F 2 ( F / T ) T T. (β) Να δείξετε ότι µετασχηµατισµός Legendre της J(1/T,V) που δίνει το

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "F 2 ( F / T ) T T. (β) Να δείξετε ότι µετασχηµατισµός Legendre της J(1/T,V) που δίνει το"

Transcript

1 [1] Να αποδειχθούν οι παρακάτω εξισώσεις: F ( F / T ) U = F T = T T T V F CV T = T V G G T H = G T = T ( / ) T P T P G CP T = T P [] Μπορούµε να ορίσουµε ένα άλλο σετ χαρακτηριστικών συναρτήσεων καθαρής ουσίας µε µετασχηµατισµό Legendre της εντροπίας S(U,V) αντί της εσωτερικής ενέργειας U(V,S). Τα θερµοδυναµικά δυναµικά που προκύπτουν είναι αρκετά χρήσιµα στη στατιστική µηχανική. (α) Να δείξετε ότι µετασχηµατισµός Legendre της S(U,V) που δίνει τo θερµοδυναµικό δυναµικό J(1/T, V), γνωστή και σαν συνάρτηση Massieu, δίνεται από U F J = + S = T T και U P dj = dt + dv T T (β) Να δείξετε ότι µετασχηµατισµός Legendre της J(1/T,V) που δίνει το θερµοδυναµικό δυναµικό Υ(1/T, P/T), γνωστή και σαν συνάρτηση Planck, δίνεται από H G Y = + S = T T και H V dy = dt dp T T [3] Αποδείξτε την τρίτη TdS εξίσωση: T T TdS = CV dp+ CP dv P V V P [4] Η πίεση σε 500g χαλκού αυξάνεται αντιστρεπτά και ισόθερµα από 1 σε 500 atm στους 5 ο C. ίνονται, ρ=8.9x10 3 kg/m 3, β=49.5x10-6 Κ -1, κ Τ =6.x10-1 Pa -1 και ειδική θερµότητα c P =385 J/kg K. (α) Ποιο το ποσό θερµότητας που µεταφέρθηκε κατά τη συµπίεση (β) Ποιο το έργο που εκτελέστηκε κατά τη διάρκεια της συµπίεσης (γ) Να υπολογιστεί η µεταβολή στην εσωτερική ενέργεια (δ) Να υπολογιστεί η µεταβολή της θερµοκρασίας αν ο χαλκός είχε υποστεί µια αντιστρεπτή αδιαβατική συµπίεση. V 1

2 [5] (a) Ένα mol αερίου εκτονώνεται αντιστρεπτά και ισόθερµα από αρχικό όγκο 1 l σε τελικό όγκο.4 l. Υπολογίστε το ποσό θερµότητας που έχει µεταφερθεί αν (i) το αέριο είναι ιδανικό (Pυ=RT), (ii) ηµι-ιδανικό [P(υ-b)=RT] και (iii) τύπου van der Waals [(P+a/υ )(υ-b)=rt]. Θα µπορούσε το πείραµα αυτό να χρησιµοποιηθεί για το διαχωρισµό ιδανικών και πραγµατικών αερίων; ίνονται: T=0 0 C, a=0. Nm 4 /mol, b=x10-5 m 3 /mol, R=8.314 J/Kmol (b) 15 cm 3 υδραργύρου που βρίσκονται στους 0 0 C συµπιέζονται αντιστρεπτά και ισόθερµα από 1 σε 1000 atm. Να υπολογισθούν: (i) το ποσό θερµότητος, (ii) το έργο που εκτελέστηκε στο σύστηµα και (iii) η µεταβολή στην εσωτερική ενέργεια του συστήµατος. ίνονται: ο συντελεστής θερµικής διαστολής (1.8x10-4 K -1 ) και ο συντελεστής ισόθερµης συµπιεστότητας (4x10-11 Pa -1 ) του υδραργύρου (1atm=1.013x10 5 Pa). (Ιούνιος 004) [6] Ενα αέριο έχει καταστατική εξίσωση, P (υ b) = RT, όπου b είναι µια σταθερά και το c V είναι σταθερό. Να δείξετε ότι: (α) Η εσωτερική ενέργεια u είναι συνάρτηση µόνο της θερµοκρασίας T. (β) Ο λόγος γ, είναι σταθερός. (γ) Για µια αδιαβατική µεταβολή ισχύει: P( υ b) γ =σταθερά (Σεπτ. 001) [7] Ένα αέριο υπακούει στην καταστατική εξίσωση P(υ-b)=RT. Να υπολογιστεί η µεταβολή στη θερµοκρασία του κατά τη διάρκεια: (α) µιας ελεύθερης εκτόνωσης και (β) µιας ελεγχόµενης εκτόνωσης (Joule-Thomson). (Σεπτέµβριος 00) [8] Το ερώτηµα κατά πόσον η θερµοκρασία ενός αερίου κατά τη διάρκεια µιας ελεύθερης εκτόνωσης µεταβάλλεται, και αν ναι, ποιο είναι το πρόσηµο της µεταβολής, έχει απασχολήσει τους επιστήµονες από το 1843 (Joule). Για τρία διαφορετικά αέρια που περιγράφονται από τις καταστατικές εξισώσεις: a (i) Pυ= RT, (ii) P( υ b) = RT και (iii) P + ( υ b) = RT υ εξετάστε αν θα υπάρξει µεταβολή της θερµοκρασίας και βρείτε το µέγεθος της µεταβολής. ίνονται: υ αρχικός, υ τελικός, οι σταθερές α και b, και το c v. (Ιούνιος 00). [9] (α) Να αποδειχθεί η εξίσωση: C P V T = P T T P (β) Να δειχθεί ότι το C P ενός ιδανικού αερίου είναι συνάρτηση µόνο του Τ. (γ) Για ένα αέριο µε καταστατική εξίσωση P υ = RT + BP όπου Β είναι συνάρτηση µόνο της θερµοκρασίας, να δειχθεί ότι: d B c P = T P+ ( c P ) 0 dt όπου (c P ) 0 είναι η τιµή σε πολύ χαµηλές πιέσεις.

3 [10] Το θείο όταν θερµανθεί αλλάζει φάσεις: από το ροµβικό κρυσταλλικό πλέγµα στο µονοκλινές και σε πιο ψηλές θερµοκρασίες στο υγρό (τήγµα). Η θερµοκρασιακή εξάρτηση της γραµµοµοριακής θερµοχωρητικότητας για τις διαφορετικές φάσεις δίνεται στον παρακάτω πίνακα: Φάση Θερµοχωρητικότητα (J/Kmol) Περιοχή θερµοκρασιών (Κ) Ροµβικό c P =15+6.x10-3 T 98<T<368.6 Μονοκλινές c P = x10-3 T 368.6<T<Σηµείο Τήξης (Τ m) Υγρό (τήγµα) c P =.7+1x10-3 T Τ m <T<Σηµείο Βρασµού Επίσης δίνονται: Η θερµοκρασία µετάβασης από το ροµβικό στο µονοκλινές= C. Το σηµείο Τήξης Τ m (µονοκλινές-υγρό)=119 0 C. Η ενθαλπία της µετάβασης από το ροµβικό στο µονοκλινές=0.361 kj/mol ( Η P = Q) Η ενθαλπία τήξης (µονοκλινές-υγρό)=1.6 kj/mol. Με βάση τα παραπάνω δεδοµένα υπολογίστε τη µεταβολή της εντροπίας όταν το θείο θερµανθεί από τους 7 στους C. (Σεπτέµβριος 003) [11] Από αριστερά: (κρύσταλλος, σµηκτική, νηµατική και ισότροπη φάση υγρού κρυστάλλου) Οι υγροί κρύσταλλοι αποτελούνται από µικρά ανισότροπα µόρια που έχουν την ικανότητα προσανατολισµού. Ανάλογα µε την προσανατολιστική τους τάξη και την τάξη από απλή µετατόπιση δηµιουργούν φάσεις γνωστές σαν: σµηκτική (τάξη από µετατόπιση και από προσανατολισµό), νηµατική (τάξη από µετατόπιση) ή ισότροπη (απουσία τάξης). Επιπλέον, σε χαµηλές θερµοκρασίες τα µόρια κρυσταλλώνονται όπως στο σχήµα. Για ένα θερµοτροπικό υγρό κρύσταλλο µε την αλληλουχία των φάσεων του σχήµατος: (α) να γίνει η γραφική παράσταση της συνάρτησης Gibbs συναρτήσει της θερµοκρασίας και της πίεσης καθώς και της πρώτης παραγώγου της συνάρτησης Gibbs ως προς T και P. (β) Με χρήση της πρώτης παραγώγου της συνάρτησης Gibbs ως προς T και P, αποδείξτε την εξίσωση Clausius-Clapeyron. (γ) είξτε ότι µία ουσία µε αρνητική κλίση της καµπύλης τήξης (π.χ. νερό), συρρικνώνεται κατά την τήξη. (Ιούνιος 00) 3

4 [1] Ο συντελεστής Joule-Thomson µ, είναι ένα µέτρο της µεταβολής της θερµοκρασίας στη διάρκεια µιας ελεγχόµενης εκτόνωσης. Παρόµοιο µέτρο της µεταβολής της θερµοκρασίας µε µία ισεντροπική αλλαγή της πίεσης είναι ο συντελεστής µ T S, µ S =. P S Να δειχθεί ότι: V µ S µ =. CP [13] Τα παρακάτω διαγράµµατα δίνουν την εξάρτηση του γραµµοµοριακού όγκου και της γραµµοµοριακής θερµοχωρητικότητας της αµµωνίας (ΝΗ 3 ) από τη θερµοκρασία. Τα αέριο αυτό εισέρχεται σε ένα πείραµα ελεγχόµενης εκτόνωσης Joule-Thomson. (α) Να διερευνηθεί η δυνατότητα ψύξης της αµµωνίας σε Τ=575 και Τ=500 Κ. (β) Κατά τη διάρκεια ενός κύκλου ελεγχόµενης εκτόνωσης η πίεση µεταβάλλεται κατά 100 atm. Να υπολογισθεί η απόδοση του κύκλου (δηλαδή η αντίστοιχη µεταβολή της θερµοκρασίας) σε Τ=575 και Τ=500 Κ. (1atm=1.013x10 5 Pa) (Ιούνιος 004) υ (cm 3 /mol) c P (J/mol K) T (K) T (K) [14] είξτε ότι στο πείραµα ελεγχόµενης εκτόνωσης Joule-Thomson: (α) Η i =H f ενώ S f >S i T 1 υ (β) = T υ P H c p T P (γ) για van der Waals αέριο µε καταστατική εξίσωση: RT a υ = + R b P T (α και b σταθερές) να υπολογισθεί ο συντελεστής Joule-Thomson και από την γραφική παράσταση σα συνάρτηση της θερµοκρασίας να βρεθεί η θερµοκρασία αναστροφής και να διερευνηθούν οι συνθήκες για θέρµανση και ψύξη (Ιούνιος 001). 4

5 [15] Ένα αέριο υπακούει στην καταστατική εξίσωση RT υ = + at P και η γραµµοµοριακή θερµοχωρητικότητα υπό σταθερή πίεση δίνεται από την σχέση c P =A+BT+CP, όπου α, Α, Β, C σταθερές (ανεξάρτητες της θερµοκρασίας και πίεσης) και α>0. (α) Είναι δυνατή η θέρµανση του παραπάνω αερίου σε ένα πείραµα ελεγχόµενης εκτόνωσης Joule-Thomson; (β) Να υπολογιστεί η γραµµοµοριακή θερµοχωρητικότητα υπό σταθερό όγκο συναρτήσει των α, R, P και Τ (µόνο). Για ποιες τιµές του συντελεστή α ισχύει ότι c P - c V =R; (Σεπτέµβριος 003) [16] (α) είξτε ότι ένα αέριο για το οποίο ( υ/ Τ) P = υ/t δεν µπορεί να ψυχθεί σε µια συσκευή ελεγχόµενης εκτόνωσης Joule-Thomson. (β) Η καµπύλη αναστροφής του 4 He δίνεται από τη σχέση: P= T 0.13T (Τ σε Κ και P σε atm). Είναι δυνατή η ψύξη αερίου που βρίσκεται στους 39 Κ µε χρήση 4 He; Ποια τα όρια της θερµοκρασίας για να είναι δυνατή η ψύξη; (γ) Ποια η µέγιστη πίεση και η αντίστοιχη θερµοκρασία του σηµείου της καµπύλης αναστροφής; (Σεπτέµβριος 001) [17] (α) το αέριο µε καταστατική εξίσωση P(υ-b)=RT διαφέρει από ένα ιδανικό αέριο (µε καταστατική εξίσωση Pυ=RT) ως προς τις διαστάσεις των µορίων του που δεν είναι αµελητέες. Υποδείξτε (µε πλήρη ανάλυση) το κατάλληλο πείραµα µε το οποίο µπορούµε να διακρίνουµε αν ένα αέριο είναι ιδανικό ή σχεδόν ιδανικό (P(υ-b)=RT) καθώς και πειράµατα που δεν είναι δυνατόν να διακρίνουν το είδος του αερίου. (β) Με τη χρήση ενός αναπτύγµατος Virial (Pυ=RT+B P+C P, µε τους συντελεστές Virial να είναι συναρτήσεις της θερµοκρασίας µόνο), αποδείξτε ότι για πραγµατικά αέρια ο συντελεστής Joule-Thomson µπορεί να είναι θετικός, µηδέν ή αρνητικός. Από τι εξαρτάται το πρόσηµο του συντελεστή και ποια η συνθήκη αναστροφής; (Ιούνιος 003) [18] (α) Αποδείξτε την εξίσωση Clausius-Clapeyron µε χρήση ενός απειροελάχιστου κύκλου Carnot. (β) Υπολογίστε την ενθαλπία εξάτµισης του νερού (σε J/g) από τα παρακάτω δεδοµένα: θερµοκρασία: 100 o C, dp/dt=0.036 atm/k, πυκνότητα νερού: 0.96 g/cm 3 και πυκνότητα υδρατµών: 5.973x10-4 g/cm 3 (1atm=1.01x10 5 N/m =1.01x10 5 Pa). (Ιούνιος 003) [19] (α) Με χρήση ενός απειροελάχιστου κύκλου Carnot ενός απλού υγρού να S P αποδείξετε την τρίτη εξίσωση Maxwell: = V T T V (β) Ο µόλυβδος τήκεται σε ατµοσφαιρική πίεση στους 600 Κ ενώ η πυκνότητά του ελαττώνεται από σε g/cm 3 και η ενθαλπία τήξης είναι 4.5 J/g. Να υπολογίσετε το σηµείο τήξης σε πίεση 1.013x10 7 Pa. (1atm=1.013x10 5 Pa) (Ιούνιος 001). 5

6 [0] Να αποδειχθεί η εξίσωση των Clausius-Clapeyron από την εξίσωση Maxwell: P T V S = V T [1] Αποδείξτε ότι κατά τη διάρκεια µιας µετάβασης πρώτης τάξης: (α) η εντροπία ολόκληρου του συστήµατος είναι γραµµική συνάρτηση του όγκου (β) η µεταβολή της εσωτερικής ενέργειας δίνεται από τη σχέση: d lnt U = H 1 d ln P (Ιούνιος 004) [] Ισότροπη P=1MPa P=0 MPa P=40 MPa P=60 MPa 0.06 Νηµατική P=90 MPa V (cm 3 /g) Σµηκτική T ΣΝ (P) T NI (P) P=10 MPa P=160 MPa T ( 0 C) Ένας θερµοτροπικός υγρός κρύσταλλος εµφανίζει 3 φάσεις (σµηκτική, νηµατική, ισότροπη) και ο ειδικός όγκος παρουσιάζει την εξάρτηση από την Τ και P του σχήµατος. (α) Να γίνει η γραφική παράσταση της εντροπίας συναρτήσει της θερµοκρασίας (για ατµοσφαιρική πίεση). (β) Αν η µεταβολή της ενθαλπίας είναι 3 και J/g κατά τις µεταβάσεις Σµηκτική- Νηµατική και Νηµατική-Ισότροπη, αντίστοιχα, να ελεγχθεί αν κατά τις µεταπτώσεις ισχύει η εξίσωση Clausius-Clapeyron. (γ) Να κατασκευαστεί το διάγραµµα φάσεων της ουσίας (Σεπτέµβριος 00) 6

7 [3] (α) Αποδείξτε ότι στα διαγράµµατα φάσεων µιας καθαρής ουσίας η γραµµή ισορροπίας υγρού-ατµού έχει πάντα θετική κλίση. (β) Η τάση ατµών του διοξειδίου του θείου στην υγρά και τη στερεά κατάσταση δίνονται αντίστοιχα από τις εξισώσεις logp=1, /t και logp=10, /t (η P σε atm) Υπολογίστε τη θερµοκρασία και την πίεση του τριπλού σηµείου του διοξειδίου του θείου. (Ιούνιος 005) [4] Η λανθάνουσα θερµότητα τήξης της µορφής του πάγου Ι, είναι 3.34x10 5 J/Kg στους 0 0 C και σε ατµοσφαιρική πίεση. Αν η µεταβολή του ειδικού όγκου κατά την τήξη είναι 9.05x10-5 m 3 /Kg, να υπολογιστεί η µεταβολή του σηµείου τήξης εξ αιτίας της µεταβολής της πίεσης. [5] Όταν οι δυο φάσεις µιας καθαρής ουσίας συνυπάρχουν σε ισορροπίας ισχύει: CV dp = TV ks dt όπου dp/dt είναι η κλίση της γραµµής συνύπαρξης των δυο φάσεων. Να αποδειχθεί η παραπάνω έκφραση. ίνεται ότι η µεταβολή είναι πρώτης τάξης και ότι σε µεταβολές πρώτης τάξης η θερµοχωρητικότητα υπό σταθερό όγκο όπως και η αδιαβατική συµπιεστότητα δεν απειρίζονται.. (Σεπτέµβριος 005) [6] Ένα ισότροπο και οµοιογενές µαγνητικό υλικό όγκου V µαγνητικής επιδεκτικότητα; χ (Μ=χΗ, όπου Μ και Η είναι η µαγνήτιση και η µαγνητική ένταση, αντίστοιχα) τίθεται σε οµοιογενές µαγνητικό πεδίο Η. Το υλικό ακολουθεί τον νόµο του Curie, χ=c/t, όπου C είναι µια σταθερά. (α) Να εκλεγούν οι κατάλληλες θερµοδυναµικές συντεταγµένες και να βρεθεί το έργο για την αύξηση της µαγνήτισης (µαγνητικό έργο) (β) Να βρεθεί το έργο που γίνεται κατά τη διάρκεια µιας αντιστρεπτής ισόθερµης µεταβολής της κατάστασης του υλικού (γ)υπολογίστε την εντροπία S(H,T) συναρτήσει της S(0,Τ) και στη συνέχεια το ( Τ/ Η) s. Που µπορεί να χρησιµεύσει το παραπάνω αποτέλεσµα; (Σεπτέµβριος 001) [7] Ένα ισότροπο διηλεκτρικό υλικό εισάγεται στους οπλισµούς ενός πυκνωτή. Η ολική πόλωση του υλικού ακολουθεί την καταστατική εξίσωση P=χEV, όπου V είναι ο όγκος, Ε είναι η ένταση του ηλεκτρικού πεδίου και το χ εξαρτάται µόνο από τη θερµοκρασία. (α) Να εκλεγούν οι κατάλληλες θερµοδυναµικές συντεταγµένες και να βρεθεί το έργο για την αύξηση της ολικής πόλωσης (ηλεκτρικό έργο) (β) Να βρεθεί το έργο κατά τη διάρκεια µιας ηµιστατικής ισόθερµης µεταβολής της κατάστασης του υλικού. (Σεπτέµβριος 00) 7

. ΠΡΩΤΟΣ ΘΕΡΜΟ ΥΝΑΜΙΚΟΣ ΝΟΜΟΣ

. ΠΡΩΤΟΣ ΘΕΡΜΟ ΥΝΑΜΙΚΟΣ ΝΟΜΟΣ . ΠΡΩΤΟΣ ΘΕΡΜΟ ΥΝΑΜΙΚΟΣ ΝΟΜΟΣ 1. Σε µια ισόθερµη µεταβολή : α) Το αέριο µεταβάλλεται µε σταθερή θερµότητα β) Η µεταβολή της εσωτερικής ενέργειας είναι µηδέν V W = PV ln V γ) Το έργο που παράγεται δίνεται

Διαβάστε περισσότερα

Οι ιδιότητες των αερίων και καταστατικές εξισώσεις. Θεόδωρος Λαζαρίδης Σημειώσεις για τις παραδόσεις του μαθήματος Φυσικοχημεία Ι

Οι ιδιότητες των αερίων και καταστατικές εξισώσεις. Θεόδωρος Λαζαρίδης Σημειώσεις για τις παραδόσεις του μαθήματος Φυσικοχημεία Ι Οι ιδιότητες των αερίων και καταστατικές εξισώσεις Θεόδωρος Λαζαρίδης Σημειώσεις για τις παραδόσεις του μαθήματος Φυσικοχημεία Ι Τι είναι αέριο; Λέμε ότι μία ουσία βρίσκεται στην αέρια κατάσταση όταν αυθόρμητα

Διαβάστε περισσότερα

E. ΘΕΡΜΙΚΕΣ ΜΗΧΑΝΕΣ. 2. Β2.26 Με ποιόν τρόπο αποβάλλεται θερµότητα κατά τη λειτουργία της µηχανής του αυτοκινήτου;

E. ΘΕΡΜΙΚΕΣ ΜΗΧΑΝΕΣ. 2. Β2.26 Με ποιόν τρόπο αποβάλλεται θερµότητα κατά τη λειτουργία της µηχανής του αυτοκινήτου; E. ΘΕΡΜΙΚΕΣ ΜΗΧΑΝΕΣ 1. Β2.25 Θερµική µηχανή είναι, α) το τρόλεϊ; β) ο φούρνος; γ) το ποδήλατο; δ) ο κινητήρας του αεροπλάνου; Επιλέξτε τη σωστή απάντηση. 2. Β2.26 Με ποιόν τρόπο αποβάλλεται θερµότητα κατά

Διαβάστε περισσότερα

6.2. ΤΗΞΗ ΚΑΙ ΠΗΞΗ, ΛΑΝΘΑΝΟΥΣΕΣ ΘΕΡΜΟΤΗΤΕΣ

6.2. ΤΗΞΗ ΚΑΙ ΠΗΞΗ, ΛΑΝΘΑΝΟΥΣΕΣ ΘΕΡΜΟΤΗΤΕΣ 45 6.1. ΓΕΝΙΚΑ ΠΕΡΙ ΦΑΣΕΩΝ ΜΕΤΑΤΡΟΠΕΣ ΦΑΣΕΩΝ Όλα τα σώµατα,στερεά -ά-αέρια, που υπάρχουν στη φύση βρίσκονται σε µια από τις τρεις φάσεις ή σε δύο ή και τις τρεις. Όλα τα σώµατα µπορεί να αλλάξουν φάση

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ Α. και d B οι πυκνότητα του αερίου στις καταστάσεις Α και Β αντίστοιχα, τότε

ΔΙΑΓΩΝΙΣΜΑ Α. και d B οι πυκνότητα του αερίου στις καταστάσεις Α και Β αντίστοιχα, τότε ΔΙΑΓΩΝΙΣΜΑ Α Θέµα ο Στις ερωτήσεις -4 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση Σύµφωνα µε την κινητική θεωρία των ιδανικών αερίων, η πίεση

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ ΕΥΤΕΡΟ ΘΕΡΜΟ ΥΝΑΜΙΚΗ

ΚΕΦΑΛΑΙΟ ΕΥΤΕΡΟ ΘΕΡΜΟ ΥΝΑΜΙΚΗ ΘΕΡΜΟ ΥΝΑΜΙΚΗ ΚΕΦΑΛΑΙΟ ΕΥΤΕΡΟ ΘΕΡΜΟ ΥΝΑΜΙΚΗ 1. Τι εννοούµε λέγοντας θερµοδυναµικό σύστηµα; Είναι ένα κοµµάτι ύλης που αποµονώνουµε νοητά από το περιβάλλον. Περιβάλλον του συστήµατος είναι το σύνολο των

Διαβάστε περισσότερα

Β' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ ΕΚΦΩΝΗΣΕΙΣ

Β' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ ΕΚΦΩΝΗΣΕΙΣ 1 Β' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Στις ερωτήσεις 1 έως 4 να γράψετε στο τετράδιο σας τον αριθµό της ερώτησης και δίπλα σε κάθε αριθµό το γράµµα που αντιστοιχεί στη σωστή

Διαβάστε περισσότερα

ΕΚΦΩΝΗΣΕΙΣ. Για τις παρακάτω ερωτήσεις 1-4 να γράψετε στο τετράδιο σας τον αριθµό της ερώτησης και το γράµµα που αντιστοιχεί στην σωστή απάντηση

ΕΚΦΩΝΗΣΕΙΣ. Για τις παρακάτω ερωτήσεις 1-4 να γράψετε στο τετράδιο σας τον αριθµό της ερώτησης και το γράµµα που αντιστοιχεί στην σωστή απάντηση B' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ ΖΗΤΗΜΑ 1 ΕΚΦΩΝΗΣΕΙΣ Για τις παρακάτω ερωτήσεις 1-4 να γράψετε στο τετράδιο σας τον αριθµό της ερώτησης και το γράµµα που αντιστοιχεί στην σωστή απάντηση

Διαβάστε περισσότερα

ΑΝΑΚΕΦΑΛΑΙΩΤΙΚΕΣ ΕΡΩΤΗΣΕΙΣ- ΑΣΚΗΣΕΙΣ ΦΥΣΙΚΗΣ Β ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ

ΑΝΑΚΕΦΑΛΑΙΩΤΙΚΕΣ ΕΡΩΤΗΣΕΙΣ- ΑΣΚΗΣΕΙΣ ΦΥΣΙΚΗΣ Β ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΑΝΑΚΕΦΑΛΑΙΩΤΙΚΕΣ ΕΡΩΤΗΣΕΙΣ- ΑΣΚΗΣΕΙΣ ΦΥΣΙΚΗΣ Β ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ 1. Ποιες από τις επόµενες προτάσεις που αναφέρονται στο έργο αερίου, είναι σωστές; α. Όταν το αέριο εκτονώνεται, το έργο του είναι θετικό.

Διαβάστε περισσότερα

Α. ΝΟΜΟΙ ΑΕΡΙΩΝ. 1. Β1.3 Να αντιστοιχίσετε τις µεταβολές της αριστερής στήλης σε σχέσεις τις δεξιάς στήλης. 1) Ισόθερµη µεταβολή α)

Α. ΝΟΜΟΙ ΑΕΡΙΩΝ. 1. Β1.3 Να αντιστοιχίσετε τις µεταβολές της αριστερής στήλης σε σχέσεις τις δεξιάς στήλης. 1) Ισόθερµη µεταβολή α) Α. ΝΟΜΟΙ ΑΕΡΙΩΝ 1. Β1.3 Να αντιστοιχίσετε τις µεταβολές της αριστερής στήλης σε σχέσεις τις δεξιάς στήλης. 1) Ισόθερµη µεταβολή α) P = σταθ. V P 2) Ισόχωρη µεταβολή β) = σταθ. 3) Ισοβαρής µεταβολή γ) V

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / Β ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α (ΑΠΑΝΤΗΣΕΙΣ) ΗΜΕΡΟΜΗΝΙΑ: 04/01/2014

ΜΑΘΗΜΑ / ΤΑΞΗ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / Β ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α (ΑΠΑΝΤΗΣΕΙΣ) ΗΜΕΡΟΜΗΝΙΑ: 04/01/2014 ΜΑΘΗΜΑ / ΤΑΞΗ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / Β ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α (ΑΠΑΝΤΗΣΕΙΣ) ΗΜΕΡΟΜΗΝΙΑ: 04/01/2014 ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιο σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1 Α4 και δίπλα το γράμμα

Διαβάστε περισσότερα

ΜΑΘΗΜΑ - VI ΣΤΑΤΙΣΤΙΚΗ ΘΕΡΜΟ ΥΝΑΜΙΚΗ Ι (ΚΛΑΣΙΚΗ ΜΗΧΑΝΙΚΗ) Α. ΑΣΚΗΣΗ Α3 - Θερµοχωρητικότητα αερίων Προσδιορισµός του Αδιαβατικού συντελεστή γ

ΜΑΘΗΜΑ - VI ΣΤΑΤΙΣΤΙΚΗ ΘΕΡΜΟ ΥΝΑΜΙΚΗ Ι (ΚΛΑΣΙΚΗ ΜΗΧΑΝΙΚΗ) Α. ΑΣΚΗΣΗ Α3 - Θερµοχωρητικότητα αερίων Προσδιορισµός του Αδιαβατικού συντελεστή γ ΜΑΘΗΜΑ - VI ΣΤΑΤΙΣΤΙΚΗ ΘΕΡΜΟ ΥΝΑΜΙΚΗ Ι (ΚΛΑΣΙΚΗ ΜΗΧΑΝΙΚΗ) ΑΣΚΗΣΗ Α3 - Θερµοχωρητικότητα αερίων Προσδιορισµός του Αδιαβατικού συντελεστή γ Τµήµα Χηµείας, Πανεπιστήµιο Κρήτης, και Ινστιτούτο Ηλεκτρονικής

Διαβάστε περισσότερα

Επαναληπτικό Χριστουγέννων Β Λυκείου

Επαναληπτικό Χριστουγέννων Β Λυκείου Επαναληπτικό Χριστουγέννων Β Λυκείου 1.Ποιά από τις παρακάτω προτάσεις είναι σωστή ; Σύµφωνα µε τον 1ο θερµοδυναµικό νόµο το ποσό της θερµότητας που απορροφά η αποβάλει ένα θερµοδυναµικό σύστηµα είναι

Διαβάστε περισσότερα

Ο πρώτος νόμος της Θερμοδυναμικής. Θεόδωρος Λαζαρίδης Σημειώσεις για τις παραδόσεις του μαθήματος Φυσικοχημεία Ι

Ο πρώτος νόμος της Θερμοδυναμικής. Θεόδωρος Λαζαρίδης Σημειώσεις για τις παραδόσεις του μαθήματος Φυσικοχημεία Ι Ο πρώτος νόμος της Θερμοδυναμικής Θεόδωρος Λαζαρίδης Σημειώσεις για τις παραδόσεις του μαθήματος Φυσικοχημεία Ι Οι έννοιες Το θερμοδυναμικό σύστημα ή απλά σύστημα είναι η περιοχή του σύμπαντος που μας

Διαβάστε περισσότερα

2. Ασκήσεις Θερμοδυναμικής. Ομάδα Γ.

2. Ασκήσεις Θερμοδυναμικής. Ομάδα Γ. . σκήσεις ς. Ομάδα..1. Ισοβαρής θέρμανση και έργο. Ένα αέριο θερμαίνεται ισοβαρώς από θερμοκρασία Τ 1 σε θερμοκρασία Τ, είτε κατά την μεταβολή, είτε κατά την μεταβολή Δ. i) Σε ποια μεταβολή παράγεται περισσότερο

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ Φυσική Κατεύθυνσης Β Λυκείου ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ κ ΙΑΓΩΝΙΣΜΑ Β Θέµα ο Να επιλέξετε τη σωστή απάντηση σε κάθε µία από τις παρακάτω ερωτήσεις: Σε ισόχωρη αντιστρεπτή θέρµανση ιδανικού αερίου, η

Διαβάστε περισσότερα

8 2.ΘΕΜΑ B 2-16138 Β.1

8 2.ΘΕΜΑ B 2-16138 Β.1 1 ΘΕΜΑ B Καταστατική εξίσωση των ιδανικών αερίων 1.ΘΕΜΑ Β 2-16146 Β.1 Μια ποσότητα ιδανικού αερίου βρίσκεται σε κατάσταση θερμοδυναμικής ισορροπίας, καταλαμβάνει όγκο V, έχει απόλυτη θερμοκρασία Τ, ενώ

Διαβάστε περισσότερα

ÊÏÑÕÖÇ ÊÁÂÁËÁ Β' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΦΥΣΙΚΗ. U 1 = + 0,4 J. Τα φορτία µετατοπίζονται έτσι ώστε η ηλεκτρική δυναµική ενέργεια

ÊÏÑÕÖÇ ÊÁÂÁËÁ Β' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΦΥΣΙΚΗ. U 1 = + 0,4 J. Τα φορτία µετατοπίζονται έτσι ώστε η ηλεκτρική δυναµική ενέργεια 1 ΘΕΜΑ 1 ο Β' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΦΥΣΙΚΗ 1. οχείο σταθερού όγκου περιέχει ορισµένη ποσότητα ιδανικού αερίου. Αν θερµάνουµε το αέριο µέχρι να τετραπλασιαστεί η απόλυτη θερµοκρασία

Διαβάστε περισσότερα

ΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ 23/4/2009

ΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ 23/4/2009 ΕΠΩΝΥΜΟ:........................ ΟΝΟΜΑ:........................... ΤΜΗΜΑ:........................... ΤΣΙΜΙΣΚΗ & ΚΑΡΟΛΟΥ ΝΤΗΛ ΓΩΝΙΑ THΛ : 7077 594 ΑΡΤΑΚΗΣ 1 Κ. ΤΟΥΜΠΑ THΛ : 919113 9494 www.syghrono.gr ΗΜΕΡΟΜΗΝΙΑ:.....................

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΘΕΡΜΟΔΥΝΑΜΙΚΗΣ ΜΕ ΕΦΑΡΜΟΓΗ ΣΤΙΣ Μ.Ε.Κ. Μ.Ε.Κ. Ι (Θ)

ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΘΕΡΜΟΔΥΝΑΜΙΚΗΣ ΜΕ ΕΦΑΡΜΟΓΗ ΣΤΙΣ Μ.Ε.Κ. Μ.Ε.Κ. Ι (Θ) ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΘΕΡΜΟΔΥΝΑΜΙΚΗΣ ΜΕ ΕΦΑΡΜΟΓΗ ΣΤΙΣ Μ.Ε.Κ. Μ.Ε.Κ. Ι (Θ) Διαλέξεις Μ4, ΤΕΙ Χαλκίδας Επικ. Καθηγ. Δρ. Μηχ. Α. Φατσής ΣΚΟΠΟΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ Το «φρεσκάρισμα» των γνώσεων από τη Θερμοδυναμική με σκοπό

Διαβάστε περισσότερα

ΘΕΡΜΙΚΕΣ ΜΗΧΑΝΕΣ θερµι µ κή µ η µ χα χ ν α ή ενεργό υλικό Κυκλική µεταβολή

ΘΕΡΜΙΚΕΣ ΜΗΧΑΝΕΣ θερµι µ κή µ η µ χα χ ν α ή ενεργό υλικό Κυκλική µεταβολή ΘΕΡΜΙΚΕΣ ΜΗΧΑΝΕΣ ιάγραµµα ροής ενέργειας σε µια θερµική µηχανή (=διάταξη που µεταφέρει µέρος της θερµότητας σε µηχανική ενέργεια. Περιέχει ενεργό υλικόδηλ., µια ποσότητα ύλης στο εσωτερικό της που υποβάλλεται

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΙΑΓΩΝΙΣΜΑ ΘΕΜΑ 1 Ο Ένα κλειστό δοχείο µε ανένδοτα τοιχώµατα περιέχει ποσότητα η=0,4mol ιδανικού αερίου σε θερµοκρασία θ 1 =17 ο C. Να βρεθούν: α) το παραγόµενο έργο, β) η θερµότητα

Διαβάστε περισσότερα

ΘΕΡΜΟΔΥΝΑΜΙΚΕΣ ΜΕΤΑΒΟΛΕΣ Η ΚΑΤΑΣΤΑΤΙΚΗ ΕΞΙΣΩΣΗ ΤΩΝ ΤΕΛΕΙΩΝ ΑΕΡΙΩΝ

ΘΕΡΜΟΔΥΝΑΜΙΚΕΣ ΜΕΤΑΒΟΛΕΣ Η ΚΑΤΑΣΤΑΤΙΚΗ ΕΞΙΣΩΣΗ ΤΩΝ ΤΕΛΕΙΩΝ ΑΕΡΙΩΝ ΘΕΡΜΟΔΥΝΑΜΙΚΕΣ ΜΕΤΑΒΟΛΕΣ Η ΚΑΤΑΣΤΑΤΙΚΗ ΕΞΙΣΩΣΗ ΤΩΝ ΤΕΛΕΙΩΝ ΑΕΡΙΩΝ Η εξίσωση αυτή εκφράζει μια σχέση μεταξύ της πίεσης, της θερμοκρασίας και του ειδικού όγκου. P v = R Όπου P = πίεση σε Pascal v = Ο ειδικός

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 8 IAΣTOΛH KAI ΣYΣTOΛH

ΚΕΦΑΛΑΙΟ 8 IAΣTOΛH KAI ΣYΣTOΛH ΚΕΦΑΛΑΙΟ 8 IAΣTOΛH KAI ΣYΣTOΛH 8.1 Γραµµική διαστολή των στερεών Ένα στερεό σώµα θεωρείται µονοδιάστατο, όταν οι δύο διαστάσεις του είναι αµελητέες σε σχέση µε την τρίτη, το µήκος, όπως συµβαίνει στην

Διαβάστε περισσότερα

Α Θερμοδυναμικός Νόμος

Α Θερμοδυναμικός Νόμος Α Θερμοδυναμικός Νόμος Θερμότητα Έχουμε ήδη αναφέρει ότι πρόκειται για έναν τρόπο μεταφορά ενέργειας που βασίζεται στη διαφορά θερμοκρασιών μεταξύ των σωμάτων. Ορίζεται από τη σχέση: Έργο dw F dx F dx

Διαβάστε περισσότερα

m A m B Δ4) Να υπολογιστεί το ποσό θερμικής ενέργειας (θερμότητας) που ελευθερώνεται εξ αιτίας της κρούσης των δύο σωμάτων.

m A m B Δ4) Να υπολογιστεί το ποσό θερμικής ενέργειας (θερμότητας) που ελευθερώνεται εξ αιτίας της κρούσης των δύο σωμάτων. Το σώμα Α μάζας m A = 1 kg κινείται με ταχύτητα u 0 = 8 m/s σε λείο οριζόντιο δάπεδο και συγκρούεται μετωπικά με το σώμα Β, που έχει μάζα m B = 3 kg και βρίσκεται στο άκρο αβαρούς και μη εκτατού (που δεν

Διαβάστε περισσότερα

Θερµότητα χρόνος θέρµανσης. Εξάρτηση από είδος (c) του σώµατος. Μονάδα: Joule. Του χρόνου στον οποίο το σώµα θερµαίνεται

Θερµότητα χρόνος θέρµανσης. Εξάρτηση από είδος (c) του σώµατος. Μονάδα: Joule. Του χρόνου στον οποίο το σώµα θερµαίνεται 1 2 Θερµότητα χρόνος θέρµανσης Εξάρτηση από είδος (c) του σώµατος Αν ένα σώµα θερµαίνεται από µια θερµική πηγή (γκαζάκι, ηλεκτρικό µάτι), τότε η θερµότητα (Q) που απορροφάται από το σώµα είναι ανάλογη

Διαβάστε περισσότερα

ΠΡΟΧΩΡΗΜΕΝΗ ΘΕΡΜΟΔΥΝΑΜΙΚΗ

ΠΡΟΧΩΡΗΜΕΝΗ ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΠΡΟΧΩΡΗΜΕΝΗ ΘΕΡΜΟΔΥΝΑΜΙΚΗ Δ. Τσιπλακίδης Πρόγραμμα Μεταπτυχιακών Σπουδών Κατεύθυνση: «Φυσική Χημεία Υλικών και Ηλεκτροχημεία» ΠΡΟΧΩΡΗΜΕΝΗ ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΑΙ ΠΡΩΤΟΣ ΘΕΡΜΟΔΥΝΑΜΙΚΟΣ ΝΟΜΟΣ Βασικές

Διαβάστε περισσότερα

ΕΣΩΤΕΡΙΚΗ ΕΝΕΡΓΕΙΑ Μηχανική ενέργεια Εσωτερική ενέργεια:

ΕΣΩΤΕΡΙΚΗ ΕΝΕΡΓΕΙΑ Μηχανική ενέργεια Εσωτερική ενέργεια: ΕΣΩΤΕΡΙΚΗ ΕΝΕΡΓΕΙΑ Μηχανική ενέργεια (όπως ορίζεται στη μελέτη της μηχανικής τέτοιων σωμάτων): Η ενέργεια που οφείλεται σε αλληλεπιδράσεις και κινήσεις ολόκληρου του μακροσκοπικού σώματος, όπως η μετατόπιση

Διαβάστε περισσότερα

ΤΥΠΟΛΟΓΙΟ-ΒΑΣΙΚΟΙ ΟΡΙΣΜΟΙ ΚΕΦΑΛΑΙΟΥ 2 ΕΡΓΟ ΑΕΡΙΟΥ

ΤΥΠΟΛΟΓΙΟ-ΒΑΣΙΚΟΙ ΟΡΙΣΜΟΙ ΚΕΦΑΛΑΙΟΥ 2 ΕΡΓΟ ΑΕΡΙΟΥ ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΤΥΠΟΛΟΓΙΟ-ΒΑΣΙΚΟΙ ΟΡΙΣΜΟΙ ΚΕΦΑΛΑΙΟΥ ΕΡΓΟ ΑΕΡΙΟΥ Κατά την εκτόνωση ενός αερίου, το έρο του είναι θετικό ( δηλαδή παραόμενο). Κατά την συμπίεση ενός

Διαβάστε περισσότερα

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ - 6 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑΔΑ ΦΥΣΙΚΗΣ Β ΓΥΜΝΑΣΙΟΥ

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ - 6 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑΔΑ ΦΥΣΙΚΗΣ Β ΓΥΜΝΑΣΙΟΥ ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ 6 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑΔΑ ΦΥΣΙΚΗΣ Β ΓΥΜΝΑΣΙΟΥ Κυριακή, 16 Μαΐου 2010 Ώρα : 10:00-12:30 Προτεινόμενες λύσεις ΘΕΜΑ 1 0 (12 μονάδες) Για τη μέτρηση της πυκνότητας ομοιογενούς πέτρας (στερεού

Διαβάστε περισσότερα

Ι < Ι. Οπότε ο λαμπτήρας θα φωτοβολεί περισσότερο. Ο λαμπτήρα λειτουργεί κανονικά. συνεπώς το ρεύμα που τον διαρρέει είναι 1 Α.

Ι < Ι. Οπότε ο λαμπτήρας θα φωτοβολεί περισσότερο. Ο λαμπτήρα λειτουργεί κανονικά. συνεπώς το ρεύμα που τον διαρρέει είναι 1 Α. ΘΕΜΑ Α. Σωστή απάντηση είναι η α. Πριν το κλείσιμο του διακόπτη η αντίσταση του κυκλώματος είναι: λ, = Λ +. Μετά το κλείσιμο του διακόπτη η ολική αντίσταση είναι: λ, = Λ. Έτσι,,,, Ι < Ι. Οπότε ο λαμπτήρας

Διαβάστε περισσότερα

ΕΝΤΡΟΠΙΑ ΚΑΙ ΤΟ 2ο ΘΕΡΜΟΔΥΝΑΜΙΚΟ ΑΞΙΩΜΑ

ΕΝΤΡΟΠΙΑ ΚΑΙ ΤΟ 2ο ΘΕΡΜΟΔΥΝΑΜΙΚΟ ΑΞΙΩΜΑ ΕΝΤΡΟΠΙΑ ΚΑΙ ΤΟ 2ο ΘΕΡΜΟΔΥΝΑΜΙΚΟ ΑΞΙΩΜΑ Μη αντιστρεπτά φαινόμενα Η ενέργεια διατηρείται και στη χρονικά αντίστροφη μεταβολή, όμως αυτή ποτέ δεν συμβαίνει π.χ. - Όλα τα σώματα που αρχικά ολισθαίνουν πάνω

Διαβάστε περισσότερα

1 ο ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ

1 ο ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ 1 ο ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΘΕΜΑ Α Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1 έως Α5 και δίπλα το γράμμα που αντιστοιχεί στη σωστή

Διαβάστε περισσότερα

ΘΕΡΜΟΧΗΜΕΙΑ. Είδη ενέργειας ΘΕΡΜΟΔΥΝΑΜΙΚΟΙ ΟΡΙΣΜΟΙ

ΘΕΡΜΟΧΗΜΕΙΑ. Είδη ενέργειας ΘΕΡΜΟΔΥΝΑΜΙΚΟΙ ΟΡΙΣΜΟΙ ΘΕΡΜΟΧΗΜΕΙΑ Όλες οι χημικές αντιδράσεις περιλαμβάνουν έκλυση ή απορρόφηση ενέργειας υπό μορφή θερμότητας. Η γνώση του ποσού θερμότητας που συνδέεται με μια χημική αντίδραση έχει και πρακτική και θεωρητική

Διαβάστε περισσότερα

Καταστατική εξίσωση ιδανικών αερίων

Καταστατική εξίσωση ιδανικών αερίων Καταστατική εξίσωση ιδανικών αερίων 21-1. Από τι εξαρτάται η συμπεριφορά των αερίων; Η συμπεριφορά των αερίων είναι περισσότερο απλή και ομοιόμορφη από τη συμπεριφορά των υγρών και των στερεών. Σε αντίθεση

Διαβάστε περισσότερα

Β' τάξη Γενικού Λυκείου. Κεφάλαιο 1 Κινητική θεωρία αερίων

Β' τάξη Γενικού Λυκείου. Κεφάλαιο 1 Κινητική θεωρία αερίων Β' τάξη Γενικού Λυκείου Κεφάλαιο 1 Κινητική θεωρία αερίων Κεφάλαιο 1 Κινητική θεωρία αερίων Χιωτέλης Ιωάννης Γενικό Λύκειο Πελοπίου 1.1 Ποιο από τα παρακάτω διαγράμματα αντιστοιχεί σε ισοβαρή μεταβολή;

Διαβάστε περισσότερα

Βασικές Διεργασίες Μηχανικής Τροφίμων

Βασικές Διεργασίες Μηχανικής Τροφίμων Βασικές Διεργασίες Μηχανικής Τροφίμων Ενότητα 4: Ψύξη - Κατάψυξη (/3), ΔΩ Τμήμα: Επιστήμης Τροφίμων και Διατροφής Του Ανθρώπου Σταύρος Π. Γιαννιώτης, Καθηγητής Μηχανικής Τροφίμων Μαθησιακοί Στόχοι Συντελεστής

Διαβάστε περισσότερα

ΧΗΜΙΚΗ ΘΕΡΜΟ ΥΝΑΜΙΚΗ: ΑΝΑΣΚΟΠΗΣΗ ΜΕΓΕΘΩΝ ΚΑΙ ΜΑΘΗΜΑΤΙΚΩΝ ΕΝΝΟΙΩΝ

ΧΗΜΙΚΗ ΘΕΡΜΟ ΥΝΑΜΙΚΗ: ΑΝΑΣΚΟΠΗΣΗ ΜΕΓΕΘΩΝ ΚΑΙ ΜΑΘΗΜΑΤΙΚΩΝ ΕΝΝΟΙΩΝ ΧΗΜΙΚΗ ΘΕΡΜΟ ΥΝΑΜΙΚΗ: ΑΝΑΣΚΟΠΗΣΗ ΜΕΓΕΘΩΝ ΚΑΙ ΜΑΘΗΜΑΤΙΚΩΝ ΕΝΝΟΙΩΝ ΣΥΣΤΗΜΑΤΑ ΜΟΝΑ ΩΝ (SI) Χρόνος βασική µονάδα το δευτερόλεπτο (s) Ορίζεται ως η χρονική διάρκεια 9192631770 κύκλων ακτινοβολίας για µια συγκεκριµένη

Διαβάστε περισσότερα

ΕΣΩΤΕΡΙΚΗ ΕΝΕΡΓΕΙΑ Μηχανική ενέργεια Εσωτερική ενέργεια:

ΕΣΩΤΕΡΙΚΗ ΕΝΕΡΓΕΙΑ Μηχανική ενέργεια Εσωτερική ενέργεια: Εσωτερική ενέργεια: Το άθροισμα της κινητικής (εσωτερική κινητική ενέργεια ή θερμική ενέργεια τυχαία, μη συλλογική κίνηση) και δυναμικής ενέργειας (δεσμών κλπ) όλων των σωματιδίων (ατόμων ή μορίων) του

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧ/ΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧ/ΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΦΥΣΙΗ ΛΥΕΙΟΥ ΘΕΤΙΗΣ Ι ΤΕΧ/ΗΣ ΤΕΥΘΥΝΣΗΣ ΘΕΜ : Στις ερωτήσεις - να γράψετε στο φύλλο απαντήσεων τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση. Στις ερωτήσεις -5 να γράψετε

Διαβάστε περισσότερα

: Μιγαδικοί Συναρτήσεις έως και αντίστροφη συνάρτηση. 1. Ποιο από τα παρακάτω διαγράμματα παριστάνει γραφικά το νόμο του Gay-Lussac;

: Μιγαδικοί Συναρτήσεις έως και αντίστροφη συνάρτηση. 1. Ποιο από τα παρακάτω διαγράμματα παριστάνει γραφικά το νόμο του Gay-Lussac; Τάξη : Β ΛΥΚΕΙΟΥ Μάθημα : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Εξεταστέα Ύλη : Μιγαδικοί Συναρτήσεις έως και αντίστροφη συνάρτηση Καθηγητής : Mάρθα Μπαμπαλιούτα Ημερομηνία : 14/10/2012 ΘΕΜΑ 1 ο 1. Ποιο από τα παρακάτω διαγράμματα

Διαβάστε περισσότερα

Στις ερωτήσεις 1.1-1.4, να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση.

Στις ερωτήσεις 1.1-1.4, να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση. ΘΕΜΑ 1ο Στις ερωτήσεις 1.1-1.4, να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση. 1.1 Η εξαέρωση ενός υγρού µόνο από την επιφάνειά του, σε σταθερή

Διαβάστε περισσότερα

1. Θερµοδυναµικό σύστηµα Αντιστρεπτές και µη αντιστρεπτές µεταβολές

1. Θερµοδυναµικό σύστηµα Αντιστρεπτές και µη αντιστρεπτές µεταβολές Θερµοδυναµική Φυσική Θετικής & εχνολοικής Κατεύθυνσης Λυκείου ο Κεφάλαιο Θερµοδυναµική. Θερµοδυναµικό σύστηµα ντιστρεπτές και µη αντιστρεπτές µεταβολές Σύστηµα είναι ένα τµήµα του φυσικού κόσµου που διαχωρίζεται

Διαβάστε περισσότερα

Εισαγωγή στην πυρηνοποίηση. http://users.auth.gr/~paloura/ Ομο- & ετερογενής πυρηνοποίηση: αρχικά στάδια ανάπτυξης υλικών ή σχηματισμού νέας φάσης.

Εισαγωγή στην πυρηνοποίηση. http://users.auth.gr/~paloura/ Ομο- & ετερογενής πυρηνοποίηση: αρχικά στάδια ανάπτυξης υλικών ή σχηματισμού νέας φάσης. Εισαγωγή στην πυρηνοποίηση. http://users.auth.gr/~paloura/ Αντικείμενο Ομο- & ετερογενής πυρηνοποίηση: αρχικά στάδια ανάπτυξης υλικών ή σχηματισμού νέας φάσης. Ομογενής πυρηνοποίηση: αυθόρμητος σχηματισμός

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 9 METATPOΠEΣ ΦAΣEΩN

ΚΕΦΑΛΑΙΟ 9 METATPOΠEΣ ΦAΣEΩN ΚΕΦΑΛΑΙΟ 9 METATPOΠEΣ ΦAΣEΩN 9.1 Φάσεις υλικών Φάσεις ονοµάζονται οι διαφορετικές µορφές τις οποίες µπορεί να πάρει ένα υλικό. Oι µορφές αυτές είναι κατ' αρχήν η στερεά, η υγρή και η αέρια κατάσταση, είναι

Διαβάστε περισσότερα

EΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

EΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ EΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Ο Να επιλέξετε τη σωστή απάντηση σε κάθε μία από τις ερωτήσεις - που ακολουθούν: Η ενεργός ταχύτητα των μορίων ορισμένης ποσότητας

Διαβάστε περισσότερα

Generated by Foxit PDF Creator Foxit Software http://www.foxitsoftware.com For evaluation only. ΑΣΚΗΣΗ ΜΕΤΡΗΣΗ ΤΗΣ ΕΙΔΙΚΗΣ ΘΕΡΜΟΤΗΤΑΣ ΥΓΡΟΥ

Generated by Foxit PDF Creator Foxit Software http://www.foxitsoftware.com For evaluation only. ΑΣΚΗΣΗ ΜΕΤΡΗΣΗ ΤΗΣ ΕΙΔΙΚΗΣ ΘΕΡΜΟΤΗΤΑΣ ΥΓΡΟΥ ΑΣΚΗΣΗ 13 ΜΕΤΡΗΣΗ ΤΗΣ ΕΙΔΙΚΗΣ ΘΕΡΜΟΤΗΤΑΣ ΥΓΡΟΥ ΜΕΡΟΣ ΠΡΩΤΟ ΒΑΣΙΚΕΣ ΘΕΩΡΗΤΙΚΕΣ ΓΝΩΣΕΙΣ 1.1. Εσωτερική ενέργεια Γνωρίζουμε ότι τα μόρια των αερίων κινούνται άτακτα και προς όλες τις διευθύνσεις με ταχύτητες,

Διαβάστε περισσότερα

ΘΕΜΑΤΑ : ΦΥΣΙΚΗ B ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΕΞΕΤΑΖΟΜΕΝΗ ΥΛΗ: ΕΦ ΟΛΗΣ ΤΗΣ ΥΛΗΣ 17/4/2015

ΘΕΜΑΤΑ : ΦΥΣΙΚΗ B ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΕΞΕΤΑΖΟΜΕΝΗ ΥΛΗ: ΕΦ ΟΛΗΣ ΤΗΣ ΥΛΗΣ 17/4/2015 ΘΕΜΑΤΑ : ΦΥΣΙΚΗ B ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΕΞΕΤΑΖΟΜΕΝΗ ΥΛΗ: ΕΦ ΟΛΗΣ ΤΗΣ ΥΛΗΣ ΘΕΜΑ 1 ο 17/4/2015 Στις ερωτήσεις 1-5 να γράψετε στο φύλλο απαντήσεων τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί

Διαβάστε περισσότερα

ΜΕΡΟΣ Α ΝΟΜΟΙ ΙΔΑΝΙΚΩΝ ΑΕΡΙΩΝ-ΜΕΤΑΤΡΟΠΕΣ ΦΑΣΗΣ ΥΓΡΟΣΚΟΠΙΚΕΣ ΙΔΙΟΤΗΤΕΣ ΤΩΝ ΙΝΩΝ

ΜΕΡΟΣ Α ΝΟΜΟΙ ΙΔΑΝΙΚΩΝ ΑΕΡΙΩΝ-ΜΕΤΑΤΡΟΠΕΣ ΦΑΣΗΣ ΥΓΡΟΣΚΟΠΙΚΕΣ ΙΔΙΟΤΗΤΕΣ ΤΩΝ ΙΝΩΝ ΜΕΡΟΣ Α ΝΟΜΟΙ ΙΔΑΝΙΚΩΝ ΑΕΡΙΩΝ-ΜΕΤΑΤΡΟΠΕΣ ΦΑΣΗΣ ΥΓΡΟΣΚΟΠΙΚΕΣ ΙΔΙΟΤΗΤΕΣ ΤΩΝ ΙΝΩΝ Εισαγωγή Τα περισσότερα είδη ινών είναι υγροσκοπικά, έχουν δηλαδή την ιδιότητα να απορροφούν υγρασία (υδρατμούς) όταν η ατμόσφαιρα

Διαβάστε περισσότερα

ΝΟΜΟΙ ΙΔΑΝΙΚΩΝ ΑΕΡΙΩΝ ΑΣΚΗΣΕΙΣ

ΝΟΜΟΙ ΙΔΑΝΙΚΩΝ ΑΕΡΙΩΝ ΑΣΚΗΣΕΙΣ Νικήτα Μ Ριζόπολο «Ασκήσεις Φσικής» ΝΟΜΟΙ ΙΔΑΝΙΚΩΝ ΑΕΡΙΩΝ ΑΣΚΗΣΕΙΣ Ιδανικό αέριο έχει θερμοκρασία 7 ο C και όγκο 3L Θερμαίνομε το αέριο με σταθερή πίεση στος 7 ο C Πόσος είναι ο νέος όγκος Ιδανικό αέριο

Διαβάστε περισσότερα

1 Η ΥΛΗ ΚΑΙ Η ΕΝΕΡΓΕΙΑ

1 Η ΥΛΗ ΚΑΙ Η ΕΝΕΡΓΕΙΑ Η ΥΛΗ ΚΑΙ Η ΕΝΕΡΓΕΙΑ 2 3 Π. ΜΠΕΚΙΑΡΟΓΛΟΥ ΚΑΘΗΓΗΤΟΥ ΠΟΛΥΤΕΧΝΙΚΗΣ ΣΧΟΛΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΘΕΣΣΑΛΟΝΙΚΗΣ Η ΥΛΗ ΚΑΙ Η ΕΝΕΡΓΕΙΑ ΕΙΣΑΓΩΓΗ ΣΤI Σ ΕΝΝΟΙΕΣ ΤΗΣ ΘΕΡΜΟΔΥΝΑΜΙΚΗΣ ΣΥΓΧΡΟΝΗ ΠΑΙΔΕΙΑ ΘΕΣΣΑΛΟΝΙΚΗ 996 4 5 Περιεχόμενα

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Β ΛΥΚΕΙΟΥ Θετ.- τεχ. κατεύθυνσης

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Β ΛΥΚΕΙΟΥ Θετ.- τεχ. κατεύθυνσης 1 ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Β ΛΥΚΕΙΟΥ Θετ.- τεχ. κατεύθυνσης ΘΕΜΑ 1 ο : Σε κάθε μια από τις παρακάτω προτάσεις να βρείτε τη μια σωστή απάντηση: 1. Μια ποσότητα ιδανικού αέριου εκτονώνεται ισόθερμα μέχρι τετραπλασιασμού

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2 ΙΔΙΟΤΗΤΕΣ ΤΩΝ ΚΑΘΑΡΩΝ ΟΥΣΙΩΝ.

ΚΕΦΑΛΑΙΟ 2 ΙΔΙΟΤΗΤΕΣ ΤΩΝ ΚΑΘΑΡΩΝ ΟΥΣΙΩΝ. ΚΕΦΑΛΑΙΟ 2 ΙΔΙΟΤΗΤΕΣ ΤΩΝ ΚΑΘΑΡΩΝ ΟΥΣΙΩΝ. 2.1 Η ΕΝΝΟΙΑ ΤΗΣ ΚΑΘΑΡΗΣ ΟΥΣΙΑΣ. Μια ουσία της οποίας η χημική σύσταση παραμένει σταθερή σε όλη της την έκταση ονομάζεται καθαρή ουσία. Δεν είναι υποχρεωτικό να

Διαβάστε περισσότερα

ΚΡΙΤΗΡΙΟ ΑΞΙΟΛΟΓΗΣΗΣ ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ

ΚΡΙΤΗΡΙΟ ΑΞΙΟΛΟΓΗΣΗΣ ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΡΙΤΗΡΙΟ ΑΞΙΟΛΟΓΗΣΗΣ ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΑΠΟ ΤΟ ΒΙΒΛΙΟ: ΚΡΙΤΗΡΙΑ ΑΞΙΟΛΟΓΗΣΗΣ ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΣΥΓΓΡΑΦΕΙΣ: ΤΣΙΤΣΑΣ ΓΡΗΓΟΡΗΣ- ΠΑΠΑΤΣΑΚΩΝΑΣ ΗΜΗΤΡΗΣ ΘΕΜΑ 1 ο Επιλέξτε τη σωστή απάντηση

Διαβάστε περισσότερα

ΦΥΣΙΚΟΧΗΜΕΙΑ. Δημήτριος Τσιπλακίδης e-mail: dtsiplak@chem.auth.gr url: users.auth.gr/~dtsiplak. Φυσικοχημεία συστημάτων

ΦΥΣΙΚΟΧΗΜΕΙΑ. Δημήτριος Τσιπλακίδης e-mail: dtsiplak@chem.auth.gr url: users.auth.gr/~dtsiplak. Φυσικοχημεία συστημάτων 1 ΦΥΣΙΚΟΧΗΜΕΙΑ Δημήτριος Τσιπλακίδης e-mail: dtsiplak@chem.auth.gr url: users.auth.gr/~dtsiplak Φυσικοχημεία συστημάτων Φυσικοχημεία συστημάτων 2 «Όμοιος αρέσει όμοιο» Όσο συγγενέστερες από χημική άποψη

Διαβάστε περισσότερα

6. ΘΕΡΜΙΚΕΣ Ι ΙΟΤΗΤΕΣ ΤΩΝ ΠΟΛΥΜΕΡΩΝ

6. ΘΕΡΜΙΚΕΣ Ι ΙΟΤΗΤΕΣ ΤΩΝ ΠΟΛΥΜΕΡΩΝ 6-1 6. ΘΕΡΜΙΚΕΣ Ι ΙΟΤΗΤΕΣ ΤΩΝ ΠΟΛΥΜΕΡΩΝ 6.1. ΙΑ ΟΣΗ ΤΗΣ ΘΕΡΜΟΤΗΤΑΣ Πολλές βιοµηχανικές εφαρµογές των πολυµερών αφορούν τη διάδοση της θερµότητας µέσα από αυτά ή γύρω από αυτά. Πολλά πολυµερή χρησιµοποιούνται

Διαβάστε περισσότερα

1 ΦΥΣΙΚΟ ΦΥΣΙΚ ΧΗΜΕΙΑ Ο ΣΥΣΤΗΜΑΤΩΝ

1 ΦΥΣΙΚΟ ΦΥΣΙΚ ΧΗΜΕΙΑ Ο ΣΥΣΤΗΜΑΤΩΝ 1 ΦΥΣΙΚΟΧΗΜΕΙΑ ΣΥΣΤΗΜΑΤΩΝ Φυσικοχημεία συστημάτων 2 «Όμοιος Ό αρέσει όμοιο» Όσο συγγενέστερες από χημική άποψη είναι δύο ουσίες τόσο μεγαλύτερη είναι η αμοιβαία διαλυτότητά τους. Οι ανόργανες ενώσεις διαλύονται

Διαβάστε περισσότερα

ΤΥΠΟΛΟΓΙΟ ΦΥΣΙΚΗΣ Β ΛΥΚΕΙΟΥ ΘΕΤ-ΤΕΧΝ ΚΑΤΕΥΘΥΝΣΗΣ

ΤΥΠΟΛΟΓΙΟ ΦΥΣΙΚΗΣ Β ΛΥΚΕΙΟΥ ΘΕΤ-ΤΕΧΝ ΚΑΤΕΥΘΥΝΣΗΣ ΥΠΟΛΟΓΙΟ ΦΥΣΙΚΗΣ Β ΛΥΚΕΙΟΥ ΘΕ-ΕΧΝ ΚΑΕΥΘΥΝΣΗΣ Κινητική θεωρία των ιδανικών αερίων. Νόμος του Boyle (ισόθερμη μεταβή).σταθ. για σταθ.. Νόμος του hales (ισόχωρη μεταβή) p σταθ. για σταθ. 3. Νόμος του Gay-Lussac

Διαβάστε περισσότερα

1. Εναλλάκτες θερµότητας (Heat Exchangers)

1. Εναλλάκτες θερµότητας (Heat Exchangers) 1. Εναλλάκτες θερµότητας (Heat Exangers) Οι εναλλάκτες θερµότητας είναι συσκευές µε τις οποίες επιτυγχάνεται η µεταφορά ενέργειας από ένα ρευστό υψηλής θερµοκρασίας σε ένα άλλο ρευστό χαµηλότερης θερµοκρασίας.

Διαβάστε περισσότερα

ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΓΙΑ ΜΗΧΑΝΙΚΟΥΣ

ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΓΙΑ ΜΗΧΑΝΙΚΟΥΣ ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΓΙΑ ΜΗΧΑΝΙΚΟΥΣ ΔΗΜΗΤΡΙΟΣ ΚΟΥΖΟΥΔΗΣ Γενικό Τμήμα Πολυτεχνικής Σχολής ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ 2 Σεπτεμβρίου 2011 2 Περιεχόμενα 1 Βασικές έννοιες Θερμιδομετρίας 5 1.1 Θερμική Αλληλεπίδραση.....................

Διαβάστε περισσότερα

ΧΗΜΕΙΑ Β ΤΑΞΗΣ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2003

ΧΗΜΕΙΑ Β ΤΑΞΗΣ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2003 ΧΗΜΕΙΑ Β ΤΑΞΗΣ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 003 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ 1ο Στις ερωτήσεις 1.1-1.4, να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση.

Διαβάστε περισσότερα

ε = = 9,5 =, γ=1,4, R = 287 J/KgK, Q = Cv ΔT = P2 Εξισώσεις αδιαβατικών μεταβολών: T [Απ: (β) 1571,9 Κ, 4808976 Pa, (γ) 59,36%, (δ) 451871,6 Pa] ΛΥΣΗ

ε = = 9,5 =, γ=1,4, R = 287 J/KgK, Q = Cv ΔT = P2 Εξισώσεις αδιαβατικών μεταβολών: T [Απ: (β) 1571,9 Κ, 4808976 Pa, (γ) 59,36%, (δ) 451871,6 Pa] ΛΥΣΗ ΑΣΚΗΣΗ Μείμα αέρα-καυσίμου σε στοιχειομετρική αναλοία εκλύει θερμότητα 5 Kcl/Kg κατά τη καύση του εντός κυλίνδρου ΜΕΚ που λειτουρεί βασιζόμενη στο θερμοδυναμικό κύκλο του Otto. Ο βαθμός συμπίεσης της μηχανής

Διαβάστε περισσότερα

ΤΟ ΠΡΩΤΟ ΘΕΡΜΟΔΥΝΑΜΙΚΟ ΑΞΙΩΜΑ

ΤΟ ΠΡΩΤΟ ΘΕΡΜΟΔΥΝΑΜΙΚΟ ΑΞΙΩΜΑ ΤΟ ΠΡΩΤΟ ΘΕΡΜΟΔΥΝΑΜΙΚΟ ΑΞΙΩΜΑ Το πρώτο θερμοδυναμικό αξίωμα είναι μια έκφραση της διατήρησης της ενέργειας για θερμοδυναμικά συστήματα. Εάν ένα κλειστό σύστημα αλληλεπιδρά με το περιβάλλον μπορεί να αυξήσει

Διαβάστε περισσότερα

f = c p + 2 (1) f = 3 1 + 2 = 4 (2) x A + x B + x C = 1 (3) x A + x B + x Γ = 1 3-1

f = c p + 2 (1) f = 3 1 + 2 = 4 (2) x A + x B + x C = 1 (3) x A + x B + x Γ = 1 3-1 ΙΣΟΡΡΟΠΙΑ ΦΑΣΕΩΝ ΣΥΣΤΗΜΑΤΟΣ ΠΟΛΛΩΝ ΣΥΣΤΑΤΙΚΩΝ ΑΜΟΙΒΑΙΑ ΙΑΛΥΤΟΤΗΤΑ Θέµα ασκήσεως Προσδιορισµός καµπύλης διαλυτότητας σε διάγραµµα φάσεων συστήµατος τριών υγρών συστατικών που το ένα ζεύγος παρουσιάζει περιορισµένη

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 7 ΗΛΕΚΤΡΙΚΗ ΑΓΩΓΙΜΟΤΗΤΑ ΣΤΑ ΜΕΤΑΛΛΑ- ΑΝΤΙΣΤΑΤΕΣ

ΚΕΦΑΛΑΙΟ 7 ΗΛΕΚΤΡΙΚΗ ΑΓΩΓΙΜΟΤΗΤΑ ΣΤΑ ΜΕΤΑΛΛΑ- ΑΝΤΙΣΤΑΤΕΣ ΚΕΦΑΛΑΙΟ 7 ΗΛΕΚΤΡΙΚΗ ΑΓΩΓΙΜΟΤΗΤΑ ΣΤΑ ΜΕΤΑΛΛΑ- ΑΝΤΙΣΤΑΤΕΣ 7.1. Εισαγωγή Στο κεφάλαιο αυτό θα εξετάσουμε την ηλεκτρική αγωγιμότητα των μεταλλικών υλικών και τους παράγοντες που την επηρεάζουν, όπως η θερμοκρασία,

Διαβάστε περισσότερα

ΠΡΟΤΕΙΝΟΜΕΝΟ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ

ΠΡΟΤΕΙΝΟΜΕΝΟ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ 1 ΠΡΟΤΕΙΝΟΜΕΝΟ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ ΘΕΜΑ 1 ο 1. Aν ο ρυθμός μεταβολής της ταχύτητας ενός σώματος είναι σταθερός, τότε το σώμα: (i) Ηρεμεί. (ii) Κινείται με σταθερή ταχύτητα. (iii) Κινείται με μεταβαλλόμενη

Διαβάστε περισσότερα

2). i = n i - n i - n i (2) 9-2

2). i = n i - n i - n i (2) 9-2 ΕΠΙΦΑΝΕΙΑΚΗ ΤΑΣΗ ΙΑΛΥΜΑΤΩΝ Έννοιες που πρέπει να γνωρίζετε: Εξίσωση Gbbs-Duhem, χηµικό δυναµικό συστατικού διαλύµατος Θέµα ασκήσεως: Μελέτη της εξάρτησης της επιφανειακής τάσης διαλυµάτων από την συγκέντρωση,

Διαβάστε περισσότερα

ΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΣΤΙΣ ΜΗΧΑΝΙΚΕΣ ΚΑΙ ΗΛΕΚΤΡΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ

ΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΣΤΙΣ ΜΗΧΑΝΙΚΕΣ ΚΑΙ ΗΛΕΚΤΡΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΣΤΙΣ ΜΗΧΑΝΙΚΕΣ ΚΑΙ ΗΛΕΚΤΡΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ Θέµα Α Στις ερωτήσεις 1-4 να βρείτε τη σωστή απάντηση. Α1. Για κάποιο χρονικό διάστηµα t, η πολικότητα του πυκνωτή και

Διαβάστε περισσότερα

Όπου Q η θερμότητα, C η θερμοχωρητικότητα και Δθ η διαφορά θερμοκρασίας.

Όπου Q η θερμότητα, C η θερμοχωρητικότητα και Δθ η διαφορά θερμοκρασίας. Άσκηση Η9 Θερμότητα Joule Θερμική ενέργεια Η θερμότητα μπορεί να είναι επιθυμητή π.χ. σε σώματα θέρμανσης. Αλλά μπορεί να είναι και αντιεπιθυμητή, π.χ. στους κινητήρες ή στους μετασχηματιστές. Θερμότητα

Διαβάστε περισσότερα

C=dQ/dT~ 6.4 cal/mole.grad

C=dQ/dT~ 6.4 cal/mole.grad ΘΕΡΜΟΤΗΤΑ Ηεσωτερικήενέργειαενόςσώµατος, είναι το σύνολο των οποιονδήποτε ενεργειών των ατόµων και των µορίων του Η θερµοκρασία είναι µέτρο της µέσης κινητικής ενέργειας των ατόµων και των µορίων Ε=3ΚΤ/2

Διαβάστε περισσότερα

Οι ιδιότητες των αερίων

Οι ιδιότητες των αερίων μεροσ 1 Ισορροπία Στο Μέρος 1 του βιβλίου αναπτύσσονται οι έννοιες που είναι απαραίτητες για τη μελέτη της ισορροπίας στη χημεία. Όταν μελετάμε την ισορροπία αναφερόμαστε τόσο σε φυσικές μεταβολές, όπως

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2010 ΕΚΦΩΝΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2010 ΕΚΦΩΝΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 00 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Α. Έστω t, t,..., t ν οι παρατηρήσεις µιας ποσοτικής µεταβλητής Χ ενός δείγµατος µεγέθους ν, που έχουν µέση τιµή x. Σχηµατίζουµε

Διαβάστε περισσότερα

Ερωτήσεις ανάπτυξης. α) να βρείτε το σηµείο x 0. β) να αποδείξετε ότι η κλίση της εφαπτοµένης της

Ερωτήσεις ανάπτυξης. α) να βρείτε το σηµείο x 0. β) να αποδείξετε ότι η κλίση της εφαπτοµένης της Ερωτήσεις ανάπτυξης. ** Η συνάρτηση είναι παραγωγίσιµη στο R και η ευθεία (ε) είναι εφαπτοµένη της C στο σηµείο (0, (0)). Μετακινούµε τη C παράλληλα προς τους άξονες, όπως φαίνεται στο σχήµα, και ονοµάζουµε

Διαβάστε περισσότερα

ΘΕΜΑ Δ Δύο σφαίρες ίδιας μάζας, m = 0,2 kg, κινούνται ευθύγραμμα και ομαλά σε λείο οριζόντιο επίπεδο σε αντίθετες κατευθύνσεις και με ταχύτητες

ΘΕΜΑ Δ Δύο σφαίρες ίδιας μάζας, m = 0,2 kg, κινούνται ευθύγραμμα και ομαλά σε λείο οριζόντιο επίπεδο σε αντίθετες κατευθύνσεις και με ταχύτητες Δύο σφαίρες ίδιας μάζας, m = 0,2 kg, κινούνται ευθύγραμμα και ομαλά σε λείο οριζόντιο επίπεδο σε αντίθετες κατευθύνσεις και με ταχύτητες μέτρων υ 1 = 6 m s -1, υ 2 = 2 m s -1 αντίστοιχα, ώστε να πλησιάζουν

Διαβάστε περισσότερα

ΠΕΙΡΑΜΑ VIII Θερµιδοµετρία και Θερµοστοιχεία

ΠΕΙΡΑΜΑ VIII Θερµιδοµετρία και Θερµοστοιχεία ΠΕΙΡΑΜΑ VIII Θερµιδοµετρία και Θερµοστοιχεία Σκοπός πειράµατος Στο πείραµα αυτό θα χρησιµοποιήσουµε τις βασικές αρχές της θερµιδοµετρίας προκειµένου να µετρήσουµε τα εξής: Ειδική θερµότητα θερµιδοµέτρου.

Διαβάστε περισσότερα

Μεγιστοποίηση μέσα από το τριώνυμο

Μεγιστοποίηση μέσα από το τριώνυμο Μεγιστοποίηση μέσα από το τριώνυμο Μια από τις πιο όμορφες εφαρμογές του τριωνύμου στη φυσική είναι η μεγιστοποίηση κάποιου μεγέθους μέσα από αυτό. Η ιδέα απλή και βασίζεται στη λογική επίλυσης του παρακάτω

Διαβάστε περισσότερα

3η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΑΤΜΟΣΦΑΙΡΙΚΗ ΠΙΕΣΗ ΜΕΤΡΗΣΗ ΑΤΜΟΣΦΑΙΡΙΚΗΣ ΠΙΕΣΗΣ ΚΑΙ ΑΝΑΓΩΓΕΣ ΤΗΣ

3η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΑΤΜΟΣΦΑΙΡΙΚΗ ΠΙΕΣΗ ΜΕΤΡΗΣΗ ΑΤΜΟΣΦΑΙΡΙΚΗΣ ΠΙΕΣΗΣ ΚΑΙ ΑΝΑΓΩΓΕΣ ΤΗΣ 3η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΑΤΜΟΣΦΑΙΡΙΚΗ ΠΙΕΣΗ ΜΕΤΡΗΣΗ ΑΤΜΟΣΦΑΙΡΙΚΗΣ ΠΙΕΣΗΣ ΚΑΙ ΑΝΑΓΩΓΕΣ ΤΗΣ ΤΙ EIΝΑΙ ΑΤΜΟΣΦΑΙΡΙΚΗ ΠΙΕΣΗ ΘΕΩΡΗΤΙΚΟΥΠΟΒΑΘΡΟ Είναι η πίεση που εξασκεί ο ατμοσφαιρικός αέρας λόγω της δύναμης του

Διαβάστε περισσότερα

ιαγώνισµα για το σπίτι

ιαγώνισµα για το σπίτι ιαγώνισµα για το σπίτι p 2 V Θέµα 1 ο Να εξηγήσετε γιατί στη µεταβολή 1 2 η γραµµοµοριακή θερµοχωρητικότητα του αερίου είναι µικρότερη από το µέγεθος C p και µεγαλύτερη από το C V Για τη δικαιολόγηση θα

Διαβάστε περισσότερα

ΜΕΣΟΜΟΡΦΑ ΕΙΣΑΓΩΓΗ. Γενικότητες. Κατηγορίες και τύποι µεσόµορφων

ΜΕΣΟΜΟΡΦΑ ΕΙΣΑΓΩΓΗ. Γενικότητες. Κατηγορίες και τύποι µεσόµορφων 144 ΜΕΣΟΜΟΡΦΑ ΕΙΣΑΓΩΓΗ Γενικότητες Σύµφωνα µ αυτά που ειπώθηκαν στη Γενική Εισαγωγική, κατά τη µετατροπή ενός σώµατος από στερεό σε υγρό και αντίστροφα το σώµα περνάει από µια κατάσταση, που χαρακτηρίζεται

Διαβάστε περισσότερα

Η κίνηση του νερού εντός των φυτών (Soil-Plant-Atmosphere Continuum) Δημήτρης Κύρκας

Η κίνηση του νερού εντός των φυτών (Soil-Plant-Atmosphere Continuum) Δημήτρης Κύρκας Η κίνηση του νερού εντός των φυτών (Soil-Plant-Atmosphere Continuum) Δημήτρης Κύρκας Η Σεκόγια (Sequoia) «Redwood» είναι το ψηλότερο δέντρο στο κόσμο και βρίσκεται στην Καλιφόρνια των ΗΠΑ 130 μέτρα ύψος

Διαβάστε περισσότερα

ΧΗΜΕΙΑ Α ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 5. Θερμοχημεία, είναι ο κλάδος της χημείας που μελετά τις μεταβολές ενέργειας που συνοδεύουν τις χημικές αντιδράσεις.

ΧΗΜΕΙΑ Α ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 5. Θερμοχημεία, είναι ο κλάδος της χημείας που μελετά τις μεταβολές ενέργειας που συνοδεύουν τις χημικές αντιδράσεις. ΚΕΦΑΛΑΙΟ 5 ΘΕΡΜΟΧΗΜΕΙΑ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ Θερμοχημεία, είναι ο κλάδος της χημείας που μελετά τις μεταβολές ενέργειας που συνοδεύουν τις χημικές αντιδράσεις. Ενθαλπία (Η), ονομάζεται η ολική ενέργεια ενός

Διαβάστε περισσότερα

http://remote.physik.tu-berlin.de/

http://remote.physik.tu-berlin.de/ Εργαστήριο: Remote Farm (Απομακρυσμένη Φάρμα) http://remote.physik.tu-berlin.de/ Τα εξ αποστάσεως πειράματα είναι περιβάλλοντα ρεαλιστικά, κατασκευασμένα στο Ινστιτούτο Τεχνολογίας του Βερολίνου, με όλες

Διαβάστε περισσότερα

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ Κεφάλαιο 5 ο : Ο Προσδιορισμός των Τιμών ΕΠΙΜΕΛΕΙΑ: ΝΙΚΟΣ Χ. ΤΖΟΥΜΑΚΑΣ ΟΙΚΟΝΟΜΟΛΟΓΟΣ Ασκήσεις 1. Οι συναρτήσεις ζήτησης και προσφοράς ενός αγαθού είναι: =20-2P και S =5+3P αντίστοιχα.

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΣΥΣΚΕΥΩΝ ΘΕΡΜΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ. 1η ενότητα

ΑΣΚΗΣΕΙΣ ΣΥΣΚΕΥΩΝ ΘΕΡΜΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ. 1η ενότητα 1η ενότητα 1. Εναλλάκτης σχεδιάζεται ώστε να θερμαίνει 2kg/s νερού από τους 20 στους 60 C. Το θερμό ρευστό είναι επίσης νερό με θερμοκρασία εισόδου 95 C. Οι συντελεστές συναγωγής στους αυλούς και το κέλυφος

Διαβάστε περισσότερα

ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΤΕΧΝΟΛΟΓΙΑΣ ΚΛΙΜΑΤΙΣΜΟΥ ΨΥΧΡΟΜΕΤΡΙΑ

ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΤΕΧΝΟΛΟΓΙΑΣ ΚΛΙΜΑΤΙΣΜΟΥ ΨΥΧΡΟΜΕΤΡΙΑ ΤΕΙ - ΧΑΛΚΙ ΑΣ Τµήµα Μηχανολογίας Εργαστ:Ψύξη-Κλιµατισµός- Θέρµανση & Α.Π.Ε. 34400 ΨΑΧΝΑ ΕΥΒΟΙΑΣ TEI - CHALKIDOS Department of Mecanical Engineering Cooling, Air Condit., Heating and R.E. Lab. 34400 PSACHNA

Διαβάστε περισσότερα

Νίκος Χαριτωνίδης. Πρόλογος

Νίκος Χαριτωνίδης. Πρόλογος Πρόλογος Το παρόν εγχειρίδιο έχει στόχο την επαγγελματική επιμόρφωση. Η τελευταία διαφέρει από την ακαδημαϊκή εκπαίδευση, στο ότι πρέπει στο μικρότερο δυνατό χρόνο να αποδώσει «χειροπιαστά» οφέλη. Ο επιμορφωθείς

Διαβάστε περισσότερα

Επιλύοντας, έχω: (p atm -p E )LA=(p atm +p E )αla p atm -p E =p atm α+p E α p atm (1-α)=p E (1+α) ο C. Ζητούνται:

Επιλύοντας, έχω: (p atm -p E )LA=(p atm +p E )αla p atm -p E =p atm α+p E α p atm (1-α)=p E (1+α) ο C. Ζητούνται: ΑΣΚΗΣΗ 1 Μια ποσότητα αερίου εγκλωβίζεται αεροστεγώς σε κυλινδρικό δοχείο με έμβολο διαμέτρου d=81 mm. Όταν η ανοικτή πλευρά του δοχείου είναι από την κάτω πλευρά (Θέση 1) το έμβολο απέχει κατά απόσταση

Διαβάστε περισσότερα

Κίνηση σε Ηλεκτρικό Πεδίο.

Κίνηση σε Ηλεκτρικό Πεδίο. Κίνηση σε Ηλεκτρικό Πεδίο. 3.01. Έργο κατά την μετακίνηση φορτίου. Στις κορυφές Β και Γ ενόςισοπλεύρου τριγώνου ΑΒΓ πλευράς α= 2cm, βρίσκονται ακλόνητα δύο σηµειακά ηλεκτρικά φορτία q 1 =2µC και q 2 αντίστοιχα.

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012 ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 01 Ε_3.ΦλΘΤ(ε) ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ / ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΘΕΜΑ Α Ηµεροµηνία: Κυριακή

Διαβάστε περισσότερα

Διάδοση Θερμότητας. (Αγωγή / Μεταφορά με τη βοήθεια ρευμάτων / Ακτινοβολία)

Διάδοση Θερμότητας. (Αγωγή / Μεταφορά με τη βοήθεια ρευμάτων / Ακτινοβολία) Διάδοση Θερμότητας (Αγωγή / Μεταφορά με τη βοήθεια ρευμάτων / Ακτινοβολία) Τρόποι διάδοσης θερμότητας Με αγωγή Με μεταφορά (με τη βοήθεια ρευμάτων) Με ακτινοβολία άλλα ΠΑΝΤΑ από το θερμότερο προς το ψυχρότερο

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 1 η. r 1. Σε κύκλο ισόογκης καύσης (OTTO) να αποδειχθούν ότι: Οθεωρητικόςβαθμόςαπόδοσηςείναι:. Η μέση θεωρητική πίεση κύκλου είναι:. th 1.

ΑΣΚΗΣΗ 1 η. r 1. Σε κύκλο ισόογκης καύσης (OTTO) να αποδειχθούν ότι: Οθεωρητικόςβαθμόςαπόδοσηςείναι:. Η μέση θεωρητική πίεση κύκλου είναι:. th 1. ΑΣΚΗΣΗ η Σε κύκλο ισόοκης καύσης (OO) να αποδειχθούν ότι: Οθεωρητικόςβαθμόςαπόδοσηςείναι:. Η μέση θεωρητική πίεση κύκλου είναι:. q R q q tot ΑΣΚΗΣΗ η Δ tot q q q ( ) cv ( ) cv q q q ΑΣΚΗΣΗ η q q Από αδιαβατικές

Διαβάστε περισσότερα

ΥΠΟΔΕΙΓΜΑ ΘΕΩΡΗΤΙΚΩΝ ΕΡΩΤΗΣΕΩΝ ΕΞΕΤΑΣΕΩΝ

ΥΠΟΔΕΙΓΜΑ ΘΕΩΡΗΤΙΚΩΝ ΕΡΩΤΗΣΕΩΝ ΕΞΕΤΑΣΕΩΝ ΥΠΟΔΕΙΓΜΑ ΘΕΩΡΗΤΙΚΩΝ ΕΡΩΤΗΣΕΩΝ ΕΞΕΤΑΣΕΩΝ 1. Πώς ορίζεται η περίσσεια αέρα και η ισχύς μίγματος σε μία καύση; 2. Σε ποιές περιπτώσεις παρατηρείται μή μόνιμη μετάδοση της θερμότητας; 3. Τί είναι η αντλία

Διαβάστε περισσότερα

1 Aπώλειες θερμότητας - Μονωτικά

1 Aπώλειες θερμότητας - Μονωτικά 1 Aπώλειες θερμότητας - Μονωτικά 1.1 Εισαγωγή Όταν ένα ρευστό ρέει μέσα σ' έναν αγωγό και η θερμοκρασία του διαφέρει από τη θερμοκρασία του περιβάλλοντος, τότε μεταδίδεται θερμότητα: από το ρευστό προς

Διαβάστε περισσότερα

ιαγώνισµα στις Ταλαντώσεις ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΤΑΙΧΜΙΟ 1

ιαγώνισµα στις Ταλαντώσεις ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΤΑΙΧΜΙΟ 1 ιαγώνισµα στις Ταλαντώσεις ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΤΑΙΧΜΙΟ 1 ΘΕΜΑ 1 0 Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση. 1. Το

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 5 ΕΝΕΡΓΕΙΑ ΚΑΙ ΘΕΡΜΟΤΗΤΑ

ΚΕΦΑΛΑΙΟ 5 ΕΝΕΡΓΕΙΑ ΚΑΙ ΘΕΡΜΟΤΗΤΑ ΚΕΦΑΛΑΙΟ 5 ΕΝΕΡΓΕΙΑ ΚΑΙ ΘΕΡΜΟΤΗΤΑ 5. Η εσωτερική ενέργεια Τα υλικά σώµατα αποτελούνται από δοµικούς λίθους, δηλαδή άτοµα, ιόντα ή µόρια. Kάθε δοµικός λίθος σώµατος διαθέτει δυναµική και κινητική ενέργεια.

Διαβάστε περισσότερα

ΟΙ ΑΛΛΑΓΕΣ ΚΑΤΑΣΤΑΣΗΣ ΤΟΥ ΝΕΡΟΥ Ο «ΚΥΚΛΟΣ» ΤΟΥ ΝΕΡΟΥ

ΟΙ ΑΛΛΑΓΕΣ ΚΑΤΑΣΤΑΣΗΣ ΤΟΥ ΝΕΡΟΥ Ο «ΚΥΚΛΟΣ» ΤΟΥ ΝΕΡΟΥ ΟΙ ΑΛΛΑΓΕΣ ΚΑΤΑΣΤΑΣΗΣ ΤΟΥ ΝΕΡΟΥ Ο «ΚΥΚΛΟΣ» ΤΟΥ ΝΕΡΟΥ ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ 6 Τι πρέπει να γνωρίζεις Θεωρία 6.1 Να αναφέρεις τις τρεις φυσικές καταστάσεις στις οποίες μπορεί να βρεθεί ένα υλικό σώμα. Όπως και

Διαβάστε περισσότερα

ΠΕΙΡΑΜΑ IX Θερµιδοµετρία και Θερµοστοιχεία

ΠΕΙΡΑΜΑ IX Θερµιδοµετρία και Θερµοστοιχεία ΠΕΙΡΑΜΑ IX Θερµιδοµετρία και Θερµοστοιχεία Σκοπός πειράµατος Στο πείραµα αυτό θα χρησιµοποιήσουµε τισ βασικές αρχές της θερµιδοµετρίας προκειµένου να µετρήσουµε τα εξής: Ειδική θερµότητα θερµιδοµέτρου.

Διαβάστε περισσότερα

2 ο κεφάλαιο. φυσικές έννοιες. κινητήριες μηχανές

2 ο κεφάλαιο. φυσικές έννοιες. κινητήριες μηχανές 2 ο κεφάλαιο φυσικές έννοιες κινητήριες μηχανές 1. Τι μπορεί να προκαλέσει η επίδραση μιας δύναμης, πάνω σ ένα σώμα ; 21 Την μεταβολή της κινητικής του κατάστασης ή την παραμόρφωσή του. 2. Πώς καθορίζεται

Διαβάστε περισσότερα

ΜΑΘΗΜΑ - X ΗΛΕΚΤΡΟΛΥΣΗ ΑΣΚΗΣΗ Β11 - (Ι) ΠΡΟΣ ΙΟΡΙΣΜΟΣ ΤΗΣ ΣΤΑ FARADAY ΑΣΚΗΣΗ Β11 - (ΙΙ) ΠΡΟΣ ΙΟΡΙΣΜΟΣ ΦΟΡΤΙΩΝ ΚΑΙ ΗΛΕΚΤΡΟΧΗΜΙΚΩΝ ΙΣΟ ΥΝΑΜΩΝ

ΜΑΘΗΜΑ - X ΗΛΕΚΤΡΟΛΥΣΗ ΑΣΚΗΣΗ Β11 - (Ι) ΠΡΟΣ ΙΟΡΙΣΜΟΣ ΤΗΣ ΣΤΑ FARADAY ΑΣΚΗΣΗ Β11 - (ΙΙ) ΠΡΟΣ ΙΟΡΙΣΜΟΣ ΦΟΡΤΙΩΝ ΚΑΙ ΗΛΕΚΤΡΟΧΗΜΙΚΩΝ ΙΣΟ ΥΝΑΜΩΝ ΜΑΘΗΜΑ - X ΗΛΕΚΤΡΟΛΥΣΗ ΑΣΚΗΣΗ Β11 - (Ι) ΠΡΟΣ ΙΟΡΙΣΜΟΣ ΤΗΣ ΣΤΑΘΕΡΑΣ FARADAY ΑΣΚΗΣΗ Β11 - (ΙΙ) ΠΡΟΣ ΙΟΡΙΣΜΟΣ ΦΟΡΤΙΩΝ ΚΑΙ ΗΛΕΚΤΡΟΧΗΜΙΚΩΝ ΙΣΟ ΥΝΑΜΩΝ Τµήµα Χηµείας, Πανεπιστήµιο Κρήτης, και Ινστιτούτο Ηλεκτρονικής

Διαβάστε περισσότερα