 1 3y. = 0, είναι κάθετη στην ευθεία ε 2 : y =
ΑΛΓΕΒΡΑ Β Λυκείου ΠΑΝΤΕΛΗΣ ΤΡΙΜΗΣ ΜΑΘΗΜΑΤΙΚΟΣ Κ Ε Φ Α Λ Α Ι Ο ο - Φ Υ Λ Λ Ο Νο ΛΥΣΗ - ΔΙΕΡΕΥΝΗΣΗ ΣΥΣΤΗΜΑΤΟΣ ΔΥΟ ΓΡΑΜΜΙΚΩΝ ΕΞΙΣΩΣΕΩΝ ΜΕ ΔΥΟ ΑΓΝΩΣΤΟΥΣ ΑΣΚΗΣΕΙΣ. Να λύσετε τις παρακάτω εξισώσεις : α) 5 +