Κεφάλαιο 9: Έλεγχος με Μαγνητικά Σωματίδια
|
|
- Ζεβεδαῖος Σαμαράς
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Κεφάλαιο 9: Έλεγχος με Μαγνητικά Σωματίδια Σύνοψη Το κεφάλαιο αναφέρεται στην ενίσχυση της ευκρίνειας επιφανειακών ατελειών με χρήση μαγνητικού πεδίου και σκόνης μετάλλου που συγκεντρώνεται στο σημείο της ατέλειας και την καθιστά ορατή. Προαπαιτούμενη γνώση Βασικές γνώσεις ηλεκτρομαγνητισμού
2 9.1 Περίληψη Η μέθοδος βασίζεται στο γεγονός ότι οι γραμμές ενός μαγνητικού πεδίου επηρεάζονται από ασυνέχειες στο υλικό. Αυτές οι μαγνητικές «διαρροές» έλκουν μικροσκοπικά σωματίδια μεταλλικής σκόνης και καθιστούν την ασυνέχεια ορατή στο ανθρώπινο μάτι. Πρόκειται για σχετικά απλή μέθοδο στη χρήση, κατάλληλη για εντοπισμό επιφανειακών ρωγμών σε φερρομαγνητικά υλικά. 9.2 Βασική αρχή Μαγνητισμός είναι η ιδιότητα της ύλης να ασκεί ελκτικές ή απωστικές δυνάμεις σε άλλη ύλη. Τα αντικείμενα που κατέχουν αυτή την ιδιότητα ονομάζονται «μαγνητικά». Μαγνητικές γραμμές διαπερνούν το υλικό και το γύρω χώρο ξεκινώντας ή καταλήγοντας στους «μαγνητικούς πόλους», όπως φαίνεται στο Σχ Οι μαγνητικές γραμμές είναι συνεχείς, δεν διασταυρώνονται και εκφράζουν την ίδια μαγνητική επαγωγή κατά το μήκος τους. B N Σχήμα.9.1 Μαγνητικές γραμμές σε ευθύγραμμο μαγνήτη μεταξύ του Βόρειου και Νότιου πόλου. Το (φερρομαγνητικό) τεμάχιο προς έλεγχο μαγνητίζεται με ένα ισχυρό πεδίο που δημιουργείται με (ηλεκτρο)μαγνήτη ή άλλο εξοπλισμό. Εφόσον υπάρχει κάποια ασυνέχεια κοντά στην επιφάνεια του τεμαχίου, αυτή θα διακόψει το ομαλό μαγνητικό πεδίο και θα δημιουργηθεί μία τοπική διαρροή (Σχ. 9.2). Ψιλά μεταλλικά, συνήθως χρωματισμένα, σωματίδια σε μορφή σκόνης εφαρμόζονται στην επιφάνεια. Τα σωματίδια αυτά προσελκύονται στις διαρροές του πεδίου και συσσωματώνονται δημιουργώντας μία ένδειξη πάνω στην ασυνέχεια. Αυτή η ένδειξη επιτρέπει τον εντοπισμό της βλάβης υπό κατάλληλες συνθήκες φωτισμού 1,2. 1
3 Ηλεκτρομαγνήτης Β Ν Διαρροή μαγν. πεδίου Ν Β Β Ν Ρωγμή Τεμάχιο προς έλεγχο Σχήμα 9.2 Σχηματική αναπαράσταση εφαρμογής μαγνητικού πεδίου σε υλικό με ρωγμή. 9.3 Βήματα μεθόδου Τα βασικά βήματα της μεθόδου είναι: 1. Καθαρισμός τεμαχίου 2. Εφαρμογή του μαγνητικού πεδίου 3. Εφαρμογή των ΜΣ 4. Παρατήρηση και ερμηνεία των ενδείξεων Λίγα λόγια για το κάθε βήμα: Βήμα 1: Καθαρισμός τεμαχίου: Όταν γίνεται έλεγχος με ΜΣ, είναι ουσιώδες να μην εμποδίζεται η κίνηση των σωματιδίων έτσι ώστε να μπορούν να λάβουν θέση ανάλογα με το τοπικό πεδίο. Η επιφάνεια του προς εξέταση αντικειμένου πρέπει να είναι καθαρή και στεγνή. Υλικά όπως υπολείμματα γράσου, λαδιού, σκουριάς μπορεί να αποτρέψουν τα ΜΣ από το να κατευθυνθούν στην ασυνέχεια αλλά μπορεί και να μην επιτρέψουν τη σωστή ερμηνεία των ενδείξεων. Βήμα 2: Εφαρμογή του μαγνητικού πεδίου: Το μαγνητικό πεδίο μπορεί να εφαρμοστεί με διαφορετικούς τρόπους: Με μόνιμο μαγνήτη ή ηλεκτρομαγνήτη σε επαφή με το τεμάχιο. Με ροή ηλεκτρικού ρεύματος μέσα από το δοκίμιο (ηλεκτρομαγνητική επαγωγή). Με ροή ηλεκτρικού ρεύματος μέσα από πηνίο που τοποθετείται γύρω από το προς εξέταση τεμάχιο (πάλι επαγωγή). Μπορούν να εφαρμοσθούν δύο γενικοί τύποι μαγνητικού πεδίου, διαμήκες και κυκλικό (βλ. Σχ. 9.3). Στο διαμήκες πεδίο οι μαγνητικές γραμμές είναι παράλληλες με τον άξονα το τεμαχίου (κόκκινα βέλη στο Σχ. 9.3α), ενώ στο κυκλικό οι μαγνητικές γραμμές τρέχουν περιφερειακά και είναι κάθετες προς τον άξονα (Σχ. 9.3β). 2
4 Σχήμα 9.3 Μαγνητικό πεδίο σε κύλινδρικό τεμάχιο: (α) διαμήκες, (β) κυκλικό. Η διεύθυνση του πεδίου αποφασίζεται ανάλογα με την πιθανή διεύθυνση της ρωγμής. Η μέθοδος είναι ευαίσθητη σε ασυνέχειες που είναι κάθετες προς τις μαγνητικές γραμμές ή τουλάχιστον σε γωνία 45 ο. Εφόσον η ασυνέχεια είναι παράλληλη με το πεδίο (γωνία κοντά στις 0 ο ), οι πιθανότητες εντοπισμού της θα είναι μικρές αφού τότε δεν επηρεάζει ιδιαίτερα τις μαγνητικές γραμμές. Παραδείγματα φαίνονται στο Σχ Η εφαρμογή διαμήκους πεδίου συνήθως γίνεται με πηνίο το οποίο περιβάλλει το προς εξέταση τεμάχιο. Το πεδίο μέσα στο πηνίο έχει διεύθυνση κάθετη στον άξονά του και άρα το τεμάχιο μαγνητίζεται με την ίδια φορά (Σχ. 9.4). Μπορεί επίσης να γίνει με επαφή ηλεκτρομαγνήτη όπως φαίνεται στο Σχ Το υλικό μεταξύ των δύο ακροδεκτών μαγνητίζεται με διαμήκεις γραμμές. Σε αυτή την περίπτωση είναι εύκολο να αλλάξει η διεύθυνση του ηλεκτρομαγνήτη (τοποθετείται κάθετα) και μπορεί να γίνει μαγνήτιση και στην κάθετη διεύθυνση για έλεγχο κάθετων ρωγμών 3. Διαμήκες μαγνητικό πεδίο Σχήμα 9.4 Δημιουργία διαμήκους μαγνητικού πεδίου σε μεταλλικό δοκίμιο με πηνίο. 3
5 Σχήμα 9.5 Δημιουργία διαμήκους μαγνητικού πεδίου σε μεταλλική πλάκα. Εφαρμογή κυκλικού πεδίου γίνεται συνήθως με ηλεκτρικό ρεύμα δια μέσου του μεταλλικού δοκιμίου, σύμφωνα με τον κανόνα του δεξιού χεριού (βλ. Σχ.9.6α και β). Σχήμα 9.6. (α) Δημιουργία κυκλικού μαγνητικού πεδίου σε αγώγιμο κυλινδρικό δοκίμιο, (β) κανόνας του δεξιού χεριού. Το βέλος και ο αντίχειρας υποδεικνύει τη ροή του ρεύματος και η φορά των δακτύλων τις μαγνητικές γραμμές. Βήμα 3: Εφαρμογή των μαγνητικών σωματιδίων: Μαγνητικά σωματίδια υπάρχουν σε ξηρή μορφή (σκόνη) αλλά και αιώρημα σε υγρό. Κατά την ξηρή εφαρμογή τα σωματίδια ψεκάζονται στην επιφάνεια. Η εφαρμογή αυτή επιτρέπει την φορητότητα της μεθόδου. Τα ΜΣ μπορεί να έχουν ποικιλία χρωμάτων για να δημιουργείται η κατάλληλη οπτική αντίθεση (κοντράστ) ανάλογα με το χρώμα του υλικού. Κατά την υγρή εφαρμογή το τεμάχιο καταβρέχεται με το υγρό που περιέχει τα ΜΣ. Είναι γενικά πιο ευαίσθητη τεχνική αφού το υγρό αυξάνει την κινητικότητα των ΜΣ και επιτρέπει την μετακίνησή τους ακόμα και με ασθενείς διαταραχές του πεδίου. Με την τεχνική αυτή τα ΜΣ μπορεί να είναι και φωσφορίζοντα ώστε να είναι πιο ευδιάκριτα υπό υπεριώδες φως. Βήμα 4: Παρατήρηση και ερμηνεία των ενδείξεων: Μετά την εφαρμογή του μαγνητικού πεδίου οι ενδείξεις που σχηματίζονται πρέπει να ερμηνευτούν. Το βήμα αυτό απαιτεί την διάκριση μεταξύ σχετικών και μη σχετικών ενδείξεων από έμπειρο χειριστή 4, Παραδείγματα Παρακάτω παρατίθενται κάποιες φωτογραφίες, όπου φαίνεται η εφαρμογή της μεθόδου και ρωγμές που ελέγχονται με ΜΣ. Εκτός από τις εφαρμογές των Σχ. 9.7 και 9.8, πρέπει να σημειωθεί η σημασία των πρότυπων ατελειών τις οποίες φέρουν μεταλλικές πλάκες (τεμάχια βαθμονόμησης) για τον έλεγχο της ακρίβειας της μεθόδου. Στο Σχ
6 το τεμάχιο ελέγχου φέρει τρεις παράλληλες εγκοπές σε κίτρινο φόντο. Μετά την εφαρμογή του μαγνητικού πεδίου και τον ψεκασμό των ΜΣ αυτές είναι ορατές καταδεικνύοντας ότι ρωγμές και ατέλειες ίσου πάχους θα είναι ορατές και σε κανονικό έλεγχο. Σχήμα 9.7 Κοντινό πλάνο επιφάνειας σωλήνα με ενδείξεις από ρωγμές λόγω διάβρωσης (δύο ομάδες οριζόντιων ρωγμών) που εμφανίζονται με τη μέθοδο των ΜΣ. Η κλίμακα είναι σε cm. ("Stress corrosion cracking revealed by magnetic particles" by Davidmack at en.wikipedia - self-made. Licensed under CC0 via Wikipedia - osion_cracking_revealed_by_magnetic_particles.jpg) Σχήμα 9.8 Έλεγχος σε σωλήνωση για πιθανές ρωγμές διάβρωσης με ηλεκτρομαγνήτη και υγρά ΜΣ. ("Wet magnetic particle testing on a pipeline" by Davidmack at en.wikipedia - self-made. Licensed under CC0 via Wikipedia - sting_on_a_pipeline.jpg) 5
7 Σχήμα 9.9 Εφαρμογή σε δοκίμιο ελέγχου (calibration block) με πρότυπες ρωγμές. (α) Πριν την εφαρμογή υγρών ΜΣ, (β) μετα την εφαρμογή ΜΣ. Οι τρεις εγκοπές είναι εμφανείς στο κίτρινο φόντο (Courtesy Birring NDE Center). Στο Σχήμα 9.10, φαίνεται μία περίπτωση ρωγμής στη βάση συγκόλλησης, ενώ στο Σχ παρουσιάζεται άλλη μια περίπτωση βαθμονόμησης, όπου εκτός από την ευαισθησία της μεθόδου στο πάχος της ρωγμής, ελέγχεται και η διεύθυνση του πεδίου. Ρωγμές κάθετες ή υπό γωνία προς τις μαγνητικές γραμμές είναι ανιχνεύσιμες σε αντίθεση με ρωγμές παράλληλες στις γραμμές. Αφού ελεγχθεί η σωστή εφαρμογή του πεδίου μπορεί να γίνει ο έλεγχος όπως η περίπτωση του Σχήματος 9.11ε, όπου φαίνεται ρωγμή στη βάση συγκόλλησης. Σχήμα 9.10 Εφαρμογή υγρών ΜΣ για έλεγχο συγκόλλησης. (α) Εφαρμογή ηλεκτρομαγνήτη, (β) η ρωγμή στη βάση της συγκόλλησης είναι εμφανής πάνω στο λευκό φόντο (Courtesy Birring NDE Center). 6
8 Σχήμα 9.11 Εφαρμογή ξηρών ΜΣ. (α) Σκόνη ΜΣ πάνω στο δείκτη ελέγχου με προκαθορισμένες εγκοπές, (β) οι ενδείξεις μετά την εφαρμογή του πεδίου, (γ) τρεις εγκοπές που βρίσκονται υπό γωνία ως προς το μαγνητικό πεδίο είναι εμφανείς. Η γραμμή που είναι παράλληλη είναι ελάχιστα έως καθόλου εμφανής, (δ) Ψεκασμός των ΜΣ στην προς εξέταση πλάκα. (ε) Χαρακτηριστική ένδειξη ρωγμής στη βάση συγκόλλησης. (Courtesy Birring NDE Center) 9.5 Απομαγνητισμός Τα τεμάχια που ελέγχονται με τη μέθοδο μπορεί να φέρουν εναπομένον μαγνητικό πεδίο και μετά το πέρας του ελέγχου. Το πεδίο αυτό μπορεί να δημιουργήσει πρόβλημα σε επερχόμενες κατεργασίες (π.χ. συγκόλληση) ή στη λειτουργία του τεμαχίου. Μπορεί να επηρεάσει ενδείξεις άλλων οργάνων σε κοντινή απόσταση ή να ελκύσει ρινίσματα ή σκόνη μετάλλου και να αυξήσει τη φθορά. Ο απομαγνητισμός αποσκοπεί στο να γίνει πάλι τυχαίος ο προσανατολισμός των τοπικών μαγνητικών πεδίων που είχαν προσανατολιστεί υπό την επήρεια του εξωτερικού πεδίου (Σχ. 9.12). 7
9 Σχήμα 9.12 (α) Συγκεκριμένος και (β) τυχαίος προσανατολισμός μαγνητικών υπο-πεδίων σε υλικό 9.6 Σύνοψη Πλεονεκτήματα της μεθόδου Ανιχνεύει επιφανειακές και ελαφρώς υπο-επιφανειακές ασυνέχειες. Ελέγχει τεμάχια με οποιαδήποτε γεωμετρία. Ο προκαταρκτικός καθαρισμός δεν είναι τόσο κρίσιμος όσο στη μέθοδο των ΔΥ, αλλά παραμένει επιθυμητός. Ακόμα και αν η ρωγμή είναι γεμάτη με άλλο υλικό (λάδι γράσο) θα υπάρξει διαρροή μαγνητικών γραμμών. Γρήγορη μέθοδος. Οι ενδείξεις υποδεικνύουν ακριβώς το σημείο βλάβης χωρίς περαιτέρω ανάλυση. Χαμηλό κόστος. Είναι κινητή μέθοδος. Όλα τα κυρίως σύνεργα (σκόνη ΜΣ, υγρό, ηλεκτρομαγνήτης με μπαταρία) αλλά και τα βοηθητικά (π.χ. προστατευτικά γυαλιά, γάντια) χωρούν σε βαλιτσάκι Μειονεκτήματα της μεθόδου Ελέγχει μόνο φερρομαγνητικά υλικά. Έλεγχος μεγάλων τεμαχίων απαιτεί χρήση υψηλής ενέργειας. Περιορισμένο βάθος ανίχνευσης (μέχρι 15 mm). Καθαρισμός και απομαγνητισμός είναι απαραίτητα μετά τον έλεγχο. Πρέπει να λαμβάνεται μέριμνα για τη διεύθυνση μεταξύ της μαγνητικής ροής και των πιθανών ρωγμών. 8
10 9.7 Βιβλιογραφία [1] Kasai, N., A. Takada, K. Fukuoka, H. Aiyama, M. Hashimoto, Quantitative Investigation of a Standard Test Shim for Magnetic Particle Testing, NDT & E International, vol. 44(5), pp , (2011). [2] Massa, G. M., Finding the Optimum Conditions for Weld Testing by Magnetic Particles, Non-Destructive Testing, vol. 9(1), pp , (1976). [3] [4] Shull, P. J., ed., Nondestructive Evaluation: Theory, Techniques and Applications, vol., (Taylor & Francis, 2002). [5] Φιλιππίδης, Θ. Π., "Μη Καταστροφικοί Έλεγχοι", Πανεπιστημιακές Σημειώσεις, (Τμήμα Μηχανολόγων και Αεροναυπηγών Μηχανικών, Πανεπιστήμιο Πατρών, 2015). Επιπλέον ηλεκτρονική βιβλιογραφία: [6] [7] [8] [9] [10] [11] [12] [13] [14] 9
ΤΕΧΝΟΛΟΓΙΑ ΜΗ ΚΑΤΑΣΤΡΟΦΙΚΟΥ ΕΛΕΓΧΟΥ 4 ο ΜΑΘΗΜΑ ΘΕΩΡΙΑ 2017
ΤΕΧΝΟΛΟΓΙΑ ΜΗ ΚΑΤΑΣΤΡΟΦΙΚΟΥ ΕΛΕΓΧΟΥ 4 ο ΜΑΘΗΜΑ ΘΕΩΡΙΑ 2017 Εξοπλισμός και Υλικά Σε ένα σιδηρομαγνητικό υλικό, το μαγνητικό πεδίο που επάγεται πρέπει να βρίσκει την ασυνέχεια υπό γωνία 90 ο ή 45 ο μοίρες.
Μη Καταστροφικός Έλεγχος
Μη Καταστροφικός Έλεγχος Μέθοδος Μαγνητικών Σωματιδίων 1 Διδάσκων: Καθηγητής Θεοδουλίδης Θεόδωρος Επιμέλεια Παρουσιάσεων: Κουσίδης Σάββας Γενικά για το μαγνητισμό Όλα τα υλικά αποτελούνται από άτομα και
Μη καταστροφικοί έλεγχοι συγκολλήσεων (NDT)
Μάθημα 9.2 Μη καταστροφικοί έλεγχοι συγκολλήσεων (NDT) 15.1 Εισαγωγή Ο έλεγχος των ηλεκτροσυγκολλήσεων ολοκληρώνεται μετά από 48 ώρες τουλάχιστον από την εκτέλεσή τους, επειδή η διαπίστωση τυχόν ρηγμάτωσης,
Μη Καταστροφικός Έλεγχος
Μη Καταστροφικός Έλεγχος Μέθοδος Διεισδυτικών Υγρών 1 Διδάσκων: Καθηγητής Θεοδουλίδης Θεόδωρος Επιμέλεια Παρουσιάσεων: Κουσίδης Σάββας Γενικά χαρακτηριστικά της μεθόδου Αποτελεί την πιο ευρέως χρησιμοποιούμενη
ΤΕΧΝΟΛΟΓΙΑ ΜΗ ΚΑΤΑΣΤΡΟΦΙΚΟΥ ΕΛΕΓΧΟΥ ΘΕΩΡΙΑ ο ΜΑΘΗΜΑ
ΤΕΧΝΟΛΟΓΙΑ ΜΗ ΚΑΤΑΣΤΡΟΦΙΚΟΥ ΕΛΕΓΧΟΥ ΘΕΩΡΙΑ 2017 9 ο ΜΑΘΗΜΑ Τα (ΔΥ) είναι μία μη καταστροφική μέθοδος που βασίζεται στην οπτική παρατήρηση. Τα ΔΥ αυξάνουν την πιθανότητα παρατήρησης ενδείξεων επιφανειακής
Κεφάλαιο 7: Διεισδυτικά Υγρά
Κεφάλαιο 7: Διεισδυτικά Υγρά Σύνοψη Το κεφάλαιο αυτό καλύπτει τις διαδικασίες που ακολουθούνται για την αύξηση της ευκρίνειας επιφανειακών ρωγμών μέσω προσρόφησης υγρού σε αυτές και δίνονται οι βασικές
ΜΑΓΝΗΤΙΣΜΟΣ ΚΑΙ ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΣΜΟΣ
ΜΑΓΗΤΙΣΜΟΣ ΚΑΙ ΗΛΕΚΤΡΟΜΑΓΗΤΙΣΜΟΣ 1. α εξηγήσετε τι είναι ο μαγνήτης. 2. α αναφέρετε τρεις βασικές ιδιότητες των μαγνητών. 3. Πόσους πόλους έχει ένας μαγνήτης και πώς ονομάζονται; 4. Τι θα συμβεί αν κόψουμε
ΤΥΠΟΛΟΓΙΟ-ΒΑΣΙΚΟΙ ΟΡΙΣΜΟΙ
ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ 3.3 ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΣΜΟΣ ΤΥΠΟΛΟΓΙΟ-ΒΑΣΙΚΟΙ ΟΡΙΣΜΟΙ Οι μαγνητικοί πόλοι υπάρχουν πάντοτε σε ζευγάρια. ΔΕΝ ΥΠΑΡΧΟΥΝ ΜΑΓΝΗΤΙΚΑ ΜΟΝΟΠΟΛΑ. Οι ομώνυμοι πόλοι απωθούνται, ενώ οι
Άσκηση 9. Μη καταστροφικοί έλεγχοι υλικών Δινορεύματα
Άσκηση 9 Μη καταστροφικοί έλεγχοι υλικών Δινορεύματα Στοιχεία Θεωρίας Η αναγκαιότητα του να ελέγχονται οι κατασκευές (ή έστω ορισμένα σημαντικά τμήματα ή στοιχεία τους) ακόμα και κατά τη διάρκεια της λειτουργίας
ΘΕΩΡΙΑ ΜΑΓΝΗΤΙΚΑ ΣΩΜΑΤΙΔΙΑ
ΘΕΩΡΙΑ ΜΑΓΝΗΤΙΚΑ ΣΩΜΑΤΙΔΙΑ Δρ. Βουλγαράκη Χαριτίνη ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΙΑΣ & 2016 ΠΕΡΙΕΧΟΜΕΝΑ 1. Μέθοδος Μαγνητικών Σωματιδίων 3 1.1. Βασικές Αρχές 3 1.1.1. Μαγνητισμός 4 1.1.2. Τύποι Μαγνητισμού 4 1.2.Βρόχος
ΜΗ ΚΑΤΑΣΤΡΟΦΙΚΟΙ ΕΛΕΓΧΟΙ NON DESTRUCTIVE TESTING NDT Methods
ΜΗ ΚΑΤΑΣΤΡΟΦΙΚΟΙ ΕΛΕΓΧΟΙ NON DESTRUCTIVE TESTING NDT Methods RadiographicTesting - Magnetic Particle Testing - Penetrant Testing - Ultrasonic Testing - Eddy Current Testing - Neutron Radiographic Testing-
Μη Καταστροφικός Έλεγχος
Μη Καταστροφικός Έλεγχος Εισαγωγή 1 Διδάσκων: Καθηγητής Θεοδουλίδης Θεόδωρος Επιμέλεια Παρουσιάσεων: Κουσίδης Σάββας Τι είναι οι Μ.Κ.Ε. (NDT); Ορισμός: Μη Καταστροφικός Έλεγχος θεωρείται η εξέταση και
Παρουσίαση Εννοιών στη Φυσική της Β Λυκείου. Κεφάλαιο Τρίτο Ενότητα: Ηλεκτρομαγνητισμός
Παρουσίαση Εννοιών στη Φυσική της Β Λυκείου Κεφάλαιο Τρίτο Ενότητα: Ηλεκτρομαγνητισμός 3.1. ΜΑΓΝΗΤΙΚΟ ΠΕ ΙΟ Κατά σύμβαση, το άκρο που δείχνει το γεωγραφικό Βορρά το ονομάζουμε βόρειο μαγνητικό πόλο, και
ΤΕΧΝΟΛΟΓΙΑ ΜΗ ΚΑΤΑΣΤΡΟΦΙΚΟΥ ΕΛΕΓΧΟΥ 3 ο ΜΑΘΗΜΑ ΘΕΩΡΙΑ 2017
ΤΕΧΝΟΛΟΓΙΑ ΜΗ ΚΑΤΑΣΤΡΟΦΙΚΟΥ ΕΛΕΓΧΟΥ 3 ο ΜΑΘΗΜΑ ΘΕΩΡΙΑ 2017 Χαρακτηριστικά: Γρήγορη και σχετικά εύκολη μέθοδος Χρησιμοποιεί μαγνητικά πεδία και μικρά μαγνητικά σωματίδια Προϋπόθεση το υπό-εξέταση δοκίμιο
d E dt Σχήμα 3.4. (α) Σχηματικό διάγραμμα απλού εναλλάκτη, όπου ένας αγώγιμος βρόχος περιστρέφεται μέσα
Παράδειγμα 3.1. O περιστρεφόμενος βρόχος με σταθερή γωνιακή ταχύτητα ω μέσα σε σταθερό ομογενές μαγνητικό πεδίο είναι το πρότυπο μοντέλο ενός τύπου γεννήτριας εναλλασσόμενου ρεύματος, του εναλλάκτη. Αναπτύσσει
Επιστήμη και Τεχνολογία Συγκολλήσεων
Επιστήμη και Τεχνολογία Συγκολλήσεων Ενότητα 8: Καταστρεπτικός έλεγχος Γρηγόρης Ν. Χαϊδεμενόπουλος Πολυτεχνική Σχολή Μηχανολόγων Μηχανικών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
Μη Καταστροφικοί Έλεγχοι Η μέθοδος των δινορρευμάτων
Μη Καταστροφικοί Έλεγχοι Η μέθοδος των δινορρευμάτων Θεόδωρος Θεοδουλίδης Τμήμα Μηχανολόγων Μηχανικών Πολυτεχνική Σχολή Πανεπιστήμιο Δυτικής Μακεδονίας meander.uowm.gr Αναγνωρισμένες μέθοδοι Μη Καταστροφικών
Ηλεκτροτεχνία Ηλ. Μηχανές & Εγκαταστάσεις πλοίου (Θ)
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας Ηλεκτροτεχνία Ηλ. Μηχανές & Εγκαταστάσεις πλοίου (Θ) Ενότητα 7: Βασικές αρχές ηλεκτρομαγνητισμού Δ.Ν. Παγώνης Τμήμα Ναυπηγών Μηχανικών ΤΕ Το περιεχόμενο του μαθήματος
Εργαστήριο Ηλεκτρικών Μηχανών
Εργαστήριο Ηλεκτρικών Μηχανών Βασικές αρχές ηλεκτρομαγνητισμού Παλάντζας Παναγιώτης palantzaspan@gmail.com 2013 Σκοπός του μαθήματος Στο τέλος του κεφαλαίου, οι σπουδαστές θα πρέπει να είναι σε θέση να:
1.Η δύναμη μεταξύ δύο φορτίων έχει μέτρο 120 N. Αν η απόσταση των φορτίων διπλασιαστεί, το μέτρο της δύναμης θα γίνει:
ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΣΜΟΣ ΕΡΩΤΗΣΕΙΣ ΠΟΛΛΑΠΛΩΝ ΕΠΙΛΟΓΩΝ Ηλεκτρικό φορτίο Ηλεκτρικό πεδίο 1.Η δύναμη μεταξύ δύο φορτίων έχει μέτρο 10 N. Αν η απόσταση των φορτίων διπλασιαστεί, το μέτρο της δύναμης θα γίνει: (α)
ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΠΑΧΟΥΣ ΚΑΙ ΑΤΕΛΕΙΩΝ ΤΩΝ ΥΛΙΚΩΝ ΜΕ ΥΠΕΡΗΧΟΥΣ
Άσκηση 1 ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΠΑΧΟΥΣ ΚΑΙ ΑΤΕΛΕΙΩΝ ΤΩΝ ΥΛΙΚΩΝ ΜΕ ΥΠΕΡΗΧΟΥΣ 1.1. Γενικά 1.2. Αρχή λειτουργίας 1.3. Μέτρηση πάχους εξαρτημάτων 1.4. Εντοπισμός ελαττωμάτων 1.5. Πλεονεκτήματα και μειονεκτήματα της
Προσανατολισμός. Γιώργος Τσεβεκίδης. Υπεύθυνοι Καθηγητές: Σμυρλή Ιωάννα. Πιτένη Αναστασία. Καραγιάννης Στέργιος
Προσανατολισμός Γιώργος Τσεβεκίδης Υπεύθυνοι Καθηγητές: Σμυρλή Ιωάννα Πιτένη Αναστασία Καραγιάννης Στέργιος ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ Προσανατολισμός είναι η διαδικασία με την οποία καθορίζουμε τη θέση του Βορρά
ΑΝΙΧΝΕΥΣΗ ΡΩΓΜΩΝ ΣΕ ΜΕΤΑΛΛΙΚΑ ΥΛΙΚΑ ΜΕ ΘΕΡΜΟΓΡΑΦΙΑ ΔΙΝΟΡΡΕΥΜΑΤΩΝ
ΑΝΙΧΝΕΥΣΗ ΡΩΓΜΩΝ ΣΕ ΜΕΤΑΛΛΙΚΑ ΥΛΙΚΑ ΜΕ ΘΕΡΜΟΓΡΑΦΙΑ ΔΙΝΟΡΡΕΥΜΑΤΩΝ Ν. Τσόπελας, Ι. Σαρρής, Ν.Ι. Σιακαβέλλας Τμήμα Μηχανολόγων & Αεροναυπηγών Μηχανικών, Πανεπιστήμιο Πατρών, 26500 Πάτρα Περίληψη Η ανίχνευση
Κεφάλαιο 8: Οπτικός έλεγχος
Κεφάλαιο 8: Οπτικός έλεγχος Σύνοψη Το κεφάλαιο αυτό καλύπτει την επιθεώρηση υλικών και κατασκευών με βάση το ανθρώπινο μάτι (με ή χωρίς βοηθήματα) και μηχανική όραση. Δίνονται βασικές αρχές, συνθήκες και
3.3 Μαγνητικά αποτελέσματα του ηλεκτρικού ρεύματος
3.3 Μαγνητικά αποτελέσματα του ηλεκτρικού ρεύματος Μαγνητικό πεδίο Όλοι θα έχετε παρατηρήσει ότι οι μαγνήτες έλκουν σιδερένια αντικείμενα όπως καρφίτσες, συνδετήρες, ρινίσματα κ.ά. οι μαγνήτες ασκούν ελκτικές
ΤΕΧΝΟΛΟΓΙΑ ΜΗ ΚΑΤΑΣΤΡΟΦΙΚΟΥ ΕΛΕΓΧΟΥ
ΤΕΧΝΟΛΟΓΙΑ ΜΗ ΚΑΤΑΣΤΡΟΦΙΚΟΥ ΕΛΕΓΧΟΥ ΕΙΣΑΓΩΓΗ ΣΤΑ ΔΙΕΙΣΔΥΤΙΚΑ ΥΓΡΑ Δρ. Βουλγαράκη Χαριτίνη & ΒΙΟΜΗΧΑΝΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ 2016 ΠΕΡΙΕΧΟΜΕΝΑ 1. Εισαγωγή 3 1.1. Οπτική Οξύτητα 3 1.2. Βασικές Εφαρμογές των Διεισδυτικών
ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΗ ΕΠΑΓΩΓΗ
ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΗ ΕΠΑΓΩΓΗ ΣΤΟΧΟΙ: Να διαπιστώσουμε πειραματικά το φαινόμενο της ηλεκτρομαγνητικής επαγωγής και τους τρόπους παραγωγής ρεύματος από επαγωγή. Να μελετήσουμε ποιοτικά τους παράγοντες από τους
ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΗ ΘΕΩΡΙΑ ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΗ ΕΠΑΓΩΓΗ
ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΗ ΘΕΩΡΙΑ ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΗ ΕΠΑΓΩΓΗ 1 3.1 ΠΕΙΡΑΜΑΤΑ ΕΠΑΓΩΓΗΣ Το Σχ. 3.1 δείχνει μερικά από τα πειράματα που πραγματοποίησε o Michael Faraday. Στο Σχ. 3.1(α, β, γ) ένα πηνίο συνδέεται με γαλβανόμετρο.
NTSE - Nano Technology Science Education. Project No: LLP TR-KA3- KA3MP ΟΔΗΓΙΕΣ ΓΙΑ ΤΟΥΣ ΜΑΘΗΤΕΣ ΚΥΜΑΤΑ ΚΑΙ
NTSE - Nano Technology Science Education Project No: 511787-LLP-1-2010-1-TR-KA3- KA3MP ΟΔΗΓΙΕΣ ΓΙΑ ΤΟΥΣ ΜΑΘΗΤΕΣ ΚΥΜΑΤΑ ΚΑΙ ΕΝΑΙΩΡΗΜΑΤΑ ΜΑΓΝΗΤΙΚΩΝ ΝΑΝΟΣΩΜΑΤΙΔΙΩΝ ΠΟΥ ΧΟΡΕΥΟΥΝ ΜΕΡΟΣ Ι: ΜΕΛΕΤΗ ΠΡΙΝ ΤΟ ΠΕΙΡΑΜΑ
Γεννήτριες ΣΡ Κινητήρες ΣΡ
Γεννήτριες ΣΡ Κινητήρες ΣΡ Τα βασικά τμήματα μίας ΜΣΡ είναι ο στάτης και ο δρομέας Προορισμός του στάτη είναι: Να στηρίζει την ηλεκτρική μηχανή Να δημιουργεί καθορισμένη μαγνητική ροή στο εσωτερικό της
ΔΙΑΣΤΑΣΕΙΣ. Διαστάσεις σε κύκλους, τόξα, γωνίες κώνους Μέθοδοι τοποθέτησης διαστάσεων
ΔΙΑΣΤΑΣΕΙΣ Διαστάσεις σε κύκλους, τόξα, γωνίες κώνους Μέθοδοι τοποθέτησης διαστάσεων Η Σωστή τοποθετηση Διαστασεων στο Μηχανολογικο Σχεδιο ειναι απαραιτητη για τη Σωστή Κατασκευή Εχετε κατι να παρατηρησετε;
Μέθοδοι και εφαρµογές Μη Καταστροφικού Ελέγχου βασισµένες στον Ηλεκτροµαγνητισµό
Μέθοδοι και εφαρµογές Μη Καταστροφικού Ελέγχου βασισµένες στον Ηλεκτροµαγνητισµό Από το Θεόδωρο Τσαγκάρη Ηλ.Μηχανικό ΕΜΠ & Μηχανικό Πωλήσεων του Τεχνικού Γραφείου.Βρέκοσις Στην κατηγορία αυτή περιλαµβάνονται
ΚΑΤΕΡΓΑΣΙΕΣ ΜΟΡΦΟΠΟΙΗΣΗΣ. Δρ. Φ. Σκιττίδης, Δρ. Π. Ψυλλάκη
ΚΑΤΕΡΓΑΣΙΕΣ ΜΟΡΦΟΠΟΙΗΣΗΣ Δρ. Φ. Σκιττίδης, Δρ. Π. Ψυλλάκη ΔΙΕΡΓΑΣΙΕΣ ΠΑΡΑΓΩΓΗΣ ΠΡΟΪΟΝΤΩΝ Ορυκτά Πρώτες ύλες Κεραμικά Οργανικά υλικά (πετρέλαιο, άνθρακας) Μέταλλα (ελατά και όλκιμα) Μεταλλικός δεσμός Κεραμικά
Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα
Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα ΔΙΑΛΕΞΗ 17 Εισαγωγή στον Μαγνητισμό Μαγνητικό πεδίο ΦΥΣ102 1 Μαγνήτες και μαγνητικά πεδία
Γεννήτριες ΣΡ Κινητήρες ΣΡ
Γεννήτριες ΣΡ Κινητήρες ΣΡ - Στοιχειώδεις Ηλεκτρικές Μηχανές Επαγωγή λέγεται το φαινόμενο κατά το οποίο αναπτύσσεται ΗΕΔ: a. Στα άκρα αγωγού όταν αυτός κινείται με ταχύτητα υ μέσα σε μαγνητικό πεδίο επαγωγής
0 Φυσική Γενικής Παιδείας Β Λυκείου Ηλεκτρομαγνητισμός Ηλεκτρομαγνητισμός. Κώστας Παρασύρης - Φυσικός
0 Φυσική Γενικής Παιδείας Β Λυκείου Ηλεκτρομαγνητισμός - 3.3 Ηλεκτρομαγνητισμός 1 Φυσική Γενικής Παιδείας Β Λυκείου Ηλεκτρομαγνητισμός - 1. Μαγνητικό πεδίο Βασικές έννοιες Μαγνητικά φαινόμενα παρατηρήθηκαν
ΜΗ ΚΑΤΑΣΤΡΟΦΙΚΟΙ ΕΛΕΓΧΟΙ NON DESTRUCTIVE TESTING NDT Methods
ΜΗ ΚΑΤΑΣΤΡΟΦΙΚΟΙ ΕΛΕΓΧΟΙ NON DESTRUCTIVE TESTING NDT Methods RadiographicTesting - Magnetic Particle Testing - Penetrant Testing - Ultrasonic Testing - Eddy Current Testing - Neutron Radiographic Testing-
Μαγνητισμός μαγνητικό πεδίο
ΜΑΓΝΗΤΙΚΟ ΠΕΔΙΟ ΚΑΙ ΜΑΓΝΗΤΙΚΕΣ ΔΥΝΑΜΕΙΣ Μαγνητισμός μαγνητικό πεδίο Ο μαγνητισμός είναι κάτι τελείως διαφορετικό από τον ηλεκτρισμό; Πριν 200 χρόνια ο μαγνητισμός αποτελούσε ένα τελείως ξεχωριστό κεφάλαιο
ΟΡΙΣΜΟΣ ΚΑΙ ΣΚΟΠΟΣ ΤΩΝ ΜΕΘΟΔΩΝ ΜΚΕ
ΟΡΙΣΜΟΣ ΚΑΙ ΣΚΟΠΟΣ ΤΩΝ ΜΕΘΟΔΩΝ ΜΚΕ Μη-Καταστροφικές Δοκιμές (NDT Non Destructive Testing), ή, Μη-Καταστροφικοί Έλεγχοι (NDI Non Destructive Inspection), ή, Μη-Καταστροφικές Αξιολογήσεις (NDE Non Destructive
Όλα τα θέματα των εξετάσεων έως και το 2014 σε συμβολή, στάσιμα, ηλεκτρομαγνητικά κύματα, ανάκλαση - διάθλαση Η/Μ ΚΥΜΑΤΑ. Ερωτήσεις Πολλαπλής επιλογής
Η/Μ ΚΥΜΑΤΑ 1. Τα ηλεκτροµαγνητικά κύµατα: Ερωτήσεις Πολλαπλής επιλογής α. είναι διαµήκη. β. υπακούουν στην αρχή της επαλληλίας. γ. διαδίδονται σε όλα τα µέσα µε την ίδια ταχύτητα. δ. Δημιουργούνται από
( ) Στοιχεία που αποθηκεύουν ενέργεια Ψ = N Φ. διαφορικές εξισώσεις. Πηνίο. μαγνητικό πεδίο. του πηνίου (κάθε. ένα πηνίο Ν σπειρών:
Στοιχεία που αποθηκεύουν ενέργεια Λέγονται επίσης και δυναμικά στοιχεία Οι v- χαρακτηριστικές τους δεν είναι αλγεβρικές, αλλά ολοκληρο- διαφορικές εξισώσεις. Πηνίο: Ουσιαστικά πρόκειται για έναν περιεστραμμένο
ΜΗ ΚΑΤΑΣΤΡΟΦΙΚΟΙ ΕΛΕΓΧΟΙ ΕΡΓΑΣΤΗΡΙΟ ΜΗ ΚΑΤΑΣΤΡΟΦΙΚΟΥ ΕΛΕΓΧΟΥ
ΜΗ ΚΑΤΑΣΤΡΟΦΙΚΟΙ ΕΛΕΓΧΟΙ ΕΡΓΑΣΤΗΡΙΟ ΜΗ ΚΑΤΑΣΤΡΟΦΙΚΟΥ ΕΛΕΓΧΟΥ 2017 1 ΠΕΡΙΕΧΟΜΕΝΑ Μη Καταστροφικός Έλεγχος..3 1. Η μέθοδος των Διεισδυτικών Υγρών 4 2. Η μέθοδος των Μαγνητικών Σωματιδίων 5 3. Η μέθοδος των
Ηλεκτρομαγνητισμός. Μαγνητικό πεδίο. Νίκος Ν. Αρπατζάνης
Ηλεκτρομαγνητισμός Μαγνητικό πεδίο Νίκος Ν. Αρπατζάνης Μαγνητικοί πόλοι Κάθε μαγνήτης, ανεξάρτητα από το σχήμα του, έχει δύο πόλους. Τον βόρειο πόλο (Β) και τον νότιο πόλο (Ν). Μεταξύ των πόλων αναπτύσσονται
ΕΡΩΤΗΣΕΙΣ ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ
ΦΥΣΙΚΗ Γ.Π. Γ Λυκείου / Το Φως 1. Η υπεριώδης ακτινοβολία : a) δεν προκαλεί αμαύρωση της φωτογραφικής πλάκας. b) είναι ορατή. c) χρησιμοποιείται για την αποστείρωση ιατρικών εργαλείων. d) έχει μήκος κύματος
Άσκηση Η15. Μέτρηση της έντασης του μαγνητικού πεδίου της γής. Γήινο μαγνητικό πεδίο (Γεωμαγνητικό πεδίο)
Άσκηση Η15 Μέτρηση της έντασης του μαγνητικού πεδίου της γής Γήινο μαγνητικό πεδίο (Γεωμαγνητικό πεδίο) Το γήινο μαγνητικό πεδίο αποτελείται, ως προς την προέλευσή του, από δύο συνιστώσες, το μόνιμο μαγνητικό
ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΗ ΘΕΩΡΙΑ ΜΑΓΝΗΤΙΚΑ ΠΕΔΙΑ ΚΑΙ ΜΑΓΝΗΤΙΚΕΣ ΔΥΝΑΜΕΙΣ
ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΗ ΘΕΩΡΙΑ ΜΑΓΝΗΤΙΚΑ ΠΕΔΙΑ ΚΑΙ ΜΑΓΝΗΤΙΚΕΣ ΔΥΝΑΜΕΙΣ 1 1. ΜΑΓΝΗΤΙΣΜΟΣ Μαγνητικά φαινόμενα παρατηρήθηκαν για πρώτη φορά πριν από τουλάχιστον 2500 χρόνια σε κομμάτια μαγνητισμένου σιδηρομεταλλεύματος,
Μηχανολογικές Μετρήσεις - Εργασία Σχεδιασμός και Κατασκευή Μετρητικής ιάταξης ΣΧΕ ΙΑΣΜΟΣ ΚΑΤΑΓΡΑΦΙΚΟΥ. Δημήτρης Κατσαρέας
Μηχανολογικές Μετρήσεις - Εργασία Σχεδιασμός και Κατασκευή Μετρητικής ιάταξης ΣΧΕ ΙΑΣΜΟΣ ΚΑΤΑΓΡΑΦΙΚΟΥ Δημήτρης Κατσαρέας 2 περίληψη προηγουμένων 3 διαστάσεις μπορούμε να απλοποιήσουμε και να ελαφρύνουμε
Το Μαγνητικό πεδίο σαν διάνυσμα Μέτρηση οριζόντιας συνιστώσας του μαγνητικού πεδίου της γης
Το Μαγνητικό πεδίο σαν διάνυσμα Μέτρηση οριζόντιας συνιστώσας του μαγνητικού πεδίου της Α. Το Μαγνητικό πεδίο σαν διάνυσμα Σο μαγνητικό πεδίο περιγράφεται με το μέγεθος που αποκαλούμε ένταση μαγνητικού
ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΗ ΘΕΩΡΙΑ ΠΗΓΕΣ ΜΑΓΝΗΤΙΚΟΥ ΠΕΔΙΟΥ
ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΗ ΘΕΩΡΙΑ ΠΗΓΕΣ ΜΑΓΝΗΤΙΚΟΥ ΠΕΔΙΟΥ 1 .1 ΤΟ ΜΑΓΝΗΤΙΚΟ ΠΕΔΙΟ ΚΙΝΟΥΜΕΝΟΥ ΦΟΡΤΙΟΥ Ας θεωρούμε το μαγνητικό πεδίο ενός κινούμενου σημειακού φορτίου q. Ονομάζουμε τη θέση του φορτίου σημείο πηγής
Η αρνητική φορά του άξονα z είναι προς τη σελίδα. Για να βρούμε το μέτρο του Β χρησιμοποιούμε την Εξ. (2.3). Στο σημείο Ρ 1 ισχύει
ΠΑΡΑΔΕΙΓΜΑΤΑ Παράδειγμα.. Σταθερό ρεύμα 5 Α μέσω χάλκινου σύρματος ρέει προς δεξαμενή ανοδείωσης. Υπολογίστε το μαγνητικό πεδίο που δημιουργείται από το τμήμα του σύρματος μήκους, cm, σε ένα σημείο που
Ηλεκτρομαγνητισμός. Μαγνητικό πεδίο. Νίκος Ν. Αρπατζάνης
Ηλεκτρομαγνητισμός Μαγνητικό πεδίο Νίκος Ν. Αρπατζάνης ύναµη σε ρευµατοφόρους αγωγούς (β) Ο αγωγός δεν διαρρέεται από ρεύμα, οπότε δεν ασκείται δύναμη σε αυτόν. Έτσι παραμένει κατακόρυφος. (γ) Το µαγνητικό
Φυσική για Μηχανικούς
Φυσική για Μηχανικούς Εικόνα: Το Σέλας συμβαίνει όταν υψηλής ενέργειας, φορτισμένα σωματίδια από τον Ήλιο ταξιδεύουν στην άνω ατμόσφαιρα της Γης λόγω της ύπαρξης του μαγνητικού της πεδίου. Μαγνητισμός
Αρχή λειτουργίας στοιχειώδους γεννήτριας εναλλασσόμενου ρεύματος
Αρχή λειτουργίας στοιχειώδους γεννήτριας εναλλασσόμενου ρεύματος ΣΤΟΧΟΣ : Ο μαθητής να μπορεί να, εξηγεί την αρχή λειτουργίας στοιχειώδους γεννήτριας εναλλασσόμενου ρεύματος, κατανοεί τον τρόπο παραγωγής
Ο νόμος της επαγωγής, είναι ο σημαντικότερος νόμος του ηλεκτρομαγνητισμού. Γι αυτόν ισχύουν οι εξής ισοδύναμες διατυπώσεις:
Άσκηση Η17 Νόμος της επαγωγής Νόμος της επαγωγής ή Δεύτερη εξίσωση MAXWELL Ο νόμος της επαγωγής, είναι ο σημαντικότερος νόμος του ηλεκτρομαγνητισμού. Γι αυτόν ισχύουν οι εξής ισοδύναμες διατυπώσεις: d
ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙ ΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2011
ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙ ΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 0 Μάθημα: ΦΥΣΙΚΗ Ημερομηνία και ώρα εξέτασης: Σάββατο, 4 Ιουνίου 0 8:30 :30 π.μ. ΠΡΟΤΕΙΝΟΜΕΣ
Απορρόφηση φωτός: Προσδιορισμός του συντελεστή απορρόφησης διαφανών υλικών
O11 Απορρόφηση φωτός: Προσδιορισμός του συντελεστή απορρόφησης διαφανών υλικών 1. Σκοπός Η εργαστηριακή αυτή άσκηση αποσκοπεί α) στη μελέτη του φαινομένου της εξασθένησης φωτός καθώς διέρχεται μέσα από
1. Νόμος του Faraday Ορισμός της μαγνητικής ροής στην γενική περίπτωση τυχαίου μαγνητικού πεδίου και επιφάνειας:
1. Νόμος του Faaday Ορισμός της μαγνητικής ροής στην γενική περίπτωση τυχαίου μαγνητικού πεδίου και επιφάνειας: dφ d A Φ d A Αν το μαγνητικό πεδίο είναι ομογενές και η επιφάνεια επίπεδη: Φ A Ο νόμος του
Ασκήσεις 6 ου Κεφαλαίου
Ασκήσεις 6 ου Κεφαλαίου 1. Μία ράβδος ΟΑ έχει μήκος l και περιστρέφεται γύρω από τον κατακόρυφο άξονα Οz, που είναι κάθετος στο άκρο της Ο με σταθερή γωνιακή ταχύτητα ω. Να βρεθεί r η επαγώμενη ΗΕΔ στη
ΟΡΟΣΗΜΟ ΓΛΥΦΑΔΑΣ. 7.1 Τι είναι το ταλαντούμενο ηλεκτρικό δίπολο; Πως παράγεται ένα ηλεκτρομαγνητικό
ΚΕΦΑΛΑΙΟ 2 Ηλεκτρομαγνητικά κύματα. Ηλεκτρομαγνητικά κύματα 7. Τι είναι το ταλαντούμενο ηλεκτρικό δίπολο; Πως παράγεται ένα ηλεκτρομαγνητικό κύμα; 7.2 Ποιες εξισώσεις περιγράφουν την ένταση του ηλεκτρικού
Andre-Marie Ampère Γάλλος φυσικός Ανακάλυψε τον ηλεκτροµαγνητισµό. Ασχολήθηκε και µε τα µαθηµατικά.
Μαγνητικά πεδία Τα µαγνητικά πεδία δηµιουργούνται από κινούµενα ηλεκτρικά φορτία. Μπορούµε να υπολογίσουµε το µαγνητικό πεδίο που δηµιουργούν διάφορες κατανοµές ρευµάτων. Ο νόµος του Ampère χρησιµεύει
Π 3: Πηνίο Ηλεκτρομαγνήτης. Πείραμα. Όργανα Υλικά
1 Π 3: Πηνίο Ηλεκτρομαγνήτης. Πείραμα Όργανα Υλικά Πλαστική σωλήνα πάχους 1 εκ. περίπου Καλώδιο μονωμένο 2 μ. περίπου, μονόκλωνο ψιλό Πυξίδα Μπαταρία 6 V Καλώδια με μπανάνες και κροκοδειλάκια Διακόπτης
ΦΑΙΝΟΜΕΝΟ ΕΠΑΓΩΓΗΣ ΜΕ ΤΗΝ ΚΛΑΣΣΙΚΗ ΜΕΘΟΔΟ
1 ο ΕΚΦΕ (Ν. ΣΜΥΡΝΗΣ) Δ Δ/ΝΣΗΣ Δ. Ε. ΑΘΗΝΑΣ 1 ΦΑΙΝΟΜΕΝΟ ΕΠΑΓΩΓΗΣ ΜΕ ΤΗΝ ΚΛΑΣΣΙΚΗ ΜΕΘΟΔΟ Α. ΣΤΟΧΟΙ Η κατασκευή απλών ηλεκτρικών κυκλωμάτων με πηνίο, τροφοδοτικό, διακόπτη, ροοστάτη, λαμπάκια, γαλβανόμετρο,
ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ ΦΥΣΙΚΗ ΙΙ
ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ ΦΥΣΙΚΗ ΙΙ 1. Οι δυναμικές γραμμές ηλεκτροστατικού πεδίου α Είναι κλειστές β Είναι δυνατόν να τέμνονται γ Είναι πυκνότερες σε περιοχές όπου η ένταση του πεδίου είναι μεγαλύτερη δ Ξεκινούν
ΘΕΩΡΙΑ ΔΙΝΟΡΡΕΥΜΑΤΑ Δρ. Βουλγαράκη Χαριτίνη
ΘΕΩΡΙΑ ΔΙΝΟΡΡΕΥΜΑΤΑ Δρ. Βουλγαράκη Χαριτίνη ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & 2016 1.Η μέθοδος των Δινορρευμάτων Τα δινορρεύματα είναι μία από τις αναγνωρισμένες μεθόδους μη καταστροφικού ελέγχου (ΜΚΕ) και
ΑΣΚΗΣΗ 4 η ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΜΗΧΑΝΕΣ ΣΥΝΕΧΟΥΣ ΡΕΥΜΑΤΟΣ
ΑΣΚΗΣΗ 4 η ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΜΗΧΑΝΕΣ ΣΥΝΕΧΟΥΣ ΡΕΥΜΑΤΟΣ Σκοπός της Άσκησης: Σκοπός της εργαστηριακής άσκησης είναι α) η κατανόηση της αρχής λειτουργίας των μηχανών συνεχούς ρεύματος, β) η ανάλυση της κατασκευαστικών
ΠΕΡΙΛΗΨΗ 1. ΕΙΣΑΓΩΓΗ 2. ΚΑΤΑΣΚΕΥΗ
ΜΕΛΕΤΗ ΕΝΑΛΛΑΚΤΗ ΘΕΡΜΟΤΗΤΑΣ ΕΜΒΑΠΤΙΣΜΕΝΟΥ ΣΕ ΟΧΕΙΟ ΑΠΟΘΗΚΕΥΣΗΣ ΗΛΙΑΚΟΥ ΘΕΡΜΟΣΙΦΩΝΑ. Ν. Χασιώτης, Ι. Γ. Καούρης, Ν. Συρίµπεης. Τµήµα Μηχανολόγων & Αεροναυπηγών Μηχανικών, Πανεπιστήµιο Πατρών 65 (Ρίο) Πάτρα.
Φυσική για Μηχανικούς
Φυσική για Μηχανικούς Εικόνα: Το Σέλας συμβαίνει όταν υψηλής ενέργειας, φορτισμένα σωματίδια από τον Ήλιο ταξιδεύουν στην άνω ατμόσφαιρα της Γης λόγω της ύπαρξης του μαγνητικού της πεδίου. Μαγνητισμός
B 2Tk. Παράδειγμα 1.2.1
Παράδειγμα 1..1 Μία δέσμη πρωτονίων κινείται μέσα σε ομογενές μαγνητικό πεδίο μέτρου,0 Τ, που έχει την κατεύθυνση του άξονα των θετικών z, (Σχ. 1.4). Τα πρωτόνια έχουν ταχύτητα με μέτρο 3,0 10 5 m / s
ΠΕΡΙΕΧΟΜΕΝΑ ΤΟΜΟΣ Ι ΕΙΣΑΓΩΓΗ 1
ΤΟΜΟΣ Ι ΕΙΣΑΓΩΓΗ 1 1 ΟΙ ΒΑΣΙΚΟΙ ΝΟΜΟΙ ΤΟΥ ΗΛΕΚΤΡΟΣΤΑΤΙΚΟΥ ΠΕΔΙΟΥ 7 1.1 Μονάδες και σύμβολα φυσικών μεγεθών..................... 7 1.2 Προθέματα φυσικών μεγεθών.............................. 13 1.3 Αγωγοί,
Φυσική IΙ. Ενότητα 10: Ηλεκτρομαγνητική επαγωγή. Κουζούδης Δημήτρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών
Φυσική IΙ Ενότητα 10: Ηλεκτρομαγνητική επαγωγή Κουζούδης Δημήτρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Σκοποί ενότητας Εισαγωγή στην έννοια της μαγνητικής ροής και ορισμός του μαθηματικού τύπου της
Όσο χρονικό διάστηµα είχε τον µαγνήτη ακίνητο απέναντι από το πηνίο δεν παρατήρησε τίποτα.
1 ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΗ ΑΓΩΓΗ (Ε επ ). 5-2 ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΗ ΑΓΩΓΗ Γνωρίζουµε ότι το ηλεκτρικό ρεύµα συνεπάγεται τη δηµιουργία µαγνητικού πεδίου. Όταν ένας αγωγός διαρρέεται από ρεύµα, τότε δηµιουργεί γύρω του
8η Εργασία στο Μάθημα Γενική Φυσική ΙΙΙ - Τμήμα Τ1 Ασκήσεις 8 ου Κεφαλαίου
8η Εργασία στο Μάθημα Γενική Φυσική ΙΙΙ - Τμήμα Τ1 Ασκήσεις 8 ου Κεφαλαίου 1. Ένα σύρμα μεγάλου μήκους φέρει ρεύμα 30 Α, με φορά προς τα αριστερά κατά μήκος του άξονα x. Ένα άλλο σύρμα μεγάλου μήκους φέρει
Κεφάλαιο 27 Μαγνητισµός. Copyright 2009 Pearson Education, Inc.
Κεφάλαιο 27 Μαγνητισµός Περιεχόµενα Κεφαλαίου 27 Μαγνήτες και Μαγνητικά πεδία Τα ηλεκτρικά ρεύµατα παράγουν µαγνητικά πεδία Μαγνητικές Δυνάµεις πάνω σε φορτισµένα σωµατίδια. Η ροπή ενός βρόχου ρεύµατος.
ηλεκτρικό ρεύμα ampere
Ηλεκτρικό ρεύμα Το ηλεκτρικό ρεύμα είναι ο ρυθμός με τον οποίο διέρχεται ηλεκτρικό φορτίο από μια περιοχή του χώρου. Η μονάδα μέτρησης του ηλεκτρικού ρεύματος στο σύστημα SI είναι το ampere (A). 1 A =
ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ
26 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑΔΑ ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ (Δεύτερη Φάση) Κυριακή, 08 Απριλίου, 2012 Ώρα: 10:00-13:00 Οδηγίες: 1) Το δοκίμιο αποτελείται από τέσσερις (6) σελίδες και πέντε (5) θέματα. 2) Να απαντήσετε
Κεφάλαιο 2 ο Ενότητα 1 η : Μηχανικά Κύματα Θεωρία Γ Λυκείου
Κεφάλαιο 2 ο Ενότητα 1 η : Μηχανικά Κύματα Θεωρία Γ Λυκείου Τρέχοντα Κύματα Κύμα ονομάζεται η διάδοση μιας διαταραχής σε όλα τα σημεία του ελαστικού μέσου με ορισμένη ταχύτητα. Κατά τη διάδοση ενός κύματος
Μαγνητικό Πεδίο. μαγνητικό πεδίο. πηνίο (αγωγός. περιστραμμένος σε σπείρες), επάγει τάση στα άκρα του πηνίου (Μετασχηματιστής) (Κινητήρας)
Ένας ρευματοφόρος αγωγός παράγει γύρω του μαγνητικό πεδίο Ένα χρονικά μεταβαλλόμενο μαγνητικό πεδίο, του οποίου οι δυναμικές γραμμές διέρχονται μέσα από ένα πηνίο (αγωγός περιστραμμένος σε σπείρες), επάγει
ΒΑΘΜΟΣ : /100, /20 ΥΠΟΓΡΑΦΗ:.
ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ: 2017-2018 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ ΙΟΥΝΙΟΥ 2018 ΜΕΣΗΣ ΤΕΧΝΙΚΗΣ ΚΑΙ ΕΠΑΓΓΕΛΜΑΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΟΝΟΜΑΤΕΠΩΝΥΜΟ ΜΑΘΗΤΗ/ΤΡΙΑΣ:.... ΒΑΘΜΟΣ : /100, /20 ΥΠΟΓΡΑΦΗ:. Επιτρεπόμενη διάρκεια
ΓΚΙΟΚΑΣ ΠΑΝΑΓΙΩΤΗΣ. ΘΕΜΑ: Περιγράψτε τον τρόπο λειτουργίας μιας ηλεκτρικής γεννήτριας Σ.Ρ. με διέγερση σειράς.
ΓΚΙΟΚΑΣ ΠΑΝΑΓΙΩΤΗΣ ΑΜ:6749 ΘΕΜΑ: Περιγράψτε τον τρόπο λειτουργίας μιας ηλεκτρικής γεννήτριας Σ.Ρ. με διέγερση σειράς. ΣΚΟΠΟΣ: Για να λειτουργήσει μια γεννήτρια, πρέπει να πληρούνται οι παρακάτω βασικές
3ΟΥ ΕΡΓΑΣΤΗΡΙΑΚΟΥ ΜΑΘΗΜΑΤΟΣ «ΜΑΓΝΗΤΙΣΜΟΣ» ΠΟΙΑ ΥΛΙΚΑ ΕΠΗΡΕΑΖΟΝΤΑΙ ΑΠΟ ΤΟΝ ΜΑΓΝΗΤΗ; ΑΝΑΓΝΩΡΙΣΗ ΜΑΓΝΗΤΙΚΟΥ ΠΕΔΙΟΥ ΕΙΔΗ ΜΑΓΝΗΤΩΝ ΙΔΙΟΤΗΤΕΣ ΜΑΓΝΗΤΩΝ
3ο Εργαστήριο Μαγνητισμός ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ 3ΟΥ ΕΡΓΑΣΤΗΡΙΑΚΟΥ ΜΑΘΗΜΑΤΟΣ «ΜΑΓΝΗΤΙΣΜΟΣ» 1. ΠΟΙΑ ΥΛΙΚΑ ΕΠΗΡΕΑΖΟΝΤΑΙ ΑΠΟ ΤΟΝ ΜΑΓΝΗΤΗ; 2. ΑΝΑΓΝΩΡΙΣΗ ΜΑΓΝΗΤΙΚΟΥ ΠΕΔΙΟΥ 3. ΕΙΔΗ ΜΑΓΝΗΤΩΝ 4. ΙΔΙΟΤΗΤΕΣ ΜΑΓΝΗΤΩΝ -1-
Κεφάλαιο 6: Δινορεύματα
Κεφάλαιο 6: Δινορεύματα * Σύνοψη Το κεφάλαιο αυτό καλύπτει τις φυσικές αρχές που διέπουν τη δημιουργία των δινορευμάτων, παράγοντες που επηρεάζουν το μη καταστροφικό έλεγχο υλικών με δινορεύματα, σχετική
Φ t Το επαγωγικό ρεύμα έχει τέτοια φορά ώστε το μαγνητικό του πεδίο να αντιτίθεται στην αιτία που το προκαλεί. E= N
Επίδειξη του φαινομένου της επαγωγής αμοιβαίας επαγωγής με την κλασική μέθοδο Α) Επαγωγή Σύμφωνα με το νόμο του Faraday όταν από ένα πηνίο με Ν σπείρες διέρχεται μαγνητική ροή Φ που μεταβάλλεται με το
3 η Εργαστηριακή Άσκηση
3 η Εργαστηριακή Άσκηση Βρόχος υστέρησης σιδηρομαγνητικών υλικών Τα περισσότερα δείγματα του σιδήρου ή οποιουδήποτε σιδηρομαγνητικού υλικού που δεν έχουν βρεθεί ποτέ μέσα σε μαγνητικά πεδία δεν παρουσιάζουν
ΜΗ ΚΑΤΑΣΤΡΟΦΙΚΟΣ ΕΛΕΓΧΟΣ ΜΕΤΑΛΛΙΚΩΝ ΥΛΙΚΩΝ ΜΕ ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΗ-ΘΕΡΜΙΚΗ ΜΕΘΟΔΟ
ΜΗ ΚΑΤΑΣΤΡΟΦΙΚΟΣ ΕΛΕΓΧΟΣ ΜΕΤΑΛΛΙΚΩΝ ΥΛΙΚΩΝ ΜΕ ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΗ-ΘΕΡΜΙΚΗ ΜΕΘΟΔΟ Ν. ΤΣΟΠΕΛΑΣ, Δ. ΛΕΒΕΝΤΟΠΟΥΛΟΣ και Ν.Ι. ΣΙΑΚΑΒΕΛΛΑΣ Τμήμα Μηχανολόγων & Αεροναυπηγών Μηχανικών, Πανεπιστήμιο Πατρών, 265 Πάτρα
Πεδία δυνάμεων. Ηλεκτρισμός και μαγνητισμός διαφορετικές όψεις του ίδιου φαινομένου του ηλεκτρομαγνητισμού. Ενοποίηση των δύο πεδίων μετά το 1819.
Πεδία δυνάμεων Πεδίο βαρύτητας, ηλεκτρικό πεδίο, μαγνητικό πεδίο: χώροι που ασκούνται δυνάμεις σε κατάλληλους φορείς. Κατάλληλος φορέας για το πεδίο βαρύτητας: μάζα Για το ηλεκτρικό πεδίο: ηλεκτρικό φορτίο.
ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΚΑΙ ΑΕΡΟΝΑΥΠΗΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΤΩΝ ΡΕΥΣΤΩΝ ΚΑΙ ΕΦΑΡΜΟΓΩΝ ΑΥΤΗΣ
ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΚΑΙ ΑΕΡΟΝΑΥΠΗΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΤΩΝ ΡΕΥΣΤΩΝ ΚΑΙ ΕΦΑΡΜΟΓΩΝ ΑΥΤΗΣ Διευθυντής: Διονύσιος-Ελευθ. Π. Μάργαρης, Αναπλ. Καθηγητής ΕΡΓΑΣΤΗΡΙΑΚΗ
ΙΔΙΟΤΗΤΕΣ ΜΑΓΝΗΤΙΚΩΝ ΦΑΚΩΝ. Ηλεκτροστατικοί και Μαγνητικοί Φακοί Βασική Δομή Μαγνητικών Φακών Υστέρηση Λεπτοί Μαγνητικοί Φακοί Εκτροπές Φακών
ΙΔΙΟΤΗΤΕΣ ΜΑΓΝΗΤΙΚΩΝ ΦΑΚΩΝ Βασική Δομή Μαγνητικών Φακών Υστέρηση Λεπτοί Μαγνητικοί Φακοί Εκτροπές Φακών ΓΕΩΜΕΤΡΙΚΗ ΟΠΤΙΚΗ ΓΥΑΛΙΝΟΙ ΚΑΙ ΗΛΕΚΤΡΟΝΙΚΟΙ ΦΑΚΟΙ Οι φακοί χρησιμοποιούνται για να εκτρέψουν μία
ΕΝΟΤΗΤΑ 1 ΗΛΕΚΤΡΙΣΜΟΣ. Κεφάλαιο 1. Ηλεκτρική δύναμη και φορτίο. 1.1 Γνωριμία με την ηλεκτρική δύναμη.
ΕΝΟΤΗΤΑ 1 ΗΛΕΚΤΡΙΣΜΟΣ Κεφάλαιο 1. Ηλεκτρική δύναμη και φορτίο. 1.1 Γνωριμία με την ηλεκτρική δύναμη. 1. Σώματα, όπως ο πλαστικός χάρακας ή το ήλεκτρο, που αποκτούν την ιδιότητα να ασκούν δύναμη σε ελαφρά
Όλα τα θέματα των εξετάσεων έως και το 2014 σε συμβολή, στάσιμα, ηλεκτρομαγνητικά κύματα, ανάκλαση - διάθλαση ΑΝΑΚΛΑΣΗ ΔΙΑΘΛΑΣΗ
ΑΝΑΚΛΑΣΗ ΔΙΑΘΛΑΣΗ Ερωτήσεις Πολλαπλής επιλογής 1. To βάθος µιας πισίνας φαίνεται από παρατηρητή εκτός της πισίνας µικρότερο από το πραγµατικό, λόγω του φαινοµένου της: α. ανάκλασης β. διάθλασης γ. διάχυσης
ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΑ ΚΥΜΑΤΑ ΤΟ ΥΛΙΚΟ ΕΧΕΙ ΑΝΤΛΗΘΕΙ ΑΠΟ ΤΑ ΨΗΦΙΑΚΑ ΕΚΠΑΙΔΕΥΤΙΚΑ ΒΟΗΘΗΜΑΤΑ ΤΟΥ ΥΠΟΥΡΓΕΙΟΥ ΠΑΙΔΕΙΑΣ.
ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΑ ΚΥΜΑΤΑ ΕΞΙΣΩΣΗ Η/Μ ΚΥΜΑΤΟΣ ΤΟ ΥΛΙΚΟ ΕΧΕΙ ΑΝΤΛΗΘΕΙ ΑΠΟ ΤΑ ΨΗΦΙΑΚΑ ΕΚΠΑΙΔΕΥΤΙΚΑ ΒΟΗΘΗΜΑΤΑ ΤΟΥ ΥΠΟΥΡΓΕΙΟΥ ΠΑΙΔΕΙΑΣ http://www.study4exams.gr/ ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ
Δυναμική Ηλεκτρικών Μηχανών
Δυναμική Ηλεκτρικών Μηχανών Ενότητα 1: Εισαγωγή Βασικές Αρχές Επ. Καθηγήτρια Τζόγια Χ. Καππάτου Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Μαγνητισμός. Ενότητα 2. Ηλεκτρισμός & Μαγνητισμός
Σημειώσεις Γενικής Φυσικής - ΒΕΤ Μ. Μπενής / 2016 Ηλεκτρισμός & Μαγνητισμός Ενότητα 2. Ηλεκτρισμός & Μαγνητισμός Μαγνητισμός Το φαινόμενο της μαγνήτισης είναι γνωστό από την αρχαιότητα. Παρατηρήθηκε πως
ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΗ ΕΠΑΓΩΓΗ. Ένα μεταβαλλόμενο μαγνητικό πεδίο γεννά ηλεκτρικό ρεύμα
ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΗ ΕΠΑΓΩΓΗ Ένα μεταβαλλόμενο μαγνητικό πεδίο γεννά ηλεκτρικό ρεύμα ΠΕΙΡΑΜΑΤΑ ΕΠΑΓΩΓΗΣ Όταν κλείνουμε το διακόπτη εμφανίζεται στιγμιαία ρεύμα στο δεξιό πηνίο Michael Faraday 1791-1867 Joseph
ΣΤΕΡΕΟΣΚΟΠΙΚΕΣ ΕΙΚΟΝΕΣ
ΣΤΕΡΕΟΣΚΟΠΙΚΕΣ ΕΙΚΟΝΕΣ Η προοπτική εικόνα, είναι, όπως είναι γνωστό, η προβολή ενός χωρικού αντικειμένου, σε ένα επίπεδο, με κέντρο προβολής, το μάτι του παρατηρητή. Η εικόνα αυτή, θεωρούμε ότι αντιστοιχεί
3.2 ΧΗΜΙΚΑ ΑΠΟΤΕΛΕΣΜΑΤΑ ΤΟΥ ΗΛΕΚΤΡΙΚΟΥ ΡΕΥΜΑΤΟΣ
Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Email : stvrentzou@gmail.com 3.2 ΧΗΜΙΚΑ ΑΠΟΤΕΛΕΣΜΑΤΑ ΤΟΥ ΗΛΕΚΤΡΙΚΟΥ ΡΕΥΜΑΤΟΣ 1 Λέξεις κλειδιά: Ηλεκτρολυτικά διαλύματα, ηλεκτρόλυση,
ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙ ΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2012 ΛΥΣΕΙΣ
ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙ ΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2012 ΛΥΣΕΙΣ ΤΕΧΝΟΛΟΓΙΑ Τ.Σ. (ΙΙ) ΠΡΑΚΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Μάθημα: Μηχανουργική Τεχνολογία
Ο ΗΓΙΕΣ ΧΡΗΣΗΣ ΠΕΡΙΕΧΟΜΕΝΑ
ΠΕΡΙΕΧΟΜΕΝΑ. ΕΙΣΑΓΩΓΗ ΠΕΡΙΓΡΑΦΗ ΤΗΣ ΣΥΣΚΕΥΗΣ... ΠΛΕΟΝΕΚΤΗΜΑΤΑ... ΚΑΘΑΡΙΣΜΟΣ ΤΗΣ ΣΥΣΚΕΥΗΣ.... ΣΗΜΑΝΤΙΚΕΣ ΕΠΙΣΗΜΑΝΣΕΙΣ... 5. ΤΕΧΝΙΚΑ ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ... ΛΕΙΤΟΥΡΓΙΚΑ ΣΤΟΙΧΕΙΑ ΤΗΣ ΣΥΣΚΕΥΗΣ.. 5 7. ΠΡΟΚΑΤΑΡΚΤΙΚΕΣ
7.1 ΜΕΤΡΗΣΗ ΤΗΣ ΕΣΤΙΑΚΗΣ ΑΠΟΣΤΑΣΗΣ ΦΑΚΩΝ
7.1 ΑΣΚΗΣΗ 7 ΜΕΤΡΗΣΗ ΤΗΣ ΕΣΤΙΑΚΗΣ ΑΠΟΣΤΑΣΗΣ ΦΑΚΩΝ ΘΕΩΡΙΑ Όταν φωτεινή παράλληλη δέσμη διαδιδόμενη από οπτικό μέσο α με δείκτη διάθλασης n 1 προσπίπτει σε άλλο οπτικό μέσο β με δείκτη διάθλασης n 2 και
Φυσική IΙ. Ενότητα 9: Ο Νόμος του Ampere. Κουζούδης Δημήτρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών
Φυσική IΙ Ενότητα 9: Ο Νόμος του Ampere Κουζούδης Δημήτρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Σκοποί ενότητας Εισαγωγή και ερμηνεία του Νόμου του Ampere Χρήση και εφαρμογή του Νόμου του Ampere για
ΦΥΣΙΚΗ Γ ΓΥΜΝΑΣΙΟΥ. Ηλεκτρισμένα σώματα. πως διαπιστώνουμε ότι ένα σώμα είναι ηλεκτρισμένο ; Ηλεκτρικό φορτίο
ΦΥΣΙΚΗ Γ ΓΥΜΝΑΣΙΟΥ 1 Η ΕΝΟΤΗΤΑ ΗΛΕΚΤΡΙΣΜΟΣ ΚΕΦΑΛΑΙΟ 1 Ο Ηλεκτρική δύναμη και φορτίο Ηλεκτρισμένα σώματα 1.1 Ποια είναι ; Σώματα (πλαστικό, γυαλί, ήλεκτρο) που έχουν την ιδιότητα να ασκούν δύναμη σε ελαφρά