ΑΝΩΤΕΡΗ ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΜΕΡΟΣ Β Η ΚΑΤΑΣΤΑΤΙΚΗ ΕΞΙΣΩΣΗ ΤΩΝ ΑΠΛΩΝ ΥΛΙΚΩΝ

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΑΝΩΤΕΡΗ ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΜΕΡΟΣ Β Η ΚΑΤΑΣΤΑΤΙΚΗ ΕΞΙΣΩΣΗ ΤΩΝ ΑΠΛΩΝ ΥΛΙΚΩΝ"

Transcript

1 ΑΝΩΤΕΡΗ ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΜΕΡΟΣ Β Η ΚΑΤΑΣΤΑΤΙΚΗ ΕΞΙΣΩΣΗ ΤΩΝ ΑΠΛΩΝ ΥΛΙΚΩΝ

2 ΟΙ ΕΛΕΥΘΕΡΕΣ ΜΕΤΑΒΛΗΤΕΣ ΣΤΗΝ ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΑΝΑΛΥΣΗ ΕΝ ΓΕΝΕΙ, ΟΛΕΣ ΟΙ ΠΑΡΑΜΕΤΡΟΙ ΕΝΟΣ ΑΠΛΟΥ, ΔΟΜΙΚΑ ΟΜΟΙΟΜΟΡΦΟΥ ΥΛΙΚΟΥ (ΔΗΛΑΔΗ ΟΤΑΝ ΟΛΗ Η ΜΑΖΑ ΤΟΥ ΕΥΡΙΣΚΕΤΑΙ ΣΤΗΝ ΙΔΙΑ ΦΑΣΗ ΕΙΝΑΙ ΣΥΝΑΡΤΗΣΕΙΣ ΔΥΟ ΑΝΕΞΑΡΤΗΤΩΝ ΠΑΡΑΜΕΤΡΩΝ. ΤΕΤΟΙΕΣ ΑΝΕΞΑΡΤΗΤΕΣ ΠΑΡΑΜΕΤΡΟΙ ΕΙΝΑΙ Η ΠΙΕΣΗ, Ο ΕΙΔΙΚΟΣ ΟΓΚΟΣ v, Η ΘΕΡΜΟΚΡΑΣΙΑ, Η ΕΙΔΙΚΗ ΕΝΤΡΟΠΙΑ s, κλπ. ΜΕ ΑΛΛΑ ΛΟΓΙΑ, ΚΑΘΕ ΤΕΤΟΙΟ ΥΛΙΚΟ ΥΠΑΚΟΥΕΙ ΜΙΑ ΣΧΕΣΗ ΤΗΣ ΜΟΡΦΗΣ =f(,v ή γενικότερα f(,,v=0

3 Ο ΛΟΓΟΣ ΣΥΜΠΙΕΣΤΟΤΗΤΑΣ Η ΠΟΣΟΤΗΤΑ Ζ ΠΟΥ ΟΡΙΖΕΤΑΙ ΑΠΟ ΤΗΝ ΠΙΕΣΗ ( ΤΟΝ ΕΙΔΙΚΟ ΟΓΚΟ (v -ΚΑΙ ΤΗΝ ΘΕΡΜΟΚΡΑΣΙΑ ( ΕΝΟΣ ΥΛΙΚΟΥ ΠΟΥ ΕΜΠΕΡΙΕΧΕΤΑΙ ΣΕ ΕΝΑ ΘΕΡΜΟΔΥΝΑΜΙΚΟ ΣΥΣΤΗΜΑ Ζ ΟΝΟΜΑΖΕΤΑΙ «ΣΥΝΤΕΛΕΣΤΗΣ ΣΥΜΠΙΕΣΤΟΤΗΤΑΣ» (COMRESSIBILIY FACOR ΥΠΟΣΗΜΕΙΩΣΗ : Η ΠΥΚΝΟΤΗΤΑ (ρ ΕΙΝΑΙ ΤΟ ΑΝΤΙΣΤΡΟΦΟ ΤΟΥ ΕΙΔΙΚΟΥ ΟΓΚΟΥ (v Η ΣΧΕΣΗ ΠΑΙΡΝΕΙ ΤΗΝ ΓΕΝΙΚΟΤΕΡΗ ΜΟΡΦΗ ΠΡΑΓΜΑΤΙΚΟΣ ΕΙΔΙΚΟΣ ΟΓΚΟΣ ΜΕ ΑΛΛΑ ΛΟΓΙΑ ΕΙΔΙΚΟΣ ΟΓΚΟΣ ΑΝΤΙΣΤΟΙΧΟΥ ΤΕΛΕΙΟΥ ΑΕΡΙΟΥ ΣΤΙΣ ΙΔΙΕΣ ΣΥΝΘΗΚΕΣ ΠΙΕΣΗΣ ΚΑΙ ΘΕΡΜΟΚΡΑΣΙΑΣ

4 Η σχεση των ανοιγμένων παραμέτρων για το αέριο Αργό Οι γραμμές με σταθερή την «ανοιγμένη» Θερμοκρασία αποκαλούνται «ισόθερμες»

5 Η ΣΧΕΣΗ f(,v,=0 ΤΕΛΕΙΟ ΑΕΡΙΟ Αν μετρήσουμε την συσχέτιση μεταξύ των, και σε ένα (οποιονδήποτε πραγματικό αέριο στην παρακάτω μορφή παρατηρούμε ότι η ποσότητα /N (N=αριθμός των μορίων του υλικού συγκλίνει στην τιμή k (όπου k=σταθερά Boltzmann για τις πολύ μικρές πιέσεις που υφίσταται το αέριο. Στο όριο αυτό το αέριο συμπεριφέρεται σαν «ΤΕΛΕΙΟ ΑΕΡΙΟ» ΕΞΑΡΤΟΜΕΝΗ ΠΟΣΟΤΗΤΑ N k Υψηλή Θερμοκρ. Χαμηλή Θερμοκρ. ΑΝΕΞΑΡΤΗΤΗ ΜΕΤΑΒΛΗΤΗ 5

6 ...συνέχεια Η σταθερά του Boltzmann έχει μετρηθεί πειραματικά και έχει τιμή: k Άρα, στις χαμηλές πιέσεις, J K N k N k Συνήθως, η καταστατική εξίσωση για τα τέλεια αέρια γράφεται στην μορφή. = Nk

7 ...συνέχεια R Η ΠΑΓΚΟΣΜΙΑ ΣΤΑΘΕΡΑ ΤΩΝ ΑΕΡΙΩΝ, R, οριζεται μέσω της σχέσης N J A k Kgmole. ΑΡΙΘΜΟΣ AOGARDO J R KgmoleK n ό Kg moles K R N A k N n k nr Nk έ = n R

8 ...συνέχεια

9 ΤΟ ΤΕΛΕΙΟ ΑΕΡΙΟ ΙΔΙΟΤΗΤΕΣ ΤΩΝ ΤΕΛΕΙΩΝ ΑΕΡΙΩΝ Ο ΟΓΚΟΣ ΤΩΝ ΜΟΡΙΩΝ ΤΟΥ ΑΕΡΙΟΥ ΕΙΝΑΙ ΣΧΕΤΙΚΑ ΜΙΚΡΟΣ ΣΕ ΣΧΕΣΗ ΜΕ ΤΟΝ ΣΥΝΟΛΙΚΟ ΟΓΚΟ ΠΟΥ ΚΑΛΥΠΤΕΙ ΤΟ ΑΕΡΙΟ. ΟΙ ΕΛΚΥΣΤΙΚΕΣ-ΑΠΩΘΗΤΙΚΕΣ ΔΥΝΑΜΕΙΣ ΜΕΤΑΞΥ ΤΩΝ ΜΟΡΙΩΝ ΚΑΙ/ή ΤΩΝ ΤΟΙΧΩΜΑΤΩΝ ΤΟΥ ΔΟΧΕΙΟΥ ΠΟΥ ΕΜΠΕΡΙΕΧΕΙ ΤΟ ΑΕΡΙΟ ΕΙΝΑΙ ΙΣΕΣ ΜΕ ΤΟ ΜΗΔΕΝ ΔΕΝ ΥΦΙΣΤΑΝΤΑΙ ΑΠΩΛΕΙΕΣ ΕΣΩΤΕΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΣΤΙΣ ΣΥΓΚΡΟΥΣΕΙΣ ΜΕΤΑΞΥ ΤΩΝ ΜΟΡΙΩΝ

10 ΠΑΡΑΜΕΤΡΟΙ ΠΟΥ ΧΡΗΣΙΜΟΠΟΙΟΥΝΤΑΙ ΣΤΗΝ ΚΑΤΑΣΤΑΤΙΚΗ ΣΧΕΣΗ ΤΩΝ ΤΕΛΕΙΩΝ ΑΕΡΙΩΝ = ΠΙΕΣΗ = ΟΓΚΟΣ n = ΑΡΙΘΜΟΣ ΤΩΝ Kg-moles ΤΟΥ ΥΛΙΚΟΥ m =/n = μολαρικός όγκος, δηλ. Ο όγκος του υλικού που περιέχει 1 Kg-mole = θερμοκρασία (Κ =Παγκόσμια σταθερά των τέλειων αερίων ( J/(Kg-mol K = Πίεση στο κρίσιμο σημείο του υλικού = Μολαρικός Όγκος στο κρίσιμο σημείο του υλικού = Απόλυτη Θερμοκρασία στο κρίσιμο σημείο του υλικού

11 ΠΡΟΣΘΕΤΕΣ ΣΧΕΣΕΙΣ ΣΤΑ ΤΕΛΕΙΑ ΑΕΡΙΑ ΑΠΟ ΤΗΝ ΚΑΤΑΣΤΑΤΙΚΗ ΕΞΙΣΩΣΗ ΤΩΝ ΤΕΛΕΙΩΝ ΑΕΡΙΩΝ ΠΡΟΚΥΠΤΕΙ ΟΤΙ Η ΣΧΕΣΗ ΑΥΤΗ ΜΠΟΡΕΙ ΝΑ ΕΚΦΡΑΣΤΕΙ ΚΑΙ ΣΤΗΝ ΜΟΡΦΗ ΟΠΟΥ ΚΑΙ ΕΙΝΑΙ Η ΕΙΔΙΚΗ ΕΣΩΤΕΡΙΚΗ ΕΝΕΡΓΕΙΑ (ΑΝΑ ΜΟΝΑΔΑ ΜΑΖΑΣ ΕΝΩ ΚΑΙ ΕΙΝΑΙ ΟΙ ΕΙΔΙΚΕΣ ΘΕΡΜΟΧΩΡΗΤΙΚΟΤΗΤΕΣ ΣΕ ΣΤΑΘΕΡΟ ΟΓΚΟ ΚΑΙ ΠΙΕΣΗ ΑΝΤΙΣΤΟΙΧΑ

12 f ΓΕΝΙΚΗ ΜΟΡΦΗ ΚΑΤΑΣΤΑΤΙΚΗΣ ΣΧΕΣΗΣ (ΚΑΤΑΣΤΑΤΙΚΗΣ ΕΠΙΦΑΝΕΙΑΣ CO2 Σ e Σ-Υ d Υ G Κρίσιμο σημείο a Ζώνες συνύπαρξης φάσεων Για το CO2: = K, = a Υ-Α e d f b 1 2 Γραμμή Τριπλού Σημείου Α a Σ-Α Στη γραμμή του τριπλου σημείου συνυπάρχουν και οι 3 φάσεις ( = K, = a για το CO 2 (rit

13 «Ανοιγμένες» παράμετροι Η «ΑΝΟΙΓΜΕΝΗ» ΘΕΡΜΟΚΡΑΣΙΑ Η «ΑΝΟΙΓΜΕΝΗ» ΠΙΕΣΗ 0 «ΑΝΟΙΓΜΕΝΟΣ» ΟΓΚΟΣ Ο ΔΕΙΚΤΗΣ C ΥΠΟΝΟΕΙ ΤΗΝ ΤΙΜΗ ΤΗΣ ΑΝΤΙΣΤΟΙΧΗΣ ΠΑΡΑΜΕΤΡΟΥ ΣΤΟ ΚΡΙΣΙΜΟ ΣΗΜΕΙΟ

14 Η ΑΡΧΗ ΤΩΝ «ΑΝΤΙΣΤΟΙΧΩΝ ΚΑΤΑΣΤΑΣΕΩΝ» Η ΑΡΧΗ ΤΩΝ «ΑΝΤΙΣΤΟΙΧΩΝ ΚΑΤΑΣΤΑΣΕΩΝ» ΔΗΛΩΝΕΙ ΟΤΙ Ο ΣΥΝΤΕΛΕΣΤΗΣ ΣΥΜΠΙΕΣΤΟΤΗΤΑΣ Ζ ΕΝΟΣ ΥΛΙΚΟΥ ΕΙΝΑΙ ΣΥΝΑΡΤΗΣΗ ΤΩΝ 3 ΠΑΡΑΠΑΝΩ «ΑΝΟΙΓΜΕΝΩΝ» ΠΑΡΑΜΕΤΡΩΝ ΑΠΟ ΤΗΝ ΠΑΡΑΠΑΝΩ ΔΗΛΩΣΗ ΠΡΟΚΥΠΤΕΙ ΟΤΙ Ο ΣΥΝΤΕΛΕΣΤΗΣ Ζ ΣΤΟ ΚΡΙΣΙΜΟ ΣΗΜΕΙΟ ΕΧΕΙ ΤΗΝ ΙΔΙΑ ΤΙΜΗ ΓΙΑ ΟΛΑ ΤΑ ΥΛΙΚΑ ΤΗΝ ΑΡΧΗ ΑΥΤΗ ΑΝΑΚΑΛΥΨΕ ΠΡΩΤΟΣ Ο AN DER WAAL ΣΥΜΦΩΝΑ ΜΕ ΑΥΤΟΝ, Η ΠΟΣΟΤΗΤΑ ΕΧΕΙ ΤΙΜΗ ΙΣΗ ΜΕ 3/8=0.375 ΑΠΟ ΠΕΙΡΑΜΑΤΙΚΕΣ ΜΕΤΡΗΣΕΙΣ ΥΛΙΚΟ 4 He 0.31 Ar 0.29 H H 2 O 0.23 He 0.30 N Ne 0.29 ΤΙΜΗ ΤΟΥ ΖC

15 ΠΕΙΡΑΜΑΤΙΚΕΣ ΜΕΤΡΗΣΕΙΣ ΓΙΑ ΔΙΑΦΟΡΑ ΑΕΡΙΑ ΕΧΟΥΝ ΑΠΟΔΕΙΞΕΙ ΤΗΝ ΒΑΣΗ ΤΗΣ ΑΡΧΗΣ ΤΩΝ ΑΝΤΙΣΤΟΙΧΩΝ ΚΑΤΑΣΤΑΣΕΩΝ ΜΕ ΑΛΛΑ ΛΟΓΙΑ, ΑΠΟ ΜΕΤΡΗΣΕΙΣ ΣΤΟ ΝΕΡΟ, ΓΝΩΡΙΖΟΥΜΕ ΤΗΝ ΣΥΜΠΕΡΙΦΟΡΑ ΔΙΑΦΟΡΩΝ ΑΛΛΩΝ ΥΛΙΚΩΝ

16 Η ΓΕΝΙΚΟΤΕΡΗ ΕΙΚΟΝΑ ΓΙΑ ΤΟΝ ΣΥΝΤΕΛΕΣΤΗ ΣΥΜΠΙΕΣΗΣ Ζ

17 Η ΓΕΝΙΚΗ ΜΟΡΦΗ ΤΗΣ ΚΑΤΑΣΤΑΤΙΚΗΣ ΕΞΙΣΩΣΗΣ Η ΓΕΝΙΚΗ ΜΟΡΦΗ: R b ( ( b( 2 ΌΠΟΥ b, θ, κ,λ και η είναι παράμετροι που είναι συναρτήσεις της θερμοκρασίας και της σύστασης σε κάποιο μίγμα. Η εξίσωση αυτή παίρνει την μορφή της σχέσης του van der Waals όταν η= b, θ= a, και κ=λ= 0. Αν η= b, θ= a (, κ= (ε+σb, λ = εσb 2, έχουμε: R b ( a( b( b Όπου τα ε και σ είναι καθαροί αριθμοί, για όλες τις ουσίες, ενώ οι a( και b εξαρτώνται από το υλικό.

18 ΥΠΟΛΟΓΙΣΜΟΣ ΤΩΝ ΠΑΡΑΜΕΤΡΩΝ: Επειδη στο κρισιμο σημειο : με 5 παραμέτρους (,,, a(, b με 3 εξισώσεις, έχουμε : Δυστυχώς το αποτέλεσμα αυτό δεν συμφωνεί ικανοποιητικά με τις πειραματικές μετρήσεις. Η κάθε χημική ουσία έχει το δικό της Z. Παρομοίως, παίρνουμε τα a και b σε διαφορετικές. 0 ; 2 2 ; r r R 8 3 R a R b R Z ( ( b a b R r R a 2 2 ( ( R b

19 ΘΕΩΡΗΜΑΤΑ ΓΙΑ ΤΙΣ ΑΝΤΙΣΤΟΙΧΕΣ ΚΑΤΑΣΤΑΣΕΙΣ ΜΕ 2 ή 3 ΠΑΡΑΜΕΤΡΟΥΣ Θεώρημα των 2 παραμέτρων: όλα τα ρευστά, όταν συγκρίνονται στην ίδια ανοιγμένη πίεση και θερμοκρασία, έχουν (σχεδόν τον ίδιο λόγο συμπιεστότητας Ζ και όλα αποκλείνουν από την συμπεριφορά του τέλειου αερίου κατά (περίπου το ίδιο ποσοστό. Ορίζουμε την «ανοιγμένη» θερμοκρασία και πίεση : Επειδή οι δύο αυτές παράμετροι δεν αρκούν να μας δώσουν ικανοποιητική εκτήμηση, χρειαζόμαστε και μια Τρίτη παράμετρο.. Η πιο γνωστή Τρίτη παράμετρος είναι ο ακεντρικός παράγοντας (aentri fator (K.S. itzer, 1995, όπου : Θεώρημα των τριών παραμέτρων: Ολα τα ρευστά που έχουν τον ίδιο ω, για την ίδιες ανοιγμένες θερμοκρασία και πίεση, διαφοροποιούνται από την συμπεριφορά του ιδανικού αερίου κατά το ίδιο περίπου ποσοστό. r sat r log r r

20 Για Ατμούς και σχεδόν ατμούς Για υγρά και σχεδόν υγρά ( ( ( b b b a b R ( ( 1 Z Z Z q Z r r R b r r br a q ( ( ( ( ( a b R b b b q Z Z Z Z 1 ( ( r r R b r r br a q ( ( Το ξεκινά με το (idealgas και η διαδικασία επαναλαμβάνεται Το ξεκινά με = b και η διαδικασία επαναλαμβανεται Η καταστατική εξίσωση Z είναι συνάρτηση των r και r.

21 ΕΜΠΕΙΡΙΚΕΣ ΣΧΕΣΕΙΣ ΠΟΥ ΒΕΛΤΙΩΝΟΥΝ ΤΗΝ ΠΡΟΒΛΕΨΗ ΓΙΑ ΝΑ ΒΕΛΤΙΩΘΕΙ Η ΑΚΡΙΒΕΙΑ ΕΚΤΙΜΗΣΗΣ ΤΩΝ ΠΑΡΑΜΕΤΡΩΝ ΣΤΑ ΠΡΑΓΜΑΤΙΚΑ ΑΕΡΙΑ ΕΧΟΥΝ ΑΝΑΠΤΥΧΘΕΙ ΕΜΠΕΙΡΙΚΕΣ ΠΟΛΥΩΝΥΜΙΚΕΣ ΣΧΕΣΕΙΣ ΤΡΙΤΟΥ ΒΑΘΜΟΥ ΠΟΥ ΣΥΣΧΕΤΙΖΟΥΝ ΤΗΝ ΠΙΕΣΗ ΜΕ ΤΟΝ ΟΓΚΟ ΚΑΙ ΤΗΝ ΘΕΡΜΟΚΡΑΣΙΑ ΟΠΩΣ ΓΙΑ ΠΑΡΑΔΕΙΓΜΑ ΟΙ ΣΧΕΣΕΙΣ ΤΩΝ. van der Waals Redlih Kwong eng Robinson Redlih Kwong Suave

22 Η ΚΑΤΑΣΤΑΤΙΚΗ ΕΞΙΣΩΣΗ ΤΟΥ AN DER WAALS R ~ b ~ 2 a ΣΕ ΠΟΛΥ ΜΙΚΡΟΥΣ ΕΙΔΙΚΟΥΣ ΟΓΚΟΥΣ ΤΑ ΜΟΡΙΑ ΑΡΧΙΖΟΥΝ ΝΑ AΚΟΥΜΠΟΥΝ ΜΕΤΑΞΥ ΤΟΥΣ, ΚΑΤΙ ΠΟΥ ΟΔΗΓΕΙ ΣΕ ΞΑΦΝΙΚΗ ΑΥΞΗΣΗ ΤΗΣ ΠΙΕΣΗΣ. ΣΤΟΥΣ ΠΟΛΥ ΜΙΚΡΟΥΣ ΕΙΔΙΚΟΥΣ ΟΓΚΟΥΣ Η ΕΛΚΤΙΚΗ ΔΥΝΑΜΗ ΜΕΤΑΞΥ ΤΩΝ ΜΟΡΙΩΝ ΓΙΝΕΤΑΙ ΣΗΜΑΝΤΙΚΗ. ΟΠΟΥ

23 ...συνέχεια ΑΠΟ ΤΟΝ ΟΡΙΣΜΟ ΤΟΥ «ΚΡΙΣΙΜΟΥ ΣΗΜΕΙΟΥ» ΠΡΟΚΥΠΤΕΙ ΟΤΙ ΑΠΟ ΤΙΣ ΔΥΟ ΑΥΤΕΣ ΣΥΝΘΗΚΕΣ ΠΡΟΚΥΠΤΟΥΝ ΟΙ ΠΑΡΑΚΑΤΩ ΣΧΕΣΕΙΣ ΓΙΑ ΤΙΣ ΠΑΡΑΜΕΤΡΟΥΣ a ΚΑΙ b ΤΗΣ ΕΞΙΣΩΣΗΣ ΤΟΥ van der Waals ΦΥΣΙΚΑ ΟΙ ΤΙΜΕΣ ΑΥΤΩΝ ΔΙΑΦΕΡΟΥΝ ΜΕΤΑΞΥ ΤΩΝ ΑΕΡΙΩΝ

24 ...συνέχεια ΑΝ ΧΡΗΣΙΜΟΠΟΙΗΣΟΥΜΕ «ΑΝΟΙΓΜΕΝΕΣ» ΠΑΡΑΜΕΤΡΟΥΣ Η ΕΞΙΣΩΣΗ ΤΟΥ AN DER WAALS ΜΠΟΡΕΙ ΝΑ ΠΑΡΕΙ ΚΑΙ ΤΗΝ ΜΟΡΦΗ ΠΟΥ ΜΕ ΤΗΝ ΣΕΙΡΑ ΤΗΣ ΜΑΣ ΟΔΗΓΕΙ ΣΤΗΝ «ΛΥΣΗ»

25 Η ΣΧΕΣΗ ΤΩΝ Redlih-Kwong ΟΠΟΥ m =ΜΟΛΑΡΙΚΟΣ ΟΓΚΟΣ Η ΣΧΕΣΗ ΑΥΤΗ ΔΙΝΕΙ ΚΑΛΥΤΕΡΗ ΑΚΡΙΒΕΙΑ ΑΠΟ ΑΥΤΗΝ ΤΟΥ AN DER WAALS ΑΛΛΑ ΣΤΗΝ ΕΚΤΙΜΗΣΗ ΤΩΝ ΣΥΝΘΗΚΩΝ ΙΣΟΡΡΟΠΙΑΣ ΜΕΤΑΞΥ ΥΓΡΟΥ-ΑΤΜΟΥ ΥΣΤΕΡΕΙ ΣΗΜΑΝΤΙΚΑ ΕΝ ΓΕΝΕΙ Η ΣΧΕΣΗ ΑΥΤΗ ΔΙΝΕΙ ΙΚΑΝΟΠΟΙΗΤΙΚΑ ΑΠΟΤΕΛΕΣΜΑΤΑ ΟΤΑΝ

26 Η ΤΡΟΠΟΠΟΙΗΣΗ ΤΟΥ Soave Το 1972 ο G. Soave τροποποίσε την προηγούμενη σχέση στην μορφή ω = ο Ακεντρικός Παράγοντας Σύμφωνα με τους Graboski and Dauber, που βελτίωσαν την αρχική πρόταση του Soave

27 ...συνέχεια Για την περίπτωση του Υδρογόνου Αν και η σχέση παίρνει την μορφή όπου Z=/(R

28 Όταν η πίεση των ατμών του n-butane στους 350K είναι bar, να υπολογιστούν οι μολαρικοί όγκοι για (1 κορεσμένους ατμούς και (2 κορεσμένο υγρό n-butane στις παραπάνω συνθήκες με την σχέση των Redlih/Kwong r r ( r q r (1 Για τον κορεσμένο ατμό r r Z 1 q ( Z Z ( Z Το Z ξεκινάει με Z = 1 και συγκλίνει στην Z = (2 Για το κορεσμένο υγρό Z Αρα ZR 3 m 2555 mol 1 Z ( Z ( Z ΤΟ Z αρχίζει με Z = β και συγκλίνει q σε Z = ZR Αρα m mol

Οι ιδιότητες των αερίων και καταστατικές εξισώσεις. Θεόδωρος Λαζαρίδης Σημειώσεις για τις παραδόσεις του μαθήματος Φυσικοχημεία Ι

Οι ιδιότητες των αερίων και καταστατικές εξισώσεις. Θεόδωρος Λαζαρίδης Σημειώσεις για τις παραδόσεις του μαθήματος Φυσικοχημεία Ι Οι ιδιότητες των αερίων και καταστατικές εξισώσεις Θεόδωρος Λαζαρίδης Σημειώσεις για τις παραδόσεις του μαθήματος Φυσικοχημεία Ι Τι είναι αέριο; Λέμε ότι μία ουσία βρίσκεται στην αέρια κατάσταση όταν αυθόρμητα

Διαβάστε περισσότερα

Ιδιότητες Μιγμάτων. Μερικές Μολαρικές Ιδιότητες

Ιδιότητες Μιγμάτων. Μερικές Μολαρικές Ιδιότητες Ιδιότητες Μιγμάτων Μερικές Μολαρικές Ιδιότητες ΙΔΑΝΙΚΟ ΔΙΑΛΥΜΑ = ή διαιρεμένη διά του = x όπου όλα τα προσδιορίζονται στην ίδια T και P. = Όπου ή διαιρεμένη διά του : = x ορίζεται η μερική μολαρική ιδιότητα

Διαβάστε περισσότερα

[6] Να επαληθευθεί η εξίσωση του Euler για (i) ιδανικό αέριο, (ii) πραγματικό αέριο

[6] Να επαληθευθεί η εξίσωση του Euler για (i) ιδανικό αέριο, (ii) πραγματικό αέριο [1] Να βρεθεί ο αριθμός των ατόμων του αέρα σε ένα κυβικό μικρόμετρο (κανονικές συνθήκες και ιδανική συμπεριφορά) (Τ=300 Κ και P= 1 atm) (1atm=1.01x10 5 Ν/m =1.01x10 5 Pa). [] Να υπολογισθεί η απόσταση

Διαβάστε περισσότερα

Καταστατική εξίσωση ιδανικών αερίων

Καταστατική εξίσωση ιδανικών αερίων Καταστατική εξίσωση ιδανικών αερίων 21-1. Από τι εξαρτάται η συμπεριφορά των αερίων; Η συμπεριφορά των αερίων είναι περισσότερο απλή και ομοιόμορφη από τη συμπεριφορά των υγρών και των στερεών. Σε αντίθεση

Διαβάστε περισσότερα

Θεωρητική Εξέταση. Τρίτη, 15 Ιουλίου /3

Θεωρητική Εξέταση. Τρίτη, 15 Ιουλίου /3 Θεωρητική Εξέταση. Τρίτη, 15 Ιουλίου 2014 1/3 Πρόβλημα 2. Καταστατική Εξίσωση Van der Waals (11 ) Σε ένα πολύ γνωστό μοντέλο του ιδανικού αερίου, του οποίου η καταστατική εξίσωση περιγράφεται από το νόμο

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Θερμοδυναμική

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Θερμοδυναμική ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Θερμοδυναμική Ενότητα 3 : Ιδανικά Αέρια Δρ Γεώργιος Αλέξης Τμήμα Μηχανολόγων Μηχανικών Τ.Ε. Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

- 31 Ερωτήσεις Αξιολόγησης για ΤΕΣΤ Θεωρίας.

- 31 Ερωτήσεις Αξιολόγησης για ΤΕΣΤ Θεωρίας. Κεφάλαιο 1 ο :ΝΟΜΟΙ ΑΕΡΙΩΝ ΚΙΝΗΤΙΚΗ ΘΕΩΡΙΑ ΙΔΑΝΙΚΩΝ ΑΕΡΙΩΝ Επιμέλεια ύλης: Γ.Φ.ΣΙΩΡΗΣ- Φυσικός - 31 Ερωτήσεις Αξιολόγησης για ΤΕΣΤ Θεωρίας. 1. Να διατυπώσετε το νόμο του Robert Boyle και να κάνετε το αντίστοιχο

Διαβάστε περισσότερα

ΑΤΜΟΣΦΑΙΡΙΚΗ ΘΕΡΜΟΔΥΝΑΜΙΚΗ. Η ατμόσφαιρα συμπεριφέρεται σαν ιδανικό αέριο (ειδικά για z>10 km)

ΑΤΜΟΣΦΑΙΡΙΚΗ ΘΕΡΜΟΔΥΝΑΜΙΚΗ. Η ατμόσφαιρα συμπεριφέρεται σαν ιδανικό αέριο (ειδικά για z>10 km) ΑΤΜΟΣΦΑΙΡΙΚΗ ΘΕΡΜΟΔΥΝΑΜΙΚΗ Η ατμόσφαιρα συμπεριφέρεται σαν ιδανικό αέριο (ειδικά για z>1 km) Οι αποστάσεις μεταξύ των μορίων είναι πολύ μεγάλες σχετικά με τον όγκο που κατέχουν Οι συγκρούσεις μεταξύ τους

Διαβάστε περισσότερα

ΠΡΑΓΜΑΤΙΚΑ ΑΕΡΙΑ ΘΕΩΡΙΑ

ΠΡΑΓΜΑΤΙΚΑ ΑΕΡΙΑ ΘΕΩΡΙΑ ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 6932 946778 ΠΡΑΓΜΑΤΙΚΑ ΑΕΡΙΑ ΘΕΩΡΙΑ Περιεχόμενα 1. Όρια καταστατικής εξίσωσης ιδανικού αερίου 2. Αποκλίσεις των Ιδιοτήτων των πραγματικών αερίων από τους Νόμους

Διαβάστε περισσότερα

Θερμοδυναμική του ατμοσφαιρικού αέρα

Θερμοδυναμική του ατμοσφαιρικού αέρα 6 Θερμοδυναμική του ατμοσφαιρικού αέρα 6. Θερμοδυναμικό σύστημα Κάθε ποσότητα ύλης που περιορίζεται από μια κλειστή (πραγματική ή φανταστική) επιφάνεια. Ανοικτό σύστημα: Αν από την οριακή αυτή επιφάνεια

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Θερμοδυναμική. Απόκλιση από την Ιδανική Συμπεριφορά Θερμοδυναμική ισορροπία Καταστατικές εξισώσεις

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Θερμοδυναμική. Απόκλιση από την Ιδανική Συμπεριφορά Θερμοδυναμική ισορροπία Καταστατικές εξισώσεις ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Θερμοδυναμική Απόκλιση από την Ιδανική Συμπεριφορά Θερμοδυναμική ισορροπία Καταστατικές εξισώσεις Διδάσκων : Καθηγητής Γ. Φλούδας Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

Α. Στις ερωτήσεις 1-4 να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης και δίπλα σε κάθε αριθμό το γράμμα που αντιστοιχεί στη σωστή απάντηση.

Α. Στις ερωτήσεις 1-4 να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης και δίπλα σε κάθε αριθμό το γράμμα που αντιστοιχεί στη σωστή απάντηση. 1 ΘΕΜΑ Α Α. Στις ερωτήσεις 1-4 να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης και δίπλα σε κάθε αριθμό το γράμμα που αντιστοιχεί στη σωστή απάντηση. 1. Για τη μεταβολή που παθαίνει ένα ιδανικό αέριο

Διαβάστε περισσότερα

Υπολογισμός & Πρόρρηση. Θερμοδυναμικών Ιδιοτήτων

Υπολογισμός & Πρόρρηση. Θερμοδυναμικών Ιδιοτήτων Υπολογισμός & Πρόρρηση Θερμοδυναμικών Ιδιοτήτων d du d Θερμοδυναμικές Ιδιότητες d dh d d d du d d dh U A H G d d da d d dg d du dq dq d / d du dq Θεμελιώδεις Συναρτήσεις περιέχουν όλες τις πληροφορίες

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Θερμοδυναμική. Μη Αντιστρεπτότητα και ο 2ος Θ.ν. Διδάσκων : Καθηγητής Γ.

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Θερμοδυναμική. Μη Αντιστρεπτότητα και ο 2ος Θ.ν. Διδάσκων : Καθηγητής Γ. ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Θερμοδυναμική Μη Αντιστρεπτότητα και ο 2ος Θ.ν. Διδάσκων : Καθηγητής Γ. Φλούδας Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Β' ΛΥΚΕΙΟΥ

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Β' ΛΥΚΕΙΟΥ 3-0- ΣΕΙΡΑ Α ΔΙΑΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Β' ΛΥΚΕΙΟΥ ΛΥΣΕΙΣ ΘΕΜΑ ο Οδηγία: Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτσεις -4 και δίπλα το γράµµα που αντιστοιχεί στη σωστ

Διαβάστε περισσότερα

* Επειδή μόνο η μεταφορά θερμότητας έχει νόημα, είτε συμβολίζεται με dq, είτε με Q, είναι το ίδιο.

* Επειδή μόνο η μεταφορά θερμότητας έχει νόημα, είτε συμβολίζεται με dq, είτε με Q, είναι το ίδιο. ΘΕΡΜΙΔΟΜΕΤΡΙΑ ΘΕΡΜΟΚΡΑΣΙΑ ΜΗΔΕΝΙΚΟΣ ΝΟΜΟΣ Μονάδες - Τάξεις μεγέθους Μονάδες ενέργειας 1 cal = 4,19 J Πυκνότητα νερού 1 g/cm 3 = 1000 Kg/m 3. Ειδική θερμότητα νερού c = 4190 J/Kg.K = 1Kcal/Kg.K = 1 cal/g.k

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3 Ο ΚΙΝΗΤΙΚΗ ΘΕΩΡΙΑ ΤΩΝ ΙΔΑΝΙΚΩΝ ΑΕΡΙΩΝ

ΚΕΦΑΛΑΙΟ 3 Ο ΚΙΝΗΤΙΚΗ ΘΕΩΡΙΑ ΤΩΝ ΙΔΑΝΙΚΩΝ ΑΕΡΙΩΝ Σχολικό Έτος 016-017 67 ΚΕΦΑΛΑΙΟ Ο ΚΙΝΗΤΙΚΗ ΘΕΩΡΙΑ ΤΩΝ ΙΔΑΝΙΚΩΝ ΑΕΡΙΩΝ Α. ΕΙΣΑΓΩΓΗ ΣΤΑ ΑΕΡΙΑ 1. Σχετικές Ατομικές και Μοριακές Μάζες Σχετική Ατομική Μάζα (Α r) του ατόμου ενός στοιχείου, ονομάζεται ο αριθμός

Διαβάστε περισσότερα

F 2 ( F / T ) T T. (β) Να δείξετε ότι µετασχηµατισµός Legendre της J(1/T,V) που δίνει το

F 2 ( F / T ) T T. (β) Να δείξετε ότι µετασχηµατισµός Legendre της J(1/T,V) που δίνει το [1] Να αποδειχθούν οι παρακάτω εξισώσεις: F ( F / T ) U = F T = T T T V F CV T = T V G G T H = G T = T ( / ) T P T P G CP T = T P [] Μπορούµε να ορίσουµε ένα άλλο σετ χαρακτηριστικών συναρτήσεων καθαρής

Διαβάστε περισσότερα

ΚΙΝΗΤΙΚΗ ΘΕΩΡΙΑ ΑΕΡΙΩΝ ΘΕΩΡΙΑ

ΚΙΝΗΤΙΚΗ ΘΕΩΡΙΑ ΑΕΡΙΩΝ ΘΕΩΡΙΑ ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 693 946778 ΚΙΝΗΤΙΚΗ ΘΕΩΡΙΑ ΑΕΡΙΩΝ ΘΕΩΡΙΑ Περιεχόμενα 1. Κινητική Θεωρία των Αεριών. Πίεση 3. Κινητική Ερμηνεία της Πίεσης 4. Καταστατική εξίσωση των Ιδανικών

Διαβάστε περισσότερα

: Μιγαδικοί Συναρτήσεις έως και αντίστροφη συνάρτηση. 1. Ποιο από τα παρακάτω διαγράμματα παριστάνει γραφικά το νόμο του Gay-Lussac;

: Μιγαδικοί Συναρτήσεις έως και αντίστροφη συνάρτηση. 1. Ποιο από τα παρακάτω διαγράμματα παριστάνει γραφικά το νόμο του Gay-Lussac; Τάξη : Β ΛΥΚΕΙΟΥ Μάθημα : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Εξεταστέα Ύλη : Μιγαδικοί Συναρτήσεις έως και αντίστροφη συνάρτηση Καθηγητής : Mάρθα Μπαμπαλιούτα Ημερομηνία : 14/10/2012 ΘΕΜΑ 1 ο 1. Ποιο από τα παρακάτω διαγράμματα

Διαβάστε περισσότερα

1 IΔΑΝΙΚΑ ΑΕΡΙΑ 1.1 ΓΕΝΙΚΑ

1 IΔΑΝΙΚΑ ΑΕΡΙΑ 1.1 ΓΕΝΙΚΑ 1 1 IΔΑΝΙΚΑ ΑΕΡΙΑ 1.1 ΓΕΝΙΚΑ Θα αρχίσουμε τη σειρά των μαθημάτων της Φυσικοχημείας με τη μελέτη της αέριας κατάστασης της ύλης. Η μελέτη της φύσης των αερίων αποτελεί ένα ιδανικό μέσο για την εισαγωγή

Διαβάστε περισσότερα

Ατομική μονάδα μάζας (amu) ορίζεται ως το 1/12 της μάζας του ατόμου του άνθρακα 12 6 C.

Ατομική μονάδα μάζας (amu) ορίζεται ως το 1/12 της μάζας του ατόμου του άνθρακα 12 6 C. 4.1 Βασικές έννοιες Ατομική μονάδα μάζας (amu) ορίζεται ως το 1/12 της μάζας του ατόμου του άνθρακα 12 6 C. Σχετική ατομική μάζα ή ατομικό βάρος λέγεται ο αριθμός που δείχνει πόσες φορές είναι μεγαλύτερη

Διαβάστε περισσότερα

Θερμοδυναμική - Εργαστήριο

Θερμοδυναμική - Εργαστήριο Θερμοδυναμική - Εργαστήριο Ενότητα 6: Εύρεση του ειδικού όγκου αερίων μιγμάτων με χρήση μιας καταστατικής εξίσωσης Κυρατζής Νικόλαος Τμήμα Μηχανικών Περιβάλλοντος και Μηχανικών Αντιρρύπανσης ΤΕ Άδειες

Διαβάστε περισσότερα

Θεωρία και Μεθοδολογία

Θεωρία και Μεθοδολογία Θεωρία και Μεθοδολογία Εισαγωγή/Προαπαιτούμενες γνώσεις (κάθετη δύναμη) Πίεση p: p = F A (εμβαδόν επιφάνειας) Μονάδα μέτρησης πίεσης στο S.I. είναι το 1 Ν m2, που ονομάζεται και Pascal (Pa). Συνήθως χρησιμοποιείται

Διαβάστε περισσότερα

ΘΕΡΜΟΔΥΝΑΜΙΚΗ Ι. Ενότητα 9: Θερμοδυναμική αερίων. Σογομών Μπογοσιάν Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών

ΘΕΡΜΟΔΥΝΑΜΙΚΗ Ι. Ενότητα 9: Θερμοδυναμική αερίων. Σογομών Μπογοσιάν Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών ΘΕΡΜΟΔΥΝΑΜΙΚΗ Ι Ενότητα 9: Θερμοδυναμική αερίων Σογομών Μπογοσιάν Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Σκοποί ενότητας Σκοπός της ενότητας αυτής είναι ο ορισμός του ιδανικού αερίου με βάση το χημικό

Διαβάστε περισσότερα

ΕΣΩΤΕΡΙΚΗ ΕΝΕΡΓΕΙΑ Μηχανική ενέργεια Εσωτερική ενέργεια:

ΕΣΩΤΕΡΙΚΗ ΕΝΕΡΓΕΙΑ Μηχανική ενέργεια Εσωτερική ενέργεια: ΕΣΩΤΕΡΙΚΗ ΕΝΕΡΓΕΙΑ Μηχανική ενέργεια (όπως ορίζεται στη μελέτη της μηχανικής τέτοιων σωμάτων): Η ενέργεια που οφείλεται σε αλληλεπιδράσεις και κινήσεις ολόκληρου του μακροσκοπικού σώματος, όπως η μετατόπιση

Διαβάστε περισσότερα

Physics by Chris Simopoulos

Physics by Chris Simopoulos ΚΑΤΑΣΤΑΤΙΚΗ ΕΞΙΣΩΣΗ ΑΕΡΙΩΝ Η εξίσωση που συνδέει την πίεση τον όγκο και την θερμοκρασία ενός ιδανικού αερίου που βρίσκεται σε κατάσταση ισορροπίας ονομάζεται καταστατική εξίσωση αερίου και δίνεται όπως

Διαβάστε περισσότερα

ΘΕΡΜΟΔΥΝΑΜΙΚΗ Ι. Ενότητα 8: Θερμοχωρητικότητα Χημικό δυναμικό και ισορροπία. Σογομών Μπογοσιάν Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών

ΘΕΡΜΟΔΥΝΑΜΙΚΗ Ι. Ενότητα 8: Θερμοχωρητικότητα Χημικό δυναμικό και ισορροπία. Σογομών Μπογοσιάν Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών ΘΕΡΜΟΔΥΝΑΜΙΚΗ Ι Ενότητα 8: Θερμοχωρητικότητα Χημικό δυναμικό και ισορροπία Σογομών Μπογοσιάν Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Σκοποί ενότητας Σκοπός της ενότητας αυτής είναι η ανάπτυξη μαθηματικών

Διαβάστε περισσότερα

AquaTec Φυσική των Καταδύσεων

AquaTec Φυσική των Καταδύσεων Σημειώσεις για τα σχολεία Τεχνικής Κατάδυσης 1.1 AquaTec Φυσική των Καταδύσεων Βασικές έννοιες και Αρχές Νίκος Καρατζάς www.aquatec.gr Προειδοποίηση: Το υλικό που παρουσιάζεται παρακάτω δεν πρέπει να θεωρηθεί

Διαβάστε περισσότερα

3. Ν αποδειχθεί ότι σε ιδανικό αέριο : α=1/t και κ Τ =1/Ρ όπου α ο συντελεστής διαστολής και κ T ο ισόθερµος συντελεστής συµπιεστότητας.

3. Ν αποδειχθεί ότι σε ιδανικό αέριο : α=1/t και κ Τ =1/Ρ όπου α ο συντελεστής διαστολής και κ T ο ισόθερµος συντελεστής συµπιεστότητας. Φυσικοχηµεία / Β. Χαβρεδάκη Ασκήσεις Θερµοδυναµικής Εργο. Θερµότητα. Τέλεια µη τέλεια διαφορικά. Αρχη διατήρησης της ενέργειας.. α) όσετε την γενική µορφή της καταστατικής εξίσωσης τριών θερµοδυναµικών

Διαβάστε περισσότερα

3o ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΘΗΒΑΣ ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΕΠΙΜΕΛΕΙΑ: ΖΑΧΑΡΙΟΥ ΦΙΛΙΠΠΟΣ (ΧΗΜΙΚΟΣ)

3o ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΘΗΒΑΣ ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΕΠΙΜΕΛΕΙΑ: ΖΑΧΑΡΙΟΥ ΦΙΛΙΠΠΟΣ (ΧΗΜΙΚΟΣ) Σχετική ατομική μάζα Σχετική ήμ μοριακή μάζα Mole Αριθμός Avogadro Γραμμομοριακός όγκος Νόμοι των αερίων Ατομική μονάδα μάζας (amu): Σχετική ατομική μάζα (ar): Σχετική Μοριακή μάζα (Μr): Υπολογισμός

Διαβάστε περισσότερα

Θερμοδυναμική. Ερωτήσεις πολλαπλής επιλογής

Θερμοδυναμική. Ερωτήσεις πολλαπλής επιλογής Ερωτήσεις πολλαπλής επιλογής Θερμοδυναμική 1. Η εσωτερική ενέργεια ορισμένης ποσότητας ιδανικού αερίου α) Είναι αντιστρόφως ανάλογη της απόλυτης θερμοκρασίας του αερίου. β) Είναι ανάλογη της απόλυτης θερμοκρασίας

Διαβάστε περισσότερα

Φυσική Προσανατολισμού Β Λυκείου Κεφάλαιο 2 ο. Σύντομη Θεωρία

Φυσική Προσανατολισμού Β Λυκείου Κεφάλαιο 2 ο. Σύντομη Θεωρία Φυσική Προσανατολισμού Β Λυκείου 05-06 Κεφάλαιο ο Σύντομη Θεωρία Θερμοδυναμικό σύστημα είναι το σύστημα το οποίο για να το περιγράψουμε χρησιμοποιούμε και θερμοδυναμικά μεγέθη, όπως τη θερμοκρασία, τη

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Θερμοδυναμική

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Θερμοδυναμική ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Θερμοδυναμική Αδιαβατικές μεταβολές στην ατμόσφαιρα - Ασκήσεις Αδιαβατικών μεταβολών (2ο φυλλάδιο) Διδάσκων : Καθηγητής Γ. Φλούδας Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

Φάσεις μιας καθαρής ουσίας

Φάσεις μιας καθαρής ουσίας Αντικείμενο μαθήματος: ΘΕΡΜΟΔΥΝΑΜΙΚΗ Ι ΚΑΘΑΡΕΣ ΟΥΣΙΕΣ. Διαδικασίες αλλαγής φάσης. P-v, T-v, και P-T διαγράμματα ιδιοτήτων και επιφάνειες P-v-T Καθαρών ουσιών. Υπολογισμός θερμοδυναμικών ιδιοτήτων από πίνακες

Διαβάστε περισσότερα

Εφαρμοσμένη Θερμοδυναμική

Εφαρμοσμένη Θερμοδυναμική ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εφαρμοσμένη Θερμοδυναμική Ενότητα 2: Ιδιότητες Χατζηαθανασίου Βασίλειος Καδή Στυλιανή Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Η/Υ Άδειες

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Β' ΛΥΚΕΙΟΥ

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Β' ΛΥΚΕΙΟΥ 23-10-11 ΣΕΙΡΑ Α ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Β' ΛΥΚΕΙΟΥ ΘΕΜΑ 1 ο Οδηγία: Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράµµα που αντιστοιχεί στη σωστή

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Ακαδημαϊκό έτος 0-3 Στατιστική Θερμοδυναμική ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Επώνυμο: Όνομα: Προσωπικός Αριθμός: Ημερομηνία: Βαθμολογία θεμάτων 3 4 5 6 7 8 9 0 Γενικός Βαθμός η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ ΣΤΗ "ΦΥΣΙΚΟΧΗΜΕΙΑ"

Διαβάστε περισσότερα

ΘΕΡΜΟΔΥΝΑΜΙΚΗ. 2.1 Εισαγωγή

ΘΕΡΜΟΔΥΝΑΜΙΚΗ. 2.1 Εισαγωγή ΚΕΦΑΛΑΙΟ ΔΕΥΤΕΡΟ: ΘΕΡΜΟΔΥΝΑΜΙΚΗ 1 2 2.1 Εισαγωγή ΘΕΡΜΟΔΥΝΑΜΙΚΗ Σύστημα: Ένα σύνολο σωματιδίων που τα ξεχωρίζουμε από τα υπόλοιπα για να τα μελετήσουμε ονομάζεται σύστημα. Οτιδήποτε δεν ανήκει στο σύστημα

Διαβάστε περισσότερα

6.2. ΤΗΞΗ ΚΑΙ ΠΗΞΗ, ΛΑΝΘΑΝΟΥΣΕΣ ΘΕΡΜΟΤΗΤΕΣ

6.2. ΤΗΞΗ ΚΑΙ ΠΗΞΗ, ΛΑΝΘΑΝΟΥΣΕΣ ΘΕΡΜΟΤΗΤΕΣ 45 6.1. ΓΕΝΙΚΑ ΠΕΡΙ ΦΑΣΕΩΝ ΜΕΤΑΤΡΟΠΕΣ ΦΑΣΕΩΝ Όλα τα σώµατα,στερεά -ά-αέρια, που υπάρχουν στη φύση βρίσκονται σε µια από τις τρεις φάσεις ή σε δύο ή και τις τρεις. Όλα τα σώµατα µπορεί να αλλάξουν φάση

Διαβάστε περισσότερα

(1 mol οποιουδήποτε αερίου σε συνθήκες STP καταλαμβάνει όγκο 22,4 L, κατά συνέπεια V mol =22,4 L)

(1 mol οποιουδήποτε αερίου σε συνθήκες STP καταλαμβάνει όγκο 22,4 L, κατά συνέπεια V mol =22,4 L) ΑΠΑΝΤΗΣΕΙΣ σε ol ΚΑΤΑΣΤΑΤΙΚΗ ΕΞΙΣΩΣΗ ) Πόσα ol είναι τα 4,48 L αέριας NH 3 τα οποία μετρήθηκαν σε συνθήκες ST; n= n= 4,48 n= 0, ol ol,4 ( ol οποιουδήποτε αερίου σε συνθήκες ST καταλαμβάνει όγκο,4 L, κατά

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΘΕΡΜΟΔΥΝΑΜΙΚΗΣ ΜΕ ΕΦΑΡΜΟΓΗ ΣΤΙΣ Μ.Ε.Κ. Μ.Ε.Κ. Ι (Θ)

ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΘΕΡΜΟΔΥΝΑΜΙΚΗΣ ΜΕ ΕΦΑΡΜΟΓΗ ΣΤΙΣ Μ.Ε.Κ. Μ.Ε.Κ. Ι (Θ) ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΘΕΡΜΟΔΥΝΑΜΙΚΗΣ ΜΕ ΕΦΑΡΜΟΓΗ ΣΤΙΣ Μ.Ε.Κ. Μ.Ε.Κ. Ι (Θ) Διαλέξεις Μ4, ΤΕΙ Χαλκίδας Επικ. Καθηγ. Δρ. Μηχ. Α. Φατσής ΣΚΟΠΟΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ Το «φρεσκάρισμα» των γνώσεων από τη Θερμοδυναμική με σκοπό

Διαβάστε περισσότερα

1bar. bar; = = y2. mol. mol. mol. P (bar)

1bar. bar; = = y2. mol. mol. mol. P (bar) Τµήµα Χηµείας Μάθηµα: Φυσικοχηµεία Ι Εξέταση: Περίοδος Σεπτεµβρίου -3 (7//4). Σηµειώστε µέσα στην παρένθεση δίπλα σε κάθε µέγεθος αν είναι εντατικό (Ν) ή εκτατικό (Κ): όγκος (Κ), θερµοκρασία (Ν), πυκνότητα

Διαβάστε περισσότερα

Τ.Ε.Ι. ΠΕΙΡΑΙΑ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΙΑΣ ΜΑΘΗΜΑ: ΕΦΑΡΜΟΣΜΕΝΗ ΘΕΡΜΟΔΥΝΑΜΙΚΗ (Ασκήσεις πράξης) ΙΔΑΝΙΚΑ ΑΕΡΙΑ - ΕΡΓΟ

Τ.Ε.Ι. ΠΕΙΡΑΙΑ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΙΑΣ ΜΑΘΗΜΑ: ΕΦΑΡΜΟΣΜΕΝΗ ΘΕΡΜΟΔΥΝΑΜΙΚΗ (Ασκήσεις πράξης) ΙΔΑΝΙΚΑ ΑΕΡΙΑ - ΕΡΓΟ ΙΔΑΝΙΚΑ ΑΕΡΙΑ - ΕΡΓΟ 1. Να υπολογιστεί η πυκνότητα του αέρα σε πίεση 0,1 MPa και θερμοκρασία 20 ο C. (R air =0,287 kj/kgk) 2. Ποσότητα αέρα 1 kg εκτελεί τις παρακάτω διεργασίες: Διεργασία 1-2: Αδιαβατική

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ Α. και d B οι πυκνότητα του αερίου στις καταστάσεις Α και Β αντίστοιχα, τότε

ΔΙΑΓΩΝΙΣΜΑ Α. και d B οι πυκνότητα του αερίου στις καταστάσεις Α και Β αντίστοιχα, τότε ΔΙΑΓΩΝΙΣΜΑ Α Θέµα ο Στις ερωτήσεις -4 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση Σύµφωνα µε την κινητική θεωρία των ιδανικών αερίων, η πίεση

Διαβάστε περισσότερα

Ζήτημα 1 0. Επώνυμο... Όνομα... Αγρίνιο 1/3/2015. Επιλέξτε τη σωστή απάντηση

Ζήτημα 1 0. Επώνυμο... Όνομα... Αγρίνιο 1/3/2015. Επιλέξτε τη σωστή απάντηση 1 Επώνυμο... Όνομα... Αγρίνιο 1/3/2015 Ζήτημα 1 0 Επιλέξτε τη σωστή απάντηση 1) Η θερμότητα που ανταλλάσει ένα αέριο με το περιβάλλον θεωρείται θετική : α) όταν προσφέρεται από το αέριο στο περιβάλλον,

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ ΕΥΤΕΡΟ ΘΕΡΜΟ ΥΝΑΜΙΚΗ

ΚΕΦΑΛΑΙΟ ΕΥΤΕΡΟ ΘΕΡΜΟ ΥΝΑΜΙΚΗ ΘΕΡΜΟ ΥΝΑΜΙΚΗ ΚΕΦΑΛΑΙΟ ΕΥΤΕΡΟ ΘΕΡΜΟ ΥΝΑΜΙΚΗ 1. Τι εννοούµε λέγοντας θερµοδυναµικό σύστηµα; Είναι ένα κοµµάτι ύλης που αποµονώνουµε νοητά από το περιβάλλον. Περιβάλλον του συστήµατος είναι το σύνολο των

Διαβάστε περισσότερα

ΤΥΠΟΛΟΓΙΟ ΚΙΝΗΤΙΚΗΣ ΘΕΩΡΙΑΣ ΙΔΑΝΙΚΩΝ ΑΕΡΙΩΝ T 1 <T 2 A

ΤΥΠΟΛΟΓΙΟ ΚΙΝΗΤΙΚΗΣ ΘΕΩΡΙΑΣ ΙΔΑΝΙΚΩΝ ΑΕΡΙΩΝ T 1 <T 2 A ΤΥΠΟΛΟΓΙΟ ΚΙΝΗΤΙΚΗΣ ΘΕΩΡΙΑΣ ΙΔΑΝΙΚΩΝ ΑΕΡΙΩΝ 1. ΝΟΜΟΣ OYLE-MRIOTTE = σταθ. (όταν Τ = σταθ.) (1) Ο νόμος των oyle Mariotte εφαρμόζεται σε ισόθερμη μεταβολή (Τ = σταθ.) π.χ. στην μεταβολή Α T 1

Διαβάστε περισσότερα

ΣΥΜΠΕΡΙΦΟΡΑ ΤΩΝ ΑΕΡΙΩΝ

ΣΥΜΠΕΡΙΦΟΡΑ ΤΩΝ ΑΕΡΙΩΝ ΣΥΜΠΕΡΙΦΟΡΑ ΤΩΝ ΑΕΡΙΩΝ Στην αέρια φυσική κατάσταση όλες οι καθαρές ουσίες ακολουθούν μια παρόμοια συμπεριφορά. Δηλαδή, εάν παρατηρηθεί ο μοριακός τους όγκος στους 0 ο C και 1 ατμ., 1 mol του κάθε αερίου

Διαβάστε περισσότερα

Κεφάλαιο 7. Θερμοκρασία

Κεφάλαιο 7. Θερμοκρασία Κεφάλαιο 7 Θερμοκρασία Θερμοδυναμική Η θερμοδυναμική περιλαμβάνει περιπτώσεις όπου η θερμοκρασία ή η κατάσταση ενός συστήματος μεταβάλλονται λόγω μεταφοράς ενέργειας. Η θερμοδυναμική ερμηνεύει με επιτυχία

Διαβάστε περισσότερα

Στοιχειομετρικοί Υπολογισμοί στη Χημεία

Στοιχειομετρικοί Υπολογισμοί στη Χημεία Στοιχειομετρικοί Υπολογισμοί στη Χημεία Δομικές μονάδες της ύλης ΑΤΟΜΑ ΜΟΡΙΑ ΣΤΟΙΧΕΙΑ ΕΝΩΣΕΙΣ Αριθμός Avogadro N A = 6,02 10 23 mol -1 Δηλαδή αυτός ο αριθμός παριστάνει την ποσότητα μιας ουσίας που περιέχει

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Β' ΛΥΚΕΙΟΥ

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Β' ΛΥΚΕΙΟΥ 31-10-10 ΣΕΙΡΑ Α ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Β' ΛΥΚΕΙΟΥ ΘΕΜΑ 1 ο Οδηγία: Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράµµα που αντιστοιχεί στη σωστή

Διαβάστε περισσότερα

ΜΑΝΩΛΗ ΡΙΤΣΑ ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ. Τράπεζα θεμάτων. Β Θέμα ΚΙΝΗΤΙΚΗ ΘΕΩΡΙΑ ΑΕΡΙΩΝ

ΜΑΝΩΛΗ ΡΙΤΣΑ ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ. Τράπεζα θεμάτων. Β Θέμα ΚΙΝΗΤΙΚΗ ΘΕΩΡΙΑ ΑΕΡΙΩΝ ΜΑΝΩΛΗ ΡΙΤΣΑ ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Τράπεζα θεμάτων Β Θέμα ΚΙΝΗΤΙΚΗ ΘΕΩΡΙΑ ΑΕΡΙΩΝ 16111 Ένα παιδί κρατάει στο χέρι του ένα μπαλόνι γεμάτο ήλιο που καταλαμβάνει όγκο 4 L (σε πίεση

Διαβάστε περισσότερα

ΘΕΡΜΟΔΥΝΑΜΙΚΕΣ ΙΔΙΟΤΗΤΕΣ ΤΩΝ ΡΕΥΣΤΩΝ Για τον υπολογισμό της θερμότητας και του έργου των βιομηχανικών διεργασιών είναι απαραίτητες αριθμητικές τιμές

ΘΕΡΜΟΔΥΝΑΜΙΚΕΣ ΙΔΙΟΤΗΤΕΣ ΤΩΝ ΡΕΥΣΤΩΝ Για τον υπολογισμό της θερμότητας και του έργου των βιομηχανικών διεργασιών είναι απαραίτητες αριθμητικές τιμές Για τον υπολογισμό της θερμότητας και του έργου των βιομηχανικών διεργασιών είναι απαραίτητες αριθμητικές τιμές των θερμοδυναμικών ιδιοτήτων. Είναι εμφανές λοιπόν ότι αυτές πρέπει ότι πρέπει να αναπτυχθούν

Διαβάστε περισσότερα

Πρόρρηση Ισορροπίας Φάσεων. Υψηλές Πιέσεις

Πρόρρηση Ισορροπίας Φάσεων. Υψηλές Πιέσεις Πρόρρηση Ισορροπίας Φάσεων Υψηλές Πιέσεις 1 Ισορροπία Φάσεων Η βασική εξίσωση για όλους τους υπολογισμούς ισορροπίας φάσεων ατμού-υγρού είτε σε υψηλές είτε σε χαμηλές πιέσεις είναι η ισότητα των τάσεων

Διαβάστε περισσότερα

Δύναμη F F=m*a kgm/s 2. N = W / t 1 J / s = 1 Watt ( W ) 1 HP ~ 76 kp*m / s ~ 746 W. 1 PS ~ 75 kp*m / s ~ 736 W. 1 τεχνική ατμόσφαιρα 1 at

Δύναμη F F=m*a kgm/s 2. N = W / t 1 J / s = 1 Watt ( W ) 1 HP ~ 76 kp*m / s ~ 746 W. 1 PS ~ 75 kp*m / s ~ 736 W. 1 τεχνική ατμόσφαιρα 1 at Δύναμη F F=m*a kgm/s 2 1 kg*m/s 2 ~ 1 N 1 N ~ 10 5 dyn Ισχύς Ν = Έργο / χρόνος W = F*l 1 N*m = 1 Joule ( J ) N = W / t 1 J / s = 1 Watt ( W ) 1 1 kp*m / s 1 HP ~ 76 kp*m / s ~ 746 W 1 PS ~ 75 kp*m / s

Διαβάστε περισσότερα

ΚΛΑΣΙΚΗ ΘΕΡΜΟ ΥΝΑΜΙΚΗ ΜΑΘΗΜΑ-V ΑΣΚΗΣΗ Α2 - JOULE-THOMSON

ΚΛΑΣΙΚΗ ΘΕΡΜΟ ΥΝΑΜΙΚΗ ΜΑΘΗΜΑ-V ΑΣΚΗΣΗ Α2 - JOULE-THOMSON ΚΛΑΣΙΚΗ ΘΕΡΜΟ ΥΝΑΜΙΚΗ ΜΑΘΗΜΑ-V ΑΣΚΗΣΗ Α2 - JOULE-THOMSON Τµήµα Χηµείας, Πανεπιστήµιο Κρήτης, και Ινστιτούτο Ηλεκτρονικής οµής και Λέιζερ, Ιδρυµα Τεχνολογίας και Ερευνας, Ηράκλειο, Κρήτη http://tccc.iesl.forth.gr/education/local.html

Διαβάστε περισσότερα

ΜΑΝΩΛΗ ΡΙΤΣΑ ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ. Τράπεζα θεμάτων. Β Θέμα ΘΕΡΜΟΔΥΝΑΜΙΚΗ

ΜΑΝΩΛΗ ΡΙΤΣΑ ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ. Τράπεζα θεμάτων. Β Θέμα ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΜΑΝΩΛΗ ΡΙΤΣΑ ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Τράπεζα θεμάτων Β Θέμα ΘΕΡΜΟΔΥΝΑΜΙΚΗ 16111 Στο πιο κάτω διάγραμμα παριστάνονται τρεις περιπτώσεις Α, Β και Γ αντιστρεπτών μεταβολών τις οποίες

Διαβάστε περισσότερα

ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ. Ενότητα : ΝΟΜΟΙ ΙΔΑΝΙΚΩΝ ΑΕΡΙΩΝ: ΙΣΟΘΕΡΜΗ ΜΕΤΑΒΟΛΗ ΝΟΜΟΣ BOYLE ΔΙΔΑΚΤΙΚΟΙ ΣΤΟΧΟΙ

ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ. Ενότητα : ΝΟΜΟΙ ΙΔΑΝΙΚΩΝ ΑΕΡΙΩΝ: ΙΣΟΘΕΡΜΗ ΜΕΤΑΒΟΛΗ ΝΟΜΟΣ BOYLE ΔΙΔΑΚΤΙΚΟΙ ΣΤΟΧΟΙ 1 ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ Διδάσκων καθηγητής: Αντώνιος Αλεξ. Κρητικός Τάξη : Β Μάθημα : Φυσική Κατεύθυνσης Ενότητα : ΝΟΜΟΙ ΙΔΑΝΙΚΩΝ ΑΕΡΙΩΝ: ΙΣΟΘΕΡΜΗ ΜΕΤΑΒΟΛΗ ΝΟΜΟΣ BOYLE Οι μαθητές/τριες να μπορέσουν: ΔΙΔΑΚΤΙΚΟΙ

Διαβάστε περισσότερα

Υπολογισµοί του Χρόνου Ξήρανσης

Υπολογισµοί του Χρόνου Ξήρανσης Η πραγµατική επιφάνεια ξήρανσης είναι διασπαρµένη και ασυνεχής και ο µηχανισµός από τον οποίο ελέγχεται ο ρυθµός ξήρανσης συνίσταται στην διάχυση της θερµότητας και της µάζας µέσα από το πορώδες στερεό.

Διαβάστε περισσότερα

β) Ένα αέριο μπορεί να απορροφά θερμότητα και να μην αυξάνεται η γ) Η εσωτερική ενέργεια ενός αερίου είναι ανάλογη της απόλυτης

β) Ένα αέριο μπορεί να απορροφά θερμότητα και να μην αυξάνεται η γ) Η εσωτερική ενέργεια ενός αερίου είναι ανάλογη της απόλυτης Κριτήριο Αξιολόγησης - 26 Ερωτήσεις Θεωρίας Κεφ. 4 ο ΑΡΧΕΣ ΤΗΣ ΘΕΡΜΟΔΥΝΑΜΙΚΗΣ - ΦΥΣΙΚΗ Ομάδας Προσανατολισμού Θετικών Σπουδών Β Λυκείου επιμέλεια ύλης: Γ.Φ.Σ ι ώ ρ η ς ΦΥΣΙΚΟΣ 1. Σε μια αδιαβατική εκτόνωση

Διαβάστε περισσότερα

ΘΕΡΜΟΔΥΝΑΜΙΚΗ. Χαροκόπειο Πανεπιστήμιο. 11 Μαΐου 2006

ΘΕΡΜΟΔΥΝΑΜΙΚΗ. Χαροκόπειο Πανεπιστήμιο. 11 Μαΐου 2006 ΘΕΡΜΟΔΥΝΑΜΙΚΗ Χαροκόπειο Πανεπιστήμιο 11 Μαΐου 2006 Κλάδοι της Θερμοδυναμικής Χημική Θερμοδυναμική: Μελετά τις μετατροπές ενέργειας που συνοδεύουν φυσικά ή χημικά φαινόμενα Θερμοχημεία: Κλάδος της Χημικής

Διαβάστε περισσότερα

2 ος ΘΕΡΜΟΔΥΝΑΜΙΚΟΣ ΝΟΜΟΣ - ΕNTΡΟΠΙΑ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ

2 ος ΘΕΡΜΟΔΥΝΑΜΙΚΟΣ ΝΟΜΟΣ - ΕNTΡΟΠΙΑ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 693 946778 ος ΘΕΡΜΟΔΥΝΑΜΙΚΟΣ ΝΟΜΟΣ - ΕNΡΟΠΙΑ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ Περιεχόμενα. O ος Θερμοδυναμικός Νόμος. Η Εντροπία 3. Εντροπία και αταξία 4. Υπολογισμός Εντροπίας

Διαβάστε περισσότερα

ΘΕΡΜΟΔΥΝΑΜΙΚΕΣ ΜΕΤΑΒΟΛΕΣ Η ΚΑΤΑΣΤΑΤΙΚΗ ΕΞΙΣΩΣΗ ΤΩΝ ΤΕΛΕΙΩΝ ΑΕΡΙΩΝ

ΘΕΡΜΟΔΥΝΑΜΙΚΕΣ ΜΕΤΑΒΟΛΕΣ Η ΚΑΤΑΣΤΑΤΙΚΗ ΕΞΙΣΩΣΗ ΤΩΝ ΤΕΛΕΙΩΝ ΑΕΡΙΩΝ ΘΕΡΜΟΔΥΝΑΜΙΚΕΣ ΜΕΤΑΒΟΛΕΣ Η ΚΑΤΑΣΤΑΤΙΚΗ ΕΞΙΣΩΣΗ ΤΩΝ ΤΕΛΕΙΩΝ ΑΕΡΙΩΝ Η εξίσωση αυτή εκφράζει μια σχέση μεταξύ της πίεσης, της θερμοκρασίας και του ειδικού όγκου. P v = R Όπου P = πίεση σε Pascal v = Ο ειδικός

Διαβάστε περισσότερα

EΡΓΟ-ΘΕΡΜΟΤΗΤΑ-ΕΣΩΤΕΡΙΚΗ ΕΝΕΡΓΕΙΑ

EΡΓΟ-ΘΕΡΜΟΤΗΤΑ-ΕΣΩΤΕΡΙΚΗ ΕΝΕΡΓΕΙΑ EΡΓΟ-ΘΕΡΜΟΤΗΤΑ-ΕΣΩΤΕΡΙΚΗ ΕΝΕΡΓΕΙΑ ΠΑΡΑΤΗΡΗΣΕΙΣ 1. Διαδοση θερμοτητας και εργο είναι δυο τροποι με τους οποιους η ενεργεια ενός θερμοδυναμικου συστηματος μπορει να αυξηθει ή να ελαττωθει. Δεν εχει εννοια

Διαβάστε περισσότερα

Ογκομετρική (PVT) συμπεριφορά καθαρών ρευστών

Ογκομετρική (PVT) συμπεριφορά καθαρών ρευστών Ογκομετρική (PT) συμπεριφορά καθαρών ρευστών Ογκομετρική (PvT) συμπεριφορά Α.Θ Παπαϊωάννου, Θερμοδυναμική: ΤΟΜΟΣ I, Αθήνα, 007 PvT ιάγραμμα για το νερό 3 ιαγράμματα φάσεων καθαρών ουσιών Α.Θ. Παπαϊωάννου,

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Θερμοδυναμική. Διαγράμματα Ισορροπίας Φάσεων. Διδάσκων : Καθηγητής Γ. Φλούδας

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Θερμοδυναμική. Διαγράμματα Ισορροπίας Φάσεων. Διδάσκων : Καθηγητής Γ. Φλούδας ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Θερμοδυναμική Διαγράμματα Ισορροπίας Φάσεων Διδάσκων : Καθηγητής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

ΤΟ MOL ΣΤΑ ΑΕΡΙΑ Η καταστατική εξίσωση των ιδανικών αερίων

ΤΟ MOL ΣΤΑ ΑΕΡΙΑ Η καταστατική εξίσωση των ιδανικών αερίων ΤΟ MOL ΣΤΑ ΑΕΡΙΑ Η καταστατική εξίσωση των ιδανικών αερίων Ελένη ανίλη, Χηµικός, Msc., Ph.D Η καταστατική εξίσωση των ιδανικών αερίων 2 Έχεις ποτέ χρησιµοποιήσει τρόµπα για να φουσκώσεις το λάστιχο του

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΝΟΜΟΙ ΑΕΡΙΩΝ

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΝΟΜΟΙ ΑΕΡΙΩΝ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΝΟΜΟΙ ΑΕΡΙΩΝ ΘΕΜΑ 2 1. Β.2 Ένα παιδί κρατάει στο χέρι του ένα μπαλόνι γεμάτο ήλιο που καταλαμβάνει όγκο 4 L (σε πίεση 1 atm και θερμοκρασία 27 C). Το μπαλόνι με κάποιο τρόπο ανεβαίνει σε

Διαβάστε περισσότερα

2. Να αποδείξετε ότι δυο ισόθερμες καμπύλες δεν είναι δυνατό να τέμνονται.

2. Να αποδείξετε ότι δυο ισόθερμες καμπύλες δεν είναι δυνατό να τέμνονται. Λυμένα παραδείγματα 1.Οι ισόθερμες καμπύλες σε δυο ποσοτήτων ιδανικού αερίου, n 1 και n 2 mol, στην ίδια θερμοκρασία Τ φαίνονται στο διπλανό διάγραμμα. Να αποδείξετε ότι είναι n 2 > n 1. ΑΠΑΝΤΗΣΗ: Παίρνουμε

Διαβάστε περισσότερα

Το σύστημα των μη αλληλεπιδραστικών ροών και η σημασία του στην ερμηνεία των ιδιοτήτων των ιδανικών αερίων.

Το σύστημα των μη αλληλεπιδραστικών ροών και η σημασία του στην ερμηνεία των ιδιοτήτων των ιδανικών αερίων. Το σύστημα των μη αλληλεπιδραστικών ροών και η σημασία του στην ερμηνεία των ιδιοτήτων των ιδανικών αερίων. Θεωρώντας τα αέρια σαν ουσίες αποτελούμενες από έναν καταπληκτικά μεγάλο αριθμό μικροσκοπικών

Διαβάστε περισσότερα

Γιώργος Νάνος Φυσικός MSc ΕΡΩΤΗΣΕΙΣ ΑΣΚΗΣΕΙΣ & ΠΡΟΒΛΗΜΑΤΑ. Φυσική. Θετικής & Τεχνολογικής Κατεύθυνσης. Ενιαίου Λυκείου

Γιώργος Νάνος Φυσικός MSc ΕΡΩΤΗΣΕΙΣ ΑΣΚΗΣΕΙΣ & ΠΡΟΒΛΗΜΑΤΑ. Φυσική. Θετικής & Τεχνολογικής Κατεύθυνσης. Ενιαίου Λυκείου MSc ΕΡΩΤΗΣΕΙΣ ΑΣΚΗΣΕΙΣ & ΠΡΟΒΛΗΜΑΤΑ Φυσική Θετικής & Τεχνολογικής Κατεύθυνσης Β Ενιαίου Λυκείου Φυσική Λυκείου Θετικής & Τεχνολογικής Κατεύθυνσης Περιεχόμενα * ΚΕΦΑΛΑΙΟ : Κινητική Θεωρία Αέριων ΕΝΟΤΗΤΑ

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1ο ΝΟΜΟΙ ΑΕΡΙΩΝ - ΘΕΡΜΟ ΥΝΑΜΙΚΗ

ΚΕΦΑΛΑΙΟ 1ο ΝΟΜΟΙ ΑΕΡΙΩΝ - ΘΕΡΜΟ ΥΝΑΜΙΚΗ ΚΕΦΑΛΑΙΟ ο ΝΟΜΟΙ ΑΕΡΙΩΝ -ΚΙΝΗΤΙΚΗ ΘΕΩΡΙΑ ΑΕΡΙΩΝ ΝΟΜΟΙ ΑΕΡΙΩΝ - ΘΕΡΜΟ ΥΝΑΜΙΚΗ Τι γνωρίζετε για την καταστατική εξίσωση των ιδανικών αερίων; Η καταστατική εξίσωση των αερίων είναι µια σχέση που συνδέει µεταξύ

Διαβάστε περισσότερα

Εφηρμοσμένη Θερμοδυναμική

Εφηρμοσμένη Θερμοδυναμική ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εφηρμοσμένη Θερμοδυναμική Ενότητα 11: Μίγματα Χατζηαθανασίου Βασίλειος Καδή Στυλιανή Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Η/Υ Άδειες

Διαβάστε περισσότερα

V (β) Αν κατά τη μεταβολή ΓΑ μεταφέρεται θερμότητα 22J από το αέριο στο περιβάλλον, να βρεθεί το έργο W ΓA.

V (β) Αν κατά τη μεταβολή ΓΑ μεταφέρεται θερμότητα 22J από το αέριο στο περιβάλλον, να βρεθεί το έργο W ΓA. Άσκηση 1 Ιδανικό αέριο εκτελεί διαδοχικά τις αντιστρεπτές μεταβολές ΑΒ, ΒΓ, ΓΑ που παριστάνονται στο διάγραμμα p V του σχήματος. (α) Αν δίνονται Q ΑΒΓ = 30J και W BΓ = 20J, να βρεθεί η μεταβολή της εσωτερικής

Διαβάστε περισσότερα

Α. ΝΟΜΟΙ ΑΕΡΙΩΝ. 1. Β1.3 Να αντιστοιχίσετε τις µεταβολές της αριστερής στήλης σε σχέσεις τις δεξιάς στήλης. 1) Ισόθερµη µεταβολή α)

Α. ΝΟΜΟΙ ΑΕΡΙΩΝ. 1. Β1.3 Να αντιστοιχίσετε τις µεταβολές της αριστερής στήλης σε σχέσεις τις δεξιάς στήλης. 1) Ισόθερµη µεταβολή α) Α. ΝΟΜΟΙ ΑΕΡΙΩΝ 1. Β1.3 Να αντιστοιχίσετε τις µεταβολές της αριστερής στήλης σε σχέσεις τις δεξιάς στήλης. 1) Ισόθερµη µεταβολή α) P = σταθ. V P 2) Ισόχωρη µεταβολή β) = σταθ. 3) Ισοβαρής µεταβολή γ) V

Διαβάστε περισσότερα

Υπό Γεωργίου Κολλίντζα

Υπό Γεωργίου Κολλίντζα ΔΕΙΓΜΑ ΑΠΟ ΤΗΝ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΧΙΛΙΑΔΩΝ ΕΡΩΤΗΣΕΩΝ ΓΝΩΣΤΙΚΟΥ ΦΥΣΙΚΩΝ (ΒΑΣΙΚΟ+ΣΥΝΕΞΕΤΑΖΟΜΕΝΟ) ΠΟΥ ΔΙΑΘΕΤΟΥΜΕ ΚΑΙ ΠΟΥ ΑΝΟΙΓΟΥΝ ΤΟ ΔΡΟΜΟ ΓΙΑ ΤΟΝ ΔΙΟΡΙΣΜΟ ΤΩΝ ΥΠΟΨΗΦΙΩΝ ΜΑΣ ΣΤΟ ΔΗΜΟΣΙΟ Υπό Γεωργίου Κολλίντζα

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 8 IAΣTOΛH KAI ΣYΣTOΛH

ΚΕΦΑΛΑΙΟ 8 IAΣTOΛH KAI ΣYΣTOΛH ΚΕΦΑΛΑΙΟ 8 IAΣTOΛH KAI ΣYΣTOΛH 8.1 Γραµµική διαστολή των στερεών Ένα στερεό σώµα θεωρείται µονοδιάστατο, όταν οι δύο διαστάσεις του είναι αµελητέες σε σχέση µε την τρίτη, το µήκος, όπως συµβαίνει στην

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4. Ιδιότητες των ρευστών του ταµιευτήρα

ΚΕΦΑΛΑΙΟ 4. Ιδιότητες των ρευστών του ταµιευτήρα ΚΕΦΑΛΑΙΟ 4 Ιδιότητες των ρευστών του ταµιευτήρα 4.1 Ογκοµετρική Συµπεριφορά και Φάσεις Συστηµάτων Υδρογονανθράκων Όπως αναφέρθηκε στο Κεφάλαιο 2, στον ταµιευτήρα απαντώνται µίγµατα υδρογονανθράκων η σύσταση

Διαβάστε περισσότερα

2). i = n i - n i - n i (2) 9-2

2). i = n i - n i - n i (2) 9-2 ΕΠΙΦΑΝΕΙΑΚΗ ΤΑΣΗ ΙΑΛΥΜΑΤΩΝ Έννοιες που πρέπει να γνωρίζετε: Εξίσωση Gbbs-Duhem, χηµικό δυναµικό συστατικού διαλύµατος Θέµα ασκήσεως: Μελέτη της εξάρτησης της επιφανειακής τάσης διαλυµάτων από την συγκέντρωση,

Διαβάστε περισσότερα

Σχέσεις ποσοτήτων χημικών σωματιδίων

Σχέσεις ποσοτήτων χημικών σωματιδίων Σχέσεις ποσοτήτων χημικών σωματιδίων 20-1. Σχέση mol Ar (για άτομα) και mol Mr (για μόρια) To 1 mol ατόμων ζυγίζει Ar g Tα n mol ατόμων ζυγίζουν m g n m m 1 Ar Ar To 1 mol μορίων ζυγίζει Μr g Tα n mol

Διαβάστε περισσότερα

Στοιχειομετρία. Το mol (ή και mole)

Στοιχειομετρία. Το mol (ή και mole) Στοιχειομετρία. Το mol (ή και mole) Μια παρουσίαση για την Α Λυκείου ΕΠΑΛ από τον Π.ΑΡΦΑΝΗ, 2011 Μια χημική αντίδραση Κάντε κλικ στην εικόνα Μια χημική αντίδραση Ωραίες οι αντιδράσεις ιδίως αν γίνεται

Διαβάστε περισσότερα

http://remote.physik.tu-berlin.de/

http://remote.physik.tu-berlin.de/ Εργαστήριο: Remote Farm (Απομακρυσμένη Φάρμα) http://remote.physik.tu-berlin.de/ Τα εξ αποστάσεως πειράματα είναι περιβάλλοντα ρεαλιστικά, κατασκευασμένα στο Ινστιτούτο Τεχνολογίας του Βερολίνου, με όλες

Διαβάστε περισσότερα

ΝΟΜΟΙ ΑΕΡΙΩΝ-ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΘΕΜΑ Α

ΝΟΜΟΙ ΑΕΡΙΩΝ-ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΘΕΜΑ Α ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Β ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΝΟΜΟΙ ΑΕΡΙΩΝ-ΘΕΡΜΟΔΥΝΑΜΙΚΗ 28-2-2015 ΘΕΜΑ Α Να γράψετε στο τετράδιο σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράμμα

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Θερμοδυναμική

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Θερμοδυναμική ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Θερμοδυναμική Ενότητα 1 : Εισαγωγή Δρ Γεώργιος Αλέξης Τμήμα Μηχανολόγων Μηχανικών Τ.Ε. Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

Στις ερωτήσεις 1.1-1.4, να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση.

Στις ερωτήσεις 1.1-1.4, να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση. ΘΕΜΑ 1ο Στις ερωτήσεις 1.1-1.4, να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση. 1.1 Η εξαέρωση ενός υγρού µόνο από την επιφάνειά του, σε σταθερή

Διαβάστε περισσότερα

ΚΛΑΣΙΚΗ ΘΕΡΜΟ ΥΝΑΜΙΚΗ ΜΑΘΗΜΑ-ΙΙΙ ΤΑ ΘΕΡΜΟ ΥΝΑΜΙΚΑ ΑΞΙΩΜΑΤ

ΚΛΑΣΙΚΗ ΘΕΡΜΟ ΥΝΑΜΙΚΗ ΜΑΘΗΜΑ-ΙΙΙ ΤΑ ΘΕΡΜΟ ΥΝΑΜΙΚΑ ΑΞΙΩΜΑΤ ΚΛΑΣΙΚΗ ΘΕΡΜΟ ΥΝΑΜΙΚΗ ΜΑΘΗΜΑ-ΙΙΙ ΤΑ ΘΕΡΜΟ ΥΝΑΜΙΚΑ ΑΞΙΩΜΑΤΑ Τµήµα Χηµείας, Πανεπιστήµιο Κρήτης, και Ινστιτούτο Ηλεκτρονικής οµής και Λέιζερ, Ιδρυµα Τεχνολογίας και Ερευνας, Ηράκλειο, Κρήτη http://tccc.iesl.forth.gr/education/local.html

Διαβάστε περισσότερα

Τ, Κ Η 2 Ο(g) CΟ(g) CO 2 (g) Λύση Για τη συγκεκριμένη αντίδραση στους 1300 Κ έχουμε:

Τ, Κ Η 2 Ο(g) CΟ(g) CO 2 (g) Λύση Για τη συγκεκριμένη αντίδραση στους 1300 Κ έχουμε: ΘΕΜΑΤΑ ΤΕΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΗ ΦΥΣΙΚΟΧΗΜΕΙΑ - ΑΣΚΗΣΕΙΣ 5-6 (Α. Χημική Θερμοδυναμική) η Άσκηση Η αντίδραση CO(g) + H O(g) CO (g) + H (g) γίνεται σε θερμοκρασία 3 Κ. Να υπολογιστεί το κλάσμα των ατμών του

Διαβάστε περισσότερα

Print to PDF without this message by purchasing novapdf (http://www.novapdf.com/)

Print to PDF without this message by purchasing novapdf (http://www.novapdf.com/) ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΓΙΑ ΤΟΥΣ ΧΗΜΙΚΟΥΣ ΥΠΟΛΟΓΙΣΜΟΥΣ ΘΕΩΡΙΑ 1 Μol μιας ουσίας (στοιχείου ή ενώσεως) είναι η ποσότητα ύλης που αποτελείται από N A = 6,0220453 x 10 23 σωματίδια. O αριθμός N A = 6,0220453 x 10

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΤΕΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΗ ΦΥΣΙΚΟΧΗΜΕΙΑ (Α. Χημική Θερμοδυναμική) 1 η Άσκηση 1000 mol ιδανικού αερίου με cv J mol -1 K -1 και c

ΘΕΜΑΤΑ ΤΕΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΗ ΦΥΣΙΚΟΧΗΜΕΙΑ (Α. Χημική Θερμοδυναμική) 1 η Άσκηση 1000 mol ιδανικού αερίου με cv J mol -1 K -1 και c ΘΕΜΑΤΑ ΤΕΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΗ ΦΥΣΙΚΟΧΗΜΕΙΑ 3-4 (Α. Χημική Θερμοδυναμική) η Άσκηση mol ιδανικού αερίου με c.88 J mol - K - και c p 9. J mol - K - βρίσκονται σε αρχική πίεση p =.3 kpa και θερμοκρασία Τ =

Διαβάστε περισσότερα

ΜΕΤΡΗΣΗ ΤΟΥ ΛΟΓΟΥ γ = C p / C v ΤΟΥ ΑΕΡΑ

ΜΕΤΡΗΣΗ ΤΟΥ ΛΟΓΟΥ γ = C p / C v ΤΟΥ ΑΕΡΑ 1 ο ΕΚΦΕ (Ν. ΣΜΥΡΝΗΣ) Δ Δ/ΝΣΗΣ Δ. Ε. ΑΘΗΝΑΣ 1 ΜΕΤΡΗΣΗ ΤΟΥ ΛΟΓΟΥ γ = C p / C v ΤΟΥ ΑΕΡΑ (με λογάριθμο) Α. ΣΤΟΧΟΙ Η εξοικείωση με τη χρήση απλών πειραματικών διατάξεων. Η εξοικείωση σε μετρήσεις θερμοκρασίας,

Διαβάστε περισσότερα

Παππάς Χρήστος. Επίκουρος καθηγητής

Παππάς Χρήστος. Επίκουρος καθηγητής Παππάς Χρήστος Επίκουρος καθηγητής 1 ΑΝΤΙΚΕΙΜΕΝΟ ΤΗΣ ΧΗΜΙΚΗΣ ΘΕΡΜΟ ΥΝΑΜΙΚΗΣ Η χημική θερμοδυναμική ασχολείται με τις ενεργειακές μεταβολές που συνοδεύουν μια χημική αντίδραση. Προβλέπει: ΠΛΕΟΝΕΚΤΗΜΑΤΑ

Διαβάστε περισσότερα

Generated by Foxit PDF Creator Foxit Software http://www.foxitsoftware.com For evaluation only. ΑΣΚΗΣΗ ΜΕΤΡΗΣΗ ΤΗΣ ΕΙΔΙΚΗΣ ΘΕΡΜΟΤΗΤΑΣ ΥΓΡΟΥ

Generated by Foxit PDF Creator Foxit Software http://www.foxitsoftware.com For evaluation only. ΑΣΚΗΣΗ ΜΕΤΡΗΣΗ ΤΗΣ ΕΙΔΙΚΗΣ ΘΕΡΜΟΤΗΤΑΣ ΥΓΡΟΥ ΑΣΚΗΣΗ 13 ΜΕΤΡΗΣΗ ΤΗΣ ΕΙΔΙΚΗΣ ΘΕΡΜΟΤΗΤΑΣ ΥΓΡΟΥ ΜΕΡΟΣ ΠΡΩΤΟ ΒΑΣΙΚΕΣ ΘΕΩΡΗΤΙΚΕΣ ΓΝΩΣΕΙΣ 1.1. Εσωτερική ενέργεια Γνωρίζουμε ότι τα μόρια των αερίων κινούνται άτακτα και προς όλες τις διευθύνσεις με ταχύτητες,

Διαβάστε περισσότερα

ΜΕΤΑΒΟΛΕΣ ΚΑΤΑΣΤΑΣΗΣ ΑΕΡΙΩΝ. 1. Δώστε τον ορισμό τον τύπο και το διάγραμμα σε άξονες P v της ισόθερμης μεταβολής. σελ. 10. και

ΜΕΤΑΒΟΛΕΣ ΚΑΤΑΣΤΑΣΗΣ ΑΕΡΙΩΝ. 1. Δώστε τον ορισμό τον τύπο και το διάγραμμα σε άξονες P v της ισόθερμης μεταβολής. σελ. 10. και ΜΕΤΑΒΟΛΕΣ ΚΑΤΑΣΤΑΣΗΣ ΑΕΡΙΩΝ 1. Δώστε τον ορισμό τον τύπο και το διάγραμμα σε άξονες P v της ισόθερμης μεταβολής. σελ. 10 ορισμός : Ισόθερμη, ονομάζεται η μεταβολή κατά τη διάρκεια της οποίας η θερμοκρασία

Διαβάστε περισσότερα

=5L θερμαίνεται υπό σταθερή πίεση

=5L θερμαίνεται υπό σταθερή πίεση 1) Ένας μαθητής γεμίζει τους πνεύμονες του που έχουν όγκο 5,8L, με αέρα σε πίεση 1atm. O μαθητής πιέζει το στέρνο κρατώντας το στόμα του κλειστό και μειώνει την χωρητικότητα των πνευμόνων του κατά 0,8L.

Διαβάστε περισσότερα

P,V PV=nRT : (p), ) ) ) :

P,V PV=nRT :     (p), ) ) ) : Εισαγωγή: ΚΙΝΗΤΙΚΗ ΘΕΩΡΙΑ ΤΩΝ ΑΕΡΙΩΝ ΘΕΡΜΟ ΥΝΑΜΙΚΟ ΣΥΣΤΗΜΑ 1.Τι ονοµάζουµε σύστηµα και τι περιβάλλον ενός φυσικού συστήµατος; Σύστηµα είναι ένα τµήµα του φυσικού κόσµου που διαχωρίζεται από τον υπόλοιπο

Διαβάστε περισσότερα

panagiotisathanasopoulos.gr

panagiotisathanasopoulos.gr Χημική Ισορροπία 61 Παναγιώτης Αθανασόπουλος Χημικός, Διδάκτωρ Πανεπιστημίου Πατρών Χημικός Διδάκτωρ Παν. Πατρών 62 Τι ονομάζεται κλειστό χημικό σύστημα; Παναγιώτης Αθανασόπουλος Κλειστό ονομάζεται το

Διαβάστε περισσότερα

ΜΟΡΦΕΣ ΕΝΕΡΓΕΙΑΣ. ΕΝΕΡΓΕΙΑ ΔΙΕΡΓΑΣΙΩΝ (Μεταβατικές) ΕΝΕΡΓΕΙΑ ΣΥΣΤΗΜΑΤΟΣ ΕΡΓΟ ΘΕΡΜΟΤΗΤΑ

ΜΟΡΦΕΣ ΕΝΕΡΓΕΙΑΣ. ΕΝΕΡΓΕΙΑ ΔΙΕΡΓΑΣΙΩΝ (Μεταβατικές) ΕΝΕΡΓΕΙΑ ΣΥΣΤΗΜΑΤΟΣ ΕΡΓΟ ΘΕΡΜΟΤΗΤΑ Έργο - Θερμότητα ΜΟΡΦΕΣ ΕΝΕΡΓΕΙΑΣ ΕΝΕΡΓΕΙΑ ΔΙΕΡΓΑΣΙΩΝ (Μεταβατικές) ΕΡΓΟ ΘΕΡΜΟΤΗΤΑ ΕΝΕΡΓΕΙΑ ΣΥΣΤΗΜΑΤΟΣ ΕΞΩΤΕΡΙΚΗ (Κινητική, Δυναμική) ΕΣΩΤΕΡΙΚΗ (Εσωτερική [U], Ενθαλπία [Η]) Χαρακτηριστικά και Σύμβαση

Διαβάστε περισσότερα

Κινητική θεωρία ιδανικών αερίων

Κινητική θεωρία ιδανικών αερίων Κινητική θεωρία ιδανικών αερίων (γέφυρα μακροσκοπικών και μικροσκοπικών ποσοτήτων) Εμπειρικές σχέσεις Boyle, Gay-Lussac, Charles, υπόθεση Avogadro «όταν δυο ή περισσότερα αέρια έχουν τα ίδια V, P και Τ

Διαβάστε περισσότερα

Χηµεία Θετικής Κατεύθυνσης Β Λυκείου 2001

Χηµεία Θετικής Κατεύθυνσης Β Λυκείου 2001 Χηµεία Θετικής Κατεύθυνσης Β Λυκείου 001 Ζήτηµα 1 ο Στις ερωτήσεις 1.1-1.4, να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση. 1.1 Η εξαέρωση ενός

Διαβάστε περισσότερα