1.1 Κινηματική προσέγγιση

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "1.1 Κινηματική προσέγγιση"

Transcript

1 1.1 Κινηματική προσέγγιση ΣΑ 1.8: Η απομάκρυνση από τη θέση ισορροπίας ενός σώματος που κάνει αατ δίνεται σε συνάρτηση με το χρόνο από τη σχέση x=10 ημ(π/4t) (x σε cm και t σε s). Να βρείτε: Α) το πλάτος και τη συχνότητα της αρμονικής ταλάντωσης, Β) την απομάκρυνση από τη ΘΙ και την ταχύτητα του σώματος τη χρονική στιγμή t 1 =1s. (10cm, 1/8Hz, cm, cm/s) ΣΑ 1.68: Η απομάκρυνση, σε συνάρτηση με το χρόνο, ενός υλικού σημείου που εκτελεί αατ δίνεται σε κάθε χρονική στιγμή από τη σχέση x=10ημ(π/4t) (x σε cm και t σε s). Να υπολογίσετε: Α) το πλάτος, τη γωνιακή συχνότητα και την περίοδο της ταλάντωσης Β) την απομάκρυνση, την ταχύτητα και την επιτάχυνση του σώματος τη χρονική στιγμή t=2s. Γ) την ταχύτητα και την επιτάχυνση στη θέση όπου η απομάκρυνση του σώματος από τη ΘΙ είναι x=+5cm. (10cm, π/4rad/s, 8s, 10cm,0,-25/4cm/s 2, ± cm/s, -5π 2 /16cm/s 2 ) ΣΑ 1.49: Ένα σώμα εκτελεί απλή αρμονική ταλάντωση με εξίσωση απομάκρυνσης x=aημ(ωt + φ 0 ). Αν τη χρονική στιγμή t=0 βρίσκεται στη θέση x=+a/2 και κινείται κατά την αρνητική φορά, να βρείτε την αρχική φάση φ 0. (5π/6 rad) Κ 1.3: Ένα υλικό σημείο εκτελεί απλή αρμονική ταλάντωση με γωνιακή συχνότητα π/3 rad/s και πλάτος 0.03m. Κατά τη χρονική στιγμή t=1.5s είναι: Α. x=a B. x=0 και υ<0 Γ. x=a/2 και υ>0 Δ. x=-a/2 και υ>0. Να βρείτε την ταχύτητα του υλικού σημείου κατά τη χρονική στιγμή t=1s σε κάθε μια από τις παραπάνω τέσσερις περιπτώσεις. (π/200m/s,-π /200m/s, π/100m/s, π/200m/s) Κ 1.2: Στο διπλανό σχήμα απεικονίζεται η φάση φ μιας απλής αρμονικής ταλάντωσης σε συνάρτηση με το χρόνο. Να βρείτε: Α. τη γωνιακή συχνότητα της ταλάντωσης Β. τη φάση κατά τη χρονική στιγμή 9s Γ. την επιτάχυνση του υλικού σημείου κατά τη χρονική στιγμή t=0, αν το πλάτος της ταλάντωσης είναι 0.036m. (π/6rad/s, 2πrad, -π m/s 2 ) Κ 1.5: Οι γραφικές παραστάσεις της ταχύτητας δύο υλικών σημείων, τα οποία εκτελούν απλή αρμονική ταλάντωση, σε συνάρτηση με το χρόνο αποδίδονται στα παρακάτω σχήματα. Να βρείτε σε κάθε περίπτωση: Α. τη γωνιακή συχνότητα και το πλάτος της ταλάντωσης Β. την αρχική φάση της ταλάντωσης, και Γ. τις εξισώσεις της απομάκρυνσης, της ταχύτητας και της επιτάχυνσης και να παραστήσετε γραφικά την απομάκρυνση και την επιτάχυνση σε συνάρτηση με το χρόνο. (π/3rad/s, 0.1m, π/3rad/s, 0.1m, 0, π/2rad, x=0.1ημ(π/3t), υ=π/30 συν(π/3t), α=-π 2 /90 ημ(π/3t), x=0.1συν(π/3t), υ=-π/30 ημ(π/3t), α=-π 2 /90 συν(π/3t) (SI)) Κ 1.6: Στα παρακάτω σχήματα δίνονται οι γραφικές παραστάσεις της επιτάχυνσης δυο απλών αρμονικών ταλαντώσεων σε συνάρτηση με το χρόνο. Να βρείτε και στις δυο περιπτώσεις: Α. την περίοδο και το πλάτος ταλάντωσης Β. την αρχική φάση της ταλάντωσης, και Γ. τις εξισώσεις της απομάκρυνσης, της ταχύτητας και της επιτάχυνσης και να παραστήσετε γραφικά τις δύο πρώτες. (6s, 0.1m, 6s, 0.1m, 3π/2(-π/2), 0, x=-0.1συν (π/3t), υ=0.1ημ(π/3t), α=0.11συν(π/3t) (SI)) Κ 1.23: Να παραστήσετε γραφικά την ταχύτητα σε συνάρτηση με το χρόνο σε μια απλή αρμονική ταλάντωση, αν:

2 Α. x=-0.03 συν(π/3 t) Β. x=-0.03 ημ(π/3 t) Γ. x=-0.03 ημ(π/3 t π/2) Δ. x=-0.03 ημ(π/3 t + π/2) Ε. x=0.03 συν(π/3 t + π/3) (υ=π/100 ημ(π/3t), υ=-π/100 συν(π/3t), υ=-π/100 ημ(π/3t), υ=π/100 ημ(π/3t), υ=π/100 συν(π/3t + 5π/6)) Κ 1.6: Ένα υλικό σημείο εκτελεί απλή αρμονική ταλάντωση σύμφωνα με την εξίσωση x=0.04 ημ(π/3 t) (SI). Να υπολογίσετε τον ελάχιστο χρόνο που μεσολαβεί μεταξύ δυο διελεύσεων του υλικού σημείου από τη θέση x=0.02m με αντίθετες ταχύτητες. (2s) Κ 1.7: Ένα υλικό σημείο εκτελεί απλή αρμονική ταλάντωση σύμφωνα με την εξίσωση x=0.04 ημ(π/6 t) (SI). Να βρείτε τον ελάχιστο χρόνο που μεσολαβεί, ώστε το υλικό σημείο να μεταβεί από τη θέση x 1 =0.02m στη θέση x 2 =- 0.02m με ομόρροπες ταχύτητες. (2s, 2s) ΣΑ 1.13: Σε μια απλή αρμονική ταλάντωση χωρίς αρχική φάση, το πλάτος είναι Α=10m και η συχνότητα είναι f=0.5hz. Να υπολογίσετε το ελάχιστο χρονικό διάστημα που απαιτείται ώστε το σώμα να πάει από τη θέση Β όπου x 1 = +5m, στη θέση Γ όπου x 2 = +5 m. (1/6s) Κ 1.27: Ένα υλικό σημείο εκτελεί απλή αρμονική ταλάντωση σε έναν άξονα x x. Η εξίσωση της κίνησής του είναι x=10 ημ(π/6 t) (cm,s). Να βρείτε: Α. το πλάτος και την περίοδο της ταλάντωσης Β. τις χρονικές στιγμές κατά τις οποίες η απομάκρυνση του υλικού σημείου είναι x 1 =+5cm. Γ. τις χρονικές στιγμές κατά τις οποίες η απομάκρυνση του υλικού σημείου είναι x 2 =-5cm Δ. τον ελάχιστο χρόνο που απαιτείται ώστε το υλικό σημείο να μεταβεί από τη θέση x 1 στη θέση x 2. (10cm, 12s, 12k+1s και 12k+5s, 12k-1s και 12k+7s, 2s) Δύναμη και αατ Κ 1.1: Ένα σώμα με μάζα 1kg συνδέεται με δυο ελατήρια που έχουν σταθερές k 1 =50N/m και k 2 =350N/m και ισορροπεί πάνω σε λείο οριζόντιο επίπεδο με τα ελατήρια στο φυσικό τους μήκος. Απομακρύνουμε το σώμα από τη θέση της ισορροπίας του πάνω στο επίπεδο και κατά τη διεύθυνση του άξονα των ελατηρίων κατά 5cm και στη συνέχεια το αφήνουμε ελεύθερο. Να αποδείξετε ότι το σώμα θα εκτελέσει απλή αρμονική ταλάντωση και να υπολογίσετε την περίοδο και το πλάτος της ταλάντωσης. (π/10s, 0.05m) Κ 1.2: Ένα σώμα μάζας 1kg είναι συνδεδεμένο στο άκρο ενός ελατηρίου σταθεράς k=400n/m και ισορροπεί πάνω σε λείο κεκλιμένο επίπεδο γωνίας κλίσης 30 ως προς τον ορίζοντα. Το άλλο άκρο του ελατηρίου είναι ακλόνητο. Απομακρύνουμε το σώμα από τη θέση ισορροπίας του, κατά μήκος του άξονα του ελατηρίου, κατά 0.05m και στη συνέχεια το αφήνουμε ελεύθερο. Α. Να αποδείξετε ότι το σώμα θα εκτελέσει απλή αρμονική ταλάντωση και να υπολογίσετε την ταχύτητα του σώματος τη στιγμή που περνάει και πάλι για πρώτη φορά από την αρχική του θέση. Β. Να γράψετε την εξίσωση της απομάκρυνσης από τη ΘΙ με αρχή μέτρησης του χρόνου τη στιγμή κατά την οποία το αφήνουμε ελεύθερο και θετική φορά τη φορά προς την οποία έχει απομακρυνθεί το σώμα. (1m/s, x=0.05ημ(20t+π/2) (SI)) Κ 1.7: Ένα υλικό σημείο με μάζα 0.01 kg εκτελεί απλή αρμονική ταλάντωση στον άξονα x x. Η απόσταση των ακραίων σημείων της ταλάντωσης είναι d=0.2m. Τη χρονική στιγμή t=0 η απομάκρυνση του υλικού σημείου από τη ΘΙ είναι x=0.05m και η ταχύτητά του υ=- m/s. Να βρείτε: Α. το πλάτος, τη γωνιακή συχνότητα και την αρχική φάση της ταλάντωσης Β. την επιτάχυνση του υλικού σημείου κατά τη χρονική στιγμή t=πs Γ. τη συνισταμένη δύναμη που ασκείται στο υλικό σημείο σε συνάρτηση με την απομάκρυνση και σε συνάρτηση με το χρόνο και να την παραστήσετε γραφικά σε συνάρτηση με την απομάκρυνση. (0.1m, 20rad/s, 5π/6, -20m/s 2, ΣF=-4x) Κ 1.25: Ένα σώμα με μάζα 1kg είναι συνδεδεμένο με το ένα άκρο ενός οριζόντιου ελατηρίου που έχει σταθερά k=100n/m και ισορροπεί πάνω σε λείο οριζόντιο επίπεδο. Το άλλο άκρο του ελατηρίου είναι ακλόνητο. Κατά τη χρονική στιγμή t=0 αρχίζει να ασκείται στο σώμα μια σταθερή οριζόντια δύναμη F 1 μέτρου 10Ν κατά τη διεύθυνση του άξονα του ελατηρίου.

3 Α. Να αποδείξετε ότι το σώμα θα εκτελέσει απλή αρμονική ταλάντωση. Β. Να υπολογίσετε τη θέση και την ταχύτητα του σώματος κατά τη χρονική στιγμή t=π/2 s, έχοντας λάβει ως θετική φορά τη φορά της δύναμης F 1. Γ. Τη χρονική στιγμή κατά την οποία το σώμα περνάει από τη θέση ισορροπίας του κινούμενο κατά τη θετική φορά σταματά να ασκείται η δύναμη F 1. Να βρείτε την ταχύτητα του σώματος π s μετά την κατάργηση της δύναμης. (-0.1m, 0, 1m/s) ΣΑ 2.10: Σώμα μάζας 2kg ισορροπεί δεμένο στα ελεύθερα άκρα δύο κατακόρυφων ελατηρίων με σταθερές k 1 = 150N/m και k 2 = 50N/m. Αν απομακρύνουμε το σώμα κατακόρυφα από τη θέση ισορροπίας του κατά Δx = 10-2 m και στη συνέχεια το αφήνουμε ελεύθερο, να βρείτε το είδος της κίνησης που θα εκτελέσει, να γράψετε την εξίσωση της απομάκρυνσής του από τη θέση ισορροπίας σε συνάρτηση με το χρόνο και να κάνετε την αντίστοιχη γραφική παράσταση. (x=0.01συν10t) Χ 1.69: Σώμα μάζας 4kg εκτελεί απλή αρμονική ταλάντωση πλάτους 5cm. Η μέγιστη τιμή του μέτρου της δύναμης επαναφοράς είναι 20Ν. Α. Να υπολογίσετε τη σταθερά επαναφοράς και τη γωνιακή συχνότητα της ταλάντωσης Β. Αν τη χρονική στιγμή t=0 το σώμα διέρχεται από τη θέση ισορροπίας του, να γράψετε τις χρονικές εξισώσεις της απομάκρυνσης, της ταχύτητας και της επιτάχυνσής του. (400Ν/m, x=0.05 ημ10t, υ=0.5συν10t, α=-5ημ10t, x=0.05 ημ(10t+π), υ=0.5συν(10t+π), α=-5ημ(10t+π)) Κ 1.23: Ένας δίσκος με μάζα m 1 =0.3kg ισορροπεί πάνω σε λείο οριζόντιο επίπεδο συνδεδεμένος με το άκρο οριζόντιου ελατηρίου που έχει σταθερά k=10n/m. Το άλλο άκρο του ελατηρίου είναι ακλόνητο. Πάνω στο δίσκο ισορροπεί ένα σώμα με μάζα m 2 =0.1kg. Απομακρύνουμε το σύστημα από τη θέση ισορροπίας του κατά 0.05m και στη συνέχεια το αφήνουμε ελεύθερο, οπότε εκτελεί απλή αρμονική ταλάντωση. Να βρείτε: Α. την ελάχιστη τιμή του συντελεστή τριβής μεταξύ του σώματος και του δίσκου για την οποία το σώμα δεν ολισθαίνει πάνω στο δίσκο κατά τη διάρκεια της ταλάντωσης και Β. το μέτρο της τριβής μεταξύ του σώματος και του δίσκου και το μέτρο της τάσης του ελατηρίου τη χρονική στιγμή κατά την οποία το σύστημα διέρχεται από τη θέση x=0.04m. (0.125, 0.1N, 0.4N) K 1.25: Ένα κατακόρυφο ελατήριο με σταθερά k=100n/m είναι στερεωμένο με το κατώτερο άκρο του σε ένα οριζόντιο επίπεδο. Στο ελεύθερο άκρο του ελατηρίου είναι συνδεδεμένος ένας δίσκος με μάζα m 1 =0.6kg. Πάνω στο δίσκο βρίσκεται ένα σώμα Β με μάζα m 2 =0.2kg και το σύστημα ισορροπεί. Πιέζουμε αργά το δίσκο με το σώμα προς τα κάτω κατά διάστημα Α και στη συνέχεια το αφήνουμε ελεύθερο, οπότε το σύστημα εκτελεί απλή αρμονική ταλάντωση. Να βρείτε τη μέγιστη τιμή της απόστασης Α για την οποία το σώμα δεν αποχωρίζεται από το δίσκο. (0.08m) Κ 1.12: Στη διάταξη του σχήματος τα σώματα Α και Β έχουν μάζες m 1 =0.1kg και m 2 =0.3kg αντίστοιχα, ενώ η σταθερά του ελατηρίου είναι k=10n/m. Το σύστημα εκτελεί ταλάντωση με πλάτος 0.05m. Να βρείτε: Α. τη συχνότητα ταλάντωσης Β. τη σταθερά επαναφοράς του κάθε σώματος Γ. τη μέγιστη δύναμη επαναφοράς του κάθε σώματος (10/4π Hz, 0.5N/m, 1.5N/m, N, N) Κ 1.26: Στη διάταξη του σχήματος οι σταθερές των δυο ελατηρίων είναι k 1 =k 2 =50N/m και η μάζα του σώματος m=1kg. Το σώμα αρχικά ηρεμεί πάνω στο λείο οριζόντιο επίπεδο και τα δυο ελατήρια είναι στο ίδιο οριζόντιο επίπεδο, παράλληλα, και έχουν το ίδιο φυσικό μήκος. Απομακρύνουμε το σώμα κατά 0.1m από τη θέση ισορροπίας του κατά τη διεύθυνση των αξόνων των ελατηρίων και μετά το αφήνουμε ελεύθερο. Να αποδείξετε ότι το σώμα θα εκτελέσει απλή αρμονική ταλάντωση και να υπολογίσετε την περίοδο και το πλάτος της. (π/5s, 0.1m)

4 Κ 1.27: Στη διάταξη του σχήματος οι σταθερές των ελατηρίων είναι k 1 =30N/m, k 2 =60N/m και η μάζα του σώματος 0.2kg. Το σώμα αρχικά ηρεμεί στο λείο οριζόντιο επίπεδο και τα ελατήρια έχουν το φυσικό τους μήκος. Απομακρύνουμε το σώμα από το θέση ισορροπίας του προς τα δεξιά κατά 0.1m και μετά το αφήνουμε ελεύθερο. Να αποδείξετε ότι το σώμα θα εκτελέσει απλή αρμονική ταλάντωση και να υπολογίσετε την περίοδο και το πλάτος της ταλάντωσης. (π/5s, 0.1m) Χ 1.70: Ένα σώμα μάζας 0.5kg εκτελεί απλή αρμονική ταλάντωση. Όταν το σώμα διέρχεται από δυο σημεία της τροχιάς του Α και Β με απομακρύνσεις από τη ΘΙ x A =+0.2m και x B =-0.3m, η ταχύτητά του είναι υ Α =12m/s και υ Β =8m/s αντίστοιχα. Α. να βρείτε τη σταθερά επαναφοράς της ταλάντωσης Β. να υπολογίσετε την περίοδο της ταλάντωσης Γ. να βρείτε το πλάτος της ταλάντωσης Δ. Κάποια χρονική στιγμή η δύναμη επαναφοράς έχει μέτρο Ν. Να υπολογίσετε το μέτρο της ταχύτητας εκείνη τη στιγμή. (800N/m, 0.05π s, ± m, 4m/s) Ενέργεια και αατ Κ 1.3: Οι δυο απλοί αρμονικοί ταλαντωτές ελατηρίου του σχήματος έχουν την ίδια συνολική ενέργεια. Να βρείτε: Α. το λόγο των συχνοτήτων τους Β. το λόγο των πλατών τους Γ. το λόγο των μέγιστων τιμών της ταχύτητας και Δ. το λόγο των μέγιστων τιμών της δύναμης επαναφοράς. (1/2,, /2, /2) Χ 1.86: Σώμα μάζας 4kg εκτελεί απλή αρμονική ταλάντωση και σε 157s διαγράφει 250 πλήρεις ταλαντώσεις. Τη χρονική στιγμή t=0 το σώμα διέρχεται από σημείο της τροχιάς του με επιτάχυνση α=-20m/s 2 και στο σημείο αυτό η δύναμη επαναφοράς που δέχεται είναι μέγιστη κατά απόλυτη τιμή. Α. Να υπολογίσετε την περίοδο, τη σταθερά επαναφοράς και τη γωνιακή συχνότητα της ταλάντωσης Β. να γράψετε τις χρονικές εξισώσεις της απομάκρυνσης, της ταχύτητας και της επιτάχυνσης του σώματος Γ. Υπολογίστε το μέτρο της ταχύτητας του σώματος, όταν η δύναμη επαναφοράς έχει μέτρο 40Ν. Δ. Να υπολογίσετε την ολική ενέργεια και την κινητική ενέργεια του σώματος στη θέση x=a/2. (0.2πs, 400N/m, 10rad/s, x=0.2ημ(10t+π/2), υ=2συν(10t+π/2), α=-20ημ(10t+π/2) (SI), m/s, 8J, 6J) Κ 1.4: Ένας απλός αρμονικός ταλαντωτής ελατηρίου έχει μάζα m και πλάτος ταλάντωσης Α Διατηρούμε το πλάτος του ταλαντωτή σταθερό και διπλασιάζουμε τη μάζα του. 2. Διατηρούμε τη μάζα του ταλαντωτή σταθερή και διπλασιάζουμε το πλάτος ταλάντωσής του. Να βρείτε και στις δυο περιπτώσεις τη μεταβολή: Α. της περιόδου του ταλαντωτή Β. της ολικής του ενέργειας Γ. της μέγιστης ταχύτητάς του Δ. της μέγιστης επιτάχυνσής του. (1. +41%, 0, -29.5%,-50%, 2. 0, +300%, +100%, +100%) ΣΑ 3.5: Ένα σώμα εκτελεί απλή αρμονική ταλάντωση πλάτους cm. Να βρείτε σε ποια σημεία της τροχιάς του η κινητική ενέργεια ταλάντωσης είναι ίση με τη δυναμική ενέργεια ταλάντωσης. (x=±10cm) ΣΑ 3.8: Ένα σώμα εκτελεί απλή αρμονική ταλάντωση με περίοδο Τ και εξίσωση απομάκρυνσης x=aημ(ωt). Να βρείτε το λόγο της κινητικής ενέργειας ταλάντωσης προς τη δυναμική ενέργεια ταλάντωσης σε καθεμία από τις παρακάτω χρονικές στιγμές: Α. t=t/12 B. t=t/8 Γ. t=t/6 (3, 1, 1/3) Κ 1.13: Ένα υλικό σημείο εκτελεί απλή αρμονική ταλάντωση με πλάτος 0.2m και συχνότητα 10Hz. Να βρείτε: Α. Τις θέσεις στις οποίες η δυναμική ενέργεια του υλικού είναι ίση με το μισό της ολικής ενέργειά του, και

5 Β. την αρχική φάση του σημείου αν κατά τη χρονική στιγμή t=0 η κινητική ενέργεια του υλικού σημείου είναι τριπλάσια από τη δυναμική ενέργειά του, ενώ την ίδια χρονική στιγμή η απομάκρυνσή του είναι θετική και η ταχύτητά του αρνητική. (x=±0.14m, 5π/6 rad) Κ 1.65: Ένα υλικό σημείο εκτελεί απλή αρμονική ταλάντωση με περίοδο 4s. Να βρείτε τις χρονικές στιγμές κατά τις οποίες η κινητική ενέργεια είναι ίση με τη δυναμική ενέργειά του αν η αρχική φάση της ταλάντωσης είναι: Α. 0 Β. π/4 rad Γ. π/3 rad Δ. π/2 rad Ε. π rad ΣΤ. 3π/2 rad (t=kt+t/8-φ 0 Τ/2π, t=kt+3t/8-φ 0 Τ/2π, t=kt+5t/8-φ 0 Τ/2π, t=kt-t/8-φ 0 Τ/2π) K 1.8: Ένα βλήμα μάζας 10g κινείται οριζόντια με ταχύτητα υ 1 =100m/s και κατά τη χρονική στιγμή t=0 σφηνώνεται στο σώμα Α που έχει μάζα 990g. Το σώμα Α αρχικά ηρεμεί πάνω σε λείο οριζόντιο επίπεδο, ενώ είναι συνδεδεμένο με ελατήριο σταθεράς k=100n/m. Να βρείτε: Α. Τη χρονική στιγμή κατά την οποία το συσσωμάτωμα θα διέλθει και πάλι για πρώτη φορά από τη θέση όπου έγινε η σύγκρουση και την ταχύτητα του συσσωματώματος εκείνη τη χρονική στιγμή. Β. το πλάτος ταλάντωσης του συσσωματώματος Γ. το ποσοστό της μηχανικής ενέργειας του συστήματος που μετατράπηκε σε θερμική κατά την κρούση. (π/10s,-1m/s, 0.1m, 99%) Κ 1.9: Ένα σώμα Σ μάζας 1kg είναι συνδεδεμένο με ελατήριο σταθεράς 100Ν/m και εκτελεί απλή αρμονική ταλάντωση με πλάτος 1cm σε λείο οριζόντιο επίπεδο. Ένα δεύτερο σώμα μάζας 3kg κινείται οριζόντια με ταχύτητα υ 2 =1.3m/s και συγκρούεται πλαστικά με το σώμα Σ τη χρονική στιγμή t=0 κατά την οποία το σώμα Σ διέρχεται από τη θέση ισορροπίας του κινούμενο ομόρροπα προς το βλήμα (θετική φορά). Να βρείτε: Α. τη χρονική στιγμή κατά την οποία το συσσωμάτωμα διέρχεται και πάλι για πρώτη φορά από τη θέση όπου έγινε η κρούση και την αντίστοιχη ταχύτητά του. Β. το πλάτος ταλάντωσης του συσσωματώματος Γ. την εξίσωσης της απομάκρυνσης του σώματος (π/5s,-1m/s, 0.2m, x=0.2ημ(5t) (SI)) Κ 1.24: Ένας δίσκος Δ με μάζα 0.09kg είναι συνδεδεμένος με το πάνω άκρο ενός κατακόρυφου ελατηρίου που έχει σταθερά 10N/m. Το κάτω άκρο του ελατηρίου είναι στερεωμένο σε οριζόντιο επίπεδο. Το σύστημα αρχικά ισορροπεί. Σε ύψος 0.2m κατακόρυφα πάνω από το δίσκο αφήνεται να πέσει σώμα Σ μάζας 0.01kg. Το σώμα συγκρούεται πλαστικά με το δίσκο. Να βρείτε: Α. την περίοδο και το πλάτος της απλής αρμονικής ταλάντωσης που θα εκτελέσει το σύστημα μετά την πλαστική κρούση. Β. Τη μέγιστη και την ελάχιστη τιμή του μέτρου της τάσης του ελατηρίου, και Γ. τη μέγιστη και την ελάχιστη τιμή της δυναμικής ενέργειας του ελατηρίου. (π/5s, 0.022m, 1.22N, 0.78N, J, J) Κ 1.16: Στη διάταξη του σχήματος τα σώματα Β και Γ έχουν μάζες m 1 =m 2 =1kg, ενώ η σταθερά του ελατηρίου είναι 100N/m. Το σύστημα αρχικά ηρεμεί. Ξαφνικά κόβεται το νήμα που συγκρατεί τα δύο σώματα. Να βρείτε: Α. Το πλάτος της ταλάντωσης που θα εκτελέσει το σώμα Β μετά το κόψιμο του νήματος, και Β. την ταχύτητα του σώματος Β, όταν το ελατήριο αποκτά το φυσικό του μήκος για πρώτη φορά. (0.1m, 0) Κ 1.10: Ένα σώμα με μάζα Μ έχει προσδεθεί στο κάτω άκρο κατακόρυφου ιδανικού ελατηρίου σταθεράς k του οποίου το ένα άκρο είναι στερεωμένο σε ακλόνητο σημείο. Απομακρύνουμε το σώμα κατακόρυφα προς τα κάτω κατά απόσταση α από τη ΘΙ και το αφήνουμε ελεύθερο να κάνει ταλάντωση. Επαναλαμβάνουμε το πείραμα και με ένα άλλο ελατήριο σταθεράς k =4k. Να γίνουν οι γραφικές παραστάσεις των δυναμικών ενεργειών των δύο ταλαντώσεων σε συνάρτηση με την απομάκρυνση στο ίδιο διάγραμμα.

ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ 6 24

ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ 6 24 ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ 6 24 Εκφώνηση άσκησης 6. Ένα σώμα, μάζας m, εκτελεί απλή αρμονική ταλάντωση έχοντας ολική ενέργεια Ε. Χωρίς να αλλάξουμε τα φυσικά χαρακτηριστικά του συστήματος, προσφέρουμε στο σώμα

Διαβάστε περισσότερα

ΤΑΛΑΝΤΩΣΗ ΚΑΙ ΚΡΟΥΣΗ

ΤΑΛΑΝΤΩΣΗ ΚΑΙ ΚΡΟΥΣΗ ΤΑΛΑΝΤΩΣΗ ΚΑΙ ΚΡΟΥΣΗ 1. Κατακόρυφο ελατήριο σταθεράς k=1000 N /m έχει το κάτω άκρο του στερεωμένο σε ακίνητο σημείο. Στο πάνω άκρο του ελατηρίου έχει προσδεθεί σώμα Σ 1 μάζας m 1 =8 kg, ενώ ένα δεύτερο

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ-ΕΛΑΤΗΡΙΟ-ΚΡΟΥΣΗ. Σε όσες ασκήσεις απαιτείται δίνεται επιτάχυνση βαρύτητας g=10 m/s 2.

ΜΗΧΑΝΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ-ΕΛΑΤΗΡΙΟ-ΚΡΟΥΣΗ. Σε όσες ασκήσεις απαιτείται δίνεται επιτάχυνση βαρύτητας g=10 m/s 2. ΜΗΧΑΝΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ-ΕΛΑΤΗΡΙΟ-ΚΡΟΥΣΗ Σε όσες ασκήσεις απαιτείται δίνεται επιτάχυνση βαρύτητας g=10 m/s 2. ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ 1. Η δύναμη επαναφοράς που ασκείται σε ένα σώμα μάζας m που εκτελεί απλή αρμονική

Διαβάστε περισσότερα

ΘΕΜΑ Α A1. Στις ερωτήσεις 1 9 να επιλέξετε το γράμμα που αντιστοιχεί στη σωστή απάντηση, χωρίς να αιτιολογήσετε την επιλογή σας.

ΘΕΜΑ Α A1. Στις ερωτήσεις 1 9 να επιλέξετε το γράμμα που αντιστοιχεί στη σωστή απάντηση, χωρίς να αιτιολογήσετε την επιλογή σας. ΜΑΘΗΜΑ / Προσανατολισμός / ΤΑΞΗ ΑΡΙΘΜΟΣ ΦΥΛΛΟΥ ΕΡΓΑΣΙΑΣ: ΗΜΕΡΟΜΗΝΙΑ: ΤΜΗΜΑ : ΟΝΟΜΑΤΕΠΩΝΥΜΟ ΜΑΘΗΤΗ: ΦΥΣΙΚΗ/ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ / Γ ΛΥΚΕΙΟΥ 1 Ο ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ ( ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ) ΘΕΜΑ Α A1. Στις ερωτήσεις

Διαβάστε περισσότερα

ΠΡΟΤΥΠΟ ΠΕΙΡΑΜΑΤΙΚΟ ΛΥΚΕΙΟ ΕΥΑΓΓΕΛΙΚΗΣ ΣΧΟΛΗΣ ΣΜΥΡΝΗΣ

ΠΡΟΤΥΠΟ ΠΕΙΡΑΜΑΤΙΚΟ ΛΥΚΕΙΟ ΕΥΑΓΓΕΛΙΚΗΣ ΣΧΟΛΗΣ ΣΜΥΡΝΗΣ ΠΡΟΤΥΠΟ ΠΕΙΡΑΜΑΤΙΚΟ ΛΥΚΕΙΟ ΕΥΑΓΓΕΛΙΚΗΣ ΣΧΟΛΗΣ ΣΜΥΡΝΗΣ ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΑΜΕΙΩΤΕΣ ΓΡΑΜΜΙΚΕΣ ΑΡΜΟΝΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ Χ. Δ. ΦΑΝΙΔΗΣ http://users.sch.gr/cdfan

Διαβάστε περισσότερα

1. Ένα σώμα m=1kg εκτελεί απλή αρμονική ταλάντωση και η μεταβολή της επιτάχυνσής του σε συνάρτηση με το χρόνο, φαίνεται στο σχήμα.

1. Ένα σώμα m=1kg εκτελεί απλή αρμονική ταλάντωση και η μεταβολή της επιτάχυνσής του σε συνάρτηση με το χρόνο, φαίνεται στο σχήμα. Γενικές ασκήσεις Θέματα εξετάσεων από το 1ο κεφάλαιο ΚΕΦΑΛΑΙΟ 1 1 Ένα σώμα m=1kg εκτελεί απλή αρμονική ταλάντωση και η μεταβολή της επιτάχυνσής του σε συνάρτηση με το χρόνο, φαίνεται στο σχήμα α Να βρείτε

Διαβάστε περισσότερα

7. Ένα σώμα εκτελεί Α.Α.Τ. Η σταθερά επαναφοράς συστήματος είναι.

7. Ένα σώμα εκτελεί Α.Α.Τ. Η σταθερά επαναφοράς συστήματος είναι. ΚΕΦΑΛΑΙΟ 1 ο : ΜΗΧΑΝΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΕΝΟΤΗΤΑ 1.2: ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ (ΕΝΕΡΓΕΙΑΚΗ ΠΡΟΣΕΓΓΙΣΗ, ΑΡΧΙΚΗ ΦΑΣΗ, ΣΥΣΤΗΜΑ ΕΛΑΤΗΡΙΟΥ ΣΩΜΑΤΟΣ, ΟΡΜΗ) 6α. Σφαίρα μάζας ισορροπεί δεμένη στο πάνω άκρο κατακόρυφου

Διαβάστε περισσότερα

γ. Πόση επιτάχυνση θα έχει το σώμα τη στιγμή που έχει απομάκρυνση 0,3 m;

γ. Πόση επιτάχυνση θα έχει το σώμα τη στιγμή που έχει απομάκρυνση 0,3 m; ΘΕΜΑ Γ 1. Ένα σώμα εκτελεί αρμονική ταλάντωση με εξίσωση 0,6 ημ 8 S.I.. α. Να βρείτε την περίοδο και τον αριθμό των ταλαντώσεων που εκτελεί το σώμα σε ένα λεπτό της ώρας. β. Να γράψετε τις εξισώσεις της

Διαβάστε περισσότερα

1. Ένα σώμα μάζας είναι στερεωμένο στην άκρη οριζοντίου ιδανικού ελατηρίου, του οποίου το άλλο άκρο είναι ακλόνητα στερεωμένο.

1. Ένα σώμα μάζας είναι στερεωμένο στην άκρη οριζοντίου ιδανικού ελατηρίου, του οποίου το άλλο άκρο είναι ακλόνητα στερεωμένο. 1. Ένα σώμα μάζας είναι στερεωμένο στην άκρη οριζοντίου ιδανικού ελατηρίου σταθεράς, του οποίου το άλλο άκρο είναι ακλόνητα στερεωμένο. Το σώμα εκτελεί απλή αρμονική ταλάντωση, κατά τη διεύθυνση του άξονα

Διαβάστε περισσότερα

2 ο ΔΙΑΓΩΝΙΣΜΑ (ΚΕΦΑΛΑΙΟ 1) ΘΕΜΑΤΑ

2 ο ΔΙΑΓΩΝΙΣΜΑ (ΚΕΦΑΛΑΙΟ 1) ΘΕΜΑΤΑ ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ 2 ο ΔΙΑΓΩΝΙΣΜΑ (ΚΕΦΑΛΑΙΟ 1) ΘΕΜΑΤΑ ΘΕΜΑ A Στις προτάσεις Α1α έως Α4β να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το γράμμα που αντιστοιχεί

Διαβάστε περισσότερα

ΕΝΕΡΓΕΙΑ ΚΑΙ ΤΑΛΑΝΤΩΣΗ

ΕΝΕΡΓΕΙΑ ΚΑΙ ΤΑΛΑΝΤΩΣΗ ΕΝΕΡΓΕΙΑ ΚΑΙ ΤΑΛΑΝΤΩΣΗ 1. Ελατήριο σταθεράς K τοποθετείται κατακόρυφα με το πάνω άκρο του στερεωμένο σε ακλόνητο σημείο. Ένα σώμα μάζας M=1 kg δένεται στο κάτω άκρο του ελατηρίου και η επιμήκυνση που προκαλεί

Διαβάστε περισσότερα

ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ - ΑΣΚΗΣΕΙΣ

ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ - ΑΣΚΗΣΕΙΣ ΚΙΝΗΜΑΤΙΚΗ ΠΡΟΣΕΓΓΙΣΗ 1. Στο παρακάτω διάγραμμα απομάκρυνσης-χρόνου φαίνονται οι γραφικές παραστάσεις για δύο σώματα 1 και 2 τα οποία εκτελούν Α.Α.Τ. Να βρείτε τη σχέση που συνδέει τις μέγιστες επιταχύνσεις

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΜΗΧΑΝΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ-ΚΡΟΥΣΕΙΣ

ΑΣΚΗΣΕΙΣ ΜΗΧΑΝΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ-ΚΡΟΥΣΕΙΣ ΑΣΚΗΣΕΙΣ ΜΗΧΑΝΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ-ΚΡΟΥΣΕΙΣ ΟΡΙΖΟΝΤΙΟ ΕΠΙΠΕΔΟ 1.Ένα σώμα μάζας m=4kg είναι δεμένο στο άκρο οριζόντιου ελατηρίου σταθεράςk=400n/m, το άλλο άκρο του οποίου είναι είναι ακλόνητα στερεωμένη. To

Διαβάστε περισσότερα

ΟΡΟΣΗΜΟ Ένα υλικό σημείο που κάνει α.α.τ πλάτους Α=10cm τη χρονική στιγμή t=0s έχει απομάκρυνση x 5 3 cm. Να βρείτε την αρχική φάση φ 0

ΟΡΟΣΗΜΟ Ένα υλικό σημείο που κάνει α.α.τ πλάτους Α=10cm τη χρονική στιγμή t=0s έχει απομάκρυνση x 5 3 cm. Να βρείτε την αρχική φάση φ 0 Απλή Αρμονική Ταλάντωση ΚΕΦΑΛΑΙΟ 1 Σώμα που εκτελεί απλή αρμονική ταλάντωση και χρησιμοποιούμε τις εξισώσεις. 1.56 Ένα υλικό σημείο που κάνει α.α.τ πλάτους Α=10cm τη χρονική στιγμή t=0s έχει απομάκρυνση

Διαβάστε περισσότερα

1. Η απομάκρυνση σώματος που πραγματοποιεί οριζόντια απλή αρμονική ταλάντωση δίδεται από την σχέση x = 0,2 ημ π t, (SI).

1. Η απομάκρυνση σώματος που πραγματοποιεί οριζόντια απλή αρμονική ταλάντωση δίδεται από την σχέση x = 0,2 ημ π t, (SI). 1. Η απομάκρυνση σώματος που πραγματοποιεί οριζόντια απλή αρμονική ταλάντωση δίδεται από την σχέση x = 0,2 ημ π t, (SI). Να βρείτε: α. το πλάτος της απομάκρυνσης, της ταχύτητας και της επιτάχυνσης. β.

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ

ΜΗΧΑΝΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΜΗΧΑΝΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ 1. Ένα σώμα μάζας m= 2 kg εκτελεί απλή αρμονική ταλάντωση σε οριζόντια διεύθυνση. Στη θέση με απομάκρυνση x 1 =+2m το μέτρο της ταχύτητας του είναι u 1 =4m /s, ενώ στη θέση με απομάκρυνση

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 17-10-11 ΑΠΟΦΟΙΤΟΙ ΣΕΙΡΑ Α Θέµα 1 ο ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ Οδηγία: Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις 1-4 δίπλα το γράµµα που αντιστοιχεί στη

Διαβάστε περισσότερα

ΚΡΙΤΗΡΙΟ ΑΞΙΟΛΟΓΗΣΗΣ στις αμείωτες μηχανικές ΤΑΛΑΝΤΩΣΕΙΣ- ΚΡΟΥΣΕΙΣ (1) ΟΝΟΜΑΤΕΠΩΝΥΜΟ

ΚΡΙΤΗΡΙΟ ΑΞΙΟΛΟΓΗΣΗΣ στις αμείωτες μηχανικές ΤΑΛΑΝΤΩΣΕΙΣ- ΚΡΟΥΣΕΙΣ (1) ΟΝΟΜΑΤΕΠΩΝΥΜΟ ΚΡΙΤΗΡΙΟ ΑΞΙΟΛΟΓΗΣΗΣ στις αμείωτες μηχανικές ΤΑΛΑΝΤΩΣΕΙΣ- ΚΡΟΥΣΕΙΣ (1) ΟΝΟΜΑΤΕΠΩΝΥΜΟ ΘΕΜΑ Α Α1.Ένα σώμα μάζας m είναι δεμένο και ισορροπεί στο κάτω άκρο κατακόρυφου ιδανικού ελατηρίου σταθεράς k 1 του

Διαβάστε περισσότερα

2 ο ΔΙΑΓΩΝΙΣΜΑ (ΚΕΦΑΛΑΙΟ 1) ΘΕΜΑΤΑ

2 ο ΔΙΑΓΩΝΙΣΜΑ (ΚΕΦΑΛΑΙΟ 1) ΘΕΜΑΤΑ ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ 2 ο ΔΙΑΓΩΝΙΣΜΑ (ΚΕΦΑΛΑΙΟ 1) ΘΕΜΑΤΑ ΘΕΜΑ A Στις προτάσεις Α1-Α4 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το γράμμα που αντιστοιχεί στη

Διαβάστε περισσότερα

Α. Για ποιο από τα δυο σώματα καταναλώσαμε περισσότερη ενέργεια;

Α. Για ποιο από τα δυο σώματα καταναλώσαμε περισσότερη ενέργεια; 1. Στην κάτω άκρη ενός ιδανικού ελατήριου είναι δεμένο ένα σώμα που έχει μάζα m 1 = m και ισορροπεί. Στην κάτω άκρη ενός άλλου ομοίου ελατήριου είναι δεμένο ένα άλλο σώμα που έχει μάζα m 2 = 4m και ισορροπεί.

Διαβάστε περισσότερα

Όλα τα θέματα των πανελληνίων στις μηχανικές ταλαντώσεις έως και το 2014 ΣΑΛΑΝΣΩΕΙ ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΣΑΛΑΝΣΩΗ ΒΑΙΚΕ ΕΝΝΟΙΕ. Ερωτήσεις Πολλαπλής Επιλογής

Όλα τα θέματα των πανελληνίων στις μηχανικές ταλαντώσεις έως και το 2014 ΣΑΛΑΝΣΩΕΙ ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΣΑΛΑΝΣΩΗ ΒΑΙΚΕ ΕΝΝΟΙΕ. Ερωτήσεις Πολλαπλής Επιλογής έως και το 04 ΣΑΛΑΝΣΩΕΙ ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΣΑΛΑΝΣΩΗ ΒΑΙΚΕ ΕΝΝΟΙΕ Ερωτήσεις Πολλαπλής Επιλογής. Να μεταφέρετε στο τετράδιό σας τον παρακάτω πίνακα που αναφέρεται στην απλή αρμονική ταλάντωση και να συμπληρώσετε

Διαβάστε περισσότερα

Ε ρ ω τ ή σ ε ι ς σ τ ι ς μ η χ α ν ι κ έ ς τ α λ α ν τ ώ σ ε ι ς

Ε ρ ω τ ή σ ε ι ς σ τ ι ς μ η χ α ν ι κ έ ς τ α λ α ν τ ώ σ ε ι ς Ε ρ ω τ ή σ ε ι ς σ τ ι ς μ η χ α ν ι κ έ ς τ α λ α ν τ ώ σ ε ι ς 1. Δύο σώματα ίδιας μάζας εκτελούν Α.Α.Τ. Στο διάγραμμα του σχήματος παριστάνεται η συνισταμένη δύναμη που ασκείται σε κάθε σώμα σε συνάρτηση

Διαβάστε περισσότερα

Επανάληψη: Κρούσεις και φαινόμενο Doppler (Φ24) 4. α. β. ii. iii. 6. α.

Επανάληψη: Κρούσεις και φαινόμενο Doppler (Φ24) 4. α. β. ii. iii. 6. α. Επανάληψη: Κρούσεις και φαινόμενο Doppler (Φ24) 1. Μια σφαίρα με μάζα m 1 συγκρούεται μετωπικά και ελαστικά με μια ακίνητη σφαίρα μάζας m 2. Ποια πρέπει να είναι η σχέση της μάζας m 1 με τη μάζα m 2 ώστε:

Διαβάστε περισσότερα

ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ ΠΡΟΣΠΑΘΕΙΑ ΣΑΣ ΚΙ 2014

ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ ΠΡΟΣΠΑΘΕΙΑ ΣΑΣ ΚΙ 2014 ΤΟ ΥΛΙΚΟ ΕΧΕΙ ΑΝΤΛΗΘΕΙ ΑΠΟ ΤΑ ΨΗΦΙΑΚΑ ΕΚΠΑΙΔΕΥΤΙΚΑ ΒΟΗΘΗΜΑΤΑ ΤΟΥ ΥΠΟΥΡΓΕΙΟΥ ΠΑΙΔΕΙΑΣ http://wwwstudy4examsgr/ ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ

Διαβάστε περισσότερα

α. Από τη μάζα του σώματος που ταλαντώνεται. β. Μόνο από τα πλάτη των επιμέρους απλών αρμονικών ταλαντώσεων.

α. Από τη μάζα του σώματος που ταλαντώνεται. β. Μόνο από τα πλάτη των επιμέρους απλών αρμονικών ταλαντώσεων. ιαγώνισμα στη φυσική θετικού προσανατολισμού Ύλη: μηχανικές ταλαντώσεις ιάρκεια 3 ώρες ΘΕΜΑ Α Στις προτάσεις Α1 έως Α8 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το γράμμα που αντιστοιχεί

Διαβάστε περισσότερα

Διαγώνισμα Φυσικής Γ Λυκείου Απλή αρμονική ταλάντωση Κρούσεις

Διαγώνισμα Φυσικής Γ Λυκείου Απλή αρμονική ταλάντωση Κρούσεις Διαγώνισμα Φυσικής Γ Λυκείου Απλή αρμονική ταλάντωση Κρούσεις ~ Διάρκεια: 3 ώρες ~ Θέμα Α Α1. Η ορμή συστήματος δύο σωμάτων που συγκρούονται διατηρείται: α. Μόνο στην πλάγια κρούση. β. Μόνο στην έκκεντρη

Διαβάστε περισσότερα

ΤΑΛΑΝΤΩΣΕΙΣ. . Ερωτήσεις αντιστοίχισης. Σχήμα 2 από τη θέση ισορροπίας του δίνεται από την εξίσωση x = Aημωt.

ΤΑΛΑΝΤΩΣΕΙΣ. . Ερωτήσεις αντιστοίχισης. Σχήμα 2 από τη θέση ισορροπίας του δίνεται από την εξίσωση x = Aημωt. ΤΑΛΑΝΤΩΣΕΙΣ. Ερωτήσεις αντιστοίχισης Οδηγία: Για να απαντήσετε στις παρακάτω ερωτήσεις αρκεί να γράψετε στο φύλλο απαντήσεων τον αριθμό της ερώτησης και τα κατάλληλα ζεύγη γραμμάτων - αριθμών.. Σημειακό

Διαβάστε περισσότερα

1.1. Μηχανικές Ταλαντώσεις. Ομάδα Ε.

1.1. Μηχανικές Ταλαντώσεις. Ομάδα Ε. .. Μηχανικές. Ομάδα Ε...8. Δυο ΑΑΤ και μία Ταλάντωση. Ένα σώμα μάζας kg ηρεμεί σε λείο κεκλιμένο επίπεδο κλίσεως θ=30, δεμένο στο άκρο ελατηρίου σταθεράς k =40Ν/m, ενώ εφάπτεται στο ε- λεύθερο άκρο ενός

Διαβάστε περισσότερα

ΘΕΜΑ Α. Α.1. Ένα σύστηµα ελατηρίου-µάζας εκτελεί απλή αρµονική ταλάντωση πλάτους Α.

ΘΕΜΑ Α. Α.1. Ένα σύστηµα ελατηρίου-µάζας εκτελεί απλή αρµονική ταλάντωση πλάτους Α. ΘΕΜΑ Α Στις ημιτελείς προτάσεις Α 1 Α 6 να γράψετε στο τετράδιο σας τον αριθμό της πρότασης και δίπλα το γράμμα που αντιστοιχεί στη φράση, η οποία τη συμπληρώνει σωστά. Α.1. Ένα σύστηµα ελατηρίου-µάζας

Διαβάστε περισσότερα

προς ένα ακίνητο σωμάτιο α (πυρήνας Ηe), το οποίο είναι ελεύθερο να κινηθεί,

προς ένα ακίνητο σωμάτιο α (πυρήνας Ηe), το οποίο είναι ελεύθερο να κινηθεί, ΚΡΟΥΣΕΙΣ ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ 1. Σφαίρα Α μάζας 3m κινείται πάνω σε λείο οριζόντιο επίπεδο κατά τη θετική φορά και συγκρούεται κεντρικά και ελαστικά με άλλη σφαίρα Β μάζας m που κινείται κατά την

Διαβάστε περισσότερα

4. Σώμα Σ 1 μάζας m 1 =1kg ισορροπεί πάνω σε λείο κεκλιμένο επίπεδο που σχηματίζει με τον ορίζοντα γωνία φ=30 ο. Το σώμα Σ 1 είναι δεμένο στην άκρη

4. Σώμα Σ 1 μάζας m 1 =1kg ισορροπεί πάνω σε λείο κεκλιμένο επίπεδο που σχηματίζει με τον ορίζοντα γωνία φ=30 ο. Το σώμα Σ 1 είναι δεμένο στην άκρη 1. Δίσκος μάζας Μ=1 Kg είναι στερεωμένος στο πάνω άκρο κατακόρυφου ελατηρίου, σταθεράς k=200 N/m. Το άλλο άκρο του ελατηρίου είναι στερεωμένο σε οριζόντιο δάπεδο. Πάνω στο δίσκο κάθεται ένα πουλί με μάζα

Διαβάστε περισσότερα

Θέμα 1 ο (Μονάδες 25)

Θέμα 1 ο (Μονάδες 25) ΙΙΑΑΓΓΩΝΝΙΙΣΣΜΑΑ ΦΦΥΥΣΣΙΙΚΚΗΗΣΣ ΚΚΑΑΤΤΕΕΥΥΘΘΥΥΝΝΣΣΗΗΣΣ ΑΑΠΟΟΦΦΟΟΙΙΤΤΩΝΝ 0055 -- -- 00 Θέμα ο. Ένα σημειακό αντικείμενο που εκτελεί ΑΑΤ μεταβαίνει από τη θέση ισορροπίας του σε ακραία θέση σε χρόνο s. Η

Διαβάστε περισσότερα

ΛΥΣΕΙΣ. Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.

ΛΥΣΕΙΣ. Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ. ΕΤΟΥΣ 01-013 ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: ΑΠΟΦΟΙΤΟΙ ΗΜΕΡΟΜΗΝΙΑ: /10/1 ΘΕΜΑ 1 ο ΛΥΣΕΙΣ Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις

Διαβάστε περισσότερα

Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.

Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α ΗΜΕΡΟΜΗΝΙΑ: ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4 και δίπλα το γράμμα που αντιστοιχεί στη

Διαβάστε περισσότερα

ΤΑΛΑΝΤΩΣΕΙΣ (23 ΠΕΡΙΟΔΟΙ)

ΤΑΛΑΝΤΩΣΕΙΣ (23 ΠΕΡΙΟΔΟΙ) α (cm/s ) ΚΕΦΑΛΑΙΟ 3 Κατηγορία Α ΤΑΛΑΝΤΩΣΕΙΣ (3 ΠΕΡΙΟΔΟΙ) 1. Να προσδιορίσετε ποια από τα πιο κάτω φυσικά μεγέθη μπορεί να έχουν την ίδια κατεύθυνση για ένα απλό αρμονικό ταλαντωτή: α. θέση και ταχύτητα,

Διαβάστε περισσότερα

1.4. Σύνθεση Ταλαντώσεων. Ομάδα Γ.

1.4. Σύνθεση Ταλαντώσεων. Ομάδα Γ. 1.4. Σύνθεση Ταλαντώσεων. Ομάδα Γ. 1.4.1. Σύνθετη ταλάντωση και περιστρεφόμενα διανύσματα. Ένα σώμα εκτελεί απλή αρμονική ταλάντωση, της οποίας η απομάκρυνση από τη θέση ισορροπίας είναι x=0, + (..) και

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ 1

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ 1 ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις -4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. Δύο εγκάρσια κύματα

Διαβάστε περισσότερα

1.1. Μηχανικές Ταλαντώσεις. Ομάδα Ε.

1.1. Μηχανικές Ταλαντώσεις. Ομάδα Ε. 1.1. Μηχανικές. Ομάδα Ε. 1.1.81. Δυο ΑΑΤ και μία Ταλάντωση. Ένα σώμα μάζας 1kg ηρεμεί σε λείο κεκλιμένο επίπεδο κλίσεως θ=30, δεμένο στο άκρο ελατηρίου σταθεράς k 1 =40Ν/m, ενώ εφάπτεται στο ε- λεύθερο

Διαβάστε περισσότερα

5. Ένα σώµα ταλαντώνεται µεταξύ των σηµείων Α και Ε. Στο σχήµα φαίνονται πέντε θέσεις Α,Β,Γ, και Ε, οι οποίες ισαπέχουν µεταξύ 1

5. Ένα σώµα ταλαντώνεται µεταξύ των σηµείων Α και Ε. Στο σχήµα φαίνονται πέντε θέσεις Α,Β,Γ, και Ε, οι οποίες ισαπέχουν µεταξύ 1 1. Σώµα 10g εκτελεί α.α.τ. γύρω από σηµείο Ο και η αποµάκρυνση δίνεται από τη σχέση: x=10ηµπt (cm), ζητούνται: i) Πόσο χρόνο χρειάζεται για να πάει από το Ο σε σηµείο Μ όπου x=5cm ii) Ποια η ταχύτητά του

Διαβάστε περισσότερα

=2m /s. Να βρείτε: a. Τη σταθερά επαναφοράς D. b. Την περίοδο T της ταλάντωσης c. Την ενέργεια της ταλάντωσης d. Το πλάτος A της ταλάντωσης.

=2m /s. Να βρείτε: a. Τη σταθερά επαναφοράς D. b. Την περίοδο T της ταλάντωσης c. Την ενέργεια της ταλάντωσης d. Το πλάτος A της ταλάντωσης. 1. Ένα σώμα μάζας m= 2 kg εκτελεί απλή αρμονική ταλάντωση σε οριζόντια διεύθυνση. Στη θέση με απομάκρυνση x 1 =+2m το μέτρο της ταχύτητας του είναι u 1 =4m/ s, ενώ στη θέση με απομάκρυνση x 2 =+4m το μέτρο

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 17-10-11 ΑΠΟΦΟΙΤΟΙ ΣΕΙΡΑ Α Θέµα 1 ο ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΛΥΣΕΙΣ Οδηγία: Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις 1-4 δίπλα το γράµµα που αντιστοιχεί

Διαβάστε περισσότερα

ΟΡΟΣΗΜΟ. 1ο Κριτήριο αξιολόγησης στα κεφ Θέμα 1. Κριτήρια αξιολόγησης Ταλαντώσεις - Κύματα.

ΟΡΟΣΗΜΟ. 1ο Κριτήριο αξιολόγησης στα κεφ Θέμα 1. Κριτήρια αξιολόγησης Ταλαντώσεις - Κύματα. 1ο Κριτήριο αξιολόγησης στα κεφ. 1-2 Θέμα 1 Ποια από τις παρακάτω προτάσεις είναι σωστή; 1. Ένα σώμα μάζας m είναι δεμένο στην ελεύθερη άκρη κατακόρυφου ιδανικού ελατηρίου σταθεράς k και ηρεμεί στη θέση

Διαβάστε περισσότερα

ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΤΑΞΗ / ΤΜΗΜΑ : Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΙΟΥΛΙΟY 2015 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 6

ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΤΑΞΗ / ΤΜΗΜΑ : Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΙΟΥΛΙΟY 2015 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 6 ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΤΑΞΗ / ΤΜΗΜΑ : Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΙΟΥΛΙΟY 2015 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 6 ΘΕΜΑ 1 Ο : Στις παρακάτω ερωτήσεις 1 έως 4 να γράψετε στο τετράδιό

Διαβάστε περισσότερα

4 ο Γενικό Λύκειο Κοζάνης Φυσική κατεύθυνσης Γ τάξης

4 ο Γενικό Λύκειο Κοζάνης Φυσική κατεύθυνσης Γ τάξης 4 ο Γενικό Λύκειο Κοζάνης Φυσική κατεύθυνσης Γ τάξης 1 ΠΑΡΑΤΗΡΗΣΕΙΣ 1. Στην ελαστική κρούση όπου το ένα σώμα είναι ακίνητο αρχικά εφαρμόζω τις γνωστές σχέσεις : Για το σώμα m 1 που αρχικά κινείται με ταχύτητα

Διαβάστε περισσότερα

2

2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 1. Να βρείτε ποια από τις παρακάτω απαντήσεις είναι η σωστή. Η περίοδος της ταλάντωσης σώματος Α κρεμασμένου στο άκρο ελατηρίου είναι 3s, ενώ σώματος Β κρεμασμένου

Διαβάστε περισσότερα

[50m/s, 2m/s, 1%, -10kgm/s, 1000N]

[50m/s, 2m/s, 1%, -10kgm/s, 1000N] ΚΕΦΑΛΑΙΟ 5 ο - ΜΕΡΟΣ Α : ΚΡΟΥΣΕΙΣ ΕΝΟΤΗΤΑ 1: ΚΡΟΥΣΕΙΣ 1. Σώμα ηρεμεί σε οριζόντιο επίπεδο. Βλήμα κινούμενο οριζόντια με ταχύτητα μέτρου και το με ταχύτητα, διαπερνά το σώμα χάνοντας % της κινητικής του

Διαβάστε περισσότερα

ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΣΕΠΤΕΜΒΡΙΟΣ 2015 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 7

ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΣΕΠΤΕΜΒΡΙΟΣ 2015 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 7 ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΣΕΠΤΕΜΒΡΙΟΣ 2015 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 7 ΘΕΜΑ 1 Ο : Στις παρακάτω ερωτήσεις 1 έως 4 να γράψετε στο τετράδιό σας

Διαβάστε περισσότερα

Διαγώνισμα Φυσικής Προσανατολισμού Γ Λυκείου. Ταλαντώσεις. Θέμα Α

Διαγώνισμα Φυσικής Προσανατολισμού Γ Λυκείου. Ταλαντώσεις. Θέμα Α Διαγώνισμα Φυσικής Προσανατολισμού Γ Λυκείου Θέμα Α 1. Ένα σώμα εκτελεί απλή αρμονική ταλάντωση περιόδου Τ και τη χρονική στιγμή t=0 βρίσκεται στην ακραία αρνητική του απομάκρυνση. Μετά από χρόνο t 1 =

Διαβάστε περισσότερα

Σάββατο 12 Νοεμβρίου Απλή Αρμονική Ταλάντωση - Κρούσεις. Σύνολο Σελίδων: Επτά (7) - Διάρκεια Εξέτασης: 3 ώρες. Θέμα Α.

Σάββατο 12 Νοεμβρίου Απλή Αρμονική Ταλάντωση - Κρούσεις. Σύνολο Σελίδων: Επτά (7) - Διάρκεια Εξέτασης: 3 ώρες. Θέμα Α. Γ Τάξης Γενικού Λυκείου Σάββατο 1 Νοεμβρίου 016 Απλή Αρμονική Ταλάντωση - Κρούσεις Σύνολο Σελίδων: Επτά (7) - Διάρκεια Εξέτασης: 3 ώρες Ονοματεπώνυμο: Θέμα Α. Στις ημιτελείς προτάσεις Α.1 Α.4 να γράψετε

Διαβάστε περισσότερα

7. Ένα σώμα εκτελεί ταυτόχρονα δύο αρμονικές ταλαντώσεις με εξισώσεις,

7. Ένα σώμα εκτελεί ταυτόχρονα δύο αρμονικές ταλαντώσεις με εξισώσεις, 1. Κάθε ελατήριο του σχήματος έχει το ένα άκρο του στερεωμένο σε ακίνητο σημείο και το άλλο του άκρο προσδεμένο στο σώμα Σ. Οι σταθερές των δύο ελατηρίων είναι Κ 1 =120Ν/m και Κ 2 =80N/m. To σώμα Σ, έχει

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΞΕΤΑΖΟΜΕΝΗ ΥΛΗ: ΚΡΟΥΣΕΙΣ-ΤΑΛΑΝΤΩΣΕΙΣ

ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΞΕΤΑΖΟΜΕΝΗ ΥΛΗ: ΚΡΟΥΣΕΙΣ-ΤΑΛΑΝΤΩΣΕΙΣ ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΞΕΤΑΖΟΜΕΝΗ ΥΛΗ: ΚΡΟΥΣΕΙΣ-ΤΑΛΑΝΤΩΣΕΙΣ 5/11/2017 ΘΕΜΑ A Στις ερωτήσεις 1-4 να γράψετε στο φύλλο απαντήσεων τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΘΕΜΑTA Β

ΜΗΧΑΝΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΘΕΜΑTA Β 1 ΜΗΧΑΝΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΘΕΜΑTA Β 1) Tο σώμα Β του σχήματος είναι ακίνητο πάνω σε λείο οριζόντιο δάπεδο και δεμένο στην άκρη ιδανικού ελατηρίου. Το σώμα Α, μάζας ma, κινούμενο με ταχύτητα υα=3 m/s κατά

Διαβάστε περισσότερα

ΠΕΝΤΕΛΗ ΒΡΙΛΗΣΣΙΑ. 1. Ένα σώμα εκτελεί απλή αρμονική ταλάντωση. Αν διπλασιάσουμε το πλάτος της

ΠΕΝΤΕΛΗ ΒΡΙΛΗΣΣΙΑ. 1. Ένα σώμα εκτελεί απλή αρμονική ταλάντωση. Αν διπλασιάσουμε το πλάτος της Τάξη Μάθημα Εξεταστέα ύλη Γ Λυκείου Φυσικη κατευθυνσης ΠΕΝΤΕΛΗ Κτίριο 1 : Πλ. Ηρώων Πολυτεχνείου 13, Τηλ. 210 8048919 / 210 6137110 Κτίριο 2 : Πλ. Ηρώων Πολυτεχνείου 29, Τηλ. 210 8100606 ΒΡΙΛΗΣΣΙΑ Καθηγητής

Διαβάστε περισσότερα

ΠΕΝΤΕΛΗ. Κτίριο 1 : Πλ. Ηρώων Πολυτεχνείου 13, Τηλ. 210 8048919 / 210 6137110 Κτίριο 2 : Πλ. Ηρώων Πολυτεχνείου 29, Τηλ. 210 8100606 ΒΡΙΛΗΣΣΙΑ

ΠΕΝΤΕΛΗ. Κτίριο 1 : Πλ. Ηρώων Πολυτεχνείου 13, Τηλ. 210 8048919 / 210 6137110 Κτίριο 2 : Πλ. Ηρώων Πολυτεχνείου 29, Τηλ. 210 8100606 ΒΡΙΛΗΣΣΙΑ Τάξη Μάθημα Εξεταστέα ύλη Γ Λυκείου Φυσικη κατευθυνσης ΠΕΝΤΕΛΗ Κτίριο 1 : Πλ. Ηρώων Πολυτεχνείου 13, Τηλ. 210 8048919 / 210 6137110 Κτίριο 2 : Πλ. Ηρώων Πολυτεχνείου 29, Τηλ. 210 8100606 ΒΡΙΛΗΣΣΙΑ Καθηγητής

Διαβάστε περισσότερα

1. Ένα σώμα εκτελεί ΑΑΤ πλάτους Α. Η ταχύτητα του σώματος:

1. Ένα σώμα εκτελεί ΑΑΤ πλάτους Α. Η ταχύτητα του σώματος: ΙΙΑΓΓΩΝΙΙΣΜΑ ΦΦΥΥΣΙΙΚΚΗΣ ΚΚΑΤΕΕΥΥΘΥΥΝΣΗΣ ΓΓ ΛΥΥΚΚΕΕΙΙΟΥΥ 33 0077 -- 00 Θέμα ο. Ένα σώμα εκτελεί ΑΑΤ πλάτους Α. Η ταχύτητα του σώματος: α. έχει την ίδια φάση με την επιτάχυνση α. β. είναι μέγιστη στις ακραίες

Διαβάστε περισσότερα

1. Ένα σώμα εκτελεί ΑΑΤ πλάτους Α. Η ταχύτητα του σώματος:

1. Ένα σώμα εκτελεί ΑΑΤ πλάτους Α. Η ταχύτητα του σώματος: ΙΙΑΓΓΩΝΙΙΣΜΑ ΦΦΥΥΣΙΙΚΚΗΣ ΚΚΑΤΕΕΥΥΘΥΥΝΣΗΣ ΓΓ ΛΥΥΚΚΕΕΙΙΟΥΥ 0077 -- 00 Θέμα ο. Ένα σώμα εκτελεί ΑΑΤ πλάτους Α. Η ταχύτητα του σώματος: α. έχει την ίδια φάση με την επιτάχυνση α. β. είναι μέγιστη στις ακραίες

Διαβάστε περισσότερα

Ημερομηνία: Τετάρτη 26 Οκτωβρίου 2016 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ

Ημερομηνία: Τετάρτη 26 Οκτωβρίου 2016 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ ΑΠΟ 6/0/06 ΕΩΣ 30/0/06 η ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΤΑΞΗ: ΜΑΘΗΜΑ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Ημερομηνία: Τετάρτη 6 Οκτωβρίου 06 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Στις ημιτελείς προτάσεις

Διαβάστε περισσότερα

Φάσμα. Group προπαρασκευή για Α.Ε.Ι. & Τ.Ε.Ι.

Φάσμα. Group προπαρασκευή για Α.Ε.Ι. & Τ.Ε.Ι. σύγχρονο Φάσμα Group προπαρασκευή για Α.Ε.Ι. & Τ.Ε.Ι. μαθητικό φροντιστήριο Γραβιάς 85 ΚΗΠΟΥΠΟΛΗ 50.51.557 50.56.296 25ης Μαρτίου 111 ΠΕΤΡΟΥΠΟΛΗ 50.27.990 50.20.990 25ης Μαρτίου 74 Πλ.ΠΕΤΡΟΥΠΟΛΗΣ 50.50.658

Διαβάστε περισσότερα

ΘΕΜΑ Α. (Μονάδες 5) (Μονάδες 5)

ΘΕΜΑ Α. (Μονάδες 5) (Μονάδες 5) ΘΕΜΑ Α 1) Σύστημα ελατηρίου-σώματος με μάζα m εκτελεί απλή αρμονική ταλάντωση με σταθερά επαναφοράς k. Αν η μάζα του σώματος τετραπλασιαστεί τότε: α/ το πλάτος της ταλάντωσης θα τετραπλασιαστεί β/ η περίοδος

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΤΙΣ ΚΡΟΥΣΕΙΣ ΚΑΙ ΤΑΛΑΝΤΩΣΕΙΣ ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ

ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΤΙΣ ΚΡΟΥΣΕΙΣ ΚΑΙ ΤΑΛΑΝΤΩΣΕΙΣ ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΤΙΣ ΚΡΟΥΣΕΙΣ ΚΑΙ ΤΑΛΑΝΤΩΣΕΙΣ ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΘΕΜΑ Α (μονάδες 25) Α1. Σε μια Α.Α.Τ. η εξίσωση της απομάκρυνσης είναι x=a.συνωt. Τη χρονική στιγμή

Διαβάστε περισσότερα

(όλα τα μεγέθη στο S.I.).

(όλα τα μεγέθη στο S.I.). ΚΕΦΑΛΑΙΟ 1 ο : ΜΗΧΑΝΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΕΝΟΤΗΤΑ 5: ΣΥΝΘΕΣΗ ΤΑΛΑΝΤΩΣΕΩΝ 36. Ένα σώμα μάζας εκτελεί κίνηση που προέρχεται από τη σύνθεση δύο απλών αρμονικών ταλαντώσεων, ίδιας διεύθυνσης, γύρω από το ίδιο σημείο,

Διαβάστε περισσότερα

2 ΓΕΛ ΧΑΙΔΑΡΙΟΥ

2 ΓΕΛ ΧΑΙΔΑΡΙΟΥ 2 ΓΕΛ ΧΑΙΔΑΡΙΟΥ 207-208 ΕΞΕΤΑΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΥΡΙΑΚΗ 26 ΝΟΕΜΒΡΙΟΥ 207 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΦΥΣΙΚΗ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΕΞΙ (6) ΟΝΟΜΑΤΕΠΩΝΥΜΟ Τμήμα Γθετ.

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ 01 ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Διάρκεια: 3ώρες ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΠΕΝΤΕ (5) ΘΕΜΑ Α

ΔΙΑΓΩΝΙΣΜΑ 01 ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Διάρκεια: 3ώρες ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΠΕΝΤΕ (5) ΘΕΜΑ Α Σελίδα από ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Διάρκεια: 3ώρες ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΠΕΝΤΕ () ΘΕΜΑ Α Α. Με την πάροδο του χρόνου και καθώς τα αμορτισέρ ενός αυτοκινήτου παλιώνουν και φθείρονται:

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ

ΜΗΧΑΝΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ 9 ο ΛΥΚΕΙΟ ΠΕΙΡΑΙΑ ΙΟΝ. ΜΑΡΓΑΡΗΣ ΜΗΧΑΝΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ 1) Η γραφική παράσταση της ταχύτητας σε συνάρτηση µε το χρόνο για ένα σηµειακό αντικείµενο που εκτελεί α.α.τ. φαίνεται στο σχήµα. Ποιες από τις παρακάτω

Διαβάστε περισσότερα

Στα ερωτήματα 1,2.3,4 του ζητήματος αυτού μια πρόταση είναι σωστή να την κυκλώσετε)

Στα ερωτήματα 1,2.3,4 του ζητήματος αυτού μια πρόταση είναι σωστή να την κυκλώσετε) Ζήτημα ο Στα ερωτήματα,., του ζητήματος αυτού μια πρόταση είναι σωστή να την κυκλώσετε. Ένα σώμα κάνει απλή αρμονική ταλάντωση στην οποία η απομάκρυνση είναι της μορφής χ=aημωt κάποια στιγμή t η φάση του

Διαβάστε περισσότερα

Γενικό κριτήριο αξιολόγησης στις ταλαντώσεις

Γενικό κριτήριο αξιολόγησης στις ταλαντώσεις Ταλαντώσεις ΚΕΦΑΛΑΙΟ 1 Θέμα 1 Γενικό κριτήριο αξιολόγησης στις ταλαντώσεις 1. Σε απλή αρμονική ταλάντωση ποια από τις επόμενες προτάσεις είναι σωστή; α. Η επιτάχυνση έχει φορά προς τη θέση ισορροπίας.

Διαβάστε περισσότερα

2. Σώμα εκτελεί Α.Α.Τ. και η εξίσωση της απομάκρυνσης σε σχέση με το χρόνο είναι:

2. Σώμα εκτελεί Α.Α.Τ. και η εξίσωση της απομάκρυνσης σε σχέση με το χρόνο είναι: 1. Σώμα εκτελεί Α.Α.Τ. με περίοδο 2 s και πλάτος ταλάντωσης 0,1 m. Τη χρονική στιγμή 0 το σώμα διέρχεται από τη θέση ισορροπίας του με θετική ταχύτητα. Να υ πολογιστούν: α) η συχνότητα και η γωνιακή συχνότητα

Διαβάστε περισσότερα

ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ η εξεταστική περίοδος 04-5 - Σελίδα ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ Τάξη: Γ Λυκείου Τμήμα: Βαθμός: Ημερομηνία: 06-04-05 Διάρκεια: ώρες Ύλη: Όλη η ύλη Καθηγητής: Ονοματεπώνυμο: ΘΕΜΑ Α Στις

Διαβάστε περισσότερα

ΕΡΓΑΣΙΑ ΣΤΟ ΠΡΩΤΟ ΚΕΦΑΛΑΙΟ ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ.

ΕΡΓΑΣΙΑ ΣΤΟ ΠΡΩΤΟ ΚΕΦΑΛΑΙΟ ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ. ΕΡΓΑΣΙΑ ΣΤΟ ΠΡΩΤΟ ΚΕΦΑΛΑΙΟ ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ. ΕΡΩΤΗΣΗ 1 Στο κάτω άκρο κατακόρυφου ιδανικού ελατηρίου σταθεράς k = 400 N/m είναι κρεμασμένο σώμα μάζας m = 1 kg. Το σύστημα ελατήριο-σώμα εξαναγκάζεται

Διαβάστε περισσότερα

5. Το διάγραμμα του σχήματος παριστάνει την ταχύτητα ενός σώματος που εκτελεί απλή αρμονική ταλάντωση σε συνάρτηση με τον χρόνο.

5. Το διάγραμμα του σχήματος παριστάνει την ταχύτητα ενός σώματος που εκτελεί απλή αρμονική ταλάντωση σε συνάρτηση με τον χρόνο. ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 9/0/06 ΘΕΜΑ Α Στις ερωτήσεις 7 να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. Mια μικρή σφαίρα προσκρούει

Διαβάστε περισσότερα

ΘΕΜΑ Α Α. Στις ερωτήσεις 1-5 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και το γράμμα που αντιστοιχεί στη σωστή απάντηση

ΘΕΜΑ Α Α. Στις ερωτήσεις 1-5 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και το γράμμα που αντιστοιχεί στη σωστή απάντηση ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α Α. Στις ερωτήσεις 1-5 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και το γράμμα που αντιστοιχεί στη σωστή απάντηση 1.

Διαβάστε περισσότερα

Προγραμματισμένο διαγώνισμα Φυσικής κατεύθυνσης Γ Λυκείου. Ονοματεπώνυμο εξεταζόμενου:.

Προγραμματισμένο διαγώνισμα Φυσικής κατεύθυνσης Γ Λυκείου. Ονοματεπώνυμο εξεταζόμενου:. Προγραμματισμένο διαγώνισμα Φυσικής κατεύθυνσης Γ Λυκείου Ονοματεπώνυμο εξεταζόμενου:. Καμιά άλλη σημείωση δεν επιτρέπεται στα θέματα τα οποία θα παραδώσετε μαζί με το γραπτό σας. Οι απαντήσεις λοιπόν

Διαβάστε περισσότερα

Ημερομηνία: Παρασκευή 27 Οκτωβρίου 2017 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ

Ημερομηνία: Παρασκευή 27 Οκτωβρίου 2017 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ ΑΠΟ /0/07 ΕΩΣ //07 η ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΤΑΞΗ: ΜΑΘΗΜΑ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Ημερομηνία: Παρασκευή 7 Οκτωβρίου 07 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Στις ημιτελείς προτάσεις

Διαβάστε περισσότερα

Προτεινόμενα ΘΕΜΑΤΑ ΦΥΣΙΚΗΣ

Προτεινόμενα ΘΕΜΑΤΑ ΦΥΣΙΚΗΣ ΘΕΜΑΤΑ Β. Β1. Από ύψος h (σημείο Α) αφήνουμε να κυλίσει δακτύλιος μάζας m 1 =m χωρίς ολίσθηση σε οδηγό που καταλήγει σε τεταρτοκύκλιο. Στο σημείο Β και όταν η u cm είναι κατακόρυφη ο δακτύλιος εγκαταλείπει

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ Ο.Π / Γ ΛΥΚΕΙΟΥ (ΘΕΡΙΝΑ) ΑΠΑΝΤΗΣΕΙΣ ΗΜΕΡΟΜΗΝΙΑ: 24/09/2017 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ Ο.Π / Γ ΛΥΚΕΙΟΥ (ΘΕΡΙΝΑ) ΑΠΑΝΤΗΣΕΙΣ ΗΜΕΡΟΜΗΝΙΑ: 24/09/2017 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ ΕΤΟΥΣ 017-018 ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΟΠ / Γ ΛΥΚΕΙΟΥ (ΘΕΡΙΝΑ) ΑΠΑΝΤΗΣΕΙΣ ΗΜΕΡΟΜΗΝΙΑ: 4/09/017 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς

Διαβάστε περισσότερα

2 ο Επαναληπτικό διαγώνισμα στο 1 ο κεφάλαιο Φυσικής Θετικής Τεχνολογικής Κατεύθυνσης (Μηχανικές και Ηλεκτρικές ταλαντώσεις)

2 ο Επαναληπτικό διαγώνισμα στο 1 ο κεφάλαιο Φυσικής Θετικής Τεχνολογικής Κατεύθυνσης (Μηχανικές και Ηλεκτρικές ταλαντώσεις) ο Επαναληπτικό διαγώνισμα στο 1 ο κεφάλαιο Φυσικής Θετικής Τεχνολογικής Κατεύθυνσης (Μηχανικές και Ηλεκτρικές ταλαντώσεις) ΘΕΜΑ 1 ο Στις παρακάτω ερωτήσεις 1 4 επιλέξτε τη σωστή πρόταση 1. Ένα σώμα μάζας

Διαβάστε περισσότερα

Φυσική Γ Λυκείου Θετικού Προσανατολισμού Σχ. έτος ο Διαγώνισμα Κρούσεις - Ταλαντώσεις Θέμα 1ο

Φυσική Γ Λυκείου Θετικού Προσανατολισμού Σχ. έτος ο Διαγώνισμα Κρούσεις - Ταλαντώσεις Θέμα 1ο 1ο Διαγώνισμα Κρούσεις - Ταλαντώσεις Θέμα 1ο Στις παρακάτω προτάσεις 1.1 1.4 να γράψετε στο τετράδιο σας τον αριθμό της πρότασης και δίπλα το γράμμα που αντιστοιχεί στη ϕράση που τη συμπληρώνει σωστά.

Διαβάστε περισσότερα

α. β. γ. δ. Μονάδες 5 α. β. γ. δ. Μονάδες 5 α. ελαστική β. ανελαστική γ. πλαστική δ. έκκεντρη

α. β. γ. δ. Μονάδες 5 α. β. γ. δ. Μονάδες 5 α. ελαστική β. ανελαστική γ. πλαστική δ. έκκεντρη ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Γ ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: 27/09/2015 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4

Διαβάστε περισσότερα

2) Σώμα εκτελεί Α.Α.Τ με εξίσωση απομάκρυνσης Χ = Α.ημ(ωt+ 2

2) Σώμα εκτελεί Α.Α.Τ με εξίσωση απομάκρυνσης Χ = Α.ημ(ωt+ 2 Φυσική Θετικής και Τεχνολογικής Κατεύθυνσης Διαγώνισμα στις Μηχανικές Ταλαντώσεις. Ζήτημα 1 ο Α) Να επιλεγεί η σωστή πρόταση 1) Υλικό σημείο εκτελεί Α.Α.Τ και κινείται από την ακραία αρνητική θέση της

Διαβάστε περισσότερα

1. Σώμα που συγκρούεται ανελαστικά με άλλο σώμα δεμένο στο άκρο οριζοντίου ελατηρίου.

1. Σώμα που συγκρούεται ανελαστικά με άλλο σώμα δεμένο στο άκρο οριζοντίου ελατηρίου. ΤΑΛΑΝΤΩΣΗ ΜΕΤΑ ΑΠΟ ΚΡΟΥΣΗ.. Σώμα που συγκρούεται ανελαστικά με άλλο σώμα δεμένο στο άκρο οριζοντίου ελατηρίου. Σώμα μάζας = g κινείται σε λείο οριζόντιο επίπεδο με ταχύτητα υ μέτρου υ = 5 /s συγκρούεται

Διαβάστε περισσότερα

ΘΕΜΑ Α Να γράψετε στο τετράδιο σας τον αριθμό καθεμιάς από τις παρακάτω προτάσεις Α1 Α5 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.

ΘΕΜΑ Α Να γράψετε στο τετράδιο σας τον αριθμό καθεμιάς από τις παρακάτω προτάσεις Α1 Α5 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ. ΕΤΟΥΣ 05-06 ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ (ΘΕΡΙΝΑ) ΗΜΕΡΟΜΗΝΙΑ: 08//05 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΘΕΜΑ Α Να γράψετε στο τετράδιο σας τον αριθμό καθεμιάς από

Διαβάστε περισσότερα

1. Ένα σώμα A μάζας, κινούμενο με ταχύτητα πάνω σε λείο οριζόντιο επίπεδο κατά τη θετική κατεύθυνση του άξονα x Ox, συγκρούεται με ακίνητο σώμα Β.

1. Ένα σώμα A μάζας, κινούμενο με ταχύτητα πάνω σε λείο οριζόντιο επίπεδο κατά τη θετική κατεύθυνση του άξονα x Ox, συγκρούεται με ακίνητο σώμα Β. ΚΡΟΥΣΕΙΣ ΕΠΑΝΑΛΗΨΗ 1. Ένα σώμα A μάζας, κινούμενο με ταχύτητα πάνω σε λείο οριζόντιο επίπεδο κατά τη θετική κατεύθυνση του άξονα x Ox, συγκρούεται με ακίνητο σώμα Β. Α) Αν η κρούση είναι μετωπική και ελαστική

Διαβάστε περισσότερα

Θέμα 1 ο (Μονάδες 25)

Θέμα 1 ο (Μονάδες 25) ΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ((ΑΠΟΦΟΙΤΟΙ)) 10 01-011 Θέμα 1 ο (Μονάδες 5) 1. Κατά τη σύνθεση δύο ΑΑΤ, που γίνονται στην ίδια διεύθυνση και γύρω από την ίδια θέση ισορροπίας, προκύπτει μια νέα

Διαβάστε περισσότερα

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Απλή Αρµονική Ταλάντωση ΙΙ - Κρούσεις Ενδεικτικές Λύσεις Θέµα Α

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Απλή Αρµονική Ταλάντωση ΙΙ - Κρούσεις Ενδεικτικές Λύσεις Θέµα Α ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Απλή Αρµονική Ταλάντωση ΙΙ - Κρούσεις Ενδεικτικές Λύσεις Θέµα Α Α.1. Η απλή αρµονική ταλάντωση είναι κίνηση : (δ) ευθύγραµµη περιοδική Α.2. Σώµα εκτελεί απλή αρµονική

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1ο: ΜΗΧΑΝΙΚΕΣ ΗΛΕΚΤΡΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ.

ΚΕΦΑΛΑΙΟ 1ο: ΜΗΧΑΝΙΚΕΣ ΗΛΕΚΤΡΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ. ΤΟ ΥΛΙΚΟ ΕΧΕΙ ΑΝΤΛΗΘΕΙ ΑΠΟ ΤΑ ΨΗΦΙΑΚΑ ΕΚΠΑΙΔΕΥΤΙΚΑ ΒΟΗΘΗΜΑΤΑ ΤΟΥ ΥΠΟΥΡΓΕΙΟΥ ΠΑΙΔΕΙΑΣ http://www.study4exams.gr/ ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ

Διαβάστε περισσότερα

ΕΡΓΟ - ΕΝΕΡΓΕΙΑ F 2 F 3 F 1 F 4

ΕΡΓΟ - ΕΝΕΡΓΕΙΑ F 2 F 3 F 1 F 4 1. F 2 F 3 F 1 F 4 Στο σώμα του παραπάνω σχήματος βάρους Β = 20Ν ασκούνται οι δυνάμεις F 1 = 5Ν, F 2 = 10Ν, F 3 = 15Ν και F 4 = 10Ν. Αν το σώμα μετακινηθεί οριζόντια προς τα δεξιά κατά 2m να υπολογισθεί

Διαβάστε περισσότερα

5. Δείξτε με λεκτικούς ισχυρισμούς ότι ο χρόνος κίνησης από τη θέση x = + A στην θέση

5. Δείξτε με λεκτικούς ισχυρισμούς ότι ο χρόνος κίνησης από τη θέση x = + A στην θέση Στα μεγέθη και στις περιγραφές των κινήσεων που ακολουθούν δεν γίνεται λεπτομερής ορισμός. Θεωρούνται καλώς ορισμένα (για τους σχετικούς φυσικά). Γενικά οι περιγραφές είναι σχετικά «χαλαρές» και επί της

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: 1η ΗΜΕΡΟΜΗΝΙΑ: 24/07/2014

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: 1η ΗΜΕΡΟΜΗΝΙΑ: 24/07/2014 ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: 1η ΗΜΕΡΟΜΗΝΙΑ: 4/07/014 ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4 και δίπλα το γράμμα που αντιστοιχεί

Διαβάστε περισσότερα

Μηχανικές ταλαντώσεις

Μηχανικές ταλαντώσεις Απλή αρμονική ταλάντωση Μηχανικές ταλαντώσεις Α. ΕΡΩΤΗΣΕΙΣ 1. Στην απλή αρμονική ταλάντωση: α. Η απομάκρυνση και η ταχύτητα έχουν πάντοτε το ίδιο πρόσημο. β. Η απομάκρυνση και η επιτάχυνση έχουν πάντοτε

Διαβάστε περισσότερα

Κριτήριο αξιολόγησης: Κρούσεις Αμείωτες Μηχανικές Ταλαντώσεις

Κριτήριο αξιολόγησης: Κρούσεις Αμείωτες Μηχανικές Ταλαντώσεις Κριτήριο αξιολόγησης: Κρούσεις Αμείωτες Μηχανικές Ταλαντώσεις Θέμα Α. (Για τις ερωτήσεις Α. έως και Α.4 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το γράμμα που αντιστοιχεί στη σωστή

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ Αου ΤΕΤΡΑΜΗΝΟΥ ΣΤΑ ΚΕΦΑΛΑΙΑ ΤΑΛΑΝΤΩΣΕΙΣ ΚΡΟΥΣΕΙΣ 4 ο ΛΥΚΕΙΟ ΜΥΤΙΛΗΝΗΣ 11/1/16

ΔΙΑΓΩΝΙΣΜΑ Αου ΤΕΤΡΑΜΗΝΟΥ ΣΤΑ ΚΕΦΑΛΑΙΑ ΤΑΛΑΝΤΩΣΕΙΣ ΚΡΟΥΣΕΙΣ 4 ο ΛΥΚΕΙΟ ΜΥΤΙΛΗΝΗΣ 11/1/16 ΔΙΑΓΩΝΙΣΜΑ Αου ΤΕΤΡΑΜΗΝΟΥ ΣΤΑ ΚΕΦΑΛΑΙΑ ΤΑΛΑΝΤΩΣΕΙΣ ΚΡΟΥΣΕΙΣ 4 ο ΛΥΚΕΙΟ ΜΥΤΙΛΗΝΗΣ 11/1/16 Θέμα Α Στις ημιτελείς προτάσεις 1-4 να γράψετε στο τετράδιο σας τον αριθμό της πρότασης και δίπλα το γράμμα που

Διαβάστε περισσότερα

Φροντιστήρια Εν-τάξη Σελίδα 1 από 6

Φροντιστήρια Εν-τάξη Σελίδα 1 από 6 ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: 11/09/2016 ΘΕΜΑ Α Να γράψετε στο τετραδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. 1. Ένα

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΑΞΗΣ ΓΛ ΘΕΜΑ Α

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΑΞΗΣ ΓΛ ΘΕΜΑ Α ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΑΞΗΣ ΓΛ ΘΕΜΑ Α Στις ημιτελείς προτάσεις Α1- Α5 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το γράμμα που αντιστοιχεί στη φράση η οποία τις συμπληρώνει

Διαβάστε περισσότερα

ΚΡΟΥΣΕΙΣ. γ) Δ 64 J δ) 64%]

ΚΡΟΥΣΕΙΣ. γ) Δ 64 J δ) 64%] 1. Μικρή σφαίρα Σ1, μάζας 2 kg που κινείται πάνω σε λείο επίπεδο με ταχύτητα 10 m/s συγκρούεται κεντρικά και ελαστικά με ακίνητη σφαίρα Σ2 μάζας 8 kg. Να υπολογίσετε: α) τις ταχύτητες των σωμάτων μετά

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Γ ΛΥΚΕΙΟΥ - ΑΠΑΝΤΗΣΕΙΣ ΗΜΕΡΟΜΗΝΙΑ: 25/09/16 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Γ ΛΥΚΕΙΟΥ - ΑΠΑΝΤΗΣΕΙΣ ΗΜΕΡΟΜΗΝΙΑ: 25/09/16 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Γ ΛΥΚΕΙΟΥ - ΑΠΑΝΤΗΣΕΙΣ ΗΜΕΡΟΜΗΝΙΑ: 25/09/6 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις

Διαβάστε περισσότερα

1ο ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Τετάρτη 12 Αυγούστου 2015 Απλή Αρµονική Ταλάντωση - Κρούσεις

1ο ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Τετάρτη 12 Αυγούστου 2015 Απλή Αρµονική Ταλάντωση - Κρούσεις 1ο ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Τετάρτη 12 Αυγούστου 2015 Απλή Αρµονική Ταλάντωση - Κρούσεις Σύνολο Σελίδων: Επτά (7) - ιάρκεια Εξέτασης: 3 ώρες Βαθµολογία % Ονοµατεπώνυµο: Θέµα Α Οµάδα Β Στις ηµιτελείς

Διαβάστε περισσότερα

ΘΕΜΑ 1 ο Στις ερωτήσεις 1 4 να γράψετε τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση

ΘΕΜΑ 1 ο Στις ερωτήσεις 1 4 να γράψετε τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 2013 Γ Λυκείου Θετική & Τεχνολογική Κατεύθυνση ΦΥΣΙΚΗ ΘΕΜΑ 1 ο Στις ερωτήσεις 1 4 να γράψετε τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση 1. Σώμα

Διαβάστε περισσότερα

1. ΟΙ ΕΞΙΣΩΣΕΙΣ ΤΗΣ ΑΠΛΗΣ ΑΡΜΟΝΙΚΗΣ ΤΑΛΑΝΤΩΣΗΣ

1. ΟΙ ΕΞΙΣΩΣΕΙΣ ΤΗΣ ΑΠΛΗΣ ΑΡΜΟΝΙΚΗΣ ΤΑΛΑΝΤΩΣΗΣ Κεφάλαιο 1 ο : ΤΑΛΑΝΤΩΣΕΙΣ 1 1. ΟΙ ΕΞΙΣΩΣΕΙΣ ΤΗΣ ΑΠΛΗΣ ΑΡΜΟΝΙΚΗΣ ΤΑΛΑΝΤΩΣΗΣ Θυμόμαστε ότι: ημχ=ημα χ=kπ+α ή χ=kπ+π-α ημ(-φ) = - ημφ, συν(π/-φ) = ημφ συνχ=συνα χ=kπ+α ή χ=kπ-α συν(-φ) = συνφ, ημ(π/-φ) =

Διαβάστε περισσότερα

ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΙΑΝΟΥΑΡΙΟΣ 2016 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 7

ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΙΑΝΟΥΑΡΙΟΣ 2016 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 7 ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΘΕΜΑ 1 Ο : ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΙΑΝΟΥΑΡΙΟΣ 2016 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 7 Στις παρακάτω ερωτήσεις 1 έως 4 να γράψετε στο τετράδιό σας

Διαβάστε περισσότερα