Noriyasu MASUMOTO, Waseda University, Okubo, Shinjuku, Tokyo , Japan Hiroshi YAMAKAWA, Waseda University
|
|
- Ἰωάννης Μιαούλης
- 8 χρόνια πριν
- Προβολές:
Transcript
1 A Study on Predctve Control Usng a Short-Term Predcton Method Based on Chaos Theory (Predctve Control of Nonlnear Systems Usng Plural Predcted Dsturbance Values) Noryasu MASUMOTO, Waseda Unversty, Okubo, Shnjuku, Tokyo , Japan Hrosh YAMAKAWA, Waseda Unversty A predctve control method for nonlnear mechancal systems s dscussed n ths study. values near future of dsturbance tme seres of the controlled system are predcted by a short-term predcton method based on chaos theory whch was proposed by the authors. The deas of the mum samplng perod and the forward horzon are ntroduced n the predcton method and methods to obtan them are shown n ths work. In order to show the effectveness of the proposed method when t s appled to nonlnear systems, numercal examples for a Duffng system are presented. Key Words : Vbraton Control, Predctve Control, Chaos Theory, Short-Term Predcton, Duffng System Duffng mx+ cx+ k 1 x + k 3 x 3 = a cos ω t Duffng a 5001 Duffng,, 64-65, C (1998), Thompson, J.M.T. and Stewart, H.B., Nonlnear Dynamcs and Chaos, (1986), 3, Wley. t * Forward Horzon h f Ke * Backward Horzon h b Dsplacement x m Uncontrolled Predctve control Predctve control + feedback control Tme step Fg. A1 Control results of the dsplacement
2 Duffng Dsturbance Mechancal system Output {W} = (..., w,...) {Y} = (..., y,...) Fg. 1 Dsturbance-output relaton of a mechancal system Table 1 Classfcaton of predctve control methods Mechancal system (Model s known) Lnear Nonlnear Target tme seres of predcton Dsturbance Output Dsturbance Output The number of predcted values used for control forces n x (t)= f x(t) + B u (t)+cw(t) y (t)=dx(t) x y u w n m l f n B C D n 1 n l n m f B C D u u (t)=u p (t)+u f (t) u p u f u p h f 1 u p (k τ)= Ω T w ((k + ) τ) =0 h ^ f w h f Ω k τ τ τ h f h f Ω ( = 0, 1,..., h f -1) h 1 u p ( τ; h)= Ω T w (( + ) τ) =0 h h Ω ( = 0, 1,..., h -1) h o + J h f (τ; h)= x T (( + ) τ) Qx(( + ) τ) =1 h o 1 =0 Ru p (( + ) τ ; h) Q n n R h o
3 x ( τ ) = 0 Runge-Kutta τ h J h f ( τ ; h ) h h = 1,,..., h max h h - J h f ( τ ; h ) = 1, 1+1,..., τ h - J h f ( τ ; h ) 1 h - J h f ( τ ; h ) h h f h f h f Ω ( = 0, 1,..., h f -1) = + h o -1 + h o -1 ( + h o -1) + h max -1 h o h max {X} { X}=, x 1, x, x +1, {X} { X * }= x 1, x,, x n η η x ^ n x n +1 δ {X} η δ +1 δ δ η Takens {X * } ^x n + λ ( λ = 1,,..., h f ) {X * } λ {X * } {X * λ} s λ {X * } s λ = mod ( n 1, λ )+1 {X * ^ λ} x n + λ λ {X * } ^x n + λ ( λ = 1,,..., h f )... {X * }=( x 1 x... x s x n -... x n -... x n -1 x n ) δ η η Gona {X * λ} {X * } (η r ) = x (η 1),, x 1, x T ( = η, η +1,, n ) η η r (η ) {X * } η η r (η ) x x x +1 x +1 = f (η ) (η r ) r (η ) f (η ) (η ) x +1 x j +1 (ε)= MAX (η ) (η ) (η r j B (ε) d r ) (η ), r j C B (η ) (ε ) r (η ) ε η d C (η ) (ε)=max x s... x n - x n - {X * }=( x s... x n - x n - x n ) Fg. Generaton of partal tme seres (η ) C (ε) C (η ) (ε ) C (η ) (ε ) η η =, 3, 4,... C (η ) (ε ) η {X * } {X * λ} Ke λ λ 1 λ h f h f h f η η Takens x n
4 Ke * = MAX Ke λ λ Ke * λ {X * λ} = n η = Ke * * ) C n (ε)= x n +λ x j +λ MAX * ) (ε) d r * ) j r j * ) B n * ) r * ) T = x * 1) λ,, x λ, x ( = s λ + * 1) λ,, n λ, n ) {X * λ} x n ^x n +λ r * ) j r * ) n r * ) n C * ) x (ε)= n +λ x n +λ d r * ) * ) n ^ C p C * ) (ε ) x n +λ x n +λ = x n +λ + C p d ( r * ) * ) n ) when xn x n +λ x n +λ C p d ( r * ) * ) n ) when xn > x n +λ x n x n +λ x n x n +λ {X * } ^x n + λ ( λ = 1,,..., h f ) C p h b h b C p E (µ,c 1 p )= = 1 x +λ (µ,c p ) x +λ x +λ 1 1 n - λ µ Ke * ~ x +λ ( µ, C p ) Ke* µ µ J hb ( µ, C p ) µ Table Optmum desgn problem for C p Desgn varable C p (Intal value) (1.00) Objectve functon J h b (, C p ) = ~ x + (, C p ) - x + x + Constrant condton C p C p 1 C p µ C p µ µ =, 3,... µ-e 1 ( µ, C p ) µ I mn = { µ MIN µ E ( µ,c 1 p )} I mn µ * h b = Ke * + µ * h f +1 µ * C p C p ^x n + λ ( λ = 1,,..., h f ) h b x n -(h b -1),..., x n -1, x n h b µ * C p x n Ke * r * ) n r * ) n µ * r * ) n r * ) n + {X λ * } t Ke * r * ) n - λ r * ) n t t t * t * f ( t ; Ke * )= = 1 * ) g * Ke r + λ * ) g * Ke r + λ g Ke * ( r * ) ) = x gke* r * ) Ke * r * ) ( 1 ) t t ( = 1,,... ) r * ) r * ) Ke * -dmensonal phase space r *) r *) n n + r *) n - r *) r *) n n + - λ Fg. 3 The nearest pont to the current pont n phase space
5 r * ) t * Duffng mx+ cx+ k 1 x + k 3 x 3 = a cos ω t a a = 7.50 N Dynamcs a (t) = sn ( t + π 4 ) 6.90 a N f (t)=a (t) cos ω t + nose Dsplacement x m Ampltude a N Ampltude of exctaton a N Fg. 4 Bfurcaton dagram of a Duffng system n ths study Table 3 Parameters of the Duffng system Mass of partcle m Kg 1.00 Dampng coeffcent c Ns/m Stffness coeffcent of x k 1 N/m Stffness coeffcent of x 3 k 3 N/m Angular frequency of exctaton rad/s Tme t sec Fg. 5 Tme seres of dsturbance ( t = sec ) Estmaton value Objectve functon Ke = 5 Ke = 7 Ke = Samplng perod t sec 10 - Fg. 6 Calculaton results of the mum samplng perod Ke Horzon parameter h Fg. 7 h - J h ( τ ; h) plots f Table 4 Embeddng dmensons t * t = sec t = sec t * = sec h - J h f ( τ ; h ) h f = 10 λ = 1,,..., h f = 10 λ Ke * = 9 µ-e 1 ( µ, C p ) µ-c p 349 µ 435 C p µ * = 400 µ * C p = h f =
6 Error rate C p I mn = { } } The number of Ke * -dmensonal ponts Fg. 8 - E (, C p ) plots 1 Dsplacement x m Dsplacement x m The number of Ke * -dmensonal ponts Fg. 9 - C p plots Uncontrolled Predctve control Predctve control + feedback control Tme step Fg. 10 Control results (controlled from the 5001st step) Uncontrolled Predctve control Predctve control + feedback control Tme step Fg. 11 Control results (controlled from the 8001st step) Duffng,,, 11-6, (1975), Farmer, J. D. and Sdorowch, J., Predctng chaotc tme seres, Phys. Rev. Lett., 59-8 (1987), Casdagl, M., Nonlnear predcton of chaotc tme seres, Physca D, 35 (1989), Sughara, G. and May, R. M., Nonlnear forecastng as a way of dstngushng chaos from measurement error n tme seres, Nature, 344 (1990), Gona, M., Cmagall, V., Morgav, G. and Perrone, A., Local predcton of Chaotc tme seres, Proc. the 33rd Mdwest Symposum on Crcuts and Systems, (1990), ,,,, No I (1997-3), Masumoto, N. and Yamakawa, H., A Study on Predctve Control Usng Short-Term Predcton Method Based on Chaos Theory, Proc. the 1997 ASME Internatonal Mechancal Engneerng Congress and Exposton, DE- 95/AMD-3, (1997), ,,,, No I (1998-3), ,,, 64-65, C (1998), Masumoto, N. and Yamakawa, H., A Study on Predctve Control Usng Short-Term Predcton Method Based on Chaos Theory (Determnaton of the Control Force Usng Plural Predcted Dsturbances), Proc. the 1998 ASME Internatonal Mechancal Engneerng Congress and Exposton, DE-97/DSC-65, (1998), ,,, No ( ), Takens, F., Detectng strange attractors n turbulence, Dynamcal Systems and Turbulence, Warwck 1980, Lecture Notes n Mathematcs, 898, (1981), , Sprnger-Verlag. Thompson, J.M.T. and Stewart, H.B., Nonlnear Dynamcs and Chaos, (1986), 3, Wley. Nusse, H.E. and Yorke, J.A., Dynamcs: Numercal Exploratons, nd Ed., (1998), Sprnger-Verlag.
Phasor Diagram of an RC Circuit V R
ESE Lecture 3 Phasor Dagram of an rcut VtV m snt V t V o t urrent s a reference n seres crcut KVL: V m V + V V ϕ I m V V m ESE Lecture 3 Phasor Dagram of an L rcut VtV m snt V t V t L V o t KVL: V m V
ΠΤΥΧΙΑΚΗ/ ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΤΥΧΙΑΚΗ/ ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ «ΚΛΑ ΕΜΑ ΟΜΑ ΑΣ ΚΑΤΑ ΠΕΡΙΠΤΩΣΗ ΜΕΣΩ ΤΑΞΙΝΟΜΗΣΗΣ ΠΟΛΛΑΠΛΩΝ ΕΤΙΚΕΤΩΝ» (Instance-Based Ensemble
Multi-dimensional Central Limit Theorem
Mult-dmensonal Central Lmt heorem Outlne () () () t as () + () + + () () () Consder a sequence of ndependent random proceses t, t, dentcal to some ( t). Assume t 0. Defne the sum process t t t t () t ();
Multi-dimensional Central Limit Theorem
Mult-dmensonal Central Lmt heorem Outlne () () () t as () + () + + () () () Consder a sequence of ndependent random proceses t, t, dentcal to some ( t). Assume t 0. Defne the sum process t t t t () t tme
5 Haar, R. Haar,. Antonads 994, Dogaru & Carn Kerkyacharan & Pcard 996. : Haar. Haar, y r x f rt xβ r + ε r x β r + mr k β r k ψ kx + ε r x, r,.. x [,
4 Chnese Journal of Appled Probablty and Statstcs Vol.6 No. Apr. Haar,, 6,, 34 E-,,, 34 Haar.., D-, A- Q-,. :, Haar,. : O.6..,..,.. Herzberg & Traves 994, Oyet & Wens, Oyet Tan & Herzberg 6, 7. Haar Haar.,
A Method of Trajectory Tracking Control for Nonminimum Phase Continuous Time Systems
IIC-11-8 A Method of Trajectory Tracking Control for Nonminimum Phase Continuous Time Systems Takayuki Shiraishi, iroshi Fujimoto (The University of Tokyo) Abstract The purpose of this paper is achievement
Aerodynamics & Aeroelasticity: Eigenvalue analysis
Εθνικό Μετσόβιο Πολυτεχνείο Natonal Techncal Unversty of Athens Aerodynamcs & Aeroelastcty: Egenvalue analyss Σπύρος Βουτσινάς / Spyros Voutsnas Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
8.1 The Nature of Heteroskedasticity 8.2 Using the Least Squares Estimator 8.3 The Generalized Least Squares Estimator 8.
8.1 The Nature of Heteroskedastcty 8. Usng the Least Squares Estmator 8.3 The Generalzed Least Squares Estmator 8.4 Detectng Heteroskedastcty E( y) = β+β 1 x e = y E( y ) = y β β x 1 y = β+β x + e 1 Fgure
A Sequential Experimental Design based on Bayesian Statistics for Online Automatic Tuning. Reiji SUDA,
Bayes, Bayes mult-armed bandt problem Bayes A Sequental Expermental Desgn based on Bayesan Statstcs for Onlne Automatc Tunng Re SUDA, Ths paper proposes to use Bayesan statstcs for software automatc tunng
Proposal of Terminal Self Location Estimation Method to Consider Wireless Sensor Network Environment
1 2 2 GPS (SOM) Proposal of Termnal Self Locaton Estmaton Method to Consder Wreless Sensor Network Envronment Shohe OHNO, 1 Naotosh ADACHI 2 and Yasuhsa TAKIZAWA 2 Recently, large scale wreless sensor
A Method for Determining Service Level of Road Network Based on Improved Capacity Model
30 4 2013 4 Journal of Hghway and Transportaton Research and Development Vol. 30 No. 4 Apr. 2013 do10. 3969 /j. ssn. 1002-0268. 2013. 04. 018 1 1 2 1. 4000742. 201804 2 U491. 1 + 3 A 1002-0268 201304-0101
Vol. 34 ( 2014 ) No. 4. J. of Math. (PRC) : A : (2014) Frank-Wolfe [7],. Frank-Wolfe, ( ).
Vol. 4 ( 214 ) No. 4 J. of Math. (PRC) 1,2, 1 (1., 472) (2., 714) :.,.,,,..,. : ; ; ; MR(21) : 9B2 : : A : 255-7797(214)4-759-7 1,,,,, [1 ].,, [4 6],, Frank-Wolfe, Frank-Wolfe [7],.,,.,,,., UE,, UE. O-D,,,,,
Study on Re-adhesion control by monitoring excessive angular momentum in electric railway traction
() () Study on e-adhesion control by monitoring excessive angular momentum in electric railway traction Takafumi Hara, Student Member, Takafumi Koseki, Member, Yutaka Tsukinokizawa, Non-member Abstract
9 /393 / Downloaded from energy.kashanu.ac.r at 5:3 0330 on Saturday October 0th 08 * hajakbar@grad.kashanu.ac.r mohammad@kashanu.ac.r. (shunt-apf) :... PSIM. : * 3... Downloaded from energy.kashanu.ac.r
Suppose Mr. Bump observes the selling price and sales volume of milk gallons for 10 randomly selected weeks as follows
Albert Ludwgs Unverst Freburg Department of Emprcal Research and Econometrcs Appled Econometrcs Dr Kestel ummer 9 EXAMPLE IMPLE LINEAR REGREION ANALYI uppose Mr Bump observes the sellng prce and sales
Stochastic Finite Element Analysis for Composite Pressure Vessel
* ** ** Stochastc Fnte Element Analyss for Composte Pressure Vessel Tae Kyung Hwang Young Dae Doh and Soon Il Moon Key Words : Relablty Progressve Falure Pressure Vessel Webull Functon Abstract ABAQUS
(8) 017 У У θβ1.771...... ю E-mal: avk7777@mal.ru....... Р х х.. 93 % 6 % 166 %. М х х хх. : х х. ю. ю ( ). ю ю. ю. ю ю. - ю ю. ю [1 8] ю. [9 11] ю. [1]. 58 (8) 017 У ю μ (У) юю (. 1). u u+1 ЭС - ЭС (+1)-
Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-570: Στατιστική Επεξεργασία Σήµατος. ιδάσκων : Α. Μουχτάρης. εύτερη Σειρά Ασκήσεων.
Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 2015 ιδάσκων : Α. Μουχτάρης εύτερη Σειρά Ασκήσεων Λύσεις Ασκηση 1. 1. Consder the gven expresson for R 1/2 : R 1/2
EL ECTR IC MACH IN ES AND CON TROL. System s vulnerability assessment of a ircraft guarantee system based on improved FPN
13 3 20095 EL ECTR ICMACH IN ESANDCON TROL Vol113 No13 May 2009 FPN,, (, 150001) :,,Petr( FPN ), BP, FPN,,,, : ; ; Petr; : U661 : A : 1007-449X (2009) 03-0464- 07 System s vulnerablty assessment of a rcraft
Quantum annealing inversion and its implementation
49 2 2006 3 CHINESE JOURNAL OF GEOPHYSICS Vol. 49, No. 2 Mar., 2006,,..,2006,49 (2) :577 583 We C, Zhu P M, Wang J Y. Quantum annealng nverson and ts mplementaton. Chnese J. Geophys. (n Chnese), 2006,49
Consolidated Drained
Consolidated Drained q, 8 6 Max. Shear c' =.185 φ' =.8 tan φ' =.69 Deviator, 8 6 6 8 1 1 p', 5 1 15 5 Axial, Symbol Sample ID Depth Test Number Height, in Diameter, in Moisture Content (from Cuttings),
Forced Pendulum Numerical approach
Numerical approach UiO April 8, 2014 Physical problem and equation We have a pendulum of length l, with mass m. The pendulum is subject to gravitation as well as both a forcing and linear resistance force.
Calculation of ODH classification for Nevis LHe e-bubble Chamber Cryostat
Calculaton of ODH classfcaton for Nevs LHe e-bubble Chamber Cryostat. Physcal parameters Thermal propertes of Helum and Ntrogen Yongln Ju Nevs Laboratores, Columba Unversty, NY 533 T 3 [K] Pa 76 [mmhg]
α & β spatial orbitals in
The atrx Hartree-Fock equatons The most common method of solvng the Hartree-Fock equatons f the spatal btals s to expand them n terms of known functons, { χ µ } µ= consder the spn-unrestrcted case. We
8. ΕΠΕΞΕΡΓΑΣΊΑ ΣΗΜΆΤΩΝ. ICA: συναρτήσεις κόστους & εφαρμογές
8. ΕΠΕΞΕΡΓΑΣΊΑ ΣΗΜΆΤΩΝ ICA: συναρτήσεις κόστους & εφαρμογές ΚΎΡΤΩΣΗ (KUROSIS) Αθροιστικό (cumulant) 4 ης τάξεως μίας τ.μ. x με μέσο όρο 0: kurt 4 [ x] = E[ x ] 3( E[ y ]) Υποθέτουμε διασπορά=: kurt[ x]
Nonparametric Bayesian T-Process Algorithm for Heterogeneous Gene Regulatory Network
IPSJ SIG Tecncal Report Vol.-MPS-9 No.5 Vol.-BIO-3 No.5 //6 T,a,b,c,d,e T Drosopla melanogaster RJMCMC Nonparametrc Bayesan T-Process Algortm for Heterogeneous Gene Regulatory Network HIROKI MIYASHITA,a
C F E E E F FF E F B F F A EA C AEC
Proceedings of the International Multiconference on Computer Science and Information Technology pp. 767 774 ISBN 978-83-60810-27-9 ISSN 1896-7094 CFEEEFFFEFBFFAEAC AEC EEEDB DACDB DEEE EDBCD BACE FE DD
V. Finite Element Method. 5.1 Introduction to Finite Element Method
V. Fnte Element Method 5. Introducton to Fnte Element Method 5. Introducton to FEM Rtz method to dfferental equaton Problem defnton k Boundary value problem Prob. Eact : d d, 0 0 0, 0 ( ) ( ) 4 C C * 4
Aerodynamic Design Optimization of Aeroengine Compressor Rotor
17 < > Aerodynamc Desgn Optmzaton of Aeroengne Compressor Rotor, NASA JAXA, Brook Park, Oho, U.S.A., oyama@flab.eng.sas.jaxa.jp Meng-Sng LIOU, NASA Glenn Research Center, Brook Park, Oho, U.S.A. meng-sng.lou-1@nasa.gov,,
[1], [2] - (Danfoss, Rexroth, Char-Lynn. [3, 4, 5]), .. [6]. [7]
OTROL. COISSION OF OTORIZATION AND ENERGETICS IN AGRICULTURE 0, Vol. 6, No. 5, 87 98 -,,, 008,.,., e-mal: mosgv@ukr.net. -,... -. :, -,. [],,.,,.., []. - (Danoss, Rexroth, Char-Lynn. [,, 5]),. -,.. [6]..,
Classical Theory (3): Thermostatics of Continuous Systems with External Forces
Insttute of Flu- & Thermoynamcs Unersty of Segen Classcal Theory (3): Thermostatcs of Contnuous Systems wth External Forces 3/ Σ: Equlbrum State? Isolaton, Inhomogenety External Forces F ϕ Components:...
Variance of Trait in an Inbred Population. Variance of Trait in an Inbred Population
Varance of Trat n an Inbred Populaton Varance of Trat n an Inbred Populaton Varance of Trat n an Inbred Populaton Revew of Mean Trat Value n Inbred Populatons We showed n the last lecture that for a populaton
ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ
ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΕΛΕΝΑ ΦΛΟΚΑ Επίκουρος Καθηγήτρια Τµήµα Φυσικής, Τοµέας Φυσικής Περιβάλλοντος- Μετεωρολογίας ΓΕΝΙΚΟΙ ΟΡΙΣΜΟΙ Πληθυσµός Σύνολο ατόµων ή αντικειµένων στα οποία αναφέρονται
Ingenieurbüro Frank Blasek - Beratender Ingenieur Am Kohlhof 10, Osterholz-Scharmbeck Tel: 04791/ Fax: 04791/
Page: 10 CONTENTS Contents... 10 General Data... 10 Structural Data des... 10 erials... 10 Sections... 10 ents... 11 Supports... 11 Loads General Data... 12 LC 1 - Vollast 120 km/h 0,694 kn/qm... 12 LC,
Ingenieurbüro Frank Blasek - Beratender Ingenieur Am Kohlhof 10, Osterholz-Scharmbeck Tel: 04791/ Fax: 04791/
Page: 1 CONTENTS Contents... 1 General Data... 1 Structural Data des... 1 erials... 1 Sections... 1 ents... 2 Supports... 2 Loads General Data... 3 LC 1 - Vollast 90 km/h 0,39 kn/qm... 3 LC, LG Results
High Performance Voltage Controlled Amplifiers Typical and Guaranteed Specifications 50 Ω System
High Performance Voltage Controlled Amplifiers Typical and Guaranteed Specifications 50 Ω System Typical and guaranteed specifications vary versus frequency; see detailed data sheets for specification
A research on the influence of dummy activity on float in an AOA network and its amendments
2008 6 6 :100026788 (2008) 0620106209,, (, 102206) : NP2hard,,..,.,,.,.,. :,,,, : TB11411 : A A research on the influence of dummy activity on float in an AOA network and its amendments WANG Qiang, LI
Ι ΑΚΤΟΡΙΚΗ ΙΑΤΡΙΒΗ. Χρήστος Αθ. Χριστοδούλου. Επιβλέπων: Καθηγητής Ιωάννης Αθ. Σταθόπουλος
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΗΛΕΚΤΡΙΚΗΣ ΙΣΧΥΟΣ ΕΡΓΑΣΤΗΡΙΟ ΥΨΗΛΩΝ ΤΑΣΕΩΝ ΣΥΜΒΟΛΗ ΣΤΗ ΜΕΛΕΤΗ TΩΝ ΚΑΘΟ ΙΚΩΝ ΑΛΕΞΙΚΕΡΑΥΝΩΝ Ι ΑΚΤΟΡΙΚΗ ΙΑΤΡΙΒΗ Χρήστος
6.3 Forecasting ARMA processes
122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear
Estimating Time of a Simple Step Change in Nonconforming Items in High-Yield Processes
Internatonal Journal of Industral Engneerng & Producton Management (22) March 22, Volume 22, Number 4 pp. 39-33 http://ijiepm.ust.ac.r/ Estmatng Tme of a Smple Step Change n Nonconformng Items n Hgh-Yeld
ME 374, System Dynamics Analysis and Design Homework 9: Solution (June 9, 2008) by Jason Frye
ME 374, System Dynamics Analysis and Design Homewk 9: Solution June 9, 8 by Jason Frye Problem a he frequency response function G and the impulse response function ht are Fourier transfm pairs herefe,
ECE 308 SIGNALS AND SYSTEMS FALL 2017 Answers to selected problems on prior years examinations
ECE 308 SIGNALS AND SYSTEMS FALL 07 Answers to selected problems on prior years examinations Answers to problems on Midterm Examination #, Spring 009. x(t) = r(t + ) r(t ) u(t ) r(t ) + r(t 3) + u(t +
Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.
Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action
DETERMINATION OF DYNAMIC CHARACTERISTICS OF A 2DOF SYSTEM. by Zoran VARGA, Ms.C.E.
DETERMINATION OF DYNAMIC CHARACTERISTICS OF A 2DOF SYSTEM by Zoran VARGA, Ms.C.E. Euro-Apex B.V. 1990-2012 All Rights Reserved. The 2 DOF System Symbols m 1 =3m [kg] m 2 =8m m=10 [kg] l=2 [m] E=210000
A Determination Method of Diffusion-Parameter Values in the Ion-Exchange Optical Waveguides in Soda-Lime glass Made by Diluted AgNO 3 with NaNO 3
大阪電気通信大学研究論集 ( 自然科学編 ) 第 51 号 A Determination Method of Diffusion-Parameter Values in the Ion-Exchange Optical Waveguides in Soda-Lime glass Made by Diluted AgNO 3 with NaNO 3 Takuya IWATA and Kiyoshi
Stabilization of stock price prediction by cross entropy optimization
,,,,,,,, Stabilization of stock prediction by cross entropy optimization Kazuki Miura, Hideitsu Hino and Noboru Murata Prediction of series data is a long standing important problem Especially, prediction
Αλγοριθμική ασυμπτωτική ανάλυση πεπερασμένης αργής πολλαπλότητας: O ελκυστής Rössler
EΘΝΙΚΟ ΜΕΤΣΟΒΕΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ Αλγοριθμική ασυμπτωτική ανάλυση πεπερασμένης αργής πολλαπλότητας: O ελκυστής Rössler Συντάκτης: ΜΑΡΗΣ
2.153 Adaptive Control Lecture 7 Adaptive PID Control
2.153 Adaptive Control Lecture 7 Adaptive PID Control Anuradha Annaswamy aanna@mit.edu ( aanna@mit.edu 1 / 17 Pset #1 out: Thu 19-Feb, due: Fri 27-Feb Pset #2 out: Wed 25-Feb, due: Fri 6-Mar Pset #3 out:
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ
i ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ: ΣΥΣΤΗΜΑΤΩΝ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΠΑΡΑΓΩΓΗΣ ΜΕΤΑΦΟΡΑΣ ΔΙΑΝΟΜΗΣ ΚΑΙ ΧΡΗΣΙΜΟΠΟΙΗΣΕΩΣ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΔΙΠΛΩΜΑΤΙΚΗ
Supporting Information
Supporting Information rigin of the Regio- and Stereoselectivity of Allylic Substitution of rganocopper Reagents Naohiko Yoshikai, Song-Lin Zhang, and Eiichi Nakamura* Department of Chemistry, The University
Research on fault detection for Markovian jump systems with time-varying delays and randomly occurring nonlinearities
33 9 2016 9 DOI: 10.7641/CTA.2016.60012 Control Theory & Applcatons Vol. 33 No. 9 Sep. 2016 1 1 2 (1. 163318; 2. 163318) (RONs)... H. Lyapunov H.. ; ; ; TP273 A Research on fault detecton for Markovan
NMBTC.COM /
Common Common Vibration Test:... Conforms to JIS C 60068-2-6, Amplitude: 1.5mm, Frequency 10 to 55 Hz, 1 hour in each of the X, Y and Z directions. Shock Test:...Conforms to JIS C 60068-2-27, Acceleration
38 Te(OH) 6 2NH 4 H 2 PO 4 (NH 4 ) 2 HPO 4
Fig. A-1-1. Te(OH) NH H PO (NH ) HPO (TAAP). Projection of the crystal structure along the b direction [Ave]. 9 1. 7.5 ( a a )/ a [1 ] ( b b )/ b [1 ] 5..5 1.5 1 1.5 ( c c )/ c [1 ].5 1. 1.5. Angle β 1.
An Advanced Manipulation for Space Redundant Macro-Micro Manipulator System
6 (5..9) 6 An Advanced Manipulation for Space Redundant Macro-Micro Manipulator System Kazuya Yoshida, Hiromitsu Watanabe * *Tohoku University : (Macro-micro manipulator system) (Flexible base), (Vibration
Symplecticity of the Störmer-Verlet algorithm for coupling between the shallow water equations and horizontal vehicle motion
Symplectcty of the Störmer-Verlet algorthm for couplng between the shallow water equatons and horzontal vehcle moton by H. Alem Ardakan & T. J. Brdges Department of Mathematcs, Unversty of Surrey, Guldford
Non polynomial spline solutions for special linear tenth-order boundary value problems
ISSN 746-7233 England UK World Journal of Modellng and Smulaton Vol. 7 20 No. pp. 40-5 Non polynomal splne solutons for specal lnear tenth-order boundary value problems J. Rashdna R. Jallan 2 K. Farajeyan
Duals of the QCQP and SDP Sparse SVM. Antoni B. Chan, Nuno Vasconcelos, and Gert R. G. Lanckriet
Duals of the QCQP and SDP Sparse SVM Anton B. Chan, Nuno Vasconcelos, and Gert R. G. Lanckret SVCL-TR 007-0 v Aprl 007 Duals of the QCQP and SDP Sparse SVM Anton B. Chan, Nuno Vasconcelos, and Gert R.
CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS
CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =
Distributed by: www.jameco.com -800-83-4242 The content and copyrights of the attached material are the property of its owner. Single-Chip Voice Record/Playback Devices 60-, 75-, 90-, and 20-Second Durations
Supplementary Materials for Evolutionary Multiobjective Optimization Based Multimodal Optimization: Fitness Landscape Approximation and Peak Detection
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. XX, NO. X, XXXX XXXX Supplementary Materials for Evolutionary Multiobjective Optimization Based Multimodal Optimization: Fitness Landscape Approximation
Solutions for Mathematical Physics 1 (Dated: April 19, 2015)
Solutons for Mathematcal Physcs 1 Dated: Aprl 19, 215 3.2.3 Usng the vectors P ê x cos θ + ê y sn θ, Q ê x cos ϕ ê y sn ϕ, R ê x cos ϕ ê y sn ϕ, 1 prove the famlar trgonometrc denttes snθ + ϕ sn θ cos
ST5224: Advanced Statistical Theory II
ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known
Ferrite Chip Beads For Automotive Use
FETURES RUGGED CONSTRUCTION IN STNDRD EI SIZES EC Q-200 QULIFIED EFFECTIVE EM/RFI SUPPRESSION UP TO 1GHz CURRENT RTINGS UP TO 2.2 MPS SHRP ND HIGH IMPEDNCES VILLE OPERTING TEMPERTURE RNGE: -55 C TO +125C
Supplementary materials for Statistical Estimation and Testing via the Sorted l 1 Norm
Sulementary materals for Statstcal Estmaton and Testng va the Sorted l Norm Małgorzata Bogdan * Ewout van den Berg Weje Su Emmanuel J. Candès October 03 Abstract In ths note we gve a roof showng that even
Schedulability Analysis Algorithm for Timing Constraint Workflow Models
CIMS Vol.8No.72002pp.527-532 ( 100084) Petri Petri F270.7 A Schedulability Analysis Algorithm for Timing Constraint Workflow Models Li Huifang and Fan Yushun (Department of Automation, Tsinghua University,
Evaluation of Expressing Uncertain Causalities as Conditional Causal Possibilities
Evaluaton of Expressng Uncertan Causaltes as Condtonal Causal ossbltes Koch Yamada Department of lannng & Management Scence, agaoa Unversty of Technology eng & Regga (v u u u v v u (v u ) 0 u v V [1] [1]
Reaction of a Platinum Electrode for the Measurement of Redox Potential of Paddy Soil
J. Jpn. Soc. Soil Phys. No. +*0, p.- +*,**1 Eh * ** Reaction of a Platinum Electrode for the Measurement of Redox Potential of Paddy Soil Daisuke MURAKAMI* and Tatsuaki KASUBUCHI** * The United Graduate
Evolution of Novel Studies on Thermofluid Dynamics with Combustion
MEMOIRS OF SHONAN INSTITUTE OF TECHNOLOGY Vol. 42, No. 1, 2008 * Evolution of Novel Studies on Thermofluid Dynamics with Combustion Hiroyuki SATO* This paper mentions the recent development of combustion
Ó³ Ÿ , º 2(131).. 105Ä ƒ. ± Ï,.. ÊÉ ±μ,.. Šμ ² ±μ,.. Œ Ì ²μ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê
Ó³ Ÿ. 2006.. 3, º 2(131).. 105Ä110 Š 537.311.5; 538.945 Œ ƒ ˆ ƒ Ÿ ˆŠ ˆ ƒ Ÿ ƒ ˆ œ ƒ Œ ƒ ˆ ˆ Š ˆ 4 ². ƒ. ± Ï,.. ÊÉ ±μ,.. Šμ ² ±μ,.. Œ Ì ²μ Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê ³ É É Ö μ ² ³ μ É ³ Í ² Ö Ê³ μ μ ³ É μ μ μ²ö
Second Order RLC Filters
ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor
Probabilistic Approach to Robust Optimization
Probabilistic Approach to Robust Optimization Akiko Takeda Department of Mathematical & Computing Sciences Graduate School of Information Science and Engineering Tokyo Institute of Technology Tokyo 52-8552,
Math221: HW# 1 solutions
Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin
DETERMINATION OF THERMAL PERFORMANCE OF GLAZED LIQUID HEATING SOLAR COLLECTORS
ΕΘΝΙΚΟ ΚΕΝΤΡΟ ΕΡΕΥΝΑΣ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΗΜΟΚΡΙΤΟΣ / DEMOKRITOS NATIONAL CENTER FOR SCIENTIFIC RESEARCH ΕΡΓΑΣΤΗΡΙΟ ΟΚΙΜΩΝ ΗΛΙΑΚΩΝ & ΑΛΛΩΝ ΕΝΕΡΓΕΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ LABORATORY OF TESTIN SOLAR & OTHER ENERY
ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΕΠΑΝΑΣΧΕΔΙΑΣΜΟΣ ΓΡΑΜΜΗΣ ΣΥΝΑΡΜΟΛΟΓΗΣΗΣ ΜΕ ΧΡΗΣΗ ΕΡΓΑΛΕΙΩΝ ΛΙΤΗΣ ΠΑΡΑΓΩΓΗΣ REDESIGNING AN ASSEMBLY LINE WITH LEAN PRODUCTION TOOLS
ΔΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗ ΔΙΟΙΚΗΣΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΕΠΑΝΑΣΧΕΔΙΑΣΜΟΣ ΓΡΑΜΜΗΣ ΣΥΝΑΡΜΟΛΟΓΗΣΗΣ ΜΕ ΧΡΗΣΗ ΕΡΓΑΛΕΙΩΝ ΛΙΤΗΣ ΠΑΡΑΓΩΓΗΣ REDESIGNING AN ASSEMBLY LINE WITH
LUNGOO R. Control Engineering for Development of a Mechanical Ventilator for ICU Use Spontaneous Breathing Lung Simulator LUNGOO
ol. 6, No.3 7/(7) IU UNGOO ontrol Engineering for Development of a Mechanical entilator for IU Use Spontaneous Breathing ung Simulator UNGOO Kenji OZAKI*yoji IIDA*Kazutoshi SOGA* and Yasuhiro UENO* A lung
Conductivity Logging for Thermal Spring Well
/.,**. 25 +,1- **-- 0/2,,,1- **-- 0/2, +,, +/., +0 /,* Conductivity Logging for Thermal Spring Well Koji SATO +, Tadashi TAKAYA,, Tadashi CHIBA, + Nihon Chika Kenkyuusho Co. Ltd., 0/2,, Hongo, Funabashi,
Generalized Fibonacci-Like Polynomial and its. Determinantal Identities
Int. J. Contemp. Math. Scences, Vol. 7, 01, no. 9, 1415-140 Generalzed Fbonacc-Le Polynomal and ts Determnantal Identtes V. K. Gupta 1, Yashwant K. Panwar and Ompraash Shwal 3 1 Department of Mathematcs,
Concomitants of Dual Generalized Order Statistics from Bivariate Burr III Distribution
Journal of Statstcal Theory and Applcatons, Vol. 4, No. 3 September 5, 4-56 Concomtants of Dual Generalzed Order Statstcs from Bvarate Burr III Dstrbuton Haseeb Athar, Nayabuddn and Zuber Akhter Department
IF(Ingerchange Format) [7] IF C-STAR(Consortium for speech translation advanced research ) [8] IF 2 IF
100080 e-mal:{gdxe, cqzong, xubo}@nlpr.a.ac.cn tel:(010)82614468 IF 1 1 1 IF(Ingerchange Format) [7] IF C-STAR(Consortum for speech translaton advanced research ) [8] IF 2 IF 2 IF 69835003 60175012 [6][12]
CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS
CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS EXERCISE 01 Page 545 1. Use matrices to solve: 3x + 4y x + 5y + 7 3x + 4y x + 5y 7 Hence, 3 4 x 0 5 y 7 The inverse of 3 4 5 is: 1 5 4 1 5 4 15 8 3
ΑΓΓΛΙΚΑ Ι. Ενότητα 7α: Impact of the Internet on Economic Education. Ζωή Κανταρίδου Τμήμα Εφαρμοσμένης Πληροφορικής
Ενότητα 7α: Impact of the Internet on Economic Education Τμήμα Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως
Τo ελληνικό τραπεζικό σύστημα σε περιόδους οικονομικής κρίσης και τα προσφερόμενα προϊόντα του στην κοινωνία.
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΙΟΝΙΩΝ ΝΗΣΩΝ ΤΜΗΜΑ ΕΦΑΡMΟΓΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΣΤΗ ΔΙΟΙΚΗΣΗ & ΣΤΗΝ ΟΙΚΟΝΟΜΙΑ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ Γεωργία Χ. Κιάκου ΑΜ : 718 Τo ελληνικό τραπεζικό σύστημα σε περιόδους οικονομικής
An Automatic Modulation Classifier using a Frequency Discriminator for Intelligent Software Defined Radio
C IEEJ Transactions on Electronics, Information and Systems Vol.133 No.5 pp.910 915 DOI: 10.1541/ieejeiss.133.910 a) An Automatic Modulation Classifier using a Frequency Discriminator for Intelligent Software
Novel Ensemble Analytic Discrete Framelet Expansion for Machinery Fault Diagnosis 1
50 17 2014 9 OURNAL OF MECHANICAL ENGINEERING Vol.50 No.17 Sep. 2014 DOI10.3901/ME.2014.17.077 * 1 2 2 2, 3 (1. 361005 2. 710049 3. 710049) -- () - TH17 Novel Ensemble Analytc Dscrete Framelet Expanson
Optimization, PSO) DE [1, 2, 3, 4] PSO [5, 6, 7, 8, 9, 10, 11] (P)
( ) 1 ( ) : : (Differential Evolution, DE) (Particle Swarm Optimization, PSO) DE [1, 2, 3, 4] PSO [5, 6, 7, 8, 9, 10, 11] 2 2.1 (P) (P ) minimize f(x) subject to g j (x) 0, j = 1,..., q h j (x) = 0, j
Cite as: Pol Antras, course materials for International Economics I, Spring MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts
/ / σ/σ σ/σ θ θ θ θ y 1 0.75 0.5 0.25 0 0 0.5 1 1.5 2 θ θ θ x θ θ Φ θ Φ θ Φ π θ /Φ γφ /θ σ θ π θ Φ θ θ Φ θ θ θ θ σ θ / Φ θ θ / Φ / θ / θ Normalized import share: (Xni / Xn) / (XII / XI) 1 0.1 0.01 0.001
Gain self-tuning of PI controller and parameter optimum for PMSM drives
14 1 1 1 ELECTRI C MACHINES AND CONTROL Vol. 14 No. 1 Dec. 1 1 1 1 1 1. 151. 154 PI PI E E 1% 4r /min TM 359 A 17-449X 1 1-9- 6 Gain self-tuning of PI controller and parameter optimum for PMSM drives YANG
MOTROL. COMMISSION OF MOTORIZATION AND ENERGETICS IN AGRICULTURE 2014, Vol. 16, No. 5,
MOTROL. COMMISSION OF MOTORIZATION AND ENERGETICS IN AGRICULTURE 2014, Vol. 16, No. 5, 3 14 -, :., 83, 66404 e-mail: chupinvr@istu.irk.ru...,,., -,.,. :,,,,,, -, - [1].,.., [2, 3].,.,,,.,,, [4, 5].,..1.
1 Complete Set of Grassmann States
Physcs 610 Homework 8 Solutons 1 Complete Set of Grassmann States For Θ, Θ, Θ, Θ each ndependent n-member sets of Grassmann varables, and usng the summaton conventon ΘΘ Θ Θ Θ Θ, prove the dentty e ΘΘ dθ
Vidyamandir Classes. Solutions to Revision Test Series - 2/ ACEG / IITJEE (Mathematics) = 2 centre = r. a
Per -.(D).() Vdymndr lsses Solutons to evson est Seres - / EG / JEE - (Mthemtcs) Let nd re dmetrcl ends of crcle Let nd D re dmetrcl ends of crcle Hence mnmum dstnce s. y + 4 + 4 6 Let verte (h, k) then
1 1 1 2 1 2 2 1 43 123 5 122 3 1 312 1 1 122 1 1 1 1 6 1 7 1 6 1 7 1 3 4 2 312 43 4 3 3 1 1 4 1 1 52 122 54 124 8 1 3 1 1 1 1 1 152 1 1 1 1 1 1 152 1 5 1 152 152 1 1 3 9 1 159 9 13 4 5 1 122 1 4 122 5
Kernel orthogonal and uncorrelated neighborhood preservation discriminant embedding algorithm
32 7 Vol 32 7 2011 7 Journal of Harbn Engneerng Unversty Jul 2011 do 10 3969 /j ssn 1006-7043 2011 07 018 150001 2 Yale PIE TE2 TP391 4 1006-7043 2011 07-0938-05 Kernel orthogonal and uncorrelated neghborhood
Studies on the Binding Mechanism of Several Antibiotics and Human Serum Albumin
2005 63 Vol. 63, 2005 23, 2169 2173 ACTA CHIMICA SINICA No. 23, 2169 2173 a,b a a a *,a ( a 130012) ( b 133002), 26 K A 1.98 10 4, 1.01 10 3, 1.38 10 3, 5.97 10 4 7.15 10 4 L mol 1, n 1.16, 0.86, 1.19,
DATA SHEET Surface mount NTC thermistors. BCcomponents
DATA SHEET 2322 615 1... Surface mount N thermistors Supersedes data of 17th May 1999 File under BCcomponents, BC02 2001 Mar 27 FEATURES High sensitivity High accuracy over a wide temperature range Taped
22 .5 Real consumption.5 Real residential investment.5.5.5 965 975 985 995 25.5 965 975 985 995 25.5 Real house prices.5 Real fixed investment.5.5.5 965 975 985 995 25.5 965 975 985 995 25.3 Inflation
THICK FILM LEAD FREE CHIP RESISTORS
Features Suitable for lead free soldering. Compatible with flow and reflow soldering Applications Consumer Electronics Automotive industry Computer Measurement instrument Electronic watch and camera Configuration
One and two particle density matrices for single determinant HF wavefunctions. (1) = φ 2. )β(1) ( ) ) + β(1)β * β. (1)ρ RHF
One and two partcle densty matrces for sngle determnant HF wavefunctons One partcle densty matrx Gven the Hartree-Fock wavefuncton ψ (,,3,!, = Âϕ (ϕ (ϕ (3!ϕ ( 3 The electronc energy s ψ H ψ = ϕ ( f ( ϕ
Estimators when the Correlation Coefficient. is Negative
It J Cotemp Math Sceces, Vol 5, 00, o 3, 45-50 Estmators whe the Correlato Coeffcet s Negatve Sad Al Al-Hadhram College of Appled Sceces, Nzwa, Oma abur97@ahoocouk Abstract Rato estmators for the mea of
Η ΣΕΙΡΑ FOURIER ΚΑΙ Ο ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER ΑΝΑΛΥΣΗ ΣΗΜΑΤΩΝ ΩΣ ΠΡΟΣ ΗΜΙΤΟΝΙΚΕΣ ΣΥΝΙΣΤΩΣΕΣ. xt A t A t A t t
Η ΣΕΙΡΑ FOURIER ΚΑΙ Ο ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER ΑΝΑΛΥΣΗ ΣΗΜΑΤΩΝ ΩΣ ΠΡΟΣ ΗΜΙΤΟΝΙΚΕΣ ΣΥΝΙΣΤΩΣΕΣ Θεωρήστε ένα σήµα συνεχούς χρόνου το οποίο είναι άθροισµα συνηµιτονικών όρων της µορφής () = cos( ω + ϕ ) + cos
MathCity.org Merging man and maths
MathCity.org Merging man and maths Exercise 10. (s) Page Textbook of Algebra and Trigonometry for Class XI Available online @, Version:.0 Question # 1 Find the values of sin, and tan when: 1 π (i) (ii)