Επανάληψη Θεωρίας και Τυπολόγιο

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Επανάληψη Θεωρίας και Τυπολόγιο"

Transcript

1 ΕΠΑΝΑΛΗΨΗ ΣΤΗΝ ΠΡΟΕΤΟΙΜΑΣΙΑ ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ Επανάληψη Θεωρίας και Τπολόγιο ΕΞΙΣΩΣΕΙΣ ΣΤΗΝ ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ Γενικές έννοιες Περιοδική ονομάζεται η κίνηση πο επαναλαμβάνεται κατά τον ίδιο τρόπο σε ίσα χρονικά διαστήματα (π.χ. η ομαλή κκλική κίνηση ενός σώματος). Ταλάντωση ονομάζεται η περιοδική παλινδρομική κίνηση γύρω από μια θέση ισορροπίας πο ονομάζεται θέση ισορροπίας της ταλάντωσης (Θ. Ι. Τ.) Γραμμική ταλάντωση ονομάζεται η ταλάντωση πο γίνεται πάνω σε εθεία γραμμή. Απλή αρμονική ταλάντωση ονομάζεται η γραμμική ταλάντωση στην οποία η απομάκρνση το σώματος από τη θέση ισορροπίας είναι αρμονική σνάρτηση το χρόνο. Έχει δηλαδή τη μορφή = ημ ω + φ. ( ) Θέση ισορροπίας της ταλάντωσης ονομάζεται το μέσο το εθύγραμμο τμήματος πο ορίζεται από τις α- κραίες θέσεις της ταλάντωσης. Π.χ. το Ο είναι η θέση ισορροπίας της ταλάντωσης πο έχει ακραίες θέσεις τις K και Λ. Στη θέση ισορροπίας της ταλάντωσης η σνισταμένη των δνάμεων πο K O Λ ασκούνται στο σώμα είναι ίση με μηδέν. Α Α Περίοδος (Τ) της απλής αρμονικής ταλάντωσης είναι το χρονικό διάστημα στο οποίο πραγματοποιείται μια πλήρης ταλάντωση. Δηλαδή ο χρόνος πο χρειάζεται το σώμα για να ξαναπεράσει για πρώτη φορά από το ίδιο σημείο της τροχιάς το με την ίδια φορά κίνησης. Μονάδα μέτρησης της περιόδο είναι το s. Σχνότητα (f) της απλής αρμονικής ταλάντωσης είναι το σταθερό πηλίκο το αριθμού των ταλαντώσεων Ν πο κάνει το σώμα σε χρόνο, προς το χρόνο N f = Η σχνότητα σνδέεται με την περίοδο με τη σχέση. f = Τ κύκλος Μονάδα μέτρησης της σχνότητας είναι το Hz = s Κκλική σχνότητα (ω) (ή γωνιακή ταχύτητα) ονομάζεται το μέγεθος πο εκφράζει τον αριθμό των ταλαντώσεων το σώματος σε χρόνο = π s. Η κκλική σχνότητα σνδέεται με την περίοδο και τη σχνότητα με τις σχέσεις. π ω = = π f Τ Μονάδα μέτρησης της κκλικής σχνότητας είναι το rad / s. Eξισώσεις της απλής αρμονικής ταλάντωσης Η εξίσωση της απομάκρνσης Όταν ένα σώμα εκτελεί απλή αρμονική ταλάντωση η σχέση πο δίνει την απομάκρνση από τη θέση ισορροπίας της ταλάντωσης είναι = ημ ( ω + φ) Όπο: : είναι η τχαία απομάκρνση από τη θέση ισορροπίας. Α: είναι η μέγιστη απομάκρνση από τη θέση ισορροπίας και ονομάζεται πλάτος της ταλάντωσης.

2 ω: είναι η κκλική σχνότητα της ταλάντωσης. : είναι η τχαία χρονική στιγμή στην οποία το σώμα έχει απομάκρνση. φ: είναι η αρχική φάση της ταλάντωσης. (Καθορίζει την τιμή της απομάκρνσης τη χρονική στιγμή =0. ω+φ: είναι η φάση της ταλάντωσης. Λ O ω K ω Προσοχή πο το τόξο της βρίσκεται στο ημίτονο και καθορίζει την τιμή της απομάκρνσης. Ενώ αρχική φάση είναι μόνο η φ. Φάση της ταλάντωσης είναι ολόκληρη η γωνία ( ω + φ) Η εξίσωση της απομάκρνσης στην Α.Α.Τ. μπορεί να περιγραφεί και με ένα περιστρεφόμενο διάνσμα (σχήμα) Το μέτρο το διανύσματος OΚ είναι ίσο με το πλάτος της ταλάντωσης O Κ = Α. Α Καθώς το διάνσμα OΚ περιστρέφεται με σταθερή γωνιακή ταχύτητα ω η προβολή το ΟΛ στον κατακόρφο άξονα δίνει την απομάκρνση το σώματος O Λ = OK ημ ω = Α ημ ω Όταν δεν πάρχει αρχική φάση η γραφική παράσταση απομάκρνσης χρόνο είναι ατή το διπλανού σχήματος. -Α Η εξίσωση της ταχύτητας Η σχέση πο δίνει τη στιγμιαία γραμμική ταχύτητα ενός σώματος πο εκτελεί Α.Α.Τ. είναι = σν = ω ( ω + φ) = Α ω σν( ω + φ) Αν δεν έχομε αρχική φάση η εξίσωση της ταχύτητας γίνεται = σν ω = Α ω σν ω - Το διάγραμμα ταχύτητας χρόνο όταν δεν πάρχει αρχική φάση φαίνεται στο διπλανό σχήμα. Σχέση πο σνδέει ταχύτητα και απομάκρνση σε τχαίο σημείο της ταλάντωσης Από την εξίσωση της απομάκρνσης παίρνομε = ημω ημω = Α () Από την εξίσωση της ταχύτητας παίρνομε = Α ω σν ω σν ω = () Α ω Από την τριγωνομετρία ισχύει ότι: ημ ω + σν ω = ( )

3 Από τις (5) και (6) παίρνομε ημω = α ω ( 7) Από την τριγωνομετρία έχομε ημ ω + σν ( )(, 7) ω = α = ω α + ω = ω + α ( ) α = ± ω = ω Η εξίσωση της δύναμης Σχέση δύναμης απομάκρνσης Σε ένα σώμα πο εκτελεί Α.Α.Τ. η σνισταμένη όλων των δνάμεων πο ασκούνται σ ατό έχει μέτρο ανάλογο με το μέτρο της απομάκρνσης. F = D ( ) - F DΑ Το D είναι μια σταθερά πο ονομάζεται σταθερά της ταλάντωσης και εξαρτάται από τα φσικά χαρακτηριστικά το ταλαντούμενο σστήματος. Από τη σχέση () φαίνεται ότι η δύναμη επαναφοράς είναι πάντα αντίθετη με την απομάκρνση, έχει φορά προς τη θέση ισορροπίας της ταλάντωσης και τείνει πάντοτε να επαναφέρει το σώμα στη θέση ισορροπίας. -DΑ Η γραφική παράσταση δύναμης - απομάκρνσης φαίνεται στο σχήμα. Σχέση πο σνδέει τη σταθερά επαναφοράς με την γωνιακή ταχύτητα. Από το δεύτερο νόμο το Νεύτωνα έχομε F = mα F = mω α = ω ( ) Από τις () και () παίρνομε D = mω ( ) Σχέση πο σνδέει την περίοδο της ταλάντωσης με τη σταθερά επαναφοράς. = mω π π D = m ω = Τ Τ D Τ π m = = π D m D ( ) Προσοχή Από τη σχέση () φαίνεται ότι η περίοδος της ταλάντωσης εξαρτάται από τη μάζα το ταλαντωτή και τη σταθερά επαναφοράς. (Δεν εξαρτάται από το πλάτος της ταλάντωσης).

4 Εξίσωση δύναμης σε σνάρτηση με το χρόνο F F - F Από το δεύτερο νόμο το Νεύτωνα για τη σνισταμένη των δνάμεων ενός σώματος πο εκτελεί Α.Α.Τ. έχομε F = mα F = mω Α ημ ω α = ω Α ημ ω F = F ημ ω Αν πάρχει αρχική φάση η σχέση (5) γίνεται F = F ημ + ( 5) ( ω φ) ( 6) Το διάγραμμα δύναμης χρόνο όταν δεν πάρχει αρχική φάση φαίνεται στο σχήμα. ΑΠΛΟΣ ΑΡΜΟΝΙΚΟΣ ΤΑΛΑΝΤΩΤΗΣ - ΕΝΕΡΓΕΙΕΣ Απλός αρμονικός ταλαντωτής Ο απλός αρμονικός ταλαντωτής είναι ένα σώμα μάζας m πο είναι δεμένο στο ένα άκρο ελατηρίο σταθεράς Κ, το άλλο άκρο το οποίο είναι K m στερεωμένο. Στην περίπτωση ατή, η σταθερά της ταλάντωσης είναι ίση με τη σταθερά το ελατηρίο D=Κ. Επομένως η περίοδος της ταλάντωσης θα δίνεται από τη σχέση = π m K Δναμική μελέτη της απλής αρμονικής ταλάντωσης Αναφέραμε και σε προηγούμενη παράγραφο ότι για να εκτελέσει ένα σώμα Α.Α.Τ. πρέπει το μέτρο της σνισταμένης των δνάμεων πο ασκούνται σ ατό να είναι ανάλογο με το μέτρο της απομάκρνσης. Πρέπει δηλαδή να ισχύει ΣF = D Η σνισταμένη ατή δύναμη η οποία ονομάζεται δύναμη επαναφοράς τείνει να επαναφέρει το σώμα στη θέση ισορροπίας (έχει πάντοτε φορά προς τη θέση ισορροπίας). Για να αποδείξομε ότι ένα σώμα εκτελεί απλή αρμονική ταλάντωση εργαζόμαστε ως εξής. Προσδιορίζομε τη θέση ισορροπίας. Σχεδιάζομε στη θέση ατή όλες τις δνάμεις και εφαρμόζομε τη r σνθήκη Σ F = 0. Από τη σνθήκη ατή παίρνομε μια σχέση πο θα την χρησιμοποιήσομε στο επόμενο βήμα. Στην περίπτωση πο στη θέση ισορροπίας δεν πάρχον δνάμεις το παραπάνω βήμα δε χρειάζεται.. Απομακρύνομε λίγο το σώμα (κατά τη διεύθνση της κίνησης) σε τχαία θέση έτσι ώστε να απέχει από τη θέση ισορροπίας.. Στην παραπάνω θέση σχεδιάζομε όλες τις δνάμεις πο ασκούνται στο σώμα στη διεύθνση της κίνησης (αν χρειάζεται κάνομε και ανάλση δνάμεων στον άξονα της κίνησης). Χρησιμοποιώντας και τη σχέση πο πήραμε από τη σνθήκη ισορροπίας, αποδεικνύομε ότι η σνισταμένη των δνάμεων παίρνει τη μορφή ΣF = D (όπο D σταθερό) Ενέργεια στην απλή αρμονική ταλάντωση K Θ.Ι.Τ. m Θεωρούμε τον αρμονικό ταλαντωτή το παρακάτω σχήματος. Με την επίδραση μιας εξωτερικής δύναμης επιμηκύνομε το ελατήριο κατά Α. Το έργο της δύναμης πο δαπανήθηκε αποθηκεύτηκε στο ελατήριο σαν δναμική ενέργεια. W F = U = Κ

5 F ελ Κ Η παραπάνω ενέργεια ονομάζεται ολική ενέργεια της ταλάντωσης. Ε = Κ () Δναμική, κινητική και ολική ενέργεια της ταλάντωσης. Στην περίπτωση πο δεν έχομε ελατήριο αλλά ένα άλλο σύστημα πο εκτελεί ταλάντωση σταθεράς D η ολική ενέργεια της ταλάντωσης είναι E = D () Σσπειρώνομε το ελατήριο κατά Α (θέση Α). Ο ταλαντωτής αποκτά δναμική ενέργεια εξαιτίας της απομάκρνσης πο πάρχει από τη θέση ισορροπίας. U = Κ Θ.Ι.Τ. Στη θέση (Α) όμως το σώμα είναι ακίνητο. Επομένως δεν έχει κινητική (Α) ενέργεια. Άρα η ολική ενέργεια το ταλαντωτή σμπίπτει με τη δναμική (B) το ενέργεια στην παραπάνω θέση (πλάτος). Ε = Κ (Γ) Αφήνομε το σώμα ελεύθερο να κινηθεί. Σε μια τχαία θέση (Β) ο ταλαντωτής θα έχει κινητική και δναμική ενέργεια αφού έχει ταχύτητα και απομάκρνση από τη θέση ισορροπίας. (Δ) Ε E K = m K U U = K - O Η ολική το ενέργεια θα είναι το άθροισμα της κινητικής και της δναμικής το ενέργειας. Ε = K + U Ε = m + K Στη σνέχεια το σώμα περνάει από τη θέση ισορροπίας (Γ). Στη θέση ατή η κινητική το ενέργεια γίνεται μέγιστη ενώ η δναμική το μηδενίζεται αφού μηδενίζεται η απομάκρνση το σώματος από τη θέση ισορροπίας. Άρα στη θέση ισορροπίας η ολική ενέργεια το ταλαντωτή σμπίπτει με τη μέγιστη κινητική το ενέργεια. E = m () Στη σνέχεια το σώμα κινείται προς το σημείο (Δ) όπο πάλι η κινητική το ενέργεια μηδενίζεται και η δναμική παίρνει τη μέγιστη τιμή της. Αν δεν πάρχον τριβές η παραπάνω μετατροπή της δναμικής ενέργειας σε κινητική και αντίστροφα σνεχίζεται διαρκώς. Στο διάγραμμα το σχήματος φαίνεται ότι στα ακραία σημεία της ταλάντωσης (πλάτος) η δναμική ενέργεια παίρνει τη μέγιστη τιμή της και γίνεται ίση με την ολική, ενώ στη θέση ισορροπίας μηδενίζεται. Η κινητική ενέργεια στις ακραίες θέσεις είναι μηδέν ενώ στη θέση ισορροπίας παίρνει τη μέγιστη τιμή της. Σε κάθε άλλο ενδιάμεσο σημείο ο ταλαντωτής έχει κινητική και δναμική ενέργεια, το άθροισμα των οποίων είναι ίσο με την ολική ενέργεια. Πως αποδεικνύομε ότι η μέγιστη δναμική ενέργεια της ταλάντωσης είναι ίση με τη μέγιστη κινητική.

6 Πως αποδεικνύομε ότι η μέγιστη δναμική ενέργεια της ταλάντωσης είναι ίση με τη μέγιστη κινητική. Στην τχαία θέση ο ταλαντωτής έχει κινητική και δναμική ενέργεια. Το άθροισμα των δο παραπάνω ενεργειών δίνει την ολική ενέργεια E = m + Κ ( ) Η απομάκρνση και η ταχύτητα δίνονται από τις σχέσεις. = ημ ω ( 5) = σν ω = ω σν ω ( 6) Η σταθερά Κ της ταλάντωσης είναι K = mω ( 7) Από τις (), (5), (6) και (7) έχομε: Ε = mα ω σν ω + mω Ε = mω ( ημ ω + σν ω) E = ημ ω + σν ω = Στη σχέση (8) αν αντικαταστήσομε K = mω παίρνομε. Ε = Κ () 9 Ενώ αν αντικαταστήσομε = ω παίρνομε. Ε = m ( 0) Από τις (9) και (0) παίρνομε. Ε = Κ = m ( ) ημ ω Επομένως η διατήρηση ενέργειας για τον ταλαντωτή μπορεί να πάρει την παρακάτω γενική μορφή. Ε = D = m = D + m Όπο και είναι η απομάκρνση και η ταχύτητα στο τχαίο σημείο. Μπορούμε να εκφράσομε τη δναμική και την κινητική ενέργεια το ταλαντωτή σε σνάρτηση με την ολική ενέργεια και το χρόνο. Η δναμική ενέργεια το ταλαντωτή είναι U = D = D ημ ω E = D Η κινητική ενέργεια το ταλαντωτή είναι ( ) mω ( ) () 8 = D ημ ω U = Ε ημ ω ( ) K = m Ε = m = m ( σν ω) = m σν ω K = Ε σν ω ( ) E E U K Με βάση τις σχέσεις () και () το διάγραμμα ενέργειας χρόνο φαίνεται στο σχήμα.

7 ΕΠΑΝΑΛΗΨΗ ΣΤΗΝ ΠΡΟΕΤΟΙΜΑΣΙΑ ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ Αφού επαναληφθεί το τπολόγιο, να γίνον οι παρακάτω ασκήσεις για επανάληψη: Σελίδα Άσκηση ,9, ,65 ΠΡΟΣΘΕΤΕΣ ΑΣΚΗΣΕΙΣ. Ένα σώμα εκτελεί απλή αρμονική ταλάντωση και τη χρονική στιγμή =0 η απομάκρνσή το από τη θέση ισορροπίας είναι = (όπο Α το πλάτος της ταλάντωσης). Να βρεθεί η αρχική φάση όταν: α) Το σώμα κινείται με θετική ταχύτητα. β) Το σώμα κινείται με αρνητική ταχύτητα. [ Απ. α) π/6, β) 5π/6 ]. Ένα σώμα εκτελεί απλή αρμονική ταλάντωση και τη χρονική στιγμή =0 η απομάκρνσή το από τη θέση ισορροπίας είναι = Α, ενώ η ταχύτητά το είναι =. Να βρεθεί η αρχική φάση. [ Απ. π/ ] π. Ένα σώμα εκτελεί απλή αρμονική ταλάντωση με εξίσωση ταχύτητας = 50 ημ 0 + (το σε cm/s το σε s). Να βρεθούν οι χρονικές εξισώσεις της απομάκρνσης και της επιτάχνσης. π π [Απ. = 5 ημ 0 +, α = 500 ημ 0 + ] 6 6. Δο σώματα εκτελούν απλές αρμονικές ταλαντώσεις ίσο πλάτος πάνω στην ίδια εθεία και γύρω από την ίδια π π θέση ισορροπίας. Οι γωνιακές ταχύτητες των ταλαντώσεων είναι ω = rad / s και ω = rad / s αντίστοιχα. Τη Α χρονική στιγμή =0 το πρώτο σώμα έχει απoμάκρνση =+Α και το δεύτερο = με >0. α) Να βρεθούν οι αρχικές φάσεις των δο σωμάτων. β) Ύστερα από πόσο χρόνο θα σναντηθούν τα δο σώματα. π π 8 [Απ. α) φ = rad, φ = rad, β) = s ] 6 7

8 5. Ένα σώμα εκτελεί απλή αρμονική ταλάντωση πλάτος Α=0cm και σχνότητας f=0,5ηz. Τη χρονική στιγμή =0 η απομάκρνση το σώματος είναι =0cm. α) Να βρεθεί η αρχική φάση της ταλάντωσης. β) Ποια χρονική στιγμή το σώμα έχει για δεύτερη φορά απομάκρνση = 5cm με θετική φορά κίνησης; π 0 [Απ. α) φ =, β) = s ] α α 6. Η γραφική παράσταση της επιτάχνσης σε σνάρτηση με το χρόνο για ένα σημειακό αντικείμενο πο εκτελεί απλή αρμονική ταλάντωση φαίνεται στο σχήμα. Με ποιο ή ποια από τα παρακάτω σμφωνείτε ή διαφωνείτε και γιατί; -α 8 6 (s) α) Τις χρονικές στιγμές 0, 8s, και 6s η ταχύτητα το αντικειμένο είναι μηδέν. β) Τη χρονική στιγμή s το αντικείμενο κινείται προς τη θέση ισορροπίας το. γ) Τις χρονικές στιγμές s και s το μέτρο της ταχύτητας το αντικειμένο έχει τη μέγιστη τιμή το. δ) Η ταχύτητα το αντικειμένο κάθε χρονική στιγμή δίνεται από την εξίσωση = ημ(ω+π) 7. Ένα σώμα μάζας m=5kg εκτελεί απλή αρμονική ταλάντωση πλάτος =0cm και περιόδο Τ=0 s. Τη χρονική στιγμή =0 το σώμα έχει απομάκρνση =5m και θετική ταχύτητα. α) Να βρεθεί η αρχική φάση της απλής αρμονικής ταλάντωσης. β) Να γραφούν οι χρονικές εξισώσεις για την απομάκρνση, την ταχύτητα, την επιτάχνση και τη δύναμη επαναφοράς. π π π π π [Απ. α) φ = rad, β) = 0 ημ +, = π σν +, π π π π π α = ημ +, F = π ημ + ] Σημειακό αντικείμενο εκτελεί απλή αρμονική ταλάντωση και η ταχύτητά το μεταβάλλεται με το χρόνο σύμφωνα με την εξίσωση = ημω. Να αντιστοιχίσετε τα στοιχεία της αριστερής στήλης με τα διαγράμματα της δεξιάς. α. απομάκρνση. Τ β. ταχύτητα. Τ γ. επιτάχνση α. Τ

9 9. Στο κάτω άκρο κατακόρφο ελατηρίο, σταθεράς Κ=Ν/m το πάνω άκρο το οποίο είναι στερεωμένο σταθερά, δένομε ένα σώμα μάζας m=0,kgr. Ανψώνομε το σώμα κατακόρφα ώστε το ελατήριο να αποκτήσει το φσικό το μήκος και το αφήνομε ελεύθερο να κινηθεί. α) Να δείξετε ότι το σώμα θα εκτελέσει απλή αρμονική ταλάντωση και να πολογίσετε την περίοδό της. β) Πόση είναι η μέγιστη δναμική ενέργεια της απλής αρμονικής ταλάντωσης. γ) Πόση είναι η μέγιστη δναμική ενέργεια το ελατηρίο. Δίνεται g=0m/s. [Απ. α) = 0, π s, β) U = J, γ) U ελ, = 8 J ] π 0. Ένα σώμα μάζας m εκτελεί απλή αρμονική ταλάντωση με εξίσωση απομάκρνσης = ημ. α) Πόσο τοις εκατό της ολικής ενέργειας είναι η κινητική το ενέργεια όταν βρίσκεται σε απομάκρνση = ; β) Τι ποσοστό της ολικής το ενέργειας είναι η δναμική το ενέργεια τη χρονική στιγμή =0,5 s; [Απ. α) α =0,75 75%, β) α =0,5 50%]. Ένα σώμα μάζας m=0,kg εκτελεί απλή αρμονική ταλάντωση πλάτος =0, m και περιόδο Τ= s. α) Να πολογιστούν οι μέγιστες τιμές της ταχύτητας, της επιτάχνσης και της δύναμης. β) Να βρεθούν η απομάκρνση, η ταχύτητα, η επιτάχνση και η δύναμη επαναφοράς το σώματος μετά από χρόνο =/6 s από τη στιγμή της διέλεσής το από τη θέση ισορροπίας κινούμενο κατά τη θετική φορά. γ) Να γίνον οι γραφικές παραστάσεις =f(), =f(), α=f(). Τι εκφράζει η κλίση στα διαγράμματα =f() και =f(); Τι εκφράζει το εμβαδόν μεταξύ γραφικής παράστασης και άξονα των χρόνων στα διαγράμματα =f() και α=f(); Δίνεται π = 0 [Απ. α) =0,π m/s, α = m/s, F =0,N, β) y =5 cm, F=0,05N ] = 0,π m / s, α = 0,5m / s,. Ένα σώμα εκτελεί απλή αρμονική ταλάντωση με εξίσωση = ημ ω. Να βρεθεί σε ποια θέση και σε ποια χρονική στιγμή η κινητική το ενέργεια γίνεται ίση με τη δναμική για πρώτη φορά. [Απ. = ±, = ] 8. Ένα σώμα μάζας m=0,05kg εκτελεί απλή αρμονική ταλάντωση πλάτος =0,m και περιόδο Τ=s. α) Πόση είναι η ολική ενέργεια της ταλάντωσης; β) Πόση είναι η κινητική και πόση η δναμική ενέργεια το ταλαντωτή όταν βρίσκεται σε απομάκρνση =5cm; γ) Σε ποιες θέσεις η κινητική ενέργεια είναι τριπλάσια της δναμικής; δ) Αν το σώμα τη χρονική στιγμή =0 διέρχεται από τη θέση ισορροπίας κινούμενο κατά τη θετική φορά, ποια χρονική στιγμή η κινητική ενέργεια είναι το / της δναμικής για πρώτη φορά; ε) Σε κοινό διάγραμμα να γίνον οι γραφικές παραστάσεις των ενεργειών σε σνάρτηση με την απομάκρνση. στ) Να γίνον οι γραφικές παραστάσεις των ενεργειών σε σνάρτηση με το χρόνο. [Απ. α) E = 6,5 0 J, β) U =,565 0 J, K =, J, γ) = ±5cm, δ) = s ]. Ένα σώμα μάζας m=0, Kg εκτελεί απλή αρμονική ταλάντωση με εξίσωση απομάκρνσης πο δίνεται π από τη σχέση = 0,ημ 0 + (S.I.). 6 α) Να πολογίσετε την ενέργεια της ταλάντωσης. β) Να πολογίσετε το μέτρο της ταχύτητας το σώματος όταν ατό βρίσκεται στη θέση = 0, m. γ) Να πολογίσετε την απομάκρνση το σώματος όταν ατό κινείται με ταχύτητα =. δ) Να γράψετε τις εξισώσεις της επιτάχνσης σε σνάρτηση με την απομάκρνση και σε σνάρτηση με το χρόνο και να κάνετε τα αντίστοιχα διαγράμματα (α- και α-). 0,8 π [Απ. α) E = 0,8 J, β) = m / s, γ) = ± m, δ) α = -00, α = -0ημ 0 + (S.I.)] 6

ΟΡΟΣΗΜΟ. 1.1 Σώμα κάνει απλή αρμονική ταλάντωση.

ΟΡΟΣΗΜΟ. 1.1 Σώμα κάνει απλή αρμονική ταλάντωση. ΚΕΦΑΛΑΙΟ Στις επόμενες ερωτήσεις, ποια από τις προτάσεις είναι σωστή;. Σώμα κάνει απλή αρμονική ταλάντωση.. Η επιτάχνση έχει ίδια φορά με τη φορά της απομάκρνσης. Β. Η επιτάχνση έχει φορά προς τη Θ.Ι.

Διαβάστε περισσότερα

Μεταίχµιο Φροντιστήριο ιαγώνισµα Φυσικής Κατεύθυνσης Γ Λυκείου 1 ΘΕΜΑ 1

Μεταίχµιο Φροντιστήριο ιαγώνισµα Φυσικής Κατεύθυνσης Γ Λυκείου 1 ΘΕΜΑ 1 εταίχµιο Φροντιστήριο ιαγώνισµα Φσικής Κατεύθνσης Γ κείο 1 ΘΕΑ 1 Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράµµα πο αντιστοιχεί στη σωστή απάντηση 1.

Διαβάστε περισσότερα

Φυσική Θετικής-Τεχνολογικής Κατεύθυνσης ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΤΑΙΧΜΙΟ 1. Θέµα 1 ο

Φυσική Θετικής-Τεχνολογικής Κατεύθυνσης ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΤΑΙΧΜΙΟ 1. Θέµα 1 ο Φσική Θετικής-Τεχνολογικής Κατεύθνσης ΦΡΟΝΤΙΣΤΗΡΙΟ ΕΤΑΙΧΙΟ 1 Θέµα 1 ο Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις 1-3 και δίπλα το γράµµα πο αντιστοιχεί στη σωστή απάντηση.

Διαβάστε περισσότερα

ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ

ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 8/6/1 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΕΞΕΤΑΣΤΗΣ: ΒΑΡΣΑΜΗΣ ΧΡΗΣΤΟΣ ΔΙΑΡΚΕΙΑ ΩΡΕΣ ΑΣΚΗΣΗ 1 Ατοκίνητο μάζας 1 Kg ξεκινώντας με μηδενική ταχύτητα επιταχύνει ομαλά σε οριζόντιο

Διαβάστε περισσότερα

γραπτή εξέταση στη ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ θετικών σπουδών

γραπτή εξέταση στη ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ θετικών σπουδών η εξεταστική περίοδος από 9/0/ έως 6// γραπτή εξέταση στη ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ θετικών σποδών Τάξη: Β Λκείο Τμήμα: Βαθμός: Ημερομηνία: 09//0 Ύλη: Ονοματεπώνμο: Καθηγητής: Οριζόντια βολή Ομαλή κκλική κίνηση

Διαβάστε περισσότερα

υ = 21 s ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ Άσκηση 1. (Εφαρμογές του φαινομένου Doppler)

υ = 21 s ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ Άσκηση 1. (Εφαρμογές του φαινομένου Doppler) ΕΚΦΩΝΗΣΕΙΣ ΣΚΗΣΕΩΝ Άσκηση 1. (Εφαρμογές το φαινομένο Doppler) Ένας παρατηρητής πλησιάζει με ταχύτητα ακίνητη πηγή ήχο, η οποία εκπέμπει ήχο σχνότητας f s. Ο παρατηρητής ακούει ήχο σχνότητας f η οποία είναι

Διαβάστε περισσότερα

Γ' ΤΑΞΗ ΓΕΝ.ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ ΕΚΦΩΝΗΣΕΙΣ

Γ' ΤΑΞΗ ΓΕΝ.ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ ΕΚΦΩΝΗΣΕΙΣ Γ' ΤΑΞΗ ΓΕΝ.ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ ΘΕΜΑ ο ΕΚΦΩΝΗΣΕΙΣ. Αρµονικό κύµα διαδίδεται σε ένα εθύγραµµο ελαστικό µέσο. Όλα τα σηµεία το µέσο διάδοσης, πο ταλαντώνονται λόγω της διέλεσης

Διαβάστε περισσότερα

ΘΕΜΑ Α. Πολλαπλής Επιλογής. Σωστού - Λάθους. Ερωτήσεις και Ασκήσεις στο φαινόµενο Doppler

ΘΕΜΑ Α. Πολλαπλής Επιλογής. Σωστού - Λάθους. Ερωτήσεις και Ασκήσεις στο φαινόµενο Doppler ΘΕΜΑ Α Ερωτήσεις και Ασκήσεις στο Φαινόµενο Doppler Πολλαπλής Επιλογής 1. Παρατηρητής πλησιάζει με σταθερή ταχύτητα ακίνητη ηχητική πηγή και αντιλαμβάνεται ήχο σχνότητας f. Αν η ταχύτητα το ήχο στον αέρα

Διαβάστε περισσότερα

ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ

ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 8/6/1 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΕΞΕΤΑΣΤΗΣ: ΒΑΡΣΑΜΗΣ ΧΡΗΣΤΟΣ ΔΙΑΡΚΕΙΑ ΩΡΕΣ ΑΣΚΗΣΗ 1 Ατοκίνητο μάζας 1 Kg ξεκινώντας με μηδενική ταχύτητα επιταχύνει ομαλά σε οριζόντιο

Διαβάστε περισσότερα

Γ' ΤΑΞΗ ΓΕΝ.ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΑΠΑΝΤΗΣΕΙΣ

Γ' ΤΑΞΗ ΓΕΝ.ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΑΠΑΝΤΗΣΕΙΣ Επαναληπτικά Θέµατα ΟΕΦΕ 00 Γ' ΤΑΞΗ ΓΕΝ.ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ ΘΕΜΑ ο. γ.. γ.. δ. 4. δ 5. α Λάθος β. Σωστό γ. Σωστό δ. Σωστό ε. Λάθος ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ ο Α. Α. γ Σωστό q Α. Ε=U E

Διαβάστε περισσότερα

α. αντίθετες ταχύτητες β. αντίθετες ορµές γ. ίσες κινητικές ενέργειες δ. ίσες ορµές

α. αντίθετες ταχύτητες β. αντίθετες ορµές γ. ίσες κινητικές ενέργειες δ. ίσες ορµές Ντόπλερ, Κρούσεις, Επαναληπτικό ΘΕΜΑ Α ΤΕΣΤ 3.. Σηµειακή µάζα κινείται µε ταχύτητα µέτρο και σγκρούεται µετωπικά και ελαστικά µε ακίνητο σώµα. Η µάζα εκπέµπει ήχο σχνότητας f και αποµακρύνεται από ακίνητο

Διαβάστε περισσότερα

ΘΕΜΑ Α. Α.1. Ένα σύστηµα ελατηρίου-µάζας εκτελεί απλή αρµονική ταλάντωση πλάτους Α.

ΘΕΜΑ Α. Α.1. Ένα σύστηµα ελατηρίου-µάζας εκτελεί απλή αρµονική ταλάντωση πλάτους Α. ΘΕΜΑ Α Στις ημιτελείς προτάσεις Α 1 Α 6 να γράψετε στο τετράδιο σας τον αριθμό της πρότασης και δίπλα το γράμμα που αντιστοιχεί στη φράση, η οποία τη συμπληρώνει σωστά. Α.1. Ένα σύστηµα ελατηρίου-µάζας

Διαβάστε περισσότερα

Εργασία: Φαινόμενο Doppler ΒΑΘΜΟΣ: 1ο ΘΕΜΑ Στήλη Α Στήλη Β

Εργασία: Φαινόμενο Doppler ΒΑΘΜΟΣ: 1ο ΘΕΜΑ Στήλη Α Στήλη Β Εργγασί ία: : Φαιννόμεεννο r Όνομα:.. Ημερομηνία:././. 1 ο ΘΕΜΑ Α 1 ) Να σμπληρωθούν τα κενά στις προτάσεις πο ακολοθούν: ΒΑΘΜΟΣ:.. Επιμέλεια : Λεωνίδας Ξηρός, Φσικός α. Το φαινόμενο εμφανίζεται κάθε φορά

Διαβάστε περισσότερα

1. Ένα σώμα m=1kg εκτελεί απλή αρμονική ταλάντωση και η μεταβολή της επιτάχυνσής του σε συνάρτηση με το χρόνο, φαίνεται στο σχήμα.

1. Ένα σώμα m=1kg εκτελεί απλή αρμονική ταλάντωση και η μεταβολή της επιτάχυνσής του σε συνάρτηση με το χρόνο, φαίνεται στο σχήμα. Γενικές ασκήσεις Θέματα εξετάσεων από το 1ο κεφάλαιο ΚΕΦΑΛΑΙΟ 1 1 Ένα σώμα m=1kg εκτελεί απλή αρμονική ταλάντωση και η μεταβολή της επιτάχυνσής του σε συνάρτηση με το χρόνο, φαίνεται στο σχήμα α Να βρείτε

Διαβάστε περισσότερα

1. Ένα σώμα εκτελεί ΑΑΤ πλάτους Α. Η ταχύτητα του σώματος:

1. Ένα σώμα εκτελεί ΑΑΤ πλάτους Α. Η ταχύτητα του σώματος: ΙΙΑΓΓΩΝΙΙΣΜΑ ΦΦΥΥΣΙΙΚΚΗΣ ΚΚΑΤΕΕΥΥΘΥΥΝΣΗΣ ΓΓ ΛΥΥΚΚΕΕΙΙΟΥΥ 0077 -- 00 Θέμα ο. Ένα σώμα εκτελεί ΑΑΤ πλάτους Α. Η ταχύτητα του σώματος: α. έχει την ίδια φάση με την επιτάχυνση α. β. είναι μέγιστη στις ακραίες

Διαβάστε περισσότερα

2. Η μονάδα μέτρησης της στροφορμής στο σύστημα S.I. είναι. m s. δ. 1 J s. Μονάδες 5. m s

2. Η μονάδα μέτρησης της στροφορμής στο σύστημα S.I. είναι. m s. δ. 1 J s. Μονάδες 5. m s ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΤΕΚΝΩΝ ΕΛΛΗΝΩΝ ΤΟΥ ΕΞΩΤΕΡΙΚΟΥ ΚΑΙ ΤΕΚΝΩΝ ΕΛΛΗΝΩΝ ΥΠΑΛΛΗΛΩΝ ΣΤΟ ΕΞΩΤΕΡΙΚΟ ΠΕΜΠΤΗ 15 ΣΕΠΤΕΜΒΡΙΟΥ 005 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ: ΦΥΣΙΚΗ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ:

Διαβάστε περισσότερα

ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ 6 24

ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ 6 24 ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ 6 24 Εκφώνηση άσκησης 6. Ένα σώμα, μάζας m, εκτελεί απλή αρμονική ταλάντωση έχοντας ολική ενέργεια Ε. Χωρίς να αλλάξουμε τα φυσικά χαρακτηριστικά του συστήματος, προσφέρουμε στο σώμα

Διαβάστε περισσότερα

5. Το διάγραμμα του σχήματος παριστάνει την ταχύτητα ενός σώματος που εκτελεί απλή αρμονική ταλάντωση σε συνάρτηση με τον χρόνο.

5. Το διάγραμμα του σχήματος παριστάνει την ταχύτητα ενός σώματος που εκτελεί απλή αρμονική ταλάντωση σε συνάρτηση με τον χρόνο. ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 9/0/06 ΘΕΜΑ Α Στις ερωτήσεις 7 να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. Mια μικρή σφαίρα προσκρούει

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 17-10-11 ΑΠΟΦΟΙΤΟΙ ΣΕΙΡΑ Α Θέµα 1 ο ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ Οδηγία: Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις 1-4 δίπλα το γράµµα που αντιστοιχεί στη

Διαβάστε περισσότερα

1.1 Κινηματική προσέγγιση

1.1 Κινηματική προσέγγιση 1.1 Κινηματική προσέγγιση ΣΑ 1.8: Η απομάκρυνση από τη θέση ισορροπίας ενός σώματος που κάνει αατ δίνεται σε συνάρτηση με το χρόνο από τη σχέση x=10 ημ(π/4t) (x σε cm και t σε s). Να βρείτε: Α) το πλάτος

Διαβάστε περισσότερα

Θέμα 1 ο (Μονάδες 25)

Θέμα 1 ο (Μονάδες 25) ΙΙΑΑΓΓΩΝΝΙΙΣΣΜΑΑ ΦΦΥΥΣΣΙΙΚΚΗΗΣΣ ΚΚΑΑΤΤΕΕΥΥΘΘΥΥΝΝΣΣΗΗΣΣ ΑΑΠΟΟΦΦΟΟΙΙΤΤΩΝΝ 0055 -- -- 00 Θέμα ο. Ένα σημειακό αντικείμενο που εκτελεί ΑΑΤ μεταβαίνει από τη θέση ισορροπίας του σε ακραία θέση σε χρόνο s. Η

Διαβάστε περισσότερα

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 6 ΣΕΛΙΔΕΣ

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 6 ΣΕΛΙΔΕΣ ΑΡΧΗ ΗΣ ΣΕΛΙΔΑΣ Γ ΗΕΡΗΣΙΩΝ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 5 ΙΟΥΝΙΟΥ 04 ΕΞΕΤΑΖΟΕΝΟ ΑΘΗΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΑΙ ΤΩΝ ΔΥΟ ΚΥΚΛΩΝ) ΣΥΝΟΛΟ

Διαβάστε περισσότερα

Ε ρ ω τ ή σ ε ι ς σ τ ι ς μ η χ α ν ι κ έ ς τ α λ α ν τ ώ σ ε ι ς

Ε ρ ω τ ή σ ε ι ς σ τ ι ς μ η χ α ν ι κ έ ς τ α λ α ν τ ώ σ ε ι ς Ε ρ ω τ ή σ ε ι ς σ τ ι ς μ η χ α ν ι κ έ ς τ α λ α ν τ ώ σ ε ι ς 1. Δύο σώματα ίδιας μάζας εκτελούν Α.Α.Τ. Στο διάγραμμα του σχήματος παριστάνεται η συνισταμένη δύναμη που ασκείται σε κάθε σώμα σε συνάρτηση

Διαβάστε περισσότερα

ΚΡΟΥΣΕΙΣ Φαινόµενο Doppler - 1 -

ΚΡΟΥΣΕΙΣ Φαινόµενο Doppler - 1 - ΚΡΟΥΣΕΙΣ Φαινόµενο Doppler - - ΘΕΜ ΠΟΛΛΠΛΗΣ ΕΠΙΛΟΓΗΣ Στις παρακάτω ερωτήσεις να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης και δίπλα το γράμμα πο αντιστοιχεί στη σωστή απάντηση ή στο σωστό σμπλήρωμά

Διαβάστε περισσότερα

ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΤΑΞΗ / ΤΜΗΜΑ : Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΙΟΥΛΙΟY 2015 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 6

ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΤΑΞΗ / ΤΜΗΜΑ : Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΙΟΥΛΙΟY 2015 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 6 ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΤΑΞΗ / ΤΜΗΜΑ : Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΙΟΥΛΙΟY 2015 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 6 ΘΕΜΑ 1 Ο : Στις παρακάτω ερωτήσεις 1 έως 4 να γράψετε στο τετράδιό

Διαβάστε περισσότερα

Α' ΤΑΞΗ ΓΕΝ. ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΑΠΑΝΤΗΣΕΙΣ ÅÐÉËÏÃÇ

Α' ΤΑΞΗ ΓΕΝ. ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΑΠΑΝΤΗΣΕΙΣ ÅÐÉËÏÃÇ Επαναληπτικά Θέµατα ΟΕΦΕ 011 1 Α' ΤΑΞΗ ΓΕΝ. ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΘΕΜΑ 1 ο 1. δ. β. γ 4. β 5. α-λ, β-σ, γ-σ, δ-σ, ε-λ. ΘΕΜΑ ο ΑΠΑΝΤΗΣΕΙΣ 1. Τα δύο σώµατα αφήνονται να κινηθούν χωρίς αρχική ταχύτητα µε την επίδραση

Διαβάστε περισσότερα

Φαινόμενο Doppler. ακίνητη ηχητική πηγή και αντιλαμβάνεται ήχο συχνότητας f. . Αν η ταχύτητα του ήχου στον αέρα είναι v, τότε η συχνότητα f

Φαινόμενο Doppler. ακίνητη ηχητική πηγή και αντιλαμβάνεται ήχο συχνότητας f. . Αν η ταχύτητα του ήχου στον αέρα είναι v, τότε η συχνότητα f Φσική Γ Θετ και Τεχν/κής Κατ/σης ο ΘΕΜ Φαινόμενο Doppler Ερωτήσεις πολλαπλής επιλογής Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις και δίπλα το γράμμα πο αντιστοιχεί στη σωστή

Διαβάστε περισσότερα

ΘΕΜΑ Α. 2 ο ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΚΑΤΕΡΙΝΗΣ ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ-ΙΟΥΝΙΟΥ 2015 ΤΑΞΗ: Β ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ Ο.Π.

ΘΕΜΑ Α. 2 ο ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΚΑΤΕΡΙΝΗΣ ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ-ΙΟΥΝΙΟΥ 2015 ΤΑΞΗ: Β ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ Ο.Π. ο ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΚΑΤΕΡΙΝΗΣ ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ-ΙΟΥΝΙΟΥ 15 ΤΑΞΗ: Β ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ Ο.Π. ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Ονοματεπώνμο : Κατερίνη 1 Μαΐο 15 ΘΕΜΑ Α (Μονάδες 5x5=5) Α1. Ο

Διαβάστε περισσότερα

1. Η απομάκρυνση σώματος που πραγματοποιεί οριζόντια απλή αρμονική ταλάντωση δίδεται από την σχέση x = 0,2 ημ π t, (SI).

1. Η απομάκρυνση σώματος που πραγματοποιεί οριζόντια απλή αρμονική ταλάντωση δίδεται από την σχέση x = 0,2 ημ π t, (SI). 1. Η απομάκρυνση σώματος που πραγματοποιεί οριζόντια απλή αρμονική ταλάντωση δίδεται από την σχέση x = 0,2 ημ π t, (SI). Να βρείτε: α. το πλάτος της απομάκρυνσης, της ταχύτητας και της επιτάχυνσης. β.

Διαβάστε περισσότερα

Θέμα 1 ο (Μονάδες 25)

Θέμα 1 ο (Μονάδες 25) ΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ((ΑΠΟΦΟΙΤΟΙ)) 10 01-011 Θέμα 1 ο (Μονάδες 5) 1. Κατά τη σύνθεση δύο ΑΑΤ, που γίνονται στην ίδια διεύθυνση και γύρω από την ίδια θέση ισορροπίας, προκύπτει μια νέα

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ηµεροµηνία: Κυριακή 28 Απριλίου 2013 ιάρκεια Εξέτασης: 2 ώρες ΑΠΑΝΤΗΣΕΙΣ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ηµεροµηνία: Κυριακή 28 Απριλίου 2013 ιάρκεια Εξέτασης: 2 ώρες ΑΠΑΝΤΗΣΕΙΣ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 03 Ε_3.Φλ(α) ΤΑΞΗ: ΜΑΘΗΜΑ: Α ΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΘΕΜΑ Α Ηµεροµηνία: Κριακή 8 Απριλίο 03 ιάρκεια Εξέτασης: ώρες Α. δ Α. γ Α3. β Α4. δ Α5. α Σ, β Λ, γ Σ, δ Σ, ε Λ. ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Β

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: 1η ΗΜΕΡΟΜΗΝΙΑ: 24/07/2014

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: 1η ΗΜΕΡΟΜΗΝΙΑ: 24/07/2014 ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: 1η ΗΜΕΡΟΜΗΝΙΑ: 4/07/014 ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4 και δίπλα το γράμμα που αντιστοιχεί

Διαβάστε περισσότερα

. Το πλάτος Α της σύνθετης αρμονικής ταλάντωσης είναι ίσο με α)

. Το πλάτος Α της σύνθετης αρμονικής ταλάντωσης είναι ίσο με α) Θέμα Α ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΔΕΥΤΕΡΑ 13 ΙΟΥΝΙΟΥ 2016 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

Διαβάστε περισσότερα

ΤΑΛΑΝΤΩΣΕΙΣ (23 ΠΕΡΙΟΔΟΙ)

ΤΑΛΑΝΤΩΣΕΙΣ (23 ΠΕΡΙΟΔΟΙ) α (cm/s ) ΚΕΦΑΛΑΙΟ 3 Κατηγορία Α ΤΑΛΑΝΤΩΣΕΙΣ (3 ΠΕΡΙΟΔΟΙ) 1. Να προσδιορίσετε ποια από τα πιο κάτω φυσικά μεγέθη μπορεί να έχουν την ίδια κατεύθυνση για ένα απλό αρμονικό ταλαντωτή: α. θέση και ταχύτητα,

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΚΕΦΑΛΑΙΟ: ΤΑΛΑΝΤΩΣΕΙΣ

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΚΕΦΑΛΑΙΟ: ΤΑΛΑΝΤΩΣΕΙΣ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΚΕΦΑΛΑΙΟ: ΤΑΛΑΝΤΩΣΕΙΣ ΘEMA 1 Να γράψετε στη κόλλα σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. 1.1 Το αποτέλεσμα της σύνθεσης δύο αρμονικών

Διαβάστε περισσότερα

ΘΕΜΑ A 1. (ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΗΜΕΡΗΣΙΩΝ

ΘΕΜΑ A 1. (ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΗΜΕΡΗΣΙΩΝ Φαινόμενο Doppler ΘΕΜΑ. (ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΗΜΕΡΗΣΙΩΝ 006) Ηχητική πηγή και παρατηρητής βρίσκονται σε σχετική κίνηση. Ο παρατηρητής ακούει ήχο μεγαλύτερης σχνότητας από ατόν πο παράγει η πηγή, μόνο όταν α.

Διαβάστε περισσότερα

Φαινόμενο Doppler. ακίνητη ηχητική πηγή και αντιλαμβάνεται ήχο συχνότητας f. του ήχου που εκπέμπει η πηγή είναι ίση με. υ+ υ υ -υ

Φαινόμενο Doppler. ακίνητη ηχητική πηγή και αντιλαμβάνεται ήχο συχνότητας f. του ήχου που εκπέμπει η πηγή είναι ίση με. υ+ υ υ -υ ο ΘΕΜΑ Φαινόμενο Doppler. Ερωτήσεις πολλαπλής επιλογής. Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις και δίπλα το γράμμα πο αντιστοιχεί στη σωστή απάντηση.. Παρατηρητής πλησιάζει

Διαβάστε περισσότερα

Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.

Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α ΗΜΕΡΟΜΗΝΙΑ: ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4 και δίπλα το γράμμα που αντιστοιχεί στη

Διαβάστε περισσότερα

Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ

Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α:. Σωστό το Γ.. Σωστό το Β. 3. Σωστό το Γ. 4. Σωστό το Γ. 5. Σωστά τα Β, Γ, Δ. ΘΕΜΑ Β:. Σωστό το Γ. Αιτιολόγηση: Έστω Κ και Κ η κινητική ενέργεια το σώµατος

Διαβάστε περισσότερα

Τηλ./Fax: , Τηλ: Λεωφόρος Μαραθώνος &Χρυσοστόµου Σµύρνης 3, 1

Τηλ./Fax: , Τηλ: Λεωφόρος Μαραθώνος &Χρυσοστόµου Σµύρνης 3, 1 . 1. Η απλή αρµονική ταλάντωση είναι κίνηση: α. ευθύγραµµη οµαλή β. ευθύγραµµη οµαλά µεταβαλλόµενη γ. οµαλή κυκλική δ. ευθύγραµµη περιοδική. Η φάση της αποµάκρυνσης στην απλή αρµονική ταλάντωση: α. αυξάνεται

Διαβάστε περισσότερα

1. Κατά τη σύνθεση δύο ΑΑΤ, που γίνονται στην ίδια διεύθυνση και γύρω από την ίδια

1. Κατά τη σύνθεση δύο ΑΑΤ, που γίνονται στην ίδια διεύθυνση και γύρω από την ίδια ΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ((ΑΠΟΦΟΙΤΟΙ)) 9 0-0 Θέμα ο. Κατά τη σύνθεση δύο ΑΑΤ, που γίνονται στην ίδια διεύθυνση και γύρω από την ίδια θέση ισορροπίας, προκύπτει μια νέα ΑΑΤ σταθερού πλάτους,

Διαβάστε περισσότερα

Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ ΕΚΦΩΝΗΣΕΙΣ

Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ ΕΚΦΩΝΗΣΕΙΣ Επαναληπτικά Θέµατα ΟΕΦΕ 0 Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ ΘΕΜΑ Α ΕΚΦΩΝΗΣΕΙΣ Στις ερωτήσεις έως 4 να γράψετε στο τετράδιο σας τον αριθµό της ερώτησης και δίπλα σε κάθε αριθµό το γράµµα

Διαβάστε περισσότερα

ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΛΥΣΕΙΣ

ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΛΥΣΕΙΣ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΓΙΑ ΤΑ ΑΝΩΤΕΡΑ ΚΑΙ ΑΝΩΤΑΤΑ ΕΚΠΑΙΔΕΥΤΙΚΑ ΙΔΡΥΜΑΤΑ Μάθημα: ΦΥΣΙΚΗ Ηµεροµηνία και ώρα

Διαβάστε περισσότερα

ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ ΠΡΟΣΠΑΘΕΙΑ ΣΑΣ ΚΙ 2014

ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ ΠΡΟΣΠΑΘΕΙΑ ΣΑΣ ΚΙ 2014 ΤΟ ΥΛΙΚΟ ΕΧΕΙ ΑΝΤΛΗΘΕΙ ΑΠΟ ΤΑ ΨΗΦΙΑΚΑ ΕΚΠΑΙΔΕΥΤΙΚΑ ΒΟΗΘΗΜΑΤΑ ΤΟΥ ΥΠΟΥΡΓΕΙΟΥ ΠΑΙΔΕΙΑΣ http://wwwstudy4examsgr/ ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ

Διαβάστε περισσότερα

Φροντιστήρια Εν-τάξη Σελίδα 1 από 6

Φροντιστήρια Εν-τάξη Σελίδα 1 από 6 ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: 11/09/2016 ΘΕΜΑ Α Να γράψετε στο τετραδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. 1. Ένα

Διαβάστε περισσότερα

O φ L/2. Η ροπή της δύναμης F ως προς το σημείο Ο έχει μέτρο L 2

O φ L/2. Η ροπή της δύναμης F ως προς το σημείο Ο έχει μέτρο L 2 ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΤΕΚΝΩΝ ΕΛΛΗΝΩΝ ΤΟΥ ΕΞΩΤΕΡΙΚΟΥ ΚΑΙ ΤΕΚΝΩΝ ΕΛΛΗΝΩΝ ΥΠΑΛΛΗΛΩΝ ΣΤΟ ΕΞΩΤΕΡΙΚΟ ΠΕΜΠΤΗ 13 ΣΕΠΤΕΜΒΡΙΟΥ 007 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ: ΦΥΣΙΚΗ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ:

Διαβάστε περισσότερα

Γενικές εξετάσεις Φυσική Γ λυκείου θετικής - τεχνολογικής κατεύθυνσης

Γενικές εξετάσεις Φυσική Γ λυκείου θετικής - τεχνολογικής κατεύθυνσης Γενικές εξετάσεις 00 Φσική Γ λκείο θετικής - τεχνολογικής κατεύθνσης Θέμα ο Να γράψετε ο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις - και δίπλα το γράμμα πο αντιοιχεί η σωή απάντηση..

Διαβάστε περισσότερα

w w w.k z a c h a r i a d i s.g r

w w w.k z a c h a r i a d i s.g r ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΤΥΠΟΛΟΓΙΟ-ΒΑΣΙΚΟΙ ΟΡΙΣΜΟΙ ΚΕΦΑΛΑΙΟΥ 4 Γραµµική ταχύτητα : ΚΥΚΛΙΚΗ ΚΙΝΗΣΗ ΥΛΙΚΟΥ ΣΗΜΕΙΟΥ ds. Γωνιακή ταχύτητα : dθ ω ωr Οµαλή κκλική κίνηση : σταθερό

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ 1

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ 1 ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις -4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. Δύο εγκάρσια κύματα

Διαβάστε περισσότερα

. Μητρόπουλος Επαγωγή

. Μητρόπουλος Επαγωγή Μία ηλεκτροµηχανική ταλάντωση Μπορούµε άραγε να έχοµε ηλεκτρική ταλάντωση σε ένα κύκλωµα χωρίς τη σνύπαρξη πηνίο και πκνωτή C; Η πρώτη σκέψη είναι µάλλον «όχι» διότι όπως στη µηχανική είναι απαραίτητη

Διαβάστε περισσότερα

ΤΑΛΑΝΤΩΣΗ ΚΑΙ ΚΡΟΥΣΗ

ΤΑΛΑΝΤΩΣΗ ΚΑΙ ΚΡΟΥΣΗ ΤΑΛΑΝΤΩΣΗ ΚΑΙ ΚΡΟΥΣΗ 1. Κατακόρυφο ελατήριο σταθεράς k=1000 N /m έχει το κάτω άκρο του στερεωμένο σε ακίνητο σημείο. Στο πάνω άκρο του ελατηρίου έχει προσδεθεί σώμα Σ 1 μάζας m 1 =8 kg, ενώ ένα δεύτερο

Διαβάστε περισσότερα

Α' ΤΑΞΗ ΓΕΝ. ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΑΠΑΝΤΗΣΕΙΣ ÏÅÖÅ

Α' ΤΑΞΗ ΓΕΝ. ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΑΠΑΝΤΗΣΕΙΣ ÏÅÖÅ Επαναληπτικά Θέµατα ΟΕΦΕ 0 Α' ΤΑΞΗ ΓΕΝ. ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΘΕΜΑ ο. δ. β. γ 4. β 5. α-λ, β-σ, γ-σ, δ-σ, ε-λ. ΘΕΜΑ ο ΑΠΑΝΤΗΣΕΙΣ. Τα δύο σώµατα αφήνονται να κινηθούν χωρίς αρχική ταχύτητα µε την επίδραση µόνο

Διαβάστε περισσότερα

T 4 T 4 T 2 Τ Τ Τ 3Τ Τ Τ 4

T 4 T 4 T 2 Τ Τ Τ 3Τ Τ Τ 4 ΜΗΧΑΝΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ 29 ΕΡΩΤΗΣΕΙΣ ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ 1. Σηµειακό αντικείµενο εκτελεί απλή αρµονική ταλάντωση. Η αποµάκρυνση χ από τη θέση ισορροπίας του είναι: α. ανάλογη του χρόνου. β. αρµονική συνάρτηση

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 15/11/2015 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: Γιάννης Τζαγκαράκης, Μαρία Αδάμη

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 15/11/2015 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: Γιάννης Τζαγκαράκης, Μαρία Αδάμη ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ. ΕΤΟΥΣ 5-6 ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 5//5 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: Γιάννης Τζαγκαράκης, Μαρία Αδάμη ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς

Διαβάστε περισσότερα

Διαγώνισμα Φυσικής Γ Λυκείου Απλή αρμονική ταλάντωση Κρούσεις

Διαγώνισμα Φυσικής Γ Λυκείου Απλή αρμονική ταλάντωση Κρούσεις Διαγώνισμα Φυσικής Γ Λυκείου Απλή αρμονική ταλάντωση Κρούσεις ~ Διάρκεια: 3 ώρες ~ Θέμα Α Α1. Η ορμή συστήματος δύο σωμάτων που συγκρούονται διατηρείται: α. Μόνο στην πλάγια κρούση. β. Μόνο στην έκκεντρη

Διαβάστε περισσότερα

α. Ηλεκτρικού πεδίου του πυκνωτή σε ενέργεια μαγνητικού πεδίου

α. Ηλεκτρικού πεδίου του πυκνωτή σε ενέργεια μαγνητικού πεδίου ΙΙΑΓΓΩΝΙΙΣΜΑ ΦΦΥΥΣΙΙΚΚΗΣ ΚΚΑΤΕΕΥΥΘΥΥΝΣΗΣ ΓΓ ΛΥΥΚΚΕΕΙΙΟΥΥ ((Α ΟΜΑ Α)) 77 1111 -- 22001100 Θέμα 1 ο (Μονάδες 25) 1. Η εξίσωση που δίνει την ένταση του ρεύματος σε ιδανικό κύκλωμα ηλεκτρικών ταλαντώσεων LC

Διαβάστε περισσότερα

Μια κινούμενη τροχαλία.

Μια κινούμενη τροχαλία. Μια κινούμενη τροχαλία. Γύρω από µια τροχαλία µάζας Μ0,8kg έχοµε τλίξει ένα αβαρές νήµα, στο άκρο το ο- ποίο έχοµε δέσει ένα σώµα µάζας m0,kg. γκρατούµε τα δο σώµατα µε τα χέρια µας, ώστε το νήµα να είναι

Διαβάστε περισσότερα

Η ενέργεια ταλάντωσης του Ζ τετραπλασιάζεται όταν το κύμα από την πηγή Β συμβάλλει με αυτό της πηγής Α στο Ζ. Άρα

Η ενέργεια ταλάντωσης του Ζ τετραπλασιάζεται όταν το κύμα από την πηγή Β συμβάλλει με αυτό της πηγής Α στο Ζ. Άρα ΘΕΜΑΤΑ ΠΑΕΛΛΑΔΙΚΩ ΕΞΕΤΑΕΩ ΦΥΙΚΗ ΚΑΤΕΥΘΥΗ ΘΕΜΑ ο τα άκρα Α και Β μιας ομογενούς χορδής ΑΒ μήκος l=6cm πο έχει την διεύθνση το άξονα x'ox, πάρχον δύο σύγχρονες πηγές παραγωγής αρμονικών κμάτων, πο τααντώνονται

Διαβάστε περισσότερα

ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ - ΑΣΚΗΣΕΙΣ

ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ - ΑΣΚΗΣΕΙΣ ΚΙΝΗΜΑΤΙΚΗ ΠΡΟΣΕΓΓΙΣΗ 1. Στο παρακάτω διάγραμμα απομάκρυνσης-χρόνου φαίνονται οι γραφικές παραστάσεις για δύο σώματα 1 και 2 τα οποία εκτελούν Α.Α.Τ. Να βρείτε τη σχέση που συνδέει τις μέγιστες επιταχύνσεις

Διαβάστε περισσότερα

ÖÑÏÍÔÉÓÔÇÑÉÁ ÐÑÉÓÌÁ ÐÁÔÑÁ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 25 ΜΑΪΟΥ 2012 ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α ΘΕΜΑ Β

ÖÑÏÍÔÉÓÔÇÑÉÁ ÐÑÉÓÌÁ ÐÁÔÑÁ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 25 ΜΑΪΟΥ 2012 ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α ΘΕΜΑ Β ΘΕΜΑ Α ΦΥΣΙΗ ΑΤΕΥΘΥΝΣΗΣ Γ ΥΕΙΟΥ & ΕΠΑ.. Β 5 ΜΑΪΟΥ 0 ΑΠΑΝΤΗΣΕΙΣ Α. γ, Α. β, Α3. γ, Α4. γ Α5. α. Σ, β. Σ γ. δ. ε. Σ ΘΕΜΑ Β Β. Σωστό το γ. θα αέρας νερό Αρχικά Snell µεταξύ νερού αέρα n ηµ θ n ηµ90, Όµως

Διαβάστε περισσότερα

Φυσική Γ Λυκείου Θετικού Προσανατολισμού

Φυσική Γ Λυκείου Θετικού Προσανατολισμού ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ. ΕΤΟΥΣ 06-07 ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ Επαναληπτικό διαγώνισμα ΘΕΜΑ Α Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις (Α-Α4) και δίπλα το γράμμα πο αντιστοιχεί

Διαβάστε περισσότερα

Όλα τα θέματα των πανελληνίων στις μηχανικές ταλαντώσεις έως και το 2014 ΣΑΛΑΝΣΩΕΙ ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΣΑΛΑΝΣΩΗ ΒΑΙΚΕ ΕΝΝΟΙΕ. Ερωτήσεις Πολλαπλής Επιλογής

Όλα τα θέματα των πανελληνίων στις μηχανικές ταλαντώσεις έως και το 2014 ΣΑΛΑΝΣΩΕΙ ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΣΑΛΑΝΣΩΗ ΒΑΙΚΕ ΕΝΝΟΙΕ. Ερωτήσεις Πολλαπλής Επιλογής έως και το 04 ΣΑΛΑΝΣΩΕΙ ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΣΑΛΑΝΣΩΗ ΒΑΙΚΕ ΕΝΝΟΙΕ Ερωτήσεις Πολλαπλής Επιλογής. Να μεταφέρετε στο τετράδιό σας τον παρακάτω πίνακα που αναφέρεται στην απλή αρμονική ταλάντωση και να συμπληρώσετε

Διαβάστε περισσότερα

Κριτήριο αξιολόγησης στην οριζόντια βολή- κυκλική κίνηση

Κριτήριο αξιολόγησης στην οριζόντια βολή- κυκλική κίνηση Κριτήριο αξιολόγησης στην οριζόντια βολή- κκλική κίνηση (Σε όλα τα παρακάτω θέματα το γήινο βαρτικό πεδίο θεωρείται περίπο ομογενές, γιατί οι βολές γίνονται σε μικρά ύψη και μικρές γεωγραφικές αποκλίσεις.)

Διαβάστε περισσότερα

ΕΠΙΛΟΓΗ ΘΕΜΑΤΩΝ ΚΙΝΗΣΕΩΝ ΑΠΟ ΤΗ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ

ΕΠΙΛΟΓΗ ΘΕΜΑΤΩΝ ΚΙΝΗΣΕΩΝ ΑΠΟ ΤΗ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΕΠΙΛΟΓΗ ΘΕΜΑΤΩΝ ΚΙΝΗΣΕΩΝ ΑΠΟ ΤΗ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ Β 1. Β. Ένα ατοκίνητο κινείται εθύγραμμα ομαλά. Ένα ακίνητο περιπολικό, μόλις περνά το ατοκίνητο από μπροστά το, αρχίζει να το καταδιώκει

Διαβάστε περισσότερα

Θέμα 1 ο (Μονάδες 25) προς τη θετική φορά του άξονα χ. Για τις φάσεις και τις ταχύτητες ταλάντωσης των σημείων Α και Β του μέσου ισχύει:

Θέμα 1 ο (Μονάδες 25) προς τη θετική φορά του άξονα χ. Για τις φάσεις και τις ταχύτητες ταλάντωσης των σημείων Α και Β του μέσου ισχύει: ΙΓΩΝΙΣΜ ΦΥΣΙΚΗΣ ΚΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΥ 99 11 -- 1111 Θέμα 1 ο 1. Στο σχήμα φαίνεται το στιγμιότυπο ενός εγκάρσιου αρμονικού κύματος που διαδίδεται προς τη θετική φορά του άξονα χ. Για τις φάσεις και τις ταχύτητες

Διαβάστε περισσότερα

ΕΝΕΡΓΕΙΑ ΚΑΙ ΤΑΛΑΝΤΩΣΗ

ΕΝΕΡΓΕΙΑ ΚΑΙ ΤΑΛΑΝΤΩΣΗ ΕΝΕΡΓΕΙΑ ΚΑΙ ΤΑΛΑΝΤΩΣΗ 1. Ελατήριο σταθεράς K τοποθετείται κατακόρυφα με το πάνω άκρο του στερεωμένο σε ακλόνητο σημείο. Ένα σώμα μάζας M=1 kg δένεται στο κάτω άκρο του ελατηρίου και η επιμήκυνση που προκαλεί

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ - Γ ΛΥΚΕΙΟΥ

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ - Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ - Γ ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΘΕΜΑ Α Στις ημιτελείς προτάσεις Α-Α4 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το γράμμα πο αντιστοιχεί στη ράση η οποία τη

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ ΘΕΜΑ 1 Α. Ερωτήσεις πολλαπλής επιλογής 1. Σώμα εκτελεί Α.Α.Τ με περίοδο Τ και πλάτος Α. Αν διπλασιάσουμε το πλάτος της ταλάντωσης τότε η περίοδος της θα : α. παραμείνει

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ 02 ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Διάρκεια: 3ώρες ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΠΕΝΤΕ (5)

ΔΙΑΓΩΝΙΣΜΑ 02 ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Διάρκεια: 3ώρες ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΠΕΝΤΕ (5) Σελίδα 1 από 5 ΔΙΑΓΩΝΙΣΜΑ 02 ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Διάρκεια: 3ώρες ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΠΕΝΤΕ (5) ΘΕΜΑ A Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1- Α4 και

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Γ ΛΥΚΕΙΟΥ (ΘΕΡΙΝΑ) ΗΜΕΡΟΜΗΝΙΑ: 28/12/2016 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Γ ΛΥΚΕΙΟΥ (ΘΕΡΙΝΑ) ΗΜΕΡΟΜΗΝΙΑ: 28/12/2016 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Γ ΛΥΚΕΙΟΥ (ΘΕΡΙΝΑ) ΗΜΕΡΟΜΗΝΙΑ: 28/12/2016 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις

Διαβάστε περισσότερα

Γ τάξη Γενικού Λυκείου: Διαγώνισμα Φυσικής Κατεύθυνσης-Απαντήσεις

Γ τάξη Γενικού Λυκείου: Διαγώνισμα Φυσικής Κατεύθυνσης-Απαντήσεις Γ τάξη Γενικού Λκείο: Διαγώνισμα Φσικής Κατεύθνσης-Απαντήσεις Θέμα Α: -γ, -γ, -δ, -α, 5(α-Λ, β-λ, γ-σ, δ-λ, ε-σ) Θέμα B: Β. = + = ± = + + = + ± m m m m m = + + =,8J ή =,J άρα σωστή η πρόταση (γ). n Β.

Διαβάστε περισσότερα

ΜΕΤΑΒΑΛΛΟΜΕΝΗ ΚΙΝΗΣΗ. σε 30m/s. H μέση επιτάχυνσή του είναι...

ΜΕΤΑΒΑΛΛΟΜΕΝΗ ΚΙΝΗΣΗ. σε 30m/s. H μέση επιτάχυνσή του είναι... ΜΕΤΑΒΑΛΛΟΜΕΝΗ ΚΙΝΗΣΗ Ερωτήσεις ανάπτξης 1. Nα αναπαραστήσετε με ένα διάγραμμα, στο οποίο να φαίνεται η σημασία των σμβόλων, την εξίσωση = o + α. 2. Nα γραφούν οι εξισώσεις κίνησης στην εθύγραμμη ομαλά

Διαβάστε περισσότερα

Θ έ μ α τ α γ ι α Ε π α ν ά λ η ψ η Φ υ σ ι κ ή Κ α τ ε ύ θ υ ν σ η ς Γ Λ υ κ ε ί ο υ

Θ έ μ α τ α γ ι α Ε π α ν ά λ η ψ η Φ υ σ ι κ ή Κ α τ ε ύ θ υ ν σ η ς Γ Λ υ κ ε ί ο υ Θ έ μ α τ α γ ι α Ε π α ν ά λ η ψ η Φ υ σ ι κ ή Κ α τ ε ύ θ υ ν σ η ς Γ Λ υ κ ε ί ο υ Αφού επαναληφθεί το τυπολόγιο, να γίνει επανάληψη στα εξής: ΚΕΦΑΛΑΙΟ 1: ΤΑΛΑΝΤΩΣΕΙΣ Ερωτήσεις: (Από σελ. 7 και μετά)

Διαβάστε περισσότερα

2 ο ΚΡΙΤΗΡΙΟ ΑΞΙΟΛΟΓΗΣΗΣ ΣΤΗ ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

2 ο ΚΡΙΤΗΡΙΟ ΑΞΙΟΛΟΓΗΣΗΣ ΣΤΗ ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ δυαδικό ΦΡΟΝΤΙΣΤΗΡΙΑ ο ΚΡΙΤΗΡΙΟ ΑΞΙΟΛΟΓΗΣΗΣ ΣΤΗ ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΔΙΑΡΚΕΙΑ: 3 ώρες ΒΑΘΜΟΣ:.. ΗΜΕΡΟΜΗΝΙΑ: 3// ΟΝΟΜΑΤΕΠΩΝΥΜΟ: ΥΠΕΥΘΥΝΟΣ ΚΑΘΗΓΗΤΗΣ: Ατρείδης Γιώργος Θ Ε Μ Α

Διαβάστε περισσότερα

2 ο ΔΙΑΓΩΝΙΣΜΑ (ΚΕΦΑΛΑΙΟ 1) ΘΕΜΑΤΑ

2 ο ΔΙΑΓΩΝΙΣΜΑ (ΚΕΦΑΛΑΙΟ 1) ΘΕΜΑΤΑ ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ 2 ο ΔΙΑΓΩΝΙΣΜΑ (ΚΕΦΑΛΑΙΟ 1) ΘΕΜΑΤΑ ΘΕΜΑ A Στις προτάσεις Α1-Α4 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το γράμμα που αντιστοιχεί στη

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ-ΕΛΑΤΗΡΙΟ-ΚΡΟΥΣΗ. Σε όσες ασκήσεις απαιτείται δίνεται επιτάχυνση βαρύτητας g=10 m/s 2.

ΜΗΧΑΝΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ-ΕΛΑΤΗΡΙΟ-ΚΡΟΥΣΗ. Σε όσες ασκήσεις απαιτείται δίνεται επιτάχυνση βαρύτητας g=10 m/s 2. ΜΗΧΑΝΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ-ΕΛΑΤΗΡΙΟ-ΚΡΟΥΣΗ Σε όσες ασκήσεις απαιτείται δίνεται επιτάχυνση βαρύτητας g=10 m/s 2. ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ 1. Η δύναμη επαναφοράς που ασκείται σε ένα σώμα μάζας m που εκτελεί απλή αρμονική

Διαβάστε περισσότερα

4. Σώμα Σ 1 μάζας m 1 =1kg ισορροπεί πάνω σε λείο κεκλιμένο επίπεδο που σχηματίζει με τον ορίζοντα γωνία φ=30 ο. Το σώμα Σ 1 είναι δεμένο στην άκρη

4. Σώμα Σ 1 μάζας m 1 =1kg ισορροπεί πάνω σε λείο κεκλιμένο επίπεδο που σχηματίζει με τον ορίζοντα γωνία φ=30 ο. Το σώμα Σ 1 είναι δεμένο στην άκρη 1. Δίσκος μάζας Μ=1 Kg είναι στερεωμένος στο πάνω άκρο κατακόρυφου ελατηρίου, σταθεράς k=200 N/m. Το άλλο άκρο του ελατηρίου είναι στερεωμένο σε οριζόντιο δάπεδο. Πάνω στο δίσκο κάθεται ένα πουλί με μάζα

Διαβάστε περισσότερα

Φυσική (Ε) Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 2: Θεωρία ταλαντώσεων (Συνοπτική περιγραφή) Αικατερίνη Σκουρολιάκου. Τμήμα Ενεργειακής Τεχνολογίας

Φυσική (Ε) Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 2: Θεωρία ταλαντώσεων (Συνοπτική περιγραφή) Αικατερίνη Σκουρολιάκου. Τμήμα Ενεργειακής Τεχνολογίας Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Φυσική (Ε) Ενότητα 2: Θεωρία ταλαντώσεων (Συνοπτική περιγραφή) Αικατερίνη Σκουρολιάκου Τμήμα Ενεργειακής Τεχνολογίας Το περιεχόμενο του

Διαβάστε περισσότερα

Α. Στις ερωτήσεις 1-4 να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.

Α. Στις ερωτήσεις 1-4 να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. 1 ΘΕΜΑ A Α. Στις ερωτήσεις 1-4 να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης και δίπλα το γράμμα πο αντιστοιχεί στη σωστή απάντηση. 1. Ποια από τις πιο κάτω έννοιες αποδίδει καλύτερα τον όρο κύμα

Διαβάστε περισσότερα

α. φ Α < φ Β, u A < 0 και u Β < 0. β. φ Α > φ Β, u A > 0 και u Β > 0. γ. φ Α < φ Β, u A > 0 και u Β < 0. δ. φ Α > φ Β, u A < 0 και u Β > 0.

α. φ Α < φ Β, u A < 0 και u Β < 0. β. φ Α > φ Β, u A > 0 και u Β > 0. γ. φ Α < φ Β, u A > 0 και u Β < 0. δ. φ Α > φ Β, u A < 0 και u Β > 0. ΙΙΑΓΓΩΝΙΙΣΜΑ ΦΦΥΥΣΙΙΚΚΗΣ ΚΚΑΤΤΕΕΥΥΘΥΥΝΣΗΣ ΓΓ ΛΛΥΥΚΚΕΕΙΙΟΥΥ ΚΚυυρρι ιιαακκήή 1133 ΙΙααννοουυααρρί ίίοουυ 001133 Θέμα 1 ο (Μονάδες 5) 1. Στο σχήμα φαίνεται το στιγμιότυπο ενός εγκάρσιου αρμονικού κύματος

Διαβάστε περισσότερα

ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ 3 18

ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ 3 18 ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ 3 18 Άσκηση 3. ταλαντώσεων, ίδιας διεύθυνσης, γύρω από το ίδιο σημείο, με εξισώσεις x 1 =0,7ημπt και x =0,4ημπt (όλα τα μεγέθη στο S.I.). Η σύνθετη ταλάντωση περιγράφεται (στο S.I.)

Διαβάστε περισσότερα

1ο ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Τετάρτη 12 Αυγούστου 2015 Απλή Αρµονική Ταλάντωση - Κρούσεις. Ενδεικτικές Λύσεις - Οµάδα Α.

1ο ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Τετάρτη 12 Αυγούστου 2015 Απλή Αρµονική Ταλάντωση - Κρούσεις. Ενδεικτικές Λύσεις - Οµάδα Α. ο ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Τετάρτη Αυγούστου 05 Απλή Αρµονική Ταλάντωση - Κρούσεις Ενδεικτικές Λύσεις - Οµάδα Α Θέµα Α Α.. Σε µια απλή αρµονική ταλάντωση η αποµάκρυνση και η επιτάχυνση την ίδια

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2016 Β ΦΑΣΗ Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΑΠΑΝΤΗΣΕΙΣ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2016 Β ΦΑΣΗ Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΑΠΑΝΤΗΣΕΙΣ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 06 Ε_3.Φλ(α) ΤΑΞΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Α. β και ζ Α. γ και ζ Α3. β και ε Α4. α και ι Α5. α. Σωστό β. Λάθος γ. Σωστό δ. Λάθος ε. Σωστό ΘΕΜΑ Β Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ Ηµεροµηνία: Κριακή 4

Διαβάστε περισσότερα

Στις ερωτήσεις A1 - A4, να γράψετε τον αριθμό της ερώτησης και δίπλα σε κάθε αριθμό το γράμμα που αντιστοιχεί στη σωστή απάντηση.

Στις ερωτήσεις A1 - A4, να γράψετε τον αριθμό της ερώτησης και δίπλα σε κάθε αριθμό το γράμμα που αντιστοιχεί στη σωστή απάντηση. Μάθημα/Τάξη: Φυσική Γ Λυκείου Κεφάλαιο: Ταλαντώσεις Ονοματεπώνυμο Μαθητή: Ημερομηνία: 7-11-2016 Επιδιωκόμενος Στόχος: 80/100 Θέμα A Στις ερωτήσεις A1 - A4, να γράψετε τον αριθμό της ερώτησης και δίπλα

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2015 Β ΦΑΣΗ Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ / ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΕΚΦΩΝΗΣΕΙΣ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2015 Β ΦΑΣΗ Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ / ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΕΚΦΩΝΗΣΕΙΣ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 015 Ε_3.ΦλΓΘ(ε) ΤΑΞΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ / ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Ηµεροµηνία: Κριακή 19 Απριλίο 015 ιάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ Στις ερωτήσεις από 1-4 να γράψετε

Διαβάστε περισσότερα

Γ ΤΑΞΗ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ

Γ ΤΑΞΗ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ 1 Ονοματεπώνυμο.. Υπεύθυνος Καθηγητής: Γκαραγκουνούλης Ιωάννης Γ ΤΑΞΗ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ > Τρίτη 3-1-2012 2 ΘΕΜΑ 1ο Να γράψετε

Διαβάστε περισσότερα

Φ Ρ Ο Ν Τ Ι Σ Τ Η Ρ Ι Α ΘΕΩΡΗΤΙΚΗ ΘΕΤΙΚΗ ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΕΠΑ.Λ

Φ Ρ Ο Ν Τ Ι Σ Τ Η Ρ Ι Α ΘΕΩΡΗΤΙΚΗ ΘΕΤΙΚΗ ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΕΠΑ.Λ Προτεινόµενα Θέµατα Γ Λυκείου Ιούλιος 1 Φυσική ΘΕΜΑ Α Στις ερωτήσεις από 1-4 να βρείτε την σωστή απάντηση. 1. Η περίοδος της απλής αρμονικής ταλάντωσης ενός σώματος: Α. είναι ανεξάρτητη της μάζας του ταλαντούμενου

Διαβάστε περισσότερα

α. f A = f s β. f A = f s υ + υ γ. f A = f s δ. f A =

α. f A = f s β. f A = f s υ + υ γ. f A = f s δ. f A = ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΤΕΚΝΩΝ ΕΛΛΗΝΩΝ ΤΟΥ ΕΞΩΤΕΡΙΚΟΥ ΚΑΙ ΤΕΚΝΩΝ ΕΛΛΗΝΩΝ ΥΠΑΛΛΗΛΩΝ ΣΤΟ ΕΞΩΤΕΡΙΚΟ ΠΕΜΠΤΗ 8 ΣΕΠΤΕΜΒΡΙΟΥ 2011 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ: ΦΥΣΙΚΗ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ:

Διαβάστε περισσότερα

Ημερομηνία: Τετάρτη 26 Οκτωβρίου 2016 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ

Ημερομηνία: Τετάρτη 26 Οκτωβρίου 2016 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ ΑΠΟ 6/0/06 ΕΩΣ 30/0/06 η ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΤΑΞΗ: ΜΑΘΗΜΑ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Ημερομηνία: Τετάρτη 6 Οκτωβρίου 06 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Στις ημιτελείς προτάσεις

Διαβάστε περισσότερα

vi) Η δύναµη που δέχεται το σώµα στο σηµείο Ν έχει µέτρο 4Ν και

vi) Η δύναµη που δέχεται το σώµα στο σηµείο Ν έχει µέτρο 4Ν και Ταλαντώσεις 1) Σώµα 10g εκτελεί α.α.τ. γύρω από σηµείο Ο και η αποµάκρυνση δίνεται από τη σχέση: x=10ηµπt (cm), ζητούνται: i) Πόσο χρόνο χρειάζεται για να πάει από το Ο σε σηµείο Μ όπου x=5cm ii) Ποια

Διαβάστε περισσότερα

Επαναληπτικό διαγώνισµα Ταλαντώσεις Στερεό σώµα

Επαναληπτικό διαγώνισµα Ταλαντώσεις Στερεό σώµα Επαναληπτικό διαγώνισµα Ταλαντώσεις Στερεό σώµα Θέµα ο Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις -4 και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση.. Ένα σηµειακό

Διαβάστε περισσότερα

ΘΕΜΑ Α Α1 β Α2 γ Α3 β Α4 δ. Α5. α Σωστό β Λάθος γ Σωστό δ Λάθος ε Λάθος. ΘΕΜΑ Β Β1. Η σωστή απάντηση είναι το iii.

ΘΕΜΑ Α Α1 β Α2 γ Α3 β Α4 δ. Α5. α Σωστό β Λάθος γ Σωστό δ Λάθος ε Λάθος. ΘΕΜΑ Β Β1. Η σωστή απάντηση είναι το iii. ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΔΕΥΤΕΡΑ 3 ΜΑΪΟΥ 06 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (ΝΕΟ ΣΥΣΤΗΜΑ) (Ενδεικτικές Απαντήσεις) ΘΕΜΑ Α Α β Α γ Α3 β Α4

Διαβάστε περισσότερα

Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ ΑΠΑΝΤΗΣΕΙΣ ÊÁËÁÌÁÔÁ. λ 2

Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ ΑΠΑΝΤΗΣΕΙΣ ÊÁËÁÌÁÔÁ. λ 2 Επαναηπτικά Θέµατα ΟΕΦΕ 009 ΘΕΜΑ ο β δ 3 α γ 5. α Λάθος β Σωστό γ Σωστό δ Σωστό ε Λάθος ΘΕΜΑ ο Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ ΑΠΑΝΤΗΣΕΙΣ. Σωστό το β. Έστω r και r µε r > r οι αποστάσεις

Διαβάστε περισσότερα

δ) µειώνεται το µήκος κύµατός της (Μονάδες 5)

δ) µειώνεται το µήκος κύµατός της (Μονάδες 5) ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ. ΕΤΟΥΣ 011-01 ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ/Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: 1 η (ΘΕΡΙΝΑ) ΗΜΕΡΟΜΗΝΙΑ: 30/1/11 ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ 1 ο Οδηγία: Να γράψετε στο τετράδιό σας τον αριθµό κάθε µίας από τις παρακάτω

Διαβάστε περισσότερα

ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ δυαδικό ΦΡΟΝΤΙΣΤΗΡΙΑ η εξεταστική περίοδος 0-3 Σελίδα - - ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ Τάξη: Γ Λυκείου Τμήμα: Βαθμός: Ημερομηνία: 8-0-0 Διάρκεια: 3 ώρες Ύλη: Ταλαντώσεις Καθηγητής: ΑΤΡΕΙΔΗΣ

Διαβάστε περισσότερα

ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ η εξεταστική περίοδος 04-5 - Σελίδα ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ Τάξη: Γ Λυκείου Τμήμα: Βαθμός: Ημερομηνία: 06-04-05 Διάρκεια: ώρες Ύλη: Όλη η ύλη Καθηγητής: Ονοματεπώνυμο: ΘΕΜΑ Α Στις

Διαβάστε περισσότερα

ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΙΑΝΟΥΑΡΙΟΣ 2016 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 7

ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΙΑΝΟΥΑΡΙΟΣ 2016 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 7 ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΘΕΜΑ 1 Ο : ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΙΑΝΟΥΑΡΙΟΣ 2016 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 7 Στις παρακάτω ερωτήσεις 1 έως 4 να γράψετε στο τετράδιό σας

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ. Η κινητική ενέργεια του κυλίνδρου λόγω της μεταφορικής του κίνησης δίνεται από την σχέση: Κ μετ = 1 m u 2 cm

ΑΠΑΝΤΗΣΕΙΣ. Η κινητική ενέργεια του κυλίνδρου λόγω της μεταφορικής του κίνησης δίνεται από την σχέση: Κ μετ = 1 m u 2 cm ΠΡΟΣΟΜΟΙΩΣΗ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΟΥ ΛΥΕΙΟΥ Μ.ΤΕΤΑΡΤΗ 0 ΑΠΡΙΛΙΟΥ 011 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΗ ΘΕΤΙΗΣ - ΤΕΧΝΟΛΟΓΙΗΣ ΑΤΕΥΘΥΝΣΗΣ ΑΠΑΝΤΗΣΕΙΣ Θέμα 1 ο 1. γ. γ 3. α 4. δ 5. α) Λ β) Σ γ)

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ 1 ο ΕΚΦΩΝΗΣΕΙΣ

ΔΙΑΓΩΝΙΣΜΑ 1 ο ΕΚΦΩΝΗΣΕΙΣ ΔΙΑΓΩΝΙΣΜΑ ο ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α. Στις ημιτελείς προτάσεις - 4 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το γράμμα που αντιστοιχεί στη φράση, η οποία τη συμπληρώνει σωστά.. Το μέτρο της

Διαβάστε περισσότερα

1. Η επιτάχυνση ενός υλικού σημείου, το οποίο εκτελεί απλή αρμονική

1. Η επιτάχυνση ενός υλικού σημείου, το οποίο εκτελεί απλή αρμονική Τάξη Μάθημα Εξεταστέα ύλη Γ Λυκείου Φυσικη κατευθυνσης Ταλαντώσεις-Κρούσεις-Κύματα ΠΕΝΤΕΛΗ Κτίριο 1 : Πλ. Ηρώων Πολυτεχνείου 13, Τηλ. 210 8048919 / 210 6137110 Κτίριο 2 : Πλ. Ηρώων Πολυτεχνείου 29, Τηλ.

Διαβάστε περισσότερα