ΙΝΣΤΙΤΟΥΤΟ ΦΙΛΟΣΟΦΙΚΩΝ ΕΡΕΥΝΩΝ [ Από Αριστερά Δεξιά ή από Δεξιά Αριστερά;

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΙΝΣΤΙΤΟΥΤΟ ΦΙΛΟΣΟΦΙΚΩΝ ΕΡΕΥΝΩΝ [www.philosophical-research.org] Από Αριστερά Δεξιά ή από Δεξιά Αριστερά;"

Transcript

1 1 ΙΝΣΤΙΤΟΥΤΟ ΦΙΛΟΣΟΦΙΚΩΝ ΕΡΕΥΝΩΝ [ ΑΠΟΣΤΟΛΟΣ Λ. ΠΙΕΡΡΗΣ Στοχασμοί εξ Ικαρίας Ι Από Αριστερά Δεξιά ή από Δεξιά Αριστερά; Φορές Γραφής και Μεταφυσική των Κατευθύνσεων 1 Νοεμβρίου 2016

2 2 Η πρώτη αλφαβητική, φθογγική, Ελληνική γραφή γράφεται, διαβάζεται και εννοείται από δεξιά προς αριστερά. Και κατά λόγον, αφού το αλφάβητο είναι Μεσανατολικής καταγωγής, Φοινικικό. Το καλύτερο μάθημα αρχικής Ελληνικής γραφής δίνουν οι βραχοεπιγραφές στην αρχαία Θήρα, όπου κατά τον Ηρόδοτο πρωτοπιάσανε οι περί Κάδμο και αφήσανε μαγιά. Φορά πρώτα λοιπόν από δεξιά προς αριστερά, λόγω καταγωγής του αλφαβήτου. Μετά ελικοειδώς ή βουστροφηδόν, λόγω της συνέχειας του γραπτού λόγου (όπως του προφορικού), του περιορισμού της γραφομένης επιφάνειας και ανάγκης συνοπτικής θεώρησης του όλου κειμένου. Η κατάτμηση σε γραμμές είναι γενεαλογικά επόμενο φαινόμενο που συνδέεται με την απόδοση μετρικού κειμένου, στίχων επικού ποιήματος που ο καθένας τους αποτελεί ρυθμική ενότητα. Τελικά όμως, και γρήγορα, στον Ελληνικό χώρο επικράτησε η φορά από αριστερά προς δεξιά. Η φορά γραφής, ανάγνωσης και νοήματος έχει μεταφυσικές και κοσμοθεωρητικές προϋποθέσεις. (Σαφώς και η αιτία καθιέρωσης του ενός

3 3 ή του άλλου τρόπου δεν είναι υποτιθέμενες τεχνικές δυσκολίες ή ευκολίες. Δύσκολο είναι απλά το μη οικείο). Και στην Ελληνική γλυπτική η κύρια φορά είναι από αριστερά προς δεξιά, π.χ. στις μετόπες, όταν εκφράζεται συνολική κίνηση και δεν πρόκειται για την ισορροπία συμμετρικών, εραλδικών παραστάσεων. Εραλδικές εμβληματικές εννοώ απόλυτα ή επιδεικτικά συμμετρικές παραστάσεις, ιδιαίτερα με συμβολισμό νοηματικής σημειολογίας. Και μάλιστα εραλδική φαίνεται να είναι η αρχή του αετωματικού γλυπτικού διακόσμου. Π.χ δυο λιοντάρια να κατασπαράσσουν εραλδικά ταύρο, ή δυο τεράστια λιοντάρια εκατέρωθεν της Μέδουσας στο περίφημο αέτωμα του ναού της Αρτέμιδος στην Κέρκυρα. Βαθύ βίωμα είναι μιας θεμελιώδους οντολογικής κατοπτρικότητας. Πρόκειται για την συμμετρική περί άξονα και επίπεδο δόμηση του όντος. Που εντούτοις ενέχει ωρισμένη διαφοροποίηση του δεξιού από το αριστερό. Η ερμηνεία θέλει ανάπτυξη, αλλά τα γεγονότα είναι δεδομένα. Στο αρχικό ερώτημα ποιά η φορά γραφής, ανάγνωσης και νόησης της πρωτοελληνικής (μετά την κατάρρευση του "μυκηναϊκού" πολιτισμού), η απάντηση είναι από δεξιά προς αριστερά. Κάθε καλώς ωρισμένο πρόβλημα έχει μια μονοσήμαντη λύση. Η κλασσική αρχή κόντρα στο θεώρημα Goedel. Ισχύει στην φιλοσοφία, τέχνη, οικονομία, πολιτική και παντού. *** Η συζήτηση ξεκίνησε για την φορά της αρχικής Ελληνικής αλφαβητικής φθογγικής γραφής. Μονοσήμαντη απάντηση: από δεξιά προς αριστερά. Γιατί; Διότι το Ελληνικό αλφάβητο είναι φοινικικής καταγωγής και έτσι

4 4 γράφουν εκεί κάτω στη Μέση Ανατολή και σήμερα. Όπως στην αγγειογραφία και στην μικροτεχνία έτσι και στον λόγο και την γραφή με την κατάρρευση του "Μυκηναϊκού" - Αχαϊκού συστήματος και πολιτισμού εξαφανίστηκε η ανακτορική τέχνη και η συλλαβική γραφή. Καινούρια αρχή μετά. Εξήγησα λακωνικά τη εμφάνιση της ελικοειδούς και βουστροφηδόν γραφής, όπως και την κατάτμηση του γραπτού λόγου σε στίχους - σειρές. Κάθε καλώς ωρισμένο φαινόμενο έχει καλώς ωρισμένη αιτία. Είναι γεγονός, και δεν είναι πρόβλημα, ότι η φορά στον Ελληνισμό άλλαξε γρήγορα και αντεστράφη. Συνέδεσα την επικράτηση της φοράς από αριστερά προς δεξιά με αντίστοιχο φαινόμενο στην "γραφή και ανάγνωση" παραστάσεων στην τέχνη. Να προσθέσω εδώ στην προβληματική την οιωνοσκοπία (κίνηση ευοίωνη/δυσοίωνη πτηνών) και τις Πυθαγόρειες συστοιχίες των αντιθέτων, όπου το δεξιό είναι "καλό" και το (αντιφραστικά) ευώνυμο είναι άμορφο. - Που σημαίνει η συνάρτηση αυτών των πολύ διαφορετικών πεδίων ότι ο λόγος για την μια ή την άλλη φορά γραφής είναι μεταφυσικός και κοσμοθεωρητικός όπως επεσήμανα. Δεν εξήγησα ενδελεχώς τον λόγο γιατί καλύτερα να γίνει σε προσεχές επί τούτου σεμινάριο. Και φυσικά ερμηνείες του τύπου αυτό είναι εύκολο ή εκείνο είναι για αριστερόχειρες προκαλούν είτε θυμηδία είτε οργή είτε και τα δύο. Τώρα μετά από αυτά δεν απομένει υπόλοιπο ζήτημα. Πλην φυσικά της πλήρους μεταφυσικής ερμηνείας. *** Αν εξακολουθεί αίσθημα σκιάς ή αφώτιστου βάθους παρά τα παραπάνω, πρόκειται για αδιάρθρωτο ερώτημα περί την γενικευμένη θεωρία των κατευθύνσεων. Αυτό είναι άλλο γενικώτερο και υπερκαλύπτον ζήτημα,

5 5 αλλά και πάλι ο καλός ορισμός διαλύει την σύγχυση και την απελπισία ως προς την εξεύρεση μονοσήμαντης λύσης. Το αριστερό/δεξιό, επάνω/κάτω, εμπρός/πίσω, δεν είναι υποκειμενικές σχέσεις αλλά θεμελιώνονται στην τεκτονική του (ζώντος) όντος. (Ο Αριστοτέλης έχει αναλύσει το γεγονός). Υπάρχει μια (σχεδόν) κατοπτρική συμμετρία περί άξονα ανυσματικό από κάτω (έδρα ζώου, ρίζα φυτού) προς επάνω (κεφαλή ζώου, κόμη φυτού). Στα ζώα το άνυσμα αυτό είναι οριζόντιο, μόνο στον άνθρωπο κατακόρυφο (αλλά και στα φυτά και τα βουνά). - Αντίστοιχα στο κοσμικό σύστημα η τετραπλή δομή εκφράζεται με τα βασικά σημεία του ορίζοντα, που πάλι ορίζονται κατά φύσιν και δεν εξαρτώνται από τον τρόπο που κάποιος κρατάει ένα χάρτη. - Στα ζώα η ενέργειά τους καθορίζεται κυρίως από την σχέση πάνω-κάτω (κατ' εξοχήν στα ερπετά), αλλά στον άνθρωπο δράση και αντίδραση κυριαρχείται από την σχέση δεξιού/αριστερού στα πόδια και στα χέρια. Το δεξί είναι δρών και πρακτικό και επιθετικό, το δε αριστερό φέρον και ανθιστάμενο και αμυντικό: η εικόνα του οπλίτη. Οι προηγμένες αλφαβητικές γραφές λοιπόν κυριαρχούνται από το δεξίαριστερό, ενώ το "καθυστερημένο" για τον άνθρωπο πάνω-κάτω μπορεί να χρησιμοποιείται κυρίως σε ιδεογράμματα και εικονικές/συμβολικές γραφές. Άρα ξαναγυρίζουμε στη θεμελιώδη κατεύθυνση με τις δύο φορές: από δεξιά προς αριστερά ή αντιστρόφως. Δεν προχωρώ εδώ στους μεταφυσικούς και κοσμοθεωρητικούς λόγους της μιας ή της άλλης εκδοχής, αν και έχω δώσει πολλά στοιχεία για την καθοριστική λύση του προβλήματος, υποσχέθηκα δε ειδικό σεμινάριο. Οι λόγοι είναι πάντως σαφώς ωρισμένοι, όπως κάθε τι υπάρχον. Γιατί το αόριστο είναι ανύπαρκτο. Πρώτος κλασσικός θεσμός.

ΙΝΣΤΙΤΟΥΤΟ ΦΙΛΟΣΟΦΙΚΩΝ ΕΡΕΥΝΩΝ ΣΕΜΙΝΑΡΙΑ ΙΣΤΟΡΙΚΟΦΙΛΟΣΟΦΙΚΟΥ ΛΟΓΟΥ. Πέμπτη,1 και Παρασκευή, 2 Δεκεμβρίου 2016

ΙΝΣΤΙΤΟΥΤΟ ΦΙΛΟΣΟΦΙΚΩΝ ΕΡΕΥΝΩΝ  ΣΕΜΙΝΑΡΙΑ ΙΣΤΟΡΙΚΟΦΙΛΟΣΟΦΙΚΟΥ ΛΟΓΟΥ. Πέμπτη,1 και Παρασκευή, 2 Δεκεμβρίου 2016 1 ΙΝΣΤΙΤΟΥΤΟ ΦΙΛΟΣΟΦΙΚΩΝ ΕΡΕΥΝΩΝ www.philosophical-research.org Α ΣΕΜΙΝΑΡΙΑ ΙΣΤΟΡΙΚΟΦΙΛΟΣΟΦΙΚΟΥ ΛΟΓΟΥ ΑΠΟΣΤΟΛΟΣ Λ. ΠΙΕΡΡΗΣ ΚΥΚΛΟΣ Λ ΠΕΡΙΟΔΟΣ 2016-2017 ΣΥΝΑΝΤΗΣΕΙΣ ΠΑΤΡΩΝ(3 η ) ΚΑΙ ΣΠΑΡΤΗΣ (2 α ) Πέμπτη,1

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ & ΤΕΧΝΟΛΟΓΙΚΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ 2019

ΜΑΘΗΜΑΤΙΚΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ & ΤΕΧΝΟΛΟΓΙΚΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ 2019 ΜΑΘΗΜΑΤΙΚΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ & ΤΕΧΝΟΛΟΓΙΚΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ 9 ΘΕΜΑ Α Α α Σχολικό σελ 5 β i Σχολικό σελ 35 ii Σχολικό σελ 36 Α Σχολικό σελ

Διαβάστε περισσότερα

lim f ( x) x + f ( x) x a x a x a 2x 1

lim f ( x) x + f ( x) x a x a x a 2x 1 Ασύµπτωτες γραφικής παραστάσεως συναρτήσεως Ασύµπτωτες της γραφικής παραστάσεως συναρτήσεως y f ( ) ονοµάζονται οι ευθείες που για πολύ µικρές ή µεγάλες τιµές των, y προσεγγίζουν ικανοποιητικά την γραφική

Διαβάστε περισσότερα

Το Νόημα της Ιστορίας

Το Νόημα της Ιστορίας ΙΝΣΤΙΤΟΥΤΟ ΦΙΛΟΣΟΦΙΚΩΝ ΕΡΕΥΝΩΝ [www.philosophical-research.org] ΣΕΜΙΝΑΡΙΑ ΙΣΤΟΡΙΚΟΦΙΛΟΣΟΦΙΚΟΥ ΛΟΓΟΥ ΑΠΟΣΤΟΛΟΣ Λ. ΠΙΕΡΡΗΣ ΚΥΚΛΟΣ ΚΗ ΠΕΡΙΟΔΟΣ 2014-2015 Το Νόημα της Ιστορίας Σεμινάριο 1 ο Πέμπτη 13 Νοεμβρίου

Διαβάστε περισσότερα

ΙΝΣΤΙΤΟΥΤΟ ΦΙΛΟΣΟΦΙΚΩΝ ΕΡΕΥΝΩΝ

ΙΝΣΤΙΤΟΥΤΟ ΦΙΛΟΣΟΦΙΚΩΝ ΕΡΕΥΝΩΝ 1 ΙΝΣΤΙΤΟΥΤΟ ΦΙΛΟΣΟΦΙΚΩΝ ΕΡΕΥΝΩΝ [www.philosophical-research.org] ΣΕΜΙΝΑΡΙΑ ΙΣΤΟΡΙΚΟΦΙΛΟΣΟΦΙΚΟΥ ΛΟΓΟΥ ΑΠΟΣΤΟΛΟΣ Λ. ΠΙΕΡΡΗΣ ΚΥΚΛΟΣ ΚΖ ΠΕΡΙΟΔΟΣ 2013-2014 Μελέτη Ελληνισμού Σεμινάριο 2 ο Πέμπτη 21 Νοεμβρίου

Διαβάστε περισσότερα

ΙΝΣΤΙΤΟΥΤΟ ΦΙΛΟΣΟΦΙΚΩΝ ΕΡΕΥΝΩΝ ΣΕΜΙΝΑΡΙΑ ΙΣΤΟΡΙΚΟΦΙΛΟΣΟΦΙΚΟΥ ΛΟΓΟΥ

ΙΝΣΤΙΤΟΥΤΟ ΦΙΛΟΣΟΦΙΚΩΝ ΕΡΕΥΝΩΝ  ΣΕΜΙΝΑΡΙΑ ΙΣΤΟΡΙΚΟΦΙΛΟΣΟΦΙΚΟΥ ΛΟΓΟΥ 1 ΙΝΣΤΙΤΟΥΤΟ ΦΙΛΟΣΟΦΙΚΩΝ ΕΡΕΥΝΩΝ www.philosophical-research.org ΣΕΜΙΝΑΡΙΑ ΙΣΤΟΡΙΚΟΦΙΛΟΣΟΦΙΚΟΥ ΛΟΓΟΥ ΑΠΟΣΤΟΛΟΣ Λ. ΠΙΕΡΡΗΣ ΚΥΚΛΟΣ Λ ΠΕΡΙΟΔΟΣ 2016-2017 ΣΥΝΑΝΤΗΣΕΙΣ ΠΑΤΡΩΝ Ολιστική Ιστορία του Ελληνισμού (Από

Διαβάστε περισσότερα

( ) Ίσες συναρτήσεις. = g, Οι συναρτήσεις f, g λέμε ότι είναι ίσες και συμβολίζουμε f. όταν: Έχουν το ίδιο πεδία ορισμού Α

( ) Ίσες συναρτήσεις. = g, Οι συναρτήσεις f, g λέμε ότι είναι ίσες και συμβολίζουμε f. όταν: Έχουν το ίδιο πεδία ορισμού Α .5.. Ίσες συναρτήσεις ΣΥΝΑΡΤΗΣΕΙΣ 7 Ο ΜΑΘΗΜΑ Οι συναρτήσεις f, g λέμε ότι είναι ίσες και συμβολίζουμε f = g, Έχουν το ίδιο πεδία ορισμού Α Για κάθε x Α ισχύει f ( x) = g( x) Αν για τις συναρτήσεις: f:

Διαβάστε περισσότερα

Μελέτη Ελληνισμού ΠΡΟΓΡΑΜΜΑ ΣΕΜΙΝΑΡΙΑ ΙΣΤΟΡΙΚΟΦΙΛΟΣΟΦΙΚΟΥ ΛΟΓΟΥ ΚΥΚΛΟΣ ΚΖ. ΙΝΣΤΙΤΟΥΤΟ ΦΙΛΟΣΟΦΙΚΩΝ ΕΡΕΥΝΩΝ [

Μελέτη Ελληνισμού ΠΡΟΓΡΑΜΜΑ ΣΕΜΙΝΑΡΙΑ ΙΣΤΟΡΙΚΟΦΙΛΟΣΟΦΙΚΟΥ ΛΟΓΟΥ ΚΥΚΛΟΣ ΚΖ. ΙΝΣΤΙΤΟΥΤΟ ΦΙΛΟΣΟΦΙΚΩΝ ΕΡΕΥΝΩΝ [ 1 ΙΝΣΤΙΤΟΥΤΟ ΦΙΛΟΣΟΦΙΚΩΝ ΕΡΕΥΝΩΝ [www.philosophical-research.org] ΣΕΜΙΝΑΡΙΑ ΙΣΤΟΡΙΚΟΦΙΛΟΣΟΦΙΚΟΥ ΛΟΓΟΥ ΑΠΟΣΤΟΛΟΣ Λ. ΠΙΕΡΡΗΣ ΚΥΚΛΟΣ ΚΖ ΠΕΡΙΟΔΟΣ 2013-2014 Μελέτη Ελληνισμού ΠΡΟΓΡΑΜΜΑ 2 Μέρος Α Αρχαϊκές Αρχές

Διαβάστε περισσότερα

ΙΝΣΤΙΤΟΥΤΟ ΦΙΛΟΣΟΦΙΚΩΝ ΕΡΕΥΝΩΝ [ ΣΕΜΙΝΑΡΙΑ ΙΣΤΟΡΙΚΟΦΙΛΟΣΟΦΙΚΟΥ ΛΟΓΟΥ ΑΠΟΣΤΟΛΟΣ Λ. ΠΙΕΡΡΗΣ ΚΥΚΛΟΣ ΚΣΤ

ΙΝΣΤΙΤΟΥΤΟ ΦΙΛΟΣΟΦΙΚΩΝ ΕΡΕΥΝΩΝ [  ΣΕΜΙΝΑΡΙΑ ΙΣΤΟΡΙΚΟΦΙΛΟΣΟΦΙΚΟΥ ΛΟΓΟΥ ΑΠΟΣΤΟΛΟΣ Λ. ΠΙΕΡΡΗΣ ΚΥΚΛΟΣ ΚΣΤ 1 ΙΝΣΤΙΤΟΥΤΟ ΦΙΛΟΣΟΦΙΚΩΝ ΕΡΕΥΝΩΝ [www.philosophical-research.org] ΣΕΜΙΝΑΡΙΑ ΙΣΤΟΡΙΚΟΦΙΛΟΣΟΦΙΚΟΥ ΛΟΓΟΥ ΑΠΟΣΤΟΛΟΣ Λ. ΠΙΕΡΡΗΣ ΚΥΚΛΟΣ ΚΣΤ ΠΕΡΙΟΔΟΣ 2012-2013 Το Ελληνικό Κάλλος και η Ευρωπαική Αθλιότητα της

Διαβάστε περισσότερα

2.1 ΜΟΝΟΤΟΝΙΑ ΑΚΡΟΤΑΤΑ ΣΥΜΜΕΤΡΙΕΣ ΣΥΝΑΡΤΗΣΗ

2.1 ΜΟΝΟΤΟΝΙΑ ΑΚΡΟΤΑΤΑ ΣΥΜΜΕΤΡΙΕΣ ΣΥΝΑΡΤΗΣΗ ΚΕΦΑΛΑΙΟ Ο : ΙΔΙΟΤΗΤΕΣ ΣΥΝΑΡΤΗΣΕΩΝ. ΜΟΝΟΤΟΝΙΑ ΑΚΡΟΤΑΤΑ ΣΥΜΜΕΤΡΙΕΣ ΣΥΝΑΡΤΗΣΗΣ ΟΡΙΣΜΟΣ ΣΥΝΑΡΤΗΣΗΣ Συνάρτηση από ένα σύνολο Α σε ένα σύνολο Β λέγεται μια διαδικασία (κανόνας), με την οποία κάθε στοιχείο του

Διαβάστε περισσότερα

ΦΥΣΙΚΗ. Α Λυκείου 14/ 04 / 2019 ΘΕΜΑ Α.

ΦΥΣΙΚΗ. Α Λυκείου 14/ 04 / 2019 ΘΕΜΑ Α. Α Λυκείου 4/ 4 / 9 ΦΥΣΙΚΗ ΘΕΜΑ Α. Α. γ, Α. β, Α3. γ, Α4. α Α5. α) Σ, β) Σ, γ) Λ, δ) Λ, ε) Λ ΘΕΜΑ Β Β. Σωστή απάντηση είναι η (β). Εφαρμόζοντας το ο νόμο του Νεύτωνα υπολογίζουμε την επιτάχυνση του συστήματος

Διαβάστε περισσότερα

ΛΥΣΕΙΣ ΤΟΥ ΔΙΑΓΩΝΙΣΜΑΤΟΣ ΣΤΙΣ ΣΥΝΑΡΤΗΣΕΙΣ (Α)

ΛΥΣΕΙΣ ΤΟΥ ΔΙΑΓΩΝΙΣΜΑΤΟΣ ΣΤΙΣ ΣΥΝΑΡΤΗΣΕΙΣ (Α) ΛΥΣΕΙΣ ΤΟΥ ΔΙΑΓΩΝΙΣΜΑΤΟΣ ΣΤΙΣ ΣΥΝΑΡΤΗΣΕΙΣ (Α) 1. Τι ξέρετε για τη γραφική παράσταση της οικογένειας συναρτήσεων με εξίσωση ; H γραφική παράσταση της για κάθε πραγματική τιμή του είναι ευθεία γραμμή η οποία

Διαβάστε περισσότερα

Συναρτήσεις Θεωρία Ορισμοί - Παρατηρήσεις

Συναρτήσεις Θεωρία Ορισμοί - Παρατηρήσεις Συναρτήσεις Θεωρία Ορισμοί - Παρατηρήσεις Ορισμός: Έστω Α, Β R. Πραγματική συνάρτηση πραγματικής μεταβλητής από το σύνολο Α στο σύνολο Β ονομάζουμε την διαδικασία κατά την οποία κάθε στοιχείο του συνόλου

Διαβάστε περισσότερα

ΔΙΑΛΕΞΗ ΤΡΙΤΗ ΤΟ ΑΛΦΑΒΗΤΟ ΚΑΙ Η ΔΙΑΜΟΡΦΩΣΗ ΤΩΝ ΑΡΧΑΙΩΝ ΕΛΛΗΝΙΚΩΝ ΔΙΑΛΕΚΤΩΝ

ΔΙΑΛΕΞΗ ΤΡΙΤΗ ΤΟ ΑΛΦΑΒΗΤΟ ΚΑΙ Η ΔΙΑΜΟΡΦΩΣΗ ΤΩΝ ΑΡΧΑΙΩΝ ΕΛΛΗΝΙΚΩΝ ΔΙΑΛΕΚΤΩΝ ΔΙΑΛΕΞΗ ΤΡΙΤΗ ΤΟ ΑΛΦΑΒΗΤΟ ΚΑΙ Η ΔΙΑΜΟΡΦΩΣΗ ΤΩΝ ΑΡΧΑΙΩΝ ΕΛΛΗΝΙΚΩΝ ΔΙΑΛΕΚΤΩΝ 1. Από τη Γραμμική Β στην εισαγωγή του αλφαβήτου - Στον ελληνικό χώρο, υπήρχε ένα σύστημα γραφής μέχρι το 1200 π.χ. περίπου, η

Διαβάστε περισσότερα

ΦΥΣΙΚΗ. συστήματος των σωμάτων Α και Β, τα οποίο βρίσκονται διαρκώς σε επαφή. m m 2F. 2 3m

ΦΥΣΙΚΗ. συστήματος των σωμάτων Α και Β, τα οποίο βρίσκονται διαρκώς σε επαφή. m m 2F. 2 3m Α Λυκείου 4 / 4 / 9 ΦΥΣΙΚΗ ΘΕΜΑ Α. Α. γ, ΜΟΝ5 Α. β ΜΟΝ5, Α3.γ ΜΟΝ5, Α4.α ΜΟΝ5 Α5. α)σ ΜΟΝ,β) Σ ΜΟΝ, γ) Λ ΜΟΝ, δ)λ ΜΟΝ, ε) Λ ΜΟΝ ΘΕΜΑ Β Β. Σωστή απάντηση είναι η (β).μον. Εφαρμόζοντας το ο νόμο του Νεύτωνα

Διαβάστε περισσότερα

f(x) = και στην συνέχεια

f(x) = και στην συνέχεια ΕΡΩΤΗΣΕΙΣ ΜΑΘΗΤΩΝ Ερώτηση. Στις συναρτήσεις μπορούμε να μετασχηματίσουμε πρώτα τον τύπο τους και μετά να βρίσκουμε το πεδίο ορισμού τους; Όχι. Το πεδίο ορισμού της συνάρτησης το βρίσκουμε πριν μετασχηματίσουμε

Διαβάστε περισσότερα

ΜΑΘΗΜΑ ΚΥΡΤΟΤΗΤΑ ΣΗΜΕΙΑ ΚΑΜΠΗΣ Κοίλα κυρτά συνάρτησης Σηµεία καµπής Θεωρία Σχόλια Μέθοδοι Ασκήσεις

ΜΑΘΗΜΑ ΚΥΡΤΟΤΗΤΑ ΣΗΜΕΙΑ ΚΑΜΠΗΣ Κοίλα κυρτά συνάρτησης Σηµεία καµπής Θεωρία Σχόλια Μέθοδοι Ασκήσεις 1 ΘΕΩΡΙΑ ΜΑΘΗΜΑ 4.8 ΚΥΡΤΟΤΗΤΑ ΣΗΜΕΙΑ ΚΑΜΠΗΣ Κοίλα κυρτά συνάρτησης Σηµεία καµπής Θεωρία Σχόλια Μέθοδοι Ασκήσεις 1. Ορισµός Έστω συνεχής σε διάστηµα και παραγωγίσιµη στο εσωτερικό του. Θα λέµε ότι η στρέφει

Διαβάστε περισσότερα

ΣΕΜΙΝΑΡΙΑ ΙΣΤΟΡΙΚΟΦΙΛΟΣΟΦΙΚΟΥ ΛΟΓΟΥ ΣΥΝΑΝΤΗΣΕΙΣ ΠΑΤΡΩΝ ΚΑΙ ΣΠΑΡΤΗΣ

ΣΕΜΙΝΑΡΙΑ ΙΣΤΟΡΙΚΟΦΙΛΟΣΟΦΙΚΟΥ ΛΟΓΟΥ ΣΥΝΑΝΤΗΣΕΙΣ ΠΑΤΡΩΝ ΚΑΙ ΣΠΑΡΤΗΣ 1 ΣΕΜΙΝΑΡΙΑ ΙΣΤΟΡΙΚΟΦΙΛΟΣΟΦΙΚΟΥ ΛΟΓΟΥ ΑΠΟΣΤΟΛΟΣ Λ. ΠΙΕΡΡΗΣ ΚΥΚΛΟΣ Λ ΠΕΡΙΟΔΟΣ 2016-2017 ΣΥΝΑΝΤΗΣΕΙΣ ΠΑΤΡΩΝ ΚΑΙ ΣΠΑΡΤΗΣ Εναρκτήριες Ομιλίες των δύο Σειρών: Πάτρα, Πέμπτη 17 Νοεμβρίου, 8.30 μ.μ. Σπάρτη, Παρασκευή

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ Β ΛΥΚΕΙΟΥ -- ΑΛΓΕΒΡΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ

ΑΣΚΗΣΕΙΣ Β ΛΥΚΕΙΟΥ -- ΑΛΓΕΒΡΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΑΣΚΗΣΕΙΣ Β ΛΥΚΕΙΟΥ -- ΑΛΓΕΒΡΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ Άσκηση η Γραμμικά συστήματα Δίνονται οι ευθείες : y3 και :y 5. Να βρεθεί το R, ώστε οι ευθείες να τέμνονται. Οι ευθείες και θα τέμνονται όταν το μεταξύ

Διαβάστε περισσότερα

Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Τρίτη 10 Απριλίου 2018 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ

Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Τρίτη 10 Απριλίου 2018 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ ΑΠΟ /4/8 ΕΩΣ 4/4/8 ΤΑΞΗ: ΜΑΘΗΜΑ Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Ημερομηνία: Τρίτη Απριλίου 8 Διάρκεια Εξέτασης: ώρες ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Α Έστω μία συνάρτηση ορισμένη σε ένα διάστημα Δ Αν o

Διαβάστε περισσότερα

Κεφάλαιο 2 ο ΙΔΙΟΤΗΤΕΣ ΣΥΝΑΡΤΗΣΕΩΝ

Κεφάλαιο 2 ο ΙΔΙΟΤΗΤΕΣ ΣΥΝΑΡΤΗΣΕΩΝ Κεφάλαιο ο ΙΔΙΟΤΗΤΕΣ ΣΥΝΑΡΤΗΣΕΩΝ Σε προηγούμενες τάξεις γνωρίσαμε την έννοια της συνάρτησης και μελετήσαμε ορισμένες βασικές συναρτήσεις. Στο κεφάλαιο αυτό θα μελετήσουμε στη γενική τους μορφή ιδιότητες

Διαβάστε περισσότερα

Διαγώνισμα Προσομοίωσης Εξετάσεων 2017

Διαγώνισμα Προσομοίωσης Εξετάσεων 2017 Ένα διαγώνισμα προετοιμασίας για τους μαθητές της Γ Λυκείου στα Μαθηματικά Προσανατολισμού Διαγώνισμα Προσομοίωσης Εξετάσεων 7 Μαθηματικά Προσανατολισμού Γ Λυκείου Κων/νος Παπασταματίου Μαθηματικός Φροντιστήριο

Διαβάστε περισσότερα

ΙΝΣΤΙΤΟΥΤΟ ΦΙΛΟΣΟΦΙΚΩΝ ΕΡΕΥΝΩΝ ΣΕΜΙΝΑΡΙΑ ΙΣΤΟΡΙΚΟΦΙΛΟΣΟΦΙΚΟΥ ΛΟΓΟΥ

ΙΝΣΤΙΤΟΥΤΟ ΦΙΛΟΣΟΦΙΚΩΝ ΕΡΕΥΝΩΝ   ΣΕΜΙΝΑΡΙΑ ΙΣΤΟΡΙΚΟΦΙΛΟΣΟΦΙΚΟΥ ΛΟΓΟΥ 1 ΙΝΣΤΙΤΟΥΤΟ ΦΙΛΟΣΟΦΙΚΩΝ ΕΡΕΥΝΩΝ www.philosophical-research.org ΣΕΜΙΝΑΡΙΑ ΙΣΤΟΡΙΚΟΦΙΛΟΣΟΦΙΚΟΥ ΛΟΓΟΥ ΑΠΟΣΤΟΛΟΣ Λ. ΠΙΕΡΡΗΣ ΠΕΡΙΟΔΟΣ 2017-2018 ΣΥΝΑΝΤΗΣΕΙΣ ΠΑΤΡΩΝ (18 η ) ΚΑΙ ΣΠΑΡΤΗΣ (11 η ) Πέμπτη, 26 και

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 ÁÍÅËÉÎÇ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 ÁÍÅËÉÎÇ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 3 ΤΑΞΗ: ΚΑΤΕΥΘΥΝΣΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Ηµεροµηνία: Μ. Τρίτη 3 Απριλίου 3 ιάρκεια Εξέτασης: 3 ώρες ΑΠΑΝΤΗΣΕΙΣ Α. Σχολικό βιβλίο,

Διαβάστε περισσότερα

ΒΕΔΙΚΑ ΜΑΘΗΜΑΤΙΚΑ: ΜΙΑ ΑΝΑΤΟΛΙΚΗ ΠΡΟΣΕΓΓΙΣΗ

ΒΕΔΙΚΑ ΜΑΘΗΜΑΤΙΚΑ: ΜΙΑ ΑΝΑΤΟΛΙΚΗ ΠΡΟΣΕΓΓΙΣΗ ΒΕΔΙΚΑ ΜΑΘΗΜΑΤΙΚΑ: ΜΙΑ ΑΝΑΤΟΛΙΚΗ ΠΡΟΣΕΓΓΙΣΗ Συχνά τα Μαθηματικά χρησιμοποιούνται ως ένα «εργαλείο» προκειμένου να ανιχνευθεί η «εξυπνάδα» του κάθε ανθρώπου, να διαφοροποιηθούν οι μαθητές μεταξύ τους σε

Διαβάστε περισσότερα

2 Ο ΓΥΜΝΑΣΙΟ ΚΕΡΚΥΡΑΣ ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΠΕΡΙΟΔΟΥ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ 2010 ΤΑΞΗ: Β ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ

2 Ο ΓΥΜΝΑΣΙΟ ΚΕΡΚΥΡΑΣ ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΠΕΡΙΟΔΟΥ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ 2010 ΤΑΞΗ: Β ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ Ο ΓΥΜΝΑΣΙΟ ΚΕΡΚΥΡΑΣ ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΠΕΡΙΟΔΟΥ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ 00 ΤΑΞΗ: Β ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΩΡΙΑ Α. Να αντιστοιχίσετε κάθε στοιχείο της πρώτης στήλης με το αντίστοιχο στοιχείο

Διαβάστε περισσότερα

ΙΝΣΤΙΤΟΥΤΟ ΦΙΛΟΣΟΦΙΚΩΝ ΕΡΕΥΝΩΝ ΣΕΜΙΝΑΡΙΑ ΙΣΤΟΡΙΚΟΦΙΛΟΣΟΦΙΚΟΥ ΛΟΓΟΥ

ΙΝΣΤΙΤΟΥΤΟ ΦΙΛΟΣΟΦΙΚΩΝ ΕΡΕΥΝΩΝ   ΣΕΜΙΝΑΡΙΑ ΙΣΤΟΡΙΚΟΦΙΛΟΣΟΦΙΚΟΥ ΛΟΓΟΥ 1 ΙΝΣΤΙΤΟΥΤΟ ΦΙΛΟΣΟΦΙΚΩΝ ΕΡΕΥΝΩΝ www.philosophical-research.org ΣΕΜΙΝΑΡΙΑ ΙΣΤΟΡΙΚΟΦΙΛΟΣΟΦΙΚΟΥ ΛΟΓΟΥ ΑΠΟΣΤΟΛΟΣ Λ. ΠΙΕΡΡΗΣ ΠΕΡΙΟΔΟΣ 2017-2018 ΣΥΝΑΝΤΗΣΕΙΣ ΠΑΤΡΩΝ (21 η ) Πέμπτη, 17 Μαΐου 2018 ΝΕΑ ΣΕΙΡΑ ΕΚΔΗΛΩΣΕΩΝ

Διαβάστε περισσότερα

Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Σάββατο 11 Νοεμβρίου 2017 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ

Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Σάββατο 11 Νοεμβρίου 2017 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ ΤΑΞΗ: ΜΑΘΗΜΑ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Ημερομηνία: Σάββατο Νοεμβρίου 7 Διάρκεια Εξέτασης: ώρες ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Α Να διατυπώσετε το θεώρημα του Bolzano και να δώσετε τη γεωμετρική

Διαβάστε περισσότερα

ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΣΥΝΑΡΤΗΣΕΙΣ

ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΣΥΝΑΡΤΗΣΕΙΣ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΣΥΝΑΡΤΗΣΕΙΣ Άσκηση 1. Έστω ότι η συνάρτηση f: R R είναι γνησίως αύξουσα στο R και η γραφική της παράσταση τέµνει τον άξονα y y στο. Να λύσετε την ανίσωση: f(x 9)

Διαβάστε περισσότερα

7.1 ΜΕΛΕΤΗ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ

7.1 ΜΕΛΕΤΗ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ 7.1 ΜΕΛΕΤΗ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ f ( ) 1. Μορφή της συνάρτησης f ( ) Ιδιότητες Έχει πεδίο ορισµού ολο το R Είναι άρτια, άρα συµµετρική ως προς τον άξονα y y Είναι γνησίως φθίνουσα στο διάστηµα (,0] Είναι γνησίως

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1 ο : ΟΡΙΟ ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ

ΚΕΦΑΛΑΙΟ 1 ο : ΟΡΙΟ ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΚΕΦΑΛΑΙΟ ο : ΟΡΙΟ ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ ΣΥΝΑΡΤΗΣΕΙΣ Έστω Α ένα υποσύνολο του Τι ονομάζουμε πραγματική συνάρτηση με πεδίο ορισμού το Α ; (5 ΕΣΠ Β ) Έστω Α ένα υποσύνολο του Ονομάζουμε

Διαβάστε περισσότερα

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ ΜΑΘΗΜΑΤΙΚΑ : Σελίδα από ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ ΕΞΕΤΑΣΗΣ: /6/9 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: Μαθηματικά ΟΠ Θετικών Σπουδών & Σπουδών Οικονομίας & Πληροφορικής ΠΡΟΤΕΙΝΟΜΕΝΕΣ

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΤΕΚΝΩΝ ΕΛΛΗΝΩΝ ΤΟΥ ΕΞΩΤΕΡΙΚΟΥ ΚΑΙ ΤΕΚΝΩΝ ΕΛΛΗΝΩΝ ΥΠΑΛΛΗΛΩΝ ΠΟΥ ΥΠΗΡΕΤΟΥΝ ΣΤΟ ΕΞΩΤΕΡΙΚΟ ΠΕΜΠΤΗ 6 ΣΕΠΤΕΜΒΡΙΟΥ 2018

ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΤΕΚΝΩΝ ΕΛΛΗΝΩΝ ΤΟΥ ΕΞΩΤΕΡΙΚΟΥ ΚΑΙ ΤΕΚΝΩΝ ΕΛΛΗΝΩΝ ΥΠΑΛΛΗΛΩΝ ΠΟΥ ΥΠΗΡΕΤΟΥΝ ΣΤΟ ΕΞΩΤΕΡΙΚΟ ΠΕΜΠΤΗ 6 ΣΕΠΤΕΜΒΡΙΟΥ 2018 ΘΕΜΑ Α ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΤΕΚΝΩΝ ΕΛΛΗΝΩΝ ΤΟΥ ΕΞΩΤΕΡΙΚΟΥ ΚΑΙ ΤΕΚΝΩΝ ΕΛΛΗΝΩΝ ΥΠΑΛΛΗΛΩΝ ΠΟΥ ΥΠΗΡΕΤΟΥΝ ΣΤΟ ΕΞΩΤΕΡΙΚΟ ΠΕΜΠΤΗ 6 ΣΕΠΤΕΜΒΡΙΟΥ 8 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΑΠΑΝΤΗΣΕΙΣ Α Απόδειξη

Διαβάστε περισσότερα

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος ΜEd: «Σπουδές στην εκπαίδευση»

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος ΜEd: «Σπουδές στην εκπαίδευση» Μονοτονία - Ακρότατα - Συμμετρίες συνάρτησης Μονοτονία Συνάρτησης Ορισμοί Α) Μια συνάρτηση f λέγεται γνησίως αύξουσα σε ένα υποσύνολο Β του Πεδίου Ορισμού της όταν : για κάθε, B με < f( ) < f( ). Β) Μια

Διαβάστε περισσότερα

Η Θεωρία στα Μαθηματικά κατεύθυνσης της Γ Λυκείου

Η Θεωρία στα Μαθηματικά κατεύθυνσης της Γ Λυκείου Η Θεωρία στα Μαθηματικά κατεύθυνσης της Γ Λυκείου wwwaskisopolisgr έκδοση 5-6 wwwaskisopolisgr ΣΥΝΑΡΤΗΣΕΙΣ 5 Τι ονομάζουμε πραγματική συνάρτηση; Έστω Α ένα υποσύνολο του Ονομάζουμε πραγματική συνάρτηση

Διαβάστε περισσότερα

Λύσεις των θεμάτων προσομοίωσης -2- Σχολικό Έτος

Λύσεις των θεμάτων προσομοίωσης -2- Σχολικό Έτος Λύσεις θεμάτων ΠΡΟΣΟΜΟΙΩΣΗΣ -- Πανελλαδικών Εξετάσεων 6 Στο μάθημα: «Μαθηματικά Προσανατολισμού Θετικών Σπουδών και Σπουδών Οικονομίας και Πληροφορικής» Γ Λυκείου, 3/3/6 ΘΕΜΑ ο : Α. Τι ονομάζουμε αρχική

Διαβάστε περισσότερα

Ημερομηνία: Παρασκευή 28 Οκτωβρίου 2016 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ

Ημερομηνία: Παρασκευή 28 Οκτωβρίου 2016 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ ΤΑΞΗ: ΜΑΘΗΜΑ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ Ημερομηνία: Παρασκευή 8 Οκτωβρίου 016 Διάρκεια Εξέτασης: 3 ώρες ΘΕΜΑ Α Α1. Να δώσετε τους ορισμούς των: α) Γνησίως φθίνουσα συνάρτηση β) Ολικό ελάχιστο

Διαβάστε περισσότερα

ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ-ΙΟΥΝΙΟΥ 2014 ΟΝΟΜΑΤΕΠΩΝΥΜΟ: 29/5/2014

ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ-ΙΟΥΝΙΟΥ 2014 ΟΝΟΜΑΤΕΠΩΝΥΜΟ: 29/5/2014 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ-ΙΟΥΝΙΟΥ 2014 ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΤΑΞΗ: Α ΟΝΟΜΑΤΕΠΩΝΥΜΟ: 29/5/2014 ΘΕΜΑ 1 Ο (ΥΠΟΧΡΕΩΤΙΚΟ) Στο ελατήριο του σχήματος, αναρτήσαμε κυλινδρικές μάζες και μετρήσαμε την αντίστοιχη

Διαβάστε περισσότερα

7.2 ΜΕΛΕΤΗ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ f(x) = x

7.2 ΜΕΛΕΤΗ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ f(x) = x 7. ΜΕΛΕΤΗ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ () = α ΘΕΩΡΙΑ. Μορφή της συνάρτησης (Ισοσκελής υπερβολή) Ιδιότητες Πεδίο ορισµού g() = R = (, 0) (0, + ) Είναι περιττή, άρα συµµετρική ως προς την αρχή των αξόνων Είναι γν.φθίνουσα

Διαβάστε περισσότερα

Εισαγωγή στις Φυσικές Επιστήμες ( ) Ονοματεπώνυμο Τμήμα ΘΕΜΑ 1. x x. x x x ( ) + ( 20) + ( + 4) = ( + ) + ( 10 + ) + ( )

Εισαγωγή στις Φυσικές Επιστήμες ( ) Ονοματεπώνυμο Τμήμα ΘΕΜΑ 1. x x. x x x ( ) + ( 20) + ( + 4) = ( + ) + ( 10 + ) + ( ) Ονοματεπώνυμο Τμήμα ο Ερώτημα Να υπολογιστούν τα αόριστα ολοκληρώματα α) ( + + ) e d β) + ( + 4)( 5) 5 89 ΘΕΜΑ d Απάντηση α) θέτω u = + +και υ = e, επομένως dυ = e και du = ( + ) d. ( + + ) e d= u dυ =

Διαβάστε περισσότερα

ΙΝΣΤΙΤΟΥΤΟ ΦΙΛΟΣΟΦΙΚΩΝ ΕΡΕΥΝΩΝ ΣΕΜΙΝΑΡΙΑ ΙΣΤΟΡΙΚΟΦΙΛΟΣΟΦΙΚΟΥ ΛΟΓΟΥ ΣΥΝΑΝΤΗΣΕΙΣ ΣΠΑΡΤΗΣ. Συμπόσιο. Για τις Γυμνοπαιδιές

ΙΝΣΤΙΤΟΥΤΟ ΦΙΛΟΣΟΦΙΚΩΝ ΕΡΕΥΝΩΝ  ΣΕΜΙΝΑΡΙΑ ΙΣΤΟΡΙΚΟΦΙΛΟΣΟΦΙΚΟΥ ΛΟΓΟΥ ΣΥΝΑΝΤΗΣΕΙΣ ΣΠΑΡΤΗΣ. Συμπόσιο. Για τις Γυμνοπαιδιές 1 ΙΝΣΤΙΤΟΥΤΟ ΦΙΛΟΣΟΦΙΚΩΝ ΕΡΕΥΝΩΝ www.philosophical-research.org ΣΕΜΙΝΑΡΙΑ ΙΣΤΟΡΙΚΟΦΙΛΟΣΟΦΙΚΟΥ ΛΟΓΟΥ ΑΠΟΣΤΟΛΟΣ Λ. ΠΙΕΡΡΗΣ ΚΥΚΛΟΣ Λ ΠΕΡΙΟΔΟΣ 2016-2017 ΣΥΝΑΝΤΗΣΕΙΣ ΣΠΑΡΤΗΣ Θερινές εκδηλώσεις Συμπόσιο Για

Διαβάστε περισσότερα

ΝΙΚΟΣ ΤΟΥΝΤΑΣ ΠΡΟΛΟΓΟΣ:

ΝΙΚΟΣ ΤΟΥΝΤΑΣ ΠΡΟΛΟΓΟΣ: ΠΡΟΛΟΓΟΣ: Συνεχίζοντας το ταξίδι στον κόσμο των μαθηματικών αναρτώ την 3 η μου άσκηση η οποία καλύπτει την ύλη μέχρι και τα όρια. Δεν βασίζεται αυτήν την φορά σε άσκηση του σχολικού άλλα σε καθαρά δικιά

Διαβάστε περισσότερα

ΜΑΘΗΜΑ ΣΥΝΑΡΤΗΣΕΙΣ Σύνολο τιµών Γραφική παράσταση συνάρτησης Βασικές συναρτήσεις Ισότητα συναρτήσεων Πράξεις µε συναρτήσεις

ΜΑΘΗΜΑ ΣΥΝΑΡΤΗΣΕΙΣ Σύνολο τιµών Γραφική παράσταση συνάρτησης Βασικές συναρτήσεις Ισότητα συναρτήσεων Πράξεις µε συναρτήσεις ΜΑΘΗΜΑ. ΣΥΝΑΡΤΗΣΕΙΣ Σύνολο τιµών Γραφική παράσταση συνάρτησης Βασικές συναρτήσεις Ισότητα συναρτήσεων Πράξεις µε συναρτήσεις Θεωρία Σχόλια Ασκήσεις ΘΕΩΡΙΑ. Ορισµός του συνόλου τιµών, κατάλληλος για τις

Διαβάστε περισσότερα

5.3 ΛΟΓΑΡΙΘΜΙΚΗ ΣΥΝΑΡΤΗΣΗ

5.3 ΛΟΓΑΡΙΘΜΙΚΗ ΣΥΝΑΡΤΗΣΗ 5.3 ΛΟΓΑΡΙΘΜΙΚΗ ΣΥΝΑΡΤΗΣΗ Ασκήσεις σχολικού βιβλίου σελίδας 84 85 A Οµάδας. Στο ίδιο σύστηµα αξόνων να παραστήσετε γραφικά τις συναρτήσεις f() = log και g() = log Τι παρατηρείτε; Να δικαιολογήσετε την

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ. ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ ΙI Φεβρουάριος Απαντήστε και στα 4 θέματα με σαφήνεια και συντομία. Καλή σας επιτυχία.

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ. ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ ΙI Φεβρουάριος Απαντήστε και στα 4 θέματα με σαφήνεια και συντομία. Καλή σας επιτυχία. ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ ΙI Φεβρουάριος 2003 Τμήμα Π. Ιωάννου & Θ. Αποστολάτου Απαντήστε και στα 4 θέματα με σαφήνεια και συντομία. Καλή σας επιτυχία. Θέμα 1 (25 μονάδες)

Διαβάστε περισσότερα

ΙΝΣΤΙΤΟΥΤΟ ΦΙΛΟΣΟΦΙΚΩΝ ΕΡΕΥΝΩΝ [www.philosophical-research.org] ΣΕΜΙΝΑΡΙΑ ΙΣΤΟΡΙΚΟΦΙΛΟΣΟΦΙΚΟΥ ΛΟΓΟΥ. Μελέτη Ελληνισμού

ΙΝΣΤΙΤΟΥΤΟ ΦΙΛΟΣΟΦΙΚΩΝ ΕΡΕΥΝΩΝ [www.philosophical-research.org] ΣΕΜΙΝΑΡΙΑ ΙΣΤΟΡΙΚΟΦΙΛΟΣΟΦΙΚΟΥ ΛΟΓΟΥ. Μελέτη Ελληνισμού ΙΝΣΤΙΤΟΥΤΟ ΦΙΛΟΣΟΦΙΚΩΝ ΕΡΕΥΝΩΝ [www.philosophical-research.org] ΣΕΜΙΝΑΡΙΑ ΙΣΤΟΡΙΚΟΦΙΛΟΣΟΦΙΚΟΥ ΛΟΓΟΥ ΑΠΟΣΤΟΛΟΣ Λ. ΠΙΕΡΡΗΣ ΚΥΚΛΟΣ ΚΖ ΠΕΡΙΟΔΟΣ 2013-2014 Μελέτη Ελληνισμού Ιδέα 5ης Χωρολογικής Εκδρομής: Ολυμπία

Διαβάστε περισσότερα

Λύσεις των θεμάτων προσομοίωσης -2- Σχολικό Έτος

Λύσεις των θεμάτων προσομοίωσης -2- Σχολικό Έτος Λύσεις των θεμάτων προσομοίωσης -- Σχολικό Έτος 5-6 Λύσεις θεμάτων ΠΡΟΣΟΜΟΙΩΣΗΣ -- Πανελλαδικών Εξετάσεων 6 Στο μάθημα: «Μαθηματικά Προσανατολισμού Θετικών Σπουδών και Σπουδών Οικονομίας και Πληροφορικής»

Διαβάστε περισσότερα

Π Ι Σ Τ Ο Π Ο Ι Η Σ Η Ε Π Α Ρ Κ Ε Ι Α Σ Τ Η Σ ΕΛΛΗΝΟΜΑΘΕΙΑΣ Χ Ρ Η Σ Η Γ Λ Ω Σ Σ Α Σ Π Ρ Ω Τ Η Σ Ε Ι Ρ Α Δ Ε Ι Γ Μ Α Τ Ω Ν 2 0 Μ 0 Ν Α Δ Ε Σ

Π Ι Σ Τ Ο Π Ο Ι Η Σ Η Ε Π Α Ρ Κ Ε Ι Α Σ Τ Η Σ ΕΛΛΗΝΟΜΑΘΕΙΑΣ Χ Ρ Η Σ Η Γ Λ Ω Σ Σ Α Σ Π Ρ Ω Τ Η Σ Ε Ι Ρ Α Δ Ε Ι Γ Μ Α Τ Ω Ν 2 0 Μ 0 Ν Α Δ Ε Σ Ε Π Α Ρ Κ Ε Ι Α Σ Τ Η Σ ΕΛΛΗΝΟΜΑΘΕΙΑΣ Χ Ρ Η Σ Η Γ Λ Ω Σ Σ Α Σ Π Ρ Ω Τ Η Σ Ε Ι Ρ Α Δ Ε Ι Γ Μ Α Τ Ω Ν 2 0 Μ 0 Ν Α Δ Ε Σ 1 Y Π Ο Υ Ρ Γ Ε Ι Ο Π Α Ι Δ Ε Ι Α Σ Κ Α Ι Θ Ρ Η Σ Κ Ε Υ Μ Α Τ Ω Ν Κ Ε Ν Τ Ρ Ο Ε Λ Λ

Διαβάστε περισσότερα

Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α

Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α ΤΑΞΗ: ΚΑΤΕΥΘΥΝΣΗ: ΜΑΘΗΜΑ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α ΕΚΦΩΝΗΣΕΙΣ Α. Έστω µια συνάρτηση f παραγωγίσιµη σ ένα διάστηµα (α, β), µε εξαίρεση ίσως ένα σηµείο του, στο

Διαβάστε περισσότερα

Όριο συνάρτησης στο x. 2 με εξαίρεση το σημείο A(2,4) Από τον παρακάτω πίνακα τιμών και τη γραφική παράσταση του παραπάνω σχήματος παρατηρούμε ότι:

Όριο συνάρτησης στο x. 2 με εξαίρεση το σημείο A(2,4) Από τον παρακάτω πίνακα τιμών και τη γραφική παράσταση του παραπάνω σχήματος παρατηρούμε ότι: Όριο συνάρτησης στο Στα παρακάτω θα προσεγγίσουμε την διαισθητικά με τη βοήθεια γραφικών παραστάσεων και πινάκων τιμών. 4 4 Έστω η συνάρτηση f με τύπο f ) = και πεδίο ορισμού το σύνολο ) ) η οποία μπορεί

Διαβάστε περισσότερα

Πανελλαδικές εξετάσεις 2017

Πανελλαδικές εξετάσεις 2017 Πανελλαδικές εξετάσεις 7 Ενδεικτικές απαντήσεις στο μάθημα «Μαθηματικά ΟΠ» Θέμα Α Α Θεωρία σχολικού βιβλίου σελ 36 Α α) Λ β) H συνάρτηση ( ) είναι παραγωγίσιμη σε αυτό αφού: ( ) () lim lim είναι συνεχής

Διαβάστε περισσότερα

Διαγώνισμα (Μονάδες 2) β. Μια συνάρτηση f μπορεί να μην είναι συνεχής στα άκρα ακαι β αλλά να είναι συνεχής στο [ α, β ].

Διαγώνισμα (Μονάδες 2) β. Μια συνάρτηση f μπορεί να μην είναι συνεχής στα άκρα ακαι β αλλά να είναι συνεχής στο [ α, β ]. ΘΕΜΑ Α Διαγώνισμα 1 A 1. Έστω μια συνάρτηση f, η οποία είναι συνεχής σε ένα διάστημα Δ. Αν f () > σε κάθε εσωτερικό σημείο του Δ, τότε να αποδείξετε ότι η f είναι γνησίως αύξουσα σε όλο το Δ. (Μονάδες

Διαβάστε περισσότερα

ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ

ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ Ξεφυλλίζοντας τα σχολικά βιβλία της Α και Β Λυκείου θα συναντήσουμε τις παρακάτω 10 "βασικές" συναρτήσεις των οποίων τη γραφική παράσταση πρέπει να γνωρίζουμε:

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΚΛΕΙΣΤΟΥ ΤΥΠΟΥ

ΕΡΩΤΗΣΕΙΣ ΚΛΕΙΣΤΟΥ ΤΥΠΟΥ ΕΡΩΤΗΣΕΙΣ ΚΛΕΙΣΤΟΥ ΤΥΠΟΥ Συγγραμμικές δυνάμεις 1 ος -2 ος νόμος του Νεύτωνα 1. Ποιες από τις παρακάτω προτάσεις είναι σωστές και ποιες λανθασμένες; α. Μια δύναμη μπορεί να προκαλέσει αλλαγή στην κινητική

Διαβάστε περισσότερα

Συναρτήσεις. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Άλγεβρα Κεφάλαιο 2 78 ασκήσεις. Kglykos.gr. εκδόσεις. Καλό πήξιμο. Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α

Συναρτήσεις. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Άλγεβρα Κεφάλαιο 2 78 ασκήσεις. Kglykos.gr. εκδόσεις. Καλό πήξιμο. Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α Συναρτήσεις Κώστας Γλυκός Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α 6 9 7. 0 0. 8 8. 8 8 Kglykos.gr / 9 / 0 1 6 Άλγεβρα Κεφάλαιο 78 ασκήσεις και τεχνικές σε 9 σελίδες εκδόσεις Καλό πήξιμο τηλ. Οικίας : 10-610.178

Διαβάστε περισσότερα

ΣΥΝΑΝΤΗΣΕΙΣ ΠΑΤΡΩΝ ΛΑ ΚΥΚΛΟΣ

ΣΥΝΑΝΤΗΣΕΙΣ ΠΑΤΡΩΝ ΛΑ ΚΥΚΛΟΣ 1 ΙΝΣΤΙΤΟΥΤΟ ΦΙΛΟΣΟΦΙΚΩΝ ΕΡΕΥΝΩΝ www.philosophical-research.org ΣΕΜΙΝΑΡΙΑ ΙΣΤΟΡΙΚΟΦΙΛΟΣΟΦΙΚΟΥ ΛΟΓΟΥ ΑΠΟΣΤΟΛΟΣ Λ. ΠΙΕΡΡΗΣ ΣΥΝΑΝΤΗΣΕΙΣ ΠΑΤΡΩΝ ΛΑ ΚΥΚΛΟΣ Περίοδος Νοεμβρίου 2017 Ιουνίου 2018 ΠΡΟΓΡΑΜΜΑ 2 Κοσμοϊστορικές

Διαβάστε περισσότερα

ΙΝΣΤΙΤΟΥΤΟ ΦΙΛΟΣΟΦΙΚΩΝ ΕΡΕΥΝΩΝ ΣΕΜΙΝΑΡΙΑ ΙΣΤΟΡΙΚΟΦΙΛΟΣΟΦΙΚΟΥ ΛΟΓΟΥ

ΙΝΣΤΙΤΟΥΤΟ ΦΙΛΟΣΟΦΙΚΩΝ ΕΡΕΥΝΩΝ  ΣΕΜΙΝΑΡΙΑ ΙΣΤΟΡΙΚΟΦΙΛΟΣΟΦΙΚΟΥ ΛΟΓΟΥ 1 ΙΝΣΤΙΤΟΥΤΟ ΦΙΛΟΣΟΦΙΚΩΝ ΕΡΕΥΝΩΝ www.philosophical-research.org ΣΕΜΙΝΑΡΙΑ ΙΣΤΟΡΙΚΟΦΙΛΟΣΟΦΙΚΟΥ ΛΟΓΟΥ ΑΠΟΣΤΟΛΟΣ Λ. ΠΙΕΡΡΗΣ ΚΥΚΛΟΣ Λ ΠΕΡΙΟΔΟΣ 2016-2017 ΣΥΝΑΝΤΗΣΕΙΣ ΠΑΤΡΩΝ Ολιστική Ιστορία του Ελληνισμού (Από

Διαβάστε περισσότερα

Επίπεδο Γ2. Χρήση γλώσσας (20 μονάδες) Διάρκεια: 30 λεπτά. Ερώτημα 1 (5 μονάδες)

Επίπεδο Γ2. Χρήση γλώσσας (20 μονάδες) Διάρκεια: 30 λεπτά. Ερώτημα 1 (5 μονάδες) Γ2 (20 μονάδες) Διάρκεια: 30 λεπτά Ερώτημα 1 (5 μονάδες) Ο φίλος σας έγραψε μία μελέτη σχετικά με τρόπους βελτίωσης της αναγνωστικής ικανότητας των μαθητών. Επειδή, όμως, είναι ξένος, κάνει ακόμη λάθη,

Διαβάστε περισσότερα

f(x) = 2x+ 3 / Α f Α.

f(x) = 2x+ 3 / Α f Α. ΣΥΝΑΡΤΗΣΕΙΣ 8 ο ΜΑΘΗΜΑ.7. Σύνολο τιμών f(a) της f / A B Ορισμός: Το σύνολο τιμών της συνάρτησης f / Α Β περιλαμβάνει εκείνα τα y Β για τα οποία υπάρχει x Α : «Η εξίσωση y= f ( x) να έχει λύση ως προς x»

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Πέμπτη 3 Ιανουαρίου 2019 Διάρκεια Εξέτασης: 3 ώρες ΘΕΜΑΤΑ

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Πέμπτη 3 Ιανουαρίου 2019 Διάρκεια Εξέτασης: 3 ώρες ΘΕΜΑΤΑ ΤΑΞΗ: ΜΑΘΗΜΑ: Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Ημερομηνία: Πέμπτη 3 Ιανουαρίου 019 Διάρκεια Εξέτασης: 3 ώρες ΘΕΜΑ Α ΘΕΜΑΤΑ Α1 Αν μια συνάρτηση f είναι παραγωγίσιμη στο σημείο x 0, να αποδείξετε ότι

Διαβάστε περισσότερα

ΜΕΛΕΤΗ ΚΑΙ ΧΑΡΑΞΗ ΓΡΑΦΙΚΗΣ ΠΑΡΑΣΤΑΣΗΣ ΣΥΝΑΡΤΗΣΗΣ

ΜΕΛΕΤΗ ΚΑΙ ΧΑΡΑΞΗ ΓΡΑΦΙΚΗΣ ΠΑΡΑΣΤΑΣΗΣ ΣΥΝΑΡΤΗΣΗΣ ΜΕΛΕΤΗ ΚΑΙ ΧΑΡΑΞΗ ΓΡΑΦΙΚΗΣ ΠΑΡΑΣΤΑΣΗΣ ΣΥΝΑΡΤΗΣΗΣ Για να μελετήσουμε και να χαράξουμε τη γραφική παράταση μιας συνάρτησης ακολουθούμε τα παρακάτω βήματα: 1. Βρίσκουμε το πεδίο ορισμού της.. Εξετάζουμε την

Διαβάστε περισσότερα

ΔΕΟ 13 - ΠΛΗ 12 Όρια Συναρτήσεων. Ποσοτικές Μέθοδοι: Επιχειρησιακά Μαθηματικά. Κεφάλαιο 1: 3.2 Συνεχείς και Παραγωγίσιμες Συναρτήσεις

ΔΕΟ 13 - ΠΛΗ 12 Όρια Συναρτήσεων. Ποσοτικές Μέθοδοι: Επιχειρησιακά Μαθηματικά. Κεφάλαιο 1: 3.2 Συνεχείς και Παραγωγίσιμες Συναρτήσεις Ποσοτικές Μέθοδοι: Επιχειρησιακά Μαθηματικά Κεφάλαιο 1: 3.2 Συνεχείς και Παραγωγίσιμες Συναρτήσεις Συνέχεια και Παραγωγισιμότητα Θεώρημα Δεξιά Παράγωγος Αριστερή Παράγωγος Γωνιακό στρίψιμο Γωνιακό Σημείο

Διαβάστε περισσότερα

6.2 ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ

6.2 ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ 1 6. ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ ΘΕΩΡΙΑ 1. Οι συντεταγµένες σηµείου Ο Ο άξονας τετµηµένων άξονας τεταγµένων (ΟΚ) µε πρόσηµο = α, η τετµηµένη του Μ (ΟΛ) µε πρόσηµο = β, η τεταγµένη του Μ Το ζευγάρι (α,

Διαβάστε περισσότερα

6.1 Η ΕΝΝΟΙΑ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ

6.1 Η ΕΝΝΟΙΑ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ ΟΡΙΣΜΟΣ 6. ΣΥΝΑΡΤΗΣΕΙΣ 6.1 Η ΕΝΝΟΙΑ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ Ονομάζουμε συνάρτηση από ένα σύνολο Α σε ένα σύνολο Β μια διαδικασία (κανόνα) f, με την οποία κάθε στοιχείο του συνόλου Α αντιστοιχίζεται σε ένα ακριβώς

Διαβάστε περισσότερα

ΙΝΣΤΙΤΟΥΤΟ ΦΙΛΟΣΟΦΙΚΩΝ ΕΡΕΥΝΩΝ ΣΕΜΙΝΑΡΙΑ ΙΣΤΟΡΙΚΟΦΙΛΟΣΟΦΙΚΟΥ ΛΟΓΟΥ

ΙΝΣΤΙΤΟΥΤΟ ΦΙΛΟΣΟΦΙΚΩΝ ΕΡΕΥΝΩΝ   ΣΕΜΙΝΑΡΙΑ ΙΣΤΟΡΙΚΟΦΙΛΟΣΟΦΙΚΟΥ ΛΟΓΟΥ 1 ΙΝΣΤΙΤΟΥΤΟ ΦΙΛΟΣΟΦΙΚΩΝ ΕΡΕΥΝΩΝ www.philosophical-research.org ΣΕΜΙΝΑΡΙΑ ΙΣΤΟΡΙΚΟΦΙΛΟΣΟΦΙΚΟΥ ΛΟΓΟΥ ΑΠΟΣΤΟΛΟΣ Λ. ΠΙΕΡΡΗΣ ΠΕΡΙΟΔΟΣ 2017-2018 ΣΥΝΑΝΤΗΣΕΙΣ ΠΑΤΡΩΝ (20 η ) ΚΑΙ ΣΠΑΡΤΗΣ (12 η ) Πέμπτη, 10 και

Διαβάστε περισσότερα

f ( x) f ( x ) για κάθε x A

f ( x) f ( x ) για κάθε x A ΛΥΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑΤΩΝ 3 3/04/06 ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΜΑ ο Α. Τι ονομάζουμε ρυθμό μεταβολής του y = f() ως προς το στο σημείο 0 ;

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ 1 ΔΕΥΤΕΡΟ ΜΑΘΗΜΑ, Μ. Παπαδημητράκης.

ΑΝΑΛΥΣΗ 1 ΔΕΥΤΕΡΟ ΜΑΘΗΜΑ, Μ. Παπαδημητράκης. ΑΝΑΛΥΣΗ 1 ΔΕΥΤΕΡΟ ΜΑΘΗΜΑ, 10-10-13 Μ. Παπαδημητράκης. 1 Τώρα θα δούμε την συμμετρική ιδιότητα της Ιδιότητας Supremum. Η ΙΔΙΟΤΗΤΑ INFIMUM. Κάθε μη-κενό και κάτω φραγμένο σύνολο έχει μέγιστο κάτω φράγμα.

Διαβάστε περισσότερα

Πρώτες Μορφές Γραφής

Πρώτες Μορφές Γραφής Φιλεκπαιδευτική Εταιρεία Αρσάκειο Γενικό Λύκειο Ψυχικού Σχολικό έτος: 2013-2014 Ερευνητική Εργασία Α Λυκείου Ιστορία της Γραφής Πρώτες Μορφές Γραφής Εργάστηκαν οι μαθητές: Ευγενία Πονηρού, Σάββας Παπαευαγγέλου,

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3 ο ΣΥΝΑΡΤΗΣΕΙΣ, ΤΡΙΓΩΝΟΜΕΤΡΙΑ( FUNCTIONS,TRIGONOMETRY)

ΚΕΦΑΛΑΙΟ 3 ο ΣΥΝΑΡΤΗΣΕΙΣ, ΤΡΙΓΩΝΟΜΕΤΡΙΑ( FUNCTIONS,TRIGONOMETRY) ΚΕΦΑΛΑΙΟ 3 ο ΣΥΝΑΡΤΗΣΕΙΣ, ΤΡΙΓΩΝΟΜΕΤΡΙΑ( FUNCTIONS,TRIGONOMETRY) 3.1 ΘΕΩΡΙΑ-ΤΥΠΟΛΟΓΙΟ-ΠΑΡΑΔΕΙΓΜΑΤΑ ΣΥΝΑΡΤΗΣΕΙΣ Συνάρτηση, ή απεικόνιση όπως ονομάζεται διαφορετικά, είναι μια αντιστοίχιση μεταξύ δύο συνόλων,

Διαβάστε περισσότερα

1) κατακόρυφη ασύµπτωτη την ευθεία x = x0 =± ( ηλαδή η ευθεία x = x0. είναι κατακόρυφη ασύµπτωτη όταν ένα τουλάχιστον από τα δύο πλευρικά όρια

1) κατακόρυφη ασύµπτωτη την ευθεία x = x0 =± ( ηλαδή η ευθεία x = x0. είναι κατακόρυφη ασύµπτωτη όταν ένα τουλάχιστον από τα δύο πλευρικά όρια ΘΕΩΡΙΑ ΑΣΥΜΠΤΩΤΩΝ Η : A έχει: ) κατακόρυφη ασύµπτωτη την ευθεία 0 τ.µ.τ. όταν lim ± ή lim ± ή lim ± ( ηλαδή η ευθεία 0 0 + 0 0 είναι κατακόρυφη ασύµπτωτη όταν ένα τουλάχιστον από τα δύο πλευρικά όρια είναι

Διαβάστε περισσότερα

ΘΕΜΑ Α. β) Για κάθε παραγωγίσιμη συνάρτηση f σε ένα διάστημα Δ, η οποία είναι γνησίως αύξουσα, ισχύει f (x) 0 για κάθε x Δ.

ΘΕΜΑ Α. β) Για κάθε παραγωγίσιμη συνάρτηση f σε ένα διάστημα Δ, η οποία είναι γνησίως αύξουσα, ισχύει f (x) 0 για κάθε x Δ. ΑΡΧΗ ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ ΙΟΥΝΙΟΥ 8 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΤΡΕΙΣ () ΘΕΜΑ Α A. Να αποδείξετε ότι,

Διαβάστε περισσότερα

Απάντησε στις παρακάτω ερωτήσεις.

Απάντησε στις παρακάτω ερωτήσεις. Ερωτήσεις Πόσο καλά γνωρίζεις και Απαντήσεις τους Μινωίτες; Πόσο καλά γνωρίζεις τους Μινωίτες; 1. Σε παραστάσεις τοιχογραφιών και σφραγίδων απεικονίζονται μόνο τελετουργικοί χοροί. 2. Κατά την Ύστερη Εποχή

Διαβάστε περισσότερα

π x = κπ + με κ. Στην παράγραφο αυτή θα ασχοληθούμε με συναρτήσεις οι οποίες έχουν 2

π x = κπ + με κ. Στην παράγραφο αυτή θα ασχοληθούμε με συναρτήσεις οι οποίες έχουν 2 ΚΕΦΑΛΑΙΟ 2ο: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 3: ΣΥΝΑΡΤΗΣΗ - ΑΝΤΙΣΤΡΟΦΗ ΣΥΝΑΡΤΗΣΗ [Υποκεφάλαιο.3 Μονότονες συναρτήσεις Αντίστροφη συνάρτηση του σχολικού βιβλίου]. ΣΗΜΕΙΩΣΕΙΣ Συνάρτηση Όταν

Διαβάστε περισσότερα

ΠΑΝΕΛΛΑ ΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΥΤΕΡΑ 10 ΙΟΥΝΙΟΥ 2019 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΑΠΑΝΤΗΣΕΙΣ

ΠΑΝΕΛΛΑ ΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΥΤΕΡΑ 10 ΙΟΥΝΙΟΥ 2019 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑ ΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΥΤΕΡΑ 10 ΙΟΥΝΙΟΥ 2019 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΜΑ Α ΑΠΑΝΤΗΣΕΙΣ Α1. α. Ορισμός στο σχολικό βιβλίο σελίδα 15. β. i) Μια συνάρτηση

Διαβάστε περισσότερα

3ο Διαγώνισμα στις παραγώγους

3ο Διαγώνισμα στις παραγώγους wwwaskisopolisgr ΘΕΜΑ Α ο Διαγώνισμα στις παραγώγους Διάρκεια:,5 ώρες Α α) Αν μια συνάρτηση f είναι γνησίως αύξουσα σε ένα διάστημα Δ, τότε f στο Δ; Δώστε παράδειγμα β) Αν μια συνάρτηση f είναι παραγωγίσιμη

Διαβάστε περισσότερα

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ Θέματα και Απαντήσεις

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ Θέματα και Απαντήσεις ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ Θέματα και Απαντήσεις Επιμέλεια: Ομάδα Μαθηματικών http://www.othisi.gr Δευτέρα, 11 Ιουνίου 018 Γ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΜΑΘΗΜΑΤΙΚΑ A1. Να αποδείξετε ότι, αν μια

Διαβάστε περισσότερα

Μαθηματικά Θετικής και Τεχνολογικής Κατεύθυνσης Γ Λυκείου ΚΥΡΤΟΤΗΤΑ - ΣΗΜΕΙΑ ΚΑΜΠΗΣ ΣΥΝΑΡΤΗΣΗΣ

Μαθηματικά Θετικής και Τεχνολογικής Κατεύθυνσης Γ Λυκείου ΚΥΡΤΟΤΗΤΑ - ΣΗΜΕΙΑ ΚΑΜΠΗΣ ΣΥΝΑΡΤΗΣΗΣ ΚΥΡΤΟΤΗΤΑ - ΣΗΜΕΙΑ ΚΑΜΠΗΣ ΣΥΝΑΡΤΗΣΗΣ Ορισμός Θεωρούμε μια συνάρτηση f συνεχή σ' ένα διάστημα Δ και παραγωγίσιμη στο εσωτερικό του Δ. α) Θα λέμε ότι η f είναι κυρτή ή στρέφει τα κοίλα άνω στο Δ, αν η f

Διαβάστε περισσότερα

, να αποδείξετε ότι και η συνάρτηση f+g είναι παραγωγίσιμη στο x. και ισχύει. Μονάδες 9 Α2. Έστω μια συνάρτηση f με πεδίο ορισμού το Α και [, ]

, να αποδείξετε ότι και η συνάρτηση f+g είναι παραγωγίσιμη στο x. και ισχύει. Μονάδες 9 Α2. Έστω μια συνάρτηση f με πεδίο ορισμού το Α και [, ] ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ. ΕΤΟΥΣ 6-7 ΜΑΘΗΜΑ / ΤΑΞΗ : ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: Μαθηματικά Προσανατολισμού Γ' Λυκείου Θέμα Α Α. Αν οι συναρτήσεις, g είναι παραγωγίσιμες στο, να αποδείξετε ότι και

Διαβάστε περισσότερα

Καρτεσιανές συντεταγμένες Γραφική παράσταση συνάρτησης Εφαρμογές

Καρτεσιανές συντεταγμένες Γραφική παράσταση συνάρτησης Εφαρμογές Καρτεσιανές συντεταγμένες Γραφική παράσταση συνάρτησης Εφαρμογές Να βρείτε για καθεμιά από τις παρακάτω γραμμές αν είναι γραφική παράσταση κάποιας συνάρτησης. 4-1 1 () (1) (3) (4) (5) (6) Αν υπάρχει ευθεία

Διαβάστε περισσότερα

Περιεχόμενα. Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ... 13 1.1 Οι συντεταγμένες ενός σημείου...13 1.2 Απόλυτη τιμή...14

Περιεχόμενα. Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ... 13 1.1 Οι συντεταγμένες ενός σημείου...13 1.2 Απόλυτη τιμή...14 Περιεχόμενα Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ... 13 1.1 Οι συντεταγμένες ενός σημείου...13 1.2 Απόλυτη τιμή...14 Κεφάλαιο 2 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΕΝΑ ΕΠΙΠΕΔΟ 20 2.1 Οι συντεταγμένες

Διαβάστε περισσότερα

ΟΙ ΓΡΑΦΕΣ ΣΤΟ ΠΡΟΙΣΤΟΡΙΚΟ ΑΙΓΑΙΟ Όταν οι μαθητές δημιουργούν

ΟΙ ΓΡΑΦΕΣ ΣΤΟ ΠΡΟΙΣΤΟΡΙΚΟ ΑΙΓΑΙΟ Όταν οι μαθητές δημιουργούν ΟΙ ΓΡΑΦΕΣ ΣΤΟ ΠΡΟΙΣΤΟΡΙΚΟ ΑΙΓΑΙΟ Όταν οι μαθητές δημιουργούν ΜΑΘΗΤΙΚΗ ΔΡΑΣΤΗΡΙΟΤΗΤΑ ΣΤΟ ΜΑΘΗΜΑ ΤΗΣ ΙΣΤΟΡΙΑΣ Στο πλαίσιο του μαθήματος της Αρχαίας Ελληνικής Ιστορίας στην Α τάξη Γυμνασίου, οι μαθητές μας

Διαβάστε περισσότερα

Ένα υγρό σε δοχείο και το υδροστατικό παράδοξο.

Ένα υγρό σε δοχείο και το υδροστατικό παράδοξο. Ένα υγρό σε δοχείο και το υδροστατικό παράδοξο. Ας μελετήσουμε τι συμβαίνει, όταν ένα υγρό περιέχεται σε ένα ακίνητο δοχείο. Τι δυνάμεις ασκεί στο δοχείο; Τι σχέση έχουν αυτές με το βάρος του υγρού; Εφαρμογή

Διαβάστε περισσότερα

ΙΝΣΤΙΤΟΥΤΟ ΦΙΛΟΣΟΦΙΚΩΝ ΕΡΕΥΝΩΝ ΣΕΜΙΝΑΡΙΑ ΙΣΤΟΡΙΚΟΦΙΛΟΣΟΦΙΚΟΥ ΛΟΓΟΥ. ΣΥΝΑΝΤΗΣΕΙΣ ΣΠΑΡΤΗΣ (14η) Παρασκευή 2 και Κυριακή 4

ΙΝΣΤΙΤΟΥΤΟ ΦΙΛΟΣΟΦΙΚΩΝ ΕΡΕΥΝΩΝ  ΣΕΜΙΝΑΡΙΑ ΙΣΤΟΡΙΚΟΦΙΛΟΣΟΦΙΚΟΥ ΛΟΓΟΥ. ΣΥΝΑΝΤΗΣΕΙΣ ΣΠΑΡΤΗΣ (14η) Παρασκευή 2 και Κυριακή 4 1 ΙΝΣΤΙΤΟΥΤΟ ΦΙΛΟΣΟΦΙΚΩΝ ΕΡΕΥΝΩΝ www.philosophical-research.org ΣΕΜΙΝΑΡΙΑ ΙΣΤΟΡΙΚΟΦΙΛΟΣΟΦΙΚΟΥ ΛΟΓΟΥ ΑΠΟΣΤΟΛΟΣ Λ. ΠΙΕΡΡΗΣ ΚΥΚΛΟΣ Λ ΠΕΡΙΟΔΟΣ 2016-2017 ΣΥΝΑΝΤΗΣΕΙΣ ΣΠΑΡΤΗΣ (14η) Παρασκευή 2 και Κυριακή 4

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝΔΙΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑΔΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2019 Β ΦΑΣΗ

ΟΜΟΣΠΟΝΔΙΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑΔΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2019 Β ΦΑΣΗ ΤΑΞΗ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ: ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ / ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ Ημερομηνία: Σάββατο Μαΐου 9 Διάρκεια Εξέτασης: 3 ώρες ΘΕΜΑ Α ΑΠΑΝΤΗΣΕΙΣ Α. Απόδειξη σχολικού

Διαβάστε περισσότερα

Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ

Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ Ε π ι μ έ λ ε ι α Κ Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ Πραγματική Συνάρτηση ρισμός Έστω Α ένα υποσύνολο του R. νομάζουμε πραγματική συνάρτηση με πεδίο ορισμού το Α μια διαδικασία (κανόνα) f, με την οποία κάθε στοιχείο

Διαβάστε περισσότερα

Κεφάλαιο 2ο: ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ 2ο ΜΕΡΟΣ

Κεφάλαιο 2ο: ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ 2ο ΜΕΡΟΣ Κεφάλαιο ο: ΙΑΦΟΡΙΚΟ ΟΓΙΜΟ ο ΜΕΡΟ Ερωτήσεις του τύπου «ωστό - άθος» 1. * Αν η συνάρτηση f είναι παραγωγίσιµη στο R και f (α) f (β), α, β R, α < β, τότε ισχύει f () για κάθε (α, β).. * Αν η συνάρτηση f

Διαβάστε περισσότερα

Μηχανικό Στερεό. Μια εργασία για την Επανάληψη

Μηχανικό Στερεό. Μια εργασία για την Επανάληψη Μηχανικό Στερεό. Μια εργασία για την Επανάληψη Απλές προτάσεις Για τον έλεγχο της κατανόησης και εφαρμογής των εννοιών Δογραματζάκης Γιάννης 9/5/2013 Απλές προτάσεις για τον έλεγχο της κατανόησης και εφαρμογής

Διαβάστε περισσότερα

ΙΝΣΤΙΤΟΥΤΟ ΦΙΛΟΣΟΦΙΚΩΝ ΕΡΕΥΝΩΝ ΣΕΜΙΝΑΡΙΑ ΙΣΤΟΡΙΚΟΦΙΛΟΣΟΦΙΚΟΥ ΛΟΓΟΥ. Πέμπτη, 24 και Παρασκευή, 25 Μαΐου 2018

ΙΝΣΤΙΤΟΥΤΟ ΦΙΛΟΣΟΦΙΚΩΝ ΕΡΕΥΝΩΝ   ΣΕΜΙΝΑΡΙΑ ΙΣΤΟΡΙΚΟΦΙΛΟΣΟΦΙΚΟΥ ΛΟΓΟΥ. Πέμπτη, 24 και Παρασκευή, 25 Μαΐου 2018 1 ΙΝΣΤΙΤΟΥΤΟ ΦΙΛΟΣΟΦΙΚΩΝ ΕΡΕΥΝΩΝ www.philosophical-research.org ΣΕΜΙΝΑΡΙΑ ΙΣΤΟΡΙΚΟΦΙΛΟΣΟΦΙΚΟΥ ΛΟΓΟΥ ΑΠΟΣΤΟΛΟΣ Λ. ΠΙΕΡΡΗΣ ΠΕΡΙΟΔΟΣ 2017-2018 ΣΥΝΑΝΤΗΣΕΙΣ ΠΑΤΡΩΝ (22 η ) ΚΑΙ ΣΠΑΡΤΗΣ (13 η ) Πέμπτη, 24 και

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΨΗ ΒΑΣΙΚΩΝ ΕΝΝΟΙΩΝ

ΕΠΑΝΑΛΗΨΗ ΒΑΣΙΚΩΝ ΕΝΝΟΙΩΝ ΕΠΑΝΑΛΗΨΗ ΒΑΣΙΚΩΝ ΕΝΝΟΙΩΝ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ Το σύνολο των πραγματικών αριθμών Υπενθυμίζουμε ότι το σύνολο των πραγματικών αριθμών αποτελείται από τους ρητούς και τους άρρητους αριθμούς και παριστάνεται

Διαβάστε περισσότερα

ΑΣΥΜΜΕΤΡΙΑ Ας υποθέσουμε, ότι κατά την μελέτη της κατανομής δύο μεταβλητών, καταλήγουμε στα παρακάτω ιστογράμματα.

ΑΣΥΜΜΕΤΡΙΑ Ας υποθέσουμε, ότι κατά την μελέτη της κατανομής δύο μεταβλητών, καταλήγουμε στα παρακάτω ιστογράμματα. ΑΣΥΜΜΕΤΡΙΑ Ας υποθέσουμε, ότι κατά την μελέτη της κατανομής δύο μεταβλητών, καταλήγουμε στα παρακάτω ιστογράμματα. Στα παραπάνω ιστογράμματα, παρατηρούμε, ότι αν και υπάρχει διαφορά στη διασπορά των τιμών

Διαβάστε περισσότερα

ΙΝΣΤΙΤΟΥΤΟ ΦΙΛΟΣΟΦΙΚΩΝ ΕΡΕΥΝΩΝ

ΙΝΣΤΙΤΟΥΤΟ ΦΙΛΟΣΟΦΙΚΩΝ ΕΡΕΥΝΩΝ 1 ΙΝΣΤΙΤΟΥΤΟ ΦΙΛΟΣΟΦΙΚΩΝ ΕΡΕΥΝΩΝ [www.philosophical-research.org] ΣΕΜΙΝΑΡΙΑ ΙΣΤΟΡΙΚΟΦΙΛΟΣΟΦΙΚΟΥ ΛΟΓΟΥ ΑΠΟΣΤΟΛΟΣ Λ. ΠΙΕΡΡΗΣ ΚΥΚΛΟΣ ΚΖ ΠΕΡΙΟΔΟΣ 2013-2014 Μελέτη Ελληνισμού Σεμινάριο 1 ο Πέμπτη 14 Νοεμβρίου

Διαβάστε περισσότερα

,, δηλαδή στο σημείο αυτό παρουσιάζει τη μέγιστη τιμή της αν α < 0 2α 4α και την ελάχιστη τιμή της αν α > 0. β Στο διάστημα,

,, δηλαδή στο σημείο αυτό παρουσιάζει τη μέγιστη τιμή της αν α < 0 2α 4α και την ελάχιστη τιμή της αν α > 0. β Στο διάστημα, Γενικής Παιδείας 1.4 Εφαρμογές των παραγώγων Το κριτήριο της πρώτης παραγώγου Στην Άλγεβρα της Α Λυκείου μελετήσαμε τη συνάρτηση f(x) = αx + βx + γ, α 0 και είδαμε ότι η γραφική της παράσταση είναι μία

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ - ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ & ΑΠΟΔΕΙΞΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ - ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ & ΑΠΟΔΕΙΞΕΙΣ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ - ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ & ΑΠΟΔΕΙΞΕΙΣ Επιμέλεια: Βασίλης Κράνιας wwwe-mathsgr ΑΝΑΛΥΣΗ Τι ονομάζουμε πραγματική συνάρτηση Έστω Α ένα υποσύνολο

Διαβάστε περισσότερα

16 Ασύμπτωτες. όπως φαίνεται στα παρακάτω σχήματα. 1. Κατακόρυφη ασύμπτωτη. Η ευθεία x = x0

16 Ασύμπτωτες. όπως φαίνεται στα παρακάτω σχήματα. 1. Κατακόρυφη ασύμπτωτη. Η ευθεία x = x0 6 Ασύμπτωτες Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Ορίζουμε μια ευθεία ( ε ) ως ασύμπτωτη της γραφικής παράστασης της αν η απόσταση ενός μεταβλητού σημείου Ρ της γραφικής παράστασης από την ευθεία ( ε ) γίνεται

Διαβάστε περισσότερα

4.3 Η ΣΥΝΑΡΤΗΣΗ f (x) x

4.3 Η ΣΥΝΑΡΤΗΣΗ f (x) x 1 4.3 Η ΣΥΝΑΡΤΗΣΗ f () A Ομάδας Ασκήσεις σχολικού βιβλίου σελίδας 164 167 1. Να βρείτε τη γωνία που σχηματίζει με τον άξονα η ευθεία = + = 3 1 i = + 1 iv) = 3 + εφω = 1 ω = 45 ο εφω = 3 ω = 60 ο i εφω

Διαβάστε περισσότερα

ΜΑΘΗΜΑ 14 1.3 ΜΟΝΟΤΟΝΕΣ ΣΥΝΑΡΤΗΣΕΙΣ

ΜΑΘΗΜΑ 14 1.3 ΜΟΝΟΤΟΝΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ΜΑΘΗΜΑ 4. ΜΟΝΟΤΟΝΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ΑΝΤΙΣΤΡΟΦΗ ΣΥΝΑΡΤΗΣΗ Μονοτονία συνάρτησης Ακρότατα συνάρτησης Θεωρία Σχόλια Μέθοδοι Ασκήσεις ΘΕΩΡΙΑ. Ορισµός Συνάρτηση f λέγεται γνησίως αύξουσα σε διάστηµα, όταν για οποιαδήποτε,

Διαβάστε περισσότερα

ΣΤ ΕΝΟΤΗΤΑ. Βασικές έννοιες των συναρτήσεων. ΣΤ.1 (6.1 παρ/φος σχολικού βιβλίου) ΣΤ.2 (6.2 παρ/φος σχολικού βιβλίου)

ΣΤ ΕΝΟΤΗΤΑ. Βασικές έννοιες των συναρτήσεων. ΣΤ.1 (6.1 παρ/φος σχολικού βιβλίου) ΣΤ.2 (6.2 παρ/φος σχολικού βιβλίου) ΣΤ ΕΝΟΤΗΤΑ Βασικές έννοιες των συναρτήσεων ΣΤ. (6. παρ/φος σχολικού βιβλίου) Η έννοια της συνάρτησης ΣΤ. (6. παρ/φος σχολικού βιβλίου) Γραφική παράσταση συνάρτησης ΣΤ.3 (6.3 παρ/φος σχολικού βιβλίου) Η

Διαβάστε περισσότερα

ΑΣΥΜΠΤΩΤΕΣ ΓΡΑΦΙΚΗΣ ΠΑΡΑΣΤΑΣΗΣ ΣΥΝΑΡΤΗΣΗΣ

ΑΣΥΜΠΤΩΤΕΣ ΓΡΑΦΙΚΗΣ ΠΑΡΑΣΤΑΣΗΣ ΣΥΝΑΡΤΗΣΗΣ ΑΣΥΜΠΤΩΤΕΣ ΓΡΑΦΙΚΗΣ ΠΑΡΑΣΤΑΣΗΣ ΣΥΝΑΡΤΗΣΗΣ Ορισμοί α) (Κατακόρυφη ασύμπτωτη) Αν ένα τουλάχιστον απ' τα όρια f(), o o λέγεται κατακόρυφη ασύμπτωτη της C f. f() είναι +, ή -, τότε η ευθεία o β) (Οριζόντια

Διαβάστε περισσότερα

2. Ανάλυση και Σύνθεση κυματομορφών με την μέθοδο Fourier

2. Ανάλυση και Σύνθεση κυματομορφών με την μέθοδο Fourier 2.1 2. Ανάλυση και Σύνθεση κυματομορφών με την μέθοδο Fourier 2.1 Εισαγωγή Η βασική ιδέα στην ανάλυση των κυματομορφών με την βοήθεια της μεθόδου Fourier συνίσταται στο ότι μία κυματομορφή μιας οποιασδήποτε

Διαβάστε περισσότερα