Μηχανικό Στερεό. Μια εργασία για την Επανάληψη

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Μηχανικό Στερεό. Μια εργασία για την Επανάληψη"

Transcript

1 Μηχανικό Στερεό. Μια εργασία για την Επανάληψη Απλές προτάσεις Για τον έλεγχο της κατανόησης και εφαρμογής των εννοιών Δογραματζάκης Γιάννης 9/5/2013

2 Απλές προτάσεις για τον έλεγχο της κατανόησης και εφαρμογής των εννοιών στο Μηχανικό Στερεό. Πρόταση 1 η Ελέγχω τις έννοιες : Κύλιση. Ροπή αδράνειας. Στροφορμή. Κινητική ενέργεια στην κύλιση. Θεώρημα παραλλήλων αξόνων Steiner. Εκφώνηση 1 η. Ο κυκλικός δακτύλιος μάζας (m) και ακτίνας (R) του παρακάτω σχήματος εκτελεί σύνθετη κίνηση σε οριζόντιο επίπεδο. Το σημείο Α είναι το σημείο τομής της οριζόντιας διαμέτρου και της εξωτερικής του επιφάνειας και έχει ταχύτητα υ Α = υ 2. Cm Ερώτημα 1 0 Να υπολογιστούν οι ταχύτητες του δακτυλίου στα σημεία Β και Γ. Θεωρείται γνωστό το ( υ ).

3 Αναλύω την ταχύτητα υ Α = υ 2 σε δύο συνιστώσες. α. Την οριζόντια συνιστώσα ταχύτητας που εκφράζει την ταχύτητα του κέντρου μάζας. β. Την εφαπτομενική συνιστώσα της ταχύτητας που εκφράζει την γραμμική ταχύτητα του σημείου Α. Cm Παρατηρούμε ότι : που είναι μια από τις συνθήκες κύλισης. Άρα κυκλικός δακτύλιος κυλίεται. Σημείο Β : Σημείο Γ :

4 Ερώτημα 2 0 Nα υπολογιστεί η ροπή αδράνειας του κυκλικού δακτυλίου ως προς άξονα που περνά από το κέντρο μάζας του δακτυλίου και είναι κάθετος στο επίπεδό του. Γνωστά είναι : m, R. Cm Χωρίζω τον δακτύλιο σε Ν στοιχειώδεις μάζες (dm) που απέχουν από το κέντρο του απόσταση (R) λόγω του πολύ μικρού πάχους του. Η ροπή αδράνειας της κάθε στοιχειώδους μάζας είναι : H συνολική ροπή αδράνειας ως προς άξονα που περνά από το κέντρο μάζας και είναι κάθετος στο επίπεδο του δακτυλίου είναι: Ερώτημα 3 0 Nα υπολογιστεί η στροφορμή του κυκλικού δακτυλίου ως προς άξονα που περνά από το σημείο επαφής του δακτυλίου με το οριζόντιο επίπεδο (Γ) και είναι κάθετος στο επίπεδο του (οριζόντιος άξονας).

5 Δείξαμε παραπάνω ότι ο κυκλικός δακτύλιος κυλίεται άρα : Υπολογισμός της στροφορμής Cm Η στροφορμή του κυκλικού δακτυλίου ως προς άξονα που περνά από το σημείο επαφής του δακτυλίου με το οριζόντιο επίπεδο (Γ) και είναι κάθετος στο επίπεδο του είναι : Το Ι Γ είναι η ροπή αδράνειας ως προς τον άξονα που περνά από το (Γ) και υπολογίζεται από το θεώρημα των παραλλήλων αξόνων του Steiner : Άρα τελικά : H στροφορμή του δακτυλίου ως προς άξονα που περνά από το σημείο επαφής του δακτυλίου με το οριζόντιο επίπεδο (Γ) και είναι κάθετος στο επίπεδο του έχει την διεύθυνση του άξονα και φορά προς τα μέσα.

6 Ερώτημα 4 0 Nα υπολογιστεί o λόγος της κινητικής ενέργειας λόγω περιστροφής προς την κινητική ενέργεια λόγω μεταφορικής κίνησης του κυκλικού δακτυλίου. Η κινητική ενέργεια λόγω περιστροφής είναι : Η κινητική ενέργεια λόγω μεταφορικής είναι : Άρα ο λόγος θα είναι : Σχόλιο: Γενικά αν η ροπή αδράνειας ως προς άξονα που περνά από το κέντρο μάζας ενός στερεού που κυλίεται είναι : τότε ο λόγος Πρόταση 2 η Ελέγχω τις έννοιες : Ισορροπία στερεού σώματος. Θεμελιώδης Νόμος της Μηχανικής στην Στροφική κίνηση. Θεώρημα παραλλήλων αξόνων Steiner. Αρχή της Διατήρησης της Ενέργειας.

7 Εκφώνηση 2 η. Η ομογενής ράβδος έχει μάζα (m) μήκος (l) και ισορροπεί οριζόντια με το ένα άκρο της συνδεμένο σε άρθρωση και το άλλο σε νήμα αμελητέας μάζας όπως φαίνεται στο παρακάτω σχήμα. Ερώτημα 1 0 Να σχεδιαστούν οι δυνάμεις που ασκούνται στην ομογενή ράβδο και να δειχθεί ότι οι φορείς τους περνούν από το ίδιο σημείο. Στην ράβδο όπως φαίνεται στο σχήμα ασκούνται οι δυνάμεις : α. Το βάρος W στο μέσο της ράβδου. β. Η δύναμη από το νήμα Τ. γ. Η δύναμη από την άρθρωση Α. Η ράβδος ισορροπεί. φ Η συνισταμένη των ροπών των δυνάμεων ως προς οποιοδήποτε σημείο του επιπέδου θα είναι μηδέν ( Στ = 0 ). Έστω ότι ο φορέας της δύναμης (Τ) και ο θ φορέας του βάρος (W) τέμνονται στο σημείο Κ. Ας υποθέσουμε ότι ο φορέας της δύναμης (Α) από την άρθρωση δεν περνά από το σημείο Κ αλλά απέχει από αυτό απόσταση (d).

8 Αφού η ράβδος ισορροπεί : όμως η δύναμη (Α) είναι διάφορη του μηδενός. Άρα ο φορέας της δύναμης Α από την άρθρωση περνά και αυτός από το σημείο της μεσοκαθέτου Κ. Σχόλιο : Μπορούμε να γενικεύσουμε την παραπάνω περίπτωση με ένα σώμα που του ασκούνται (ν) ομοεπίπεδες δυνάμεις και ισορροπεί. α. Αν οι φορείς των (ν-1) δυνάμεων όπου ν 3 περνούν από ένα σημείο του επιπέδου τότε περνά και ο φορέας της ν-ιοστής δύναμης. β. Αν οι φορείς των (ν-1) δυνάμεων όπου ν 3 είναι παράλληλοι τότε και ο φορέας της ν-ιοστής δύναμης είναι παράλληλος με αυτούς. Ερώτημα 2 0 Να υπολογιστούν η δύναμη από το νήμα (Τ) και η δύναμη από την άρθρωση (Α) που ασκούνται πάνω στην ράβδο. Γνωστά θεωρούνται: m, g, φ. Επιλέγω ορθογώνιο σύστημα αξόνων (χ, y). Αναλύω όλες τις δυνάμεις που ασκούνται στην ράβδο πάνω στους άξονες (χ, y ) όπως φαίνεται στο παρακάτω σχήμα. φ φ

9 Στο προηγούμενο ερώτημα δείξαμε ότι οι φορείς των δυνάμεων τέμνονται στο ίδιο σημείο (Κ) που είναι σημείο της μεσοκαθέτου (C K). Έτσι σχηματίζεται ένα ισοσκελές τρίγωνο με βάση την ράβδο. Οι γωνίες στην βάση του είναι ίσες άρα η κάθε μία είναι (φ). Τ χ = Τσυνφ Α χ = Ασυνφ Αναλύω τις δυνάμεις :Τ και Α Τ y = Τημφ Α y = Αημφ Άξονας (χ): (1) Άξονας (y): Με την βοήθεια της (1) Ερώτημα 3 0 Κάποια στιγμή κόβουμε το νήμα. Η ράβδος αρχίζει να περιστρέφεται γύρω από την άρθρωση και στο κατακόρυφο επίπεδο χωρίς απώλειες ενέργειας. α. Να βρεθεί η σχέση που συνδέει τον ρυθμό μεταβολής της στροφορμής της ράβδου με την γωνία που σχηματίζει η ράβδος με την αρχική οριζόντια διεύθυνση (dl/dt) Λ = f (θ). β. Σε ποια θέση ο ρυθμός μεταβολής της στροφορμής (dl/dt) Λ είναι μέγιστος και σε ποια ελάχιστος για πρώτη φορά. Γνωστά : m,g. α. Στο σχήμα η ράβδος είναι σε μια τυχαία θέση που σχηματίζει με την οριζόντια διεύθυνση γωνία (θ). Από την εφαρμογή του Θεμελιώδη Νόμου της Μηχανικής στην Στροφική κίνηση παίρνουμε: Α

10 Αλλά W = mg και β. Όταν η θ = 0 0 τότε συνθ =1: Όταν η θ = 90 0 τότε συνθ = 0: Ερώτημα 4 0 α. Να βρεθεί η σχέση που συνδέει τον ρυθμό μεταβολής της γωνιακής ταχύτητας της ράβδου με την γωνία που σχηματίζει η ράβδος με την αρχική οριζόντια διεύθυνση (dω/dt) = f (θ). β. Σε ποια θέση ο ρυθμός μεταβολής (dω/dt) είναι μέγιστος και σε ποια ελάχιστος για πρώτη φορά. Γνωστά : m,g, l. Δίνεται για την ράβδο Ι cm = 1/12 ml 2. α. Στο σχήμα η ράβδος είναι σε μια τυχαία θέση που σχηματίζει με την οριζόντια διεύθυνση γωνία (θ). Ο ρυθμός μεταβολής της γωνιακής Α ταχύτητας της ράβδου dω/dt = α γων είναι η γωνιακή επιτάχυνση της ράβδου. Από την εφαρμογή του Θεμελιώδη Νόμου της Μηχανικής στην Στροφική κίνηση παίρνουμε: αλλά όμως.

11 Παίρνω το θεώρημα Steiner για τον άξονα περιστροφής που περνά από το Λ : Άρα : β. Όταν η θ = 0 0 τότε συνθ = 1: Όταν η θ = 90 0 τότε συνθ = 0: Ερώτημα 5 0 Να βρεθεί η σχέση που συνδέει την γωνιακή ταχύτητα της ράβδου (ω) σε συνάρτηση με την γωνία που σχηματίζει η ράβδος με την αρχική οριζόντια διεύθυνση (θ). Να γίνει η γραφική παράσταση (ω θ) για τιμές της γωνίας από 0 θ π. Γνωστά : m, g, l. Εφαρμόζω την Αρχή της Διατήρησης της Ενέργειας για την ράβδο. Αρχικά Στην οριζόντια θέση: Τελικά Στην θέση που η ράβδος σχηματίζει με την αρχική οριζόντια διεύθυνση γωνία (θ)

12 . πό την Αρχή της Διατήρησης της Ενέργειας για την ράβδο: Γραφική παράσταση της γωνιακής ταχύτητας της ράβδου (ω) με την γωνία που σχηματίζει η ράβδος με την αρχική οριζόντια διεύθυνση (θ) για τιμές της γωνίας από 0 θ π. Σχόλιο: α. Από την εφαρμογή του Θεμελιώδη Νόμου της Μηχανικής στην Στροφική κίνηση μπορούμε να υπολογίσουμε την γωνιακή επιτάχυνση (α γων ) και τον ρυθμό μεταβολής της στροφορμής (dl/dt). β. Από την Αρχή της Διατήρησης της Ενέργειας υπολογίζουμε την γωνιακή ταχύτητα (ω). Πρόταση 3 η Ελέγχω τις έννοιες : Ισορροπία στερεού σώματος. Θεμελιώδης Νόμος της Μηχανικής στην Στροφική κίνηση. Αρχή της Διατήρησης της Ενέργειας. Εκφώνηση 3 η. Ομογενής στερεός κύλινδρος μάζας M και ακτίνας R μπορεί περιστρέφεται γύρω από ένα άξονα του χωρίς τριβές.

13 Ο άξονας του στηρίζεται σε δύο λεία στηρίγματα (Σ 1 και Σ 2 ). Δύο μάζες m 1 και m 2 είναι αναρτημένες με ελαφρά νήματα αμελητέας μάζας που είναι τυλιγμένα γύρω από τον κύλινδρο. Το σύστημα αρχικά είναι ακίνητο με τις μάζες στην ίδια οριζόντιο. Κάποια στιγμή αφήνεται ελεύθερο να κινηθεί. Ερώτημα 1 0 Να σχεδιαστούν οι δυνάμεις που ασκούνται: α. Στις μάζες m 1 και m 2 β. Στον ομογενή στερεό κύλινδρο μάζας M με τον άξονά του. Στο παρακάτω σχήμα είναι σχεδιασμένες όλες οι ζητούμενες δυνάμεις. Ν 1 Ν 2 T 1 T 2 Σ 1 Σ 2 W κ T 1 T 2 m 1 m 2 W1 W2 α. Στις μάζες m 1 και m 2 Στη μάζα m 1 : To βάρος W1 = m 1 g και δύναμη από το νήμα T 1. Στη μάζα m 2 : To βάρος W2 = m 2 g και δύναμη από το νήμα T 2. β. Στον ομογενή κύλινδρο μάζας M με τον άξονα του. Στον ομογενή κύλινδρο : To βάρος W κ = Μg οι δυνάμεις από τα νήματα T 1 και T 2. Στον άξονα του κυλίνδρου: Οι δυνάμεις από τα στηρίγματα Ν 1 και Ν 2.

14 Ερώτημα 2 0 Να δειχθεί ότι οι μάζες m 1 και m 2 αποκτούν την ίδια μεταφορική επιτάχυνση α 1 = α 2 = α που συνδέεται με την γωνιακή επιτάχυνση (α γων ) περιστροφής του κυλίνδρου με την σχέση α = α γων R. Τα νήματα δεν γλιστρούν στον κύλινδρο. Σε χρόνο dt o κύλινδρος στρέφεται γύρω από τον άξονα του κατά dφ. Τα νήματα δεν γλιστρούν στον κύλινδρο. Το τμήμα (dx) που ξετυλίγεται από το νήμα της κάθε μάζας είναι ίσο με το μήκος του τόξου (ds) που στρέφεται ο κύλινδρος γύρω από τον άξονα του και αντιστοιχεί σε γωνία στροφής dφ. Από την σχέση: Αυτή είναι και η μεταφορική επιτάχυνση της κάθε μάζας. Ερώτημα 3 0 Να υπολογιστούν οι μεταφορικές επιταχύνσεις των μαζών και η γωνιακή επιτάχυνση του περιστρεφόμενου κυλίνδρου. Να προσδιοριστεί το είδος κίνησης της κάθε μάζας και του περιστρεφόμενου κυλίνδρου. Γνωστά: m 1, m 2, M, g, R. Ροπή αδράνειας του κυλίνδρου Για την μάζα m 1 : Για την μάζα m 2 :

15 Στον ομογενή κύλινδρο ασκούνται To βάρος του W κ = Μg Οι δυνάμεις από τα νήματα T 1 και T 2 Αλλά οι T 1 και T 2 είναι ζεύγη δράσης αντίδρασης με τις δυνάμεις και αντίστοιχα άρα μπορούμε να γράψουμε για τα μέτρα τους και Στον άξονα ασκούνται δυνάμεις από τα στηρίγματα Ν 1 και Ν 2. Ο Θεμελιώδης Νόμος της Μηχανικής στην Στροφική κίνηση ως προς τον άξονα περιστροφής του κυλίνδρου T 1 μας δίνει : Ν 1 Ν 2 W κ T 2 Σ 1 Σ 2 T 1 T 2 m 1 m 2 W1 W2 Αν αντικαταστήσουμε θα πάρουμε και με την βοήθεια της παίρνουμε Από τις παραπάνω σχέσεις : (+) Και με την βοήθεια της : και η

16 Από τις παραπάνω σχέσεις παρατηρούμε ότι η μεταφορική επιτάχυνση(α) των μαζών και η γωνιακή επιτάχυνση (α γων ) του κυλίνδρου είναι σταθερές. Άρα οι κινήσεις είναι : α. Για τις μάζες είναι ευθύγραμμες ομαλά επιταχυνόμενες κινήσεις. β. Για τον κύλινδρο ομαλά επιταχυνόμενη στροφική κίνηση. Ερώτημα 4 0 Να υπολογιστούν οι δυνάμεις από τα νήματα T 1 και T 2. Γνωστά: m 1, m 2, M, g. Η δύναμη από το νήμα T 1. Παίρνω την σχέση : Η δύναμη από το νήμα T 2. Παίρνω την σχέση : Ερώτημα 5 0 Να υπολογιστούν οι ταχύτητες των μαζών (υ μετ ) και η γωνιακή ταχύτητα (ω) του κυλίνδρου όταν οι μάζες έχουν κατεβεί κατά απόσταση (h). Οι δύο μάζες αρχικά βρίσκονται στην ίδια οριζόντια (δες το σχήμα). Θα εφαρμόσουμε την Αρχή της Διατήρησης της Ενέργειας.

17 Αρχική ενέργεια συστήματος ω ω Τελική ενέργεια συστήματος. Οι ταχύτητες των δύο μαζών είναι ίσες (υ 1 = υ 2 = υ μετ ) όπως δείξαμε και παραπάνω : Επίπεδο αναφοράς Αλλά δεν έχουμε μετατροπή ενέργειας σε θερμότητα άρα: Από την σχέση: Πρόταση 4 η Ελέγχω τις έννοιες : Αρχή της Διατήρησης της στροφορμής. Θεώρημα παραλλήλων αξόνων Steiner.Αρχή της Διατήρησης της Ενέργειας. Θεώρημα μεταβολής της Κινητικής Ενέργειας στην Στροφική κίνηση.

18 Εκφώνηση 4 η. (Το παράδειγμα Σχολικού βιβλίου με παραλλαγές) Ο άνθρωπος στο διπλανό σχήμα έχει τα χέρια του τεντωμένα και στο κάθε χέρι του κρατάει ένα βαράκι μάζας m = 4 kg. Εξ αιτίας μιας ώθησης που δέχτηκε ο άνθρωπος περιστρέφεται με γωνιακή ταχύτητα ω α = 4 rad/s. Το κάθισμα πάνω στο οποίο κάθεται μπορεί να στρέφεται χωρίς τριβές γύρω από κατακόρυφο άξονα που είναι και ο άξονας συμμετρίας. Ερώτημα 1 0 Να σχεδιαστούν οι δυνάμεις που ασκούνται στο σύστημα άνθρωπος βαράκια. Να δειχθεί ότι η συνισταμένη των ροπών τους ως προς το κατακόρυφο άξονα είναι μηδέν ( Στ = 0). Οι δυνάμεις από τα δύο βαράκια στα χέρια του ανθρώπου : w = mg (το καθένα) Το βάρος του ανθρώπου:w α = Mg (στο κέντρο μάζας) Η δύναμη από το κάθισμα : F κ Επειδή ο άνθρωπος δεν εκτελεί μεταφορική κίνηση : ΣF = 0 2w +W + F κ = 0 F κ = - (2w +W) Βλέπουμε ότι η δύναμη από το κάθισμα F κ είναι αντίθετης κατεύθυνσης με τα βάρη άρα κατακόρυφη. Συμπέρασμα: Όλες οι δυνάμεις έχουν κατακόρυφη διεύθυνση και είναι παράλληλες στον κατακόρυφο άξονα περιστροφής. Άρα δεν δημιουργούν ροπές ( Στ = 0 ) Ερώτημα 2 0 Να δειχθεί ότι ισχύει η Αρχή της Διατήρησης της Στροφορμής ως προς το κατακόρυφο άξονα περιστροφής.

19 Από την γενικότερη διατύπωση του Θεμελιώδους Νόμου της Στροφικής κίνησης έχουμε ότι : όμως δείξαμε παραπάνω Άρα η στροφορμή του συστήματος ανθρώπου βαράκια μένει σταθερή. Ερώτημα 3 0 Κάποια στιγμή ο άνθρωπος συμπτύσσει τα χέρια του έτσι ώστε τα βαράκια να πλησιάσουν στον κατακόρυφο άξονα περιστροφής που εξακολουθεί να είναι άξονας συμμετρίας. Η ροπή αδράνειας του ανθρώπου (χωρίς τα βαράκια που κρατάει) όταν έχει τα χέρια του τεντωμένα είναι 3,25 kgm 2 και όταν συμπτύσσει τα χέρια του είναι 2,5 kgm 2. Κάθε βαράκι απέχει από τον άξονα περιστροφής R 1 = 1m αρχικά και R 2 = 0,2 m τελικά. Η ροπή αδράνειας του καθίσματος θεωρείται αμελητέα. Να υπολογιστεί γωνιακή ταχύτητα (ω τ ) που θα στρέφεται τελικά το σύστημα άνθρωπος βαράκια. Δείξαμε παραπάνω ότι ισχύει η Αρχή της Διατήρησης της Στροφορμής ως προς το κατακόρυφο άξονα περιστροφής. L α ω α L τ ω τ Αρχικά Τελικά

20 Η αρχική ροπή αδράνειας ( I α ) του συστήματος ως προς τον άξονα περιστροφής, όταν ο άνθρωπος είχε τα χέρια του τεντωμένα ήταν το άθροισμα της ροπής αδράνειας του ανθρώπου και της ροπής αδράνειας που έχουν τα βαράκια που κρατάει. Η ροπή αδράνειας ( Ι τ ) του συστήματος όταν ο άνθρωπος συμπτύξει τα χέρια τα χέρια του είναι η νέα ροπή αδράνειας του ανθρώπου και η νέα ροπή αδράνειας που έχουν τα βαράκια που κρατάει. Αν αντικαταστήσουμε στην σχέση : Ερώτημα 4 0 Να υπολογιστεί το έργο των δυνάμεων του μυϊκού συστήματος του ανθρώπου κατά την διάρκεια της σύμπτυξης. Εφαρμόζω το Θεώρημα μεταβολής της Κινητικής Ενέργειας στην Στροφική κίνηση. Δογραματζάκης Γιάννης

ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ: ΔΥΝΑΜΕΙΣ ΚΑΙ ΡΟΠΕΣ

ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ: ΔΥΝΑΜΕΙΣ ΚΑΙ ΡΟΠΕΣ ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ: ΔΥΝΑΜΕΙΣ ΚΑΙ ΡΟΠΕΣ Σ ένα στερεό ασκούνται ομοεπίπεδες δυνάμεις. Όταν το στερεό ισορροπεί, δηλαδή ισχύει ότι F 0 και δεν περιστρέφεται τότε το αλγεβρικό άθροισμα των ροπών είναι μηδέν Στ=0,

Διαβάστε περισσότερα

ΟΙ ΚΙΝΗΣΕΙΣ ΤΩΝ ΣΤΕΡΕΩΝ ΣΩΜΑΤΩΝ

ΟΙ ΚΙΝΗΣΕΙΣ ΤΩΝ ΣΤΕΡΕΩΝ ΣΩΜΑΤΩΝ ΟΙ ΚΙΝΗΣΕΙΣ ΤΩΝ ΣΤΕΡΕΩΝ ΣΩΜΑΤΩΝ Σε όλες τις κινήσεις που μελετούσαμε μέχρι τώρα, προκειμένου να απλοποιηθεί η μελέτη τους, θεωρούσαμε τα σώματα ως υλικά σημεία. Το υλικό σημείο ορίζεται ως σώμα που έχει

Διαβάστε περισσότερα

ΠΡΟΩΘΗΣΗ ΠΥΡΑΥΛΩΝ. Η προώθηση των πυραύλων στηρίζεται στην αρχή διατήρησης της ορμής.

ΠΡΟΩΘΗΣΗ ΠΥΡΑΥΛΩΝ. Η προώθηση των πυραύλων στηρίζεται στην αρχή διατήρησης της ορμής. ΠΡΟΩΘΗΣΗ ΠΥΡΑΥΛΩΝ Η προώθηση των πυραύλων στηρίζεται στην αρχή διατήρησης της ορμής. Ο πύραυλος καίει τα καύσιμα που αρχικά βρίσκονται μέσα του και εκτοξεύει τα καυσαέρια προς τα πίσω. Τα καυσαέρια δέχονται

Διαβάστε περισσότερα

μηχανικη στερεου σωματοσ

μηχανικη στερεου σωματοσ μηχανικη στερεου σωματοσ 4 Ροπή δύναμης 112 Ισορροπία στερεού 115 Ροπή αδράνειας 116 Στροφορμή 122 Κινητική ενέργεια λόγω περιστροφής 126 Σύνοψη 131 Ασκήσεις 132 4-1 ΕΙΣΑΓΩΓΗ Στην προσπάθειά μας να απλοποιήσουμε

Διαβάστε περισσότερα

ΘΕΜΑ Α Ι. Στις ερωτήσεις 1-4 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και το γράμμα που αντιστοιχεί στη σωστή απάντηση.

ΘΕΜΑ Α Ι. Στις ερωτήσεις 1-4 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και το γράμμα που αντιστοιχεί στη σωστή απάντηση. ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α Ι. Στις ερωτήσεις 1-4 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και το γράμμα που αντιστοιχεί στη σωστή απάντηση. 1.

Διαβάστε περισσότερα

Αντιμετώπιση προβλημάτων που αλλάζουν την στροφική τους κατάσταση, εξαιτίας εξωτερικών ροπών

Αντιμετώπιση προβλημάτων που αλλάζουν την στροφική τους κατάσταση, εξαιτίας εξωτερικών ροπών Αντιμετώπιση προβλημάτων που αλλάζουν την τους κατάσταση, εξαιτίας εξωτερικών ροπών Σ' ένα πρόβλημα, παρατηρώ αλλαγή στη κατάσταση ενός στερεού (ή συστήματος στερεών), καθώς αυτό δέχεται εξωτερικές ροπές.

Διαβάστε περισσότερα

w w w.k z a c h a r i a d i s.g r

w w w.k z a c h a r i a d i s.g r ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΤΥΠΟΛΟΓΙΟ-ΒΑΣΙΚΟΙ ΟΡΙΣΜΟΙ ΚΕΦΑΛΑΙΟΥ 4 Γραµµική ταχύτητα : ΚΥΚΛΙΚΗ ΚΙΝΗΣΗ ΥΛΙΚΟΥ ΣΗΜΕΙΟΥ ds. Γωνιακή ταχύτητα : dθ ω ωr Οµαλή κκλική κίνηση : σταθερό

Διαβάστε περισσότερα

Γ ΛΥΚΕΙΟΥ (Επαναληπτικός ιαγωνισμός)

Γ ΛΥΚΕΙΟΥ (Επαναληπτικός ιαγωνισμός) 4 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑ Α ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ (Επαναληπτικός ιαγωνισμός) Κυριακή, 5 Απριλίου, 00, Ώρα:.00 4.00 Προτεινόμενες Λύσεις Άσκηση ( 5 μονάδες) Δύο σύγχρονες πηγές, Π και Π, που απέχουν μεταξύ τους

Διαβάστε περισσότερα

w w w.k z a c h a r i a d i s.g r

w w w.k z a c h a r i a d i s.g r Πως εφαρμόζουμε την αρχή διατήρησης της μηχανικής ενέργειας στα στερεά σώματα Πριν δούμε την μεθοδολογία, ας θυμηθούμε ότι : Για να εφαρμόσουμε την αρχή διατήρησης της μηχανικής ενέργειας (Α.Δ.Μ.Ε.) για

Διαβάστε περισσότερα

φυσική κατεύθυνσης γ λυκείου ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ ΛΑΘΟΥΣ ΕΠΙΛΟΓΗΣ (κεφ.4) Γκότσης Θανάσης - Τερζής Πέτρος

φυσική κατεύθυνσης γ λυκείου ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ ΛΑΘΟΥΣ ΕΠΙΛΟΓΗΣ (κεφ.4) Γκότσης Θανάσης - Τερζής Πέτρος 1 Ένα στερεό εκτελεί μεταφορική κίνηση όταν: α) η τροχιά κάθε σημείου είναι ευθεία γραμμή β) όλα τα σημεία του έχουν ταχύτητα που μεταβάλλεται με το χρόνο γ) μόνο το κέντρο μάζας του διαγράφει ευθύγραμμη

Διαβάστε περισσότερα

ΦΡΟΝΤΙΣΤΗΡΙΟ ΕΠΙΛΟΓΗ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΚΕΦ. 4Ο

ΦΡΟΝΤΙΣΤΗΡΙΟ ΕΠΙΛΟΓΗ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΚΕΦ. 4Ο Όνοµα:... Ηµεροµηνία:... Βαθµός : ΘΕΜΑ Ο Στις παρακάτω ερωτήσεις να επιλέξετε τη σωστή απάντηση. Όταν ένα σώµα πραγµατοποιεί µόνο στροφική κίνηση : α) όλα τα σηµεία του έχουν την ίδια γραµµική ταχύτητα

Διαβάστε περισσότερα

ΓΑΛΑΝΑΚΗΣ ΓΙΩΡΓΟΣ ΔΗΜΗΤΡΑΚΟΠΟΥΛΟΣ ΜΙΧΑΛΗΣ

ΓΑΛΑΝΑΚΗΣ ΓΙΩΡΓΟΣ ΔΗΜΗΤΡΑΚΟΠΟΥΛΟΣ ΜΙΧΑΛΗΣ ΘΕΜΑ Α Στις ερωτήσεις -4 να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί η σωστή απάντηση. Ένας ακίνητος τρoχός δέχεται σταθερή συνιστάμενη ροπή ως προς άξονα διερχόμενο

Διαβάστε περισσότερα

Σωματίδιο μάζας m κινείται στο οριζόντιο επίπεδο xy σε κυκλική τροχιά με σταθερή γωνιακή ταχύτητα ω. Τι συμπεραίνετε για τη στροφορμή του;

Σωματίδιο μάζας m κινείται στο οριζόντιο επίπεδο xy σε κυκλική τροχιά με σταθερή γωνιακή ταχύτητα ω. Τι συμπεραίνετε για τη στροφορμή του; Άσκηση Σωματίδιο μάζας m κινείται στο οριζόντιο επίπεδο xy σε κυκλική τροχιά με σταθερή γωνιακή ταχύτητα ω. Τι συμπεραίνετε για τη στροφορμή του; Απάντηση Έστω R n η ακτίνα του κύκλου. Αφού η κίνηση είναι

Διαβάστε περισσότερα

Απολυτήριες εξετάσεις Γ Τάξης Ημερήσιου Γενικού Λυκείου ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ 20 05 2011

Απολυτήριες εξετάσεις Γ Τάξης Ημερήσιου Γενικού Λυκείου ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ 20 05 2011 Απολυτήριες εξετάσεις Γ Τάξης Ημερήσιου Γενικού Λυκείου ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ 0 05 011 ΘΕΜΑ Α Α1. Σωστό το γ. Α. Σωστό το β. Α3. Σωστό το γ. Α4. Σωστό το γ. Α.5. α. Σωστό β. Λάθος γ. Σωστό δ. Λάθος ε. Λάθος

Διαβάστε περισσότερα

ΘΕΜΑ Β Β1. Σωστό το β. Δόθηκε ότι οι μάζες των σωμάτων είναι ίσες, δηλαδή ma = mb. Με διαίρεση κατά μέλη των σχέσεων (1) και (2) έχουμε:

ΘΕΜΑ Β Β1. Σωστό το β. Δόθηκε ότι οι μάζες των σωμάτων είναι ίσες, δηλαδή ma = mb. Με διαίρεση κατά μέλη των σχέσεων (1) και (2) έχουμε: ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Δ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 6 ΙΟΥΛΙΟΥ 00 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Α δ Α β Α β Α4 γ Α5. α Σ, β Λ,

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012. Ηµεροµηνία: Τετάρτη 18 Απριλίου 2012 ΕΚΦΩΝΗΣΕΙΣ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012. Ηµεροµηνία: Τετάρτη 18 Απριλίου 2012 ΕΚΦΩΝΗΣΕΙΣ ΤΑΞΗ: ΚΑΤΕΥΘΥΝΣΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Ηµεροµηνία: Τετάρτη 18 Απριλίου 2012 ΕΚΦΩΝΗΣΕΙΣ Στις ερωτήσεις 1 έως 4 να γράψετε στο τετράδιο σας τον αριθµό

Διαβάστε περισσότερα

ΕΠΙΜΕΛΕΙΑ: ΓΑΛΑΝΑΚΗΣ ΓΙΩΡΓΟΣ ΔΗΜΗΤΡΑΚΟΠΟΥΛΟΣ ΜΙΧΑΛΗΣ

ΕΠΙΜΕΛΕΙΑ: ΓΑΛΑΝΑΚΗΣ ΓΙΩΡΓΟΣ ΔΗΜΗΤΡΑΚΟΠΟΥΛΟΣ ΜΙΧΑΛΗΣ ΘΕΜΑ Α Στις ερωτήσεις 1-4 να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί η σωστή απάντηση 1. Δίσκος κυλίεται χωρίς να ολισθαίνει με την επίδραση σταθερής οριζόντιας

Διαβάστε περισσότερα

1 ο ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ

1 ο ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ο ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΗΣ ΘΕΤΙΗΣ-ΤΕΧΝΟΛΟΓΙΗΣ ΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΕΙΟΥ Θέμα ο. ύλινδρος περιστρέφεται γύρω από άξονα που διέρχεται από το κέντρο μάζας του με γωνιακή ταχύτητα ω. Αν ο συγκεκριμένος κύλινδρος περιστρεφόταν

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ 1 Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. 1. Δύο χορδές μιας κιθάρας Χ1, Χ2

Διαβάστε περισσότερα

Απολυτήριες εξετάσεις Γ Τάξης Ημερήσιου Γενικού Λυκείου ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ. 29 5 2015

Απολυτήριες εξετάσεις Γ Τάξης Ημερήσιου Γενικού Λυκείου ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ. 29 5 2015 Απολυτήριες εξετάσεις Γ Τάξης Ημερήσιου Γενικού Λυκείου ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ. 9 5 015 ΘΕΜΑ Α: Α1. α Α. β Α. α Α4. δ Α5. α) Λ β) Σ γ) Σ δ) Λ ε) Σ ΘΕΜΑ Β: B1. Σωστό το iii. Αιτιολόγηση: Οι εξωτερικές δυνάμεις

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2015 Β ΦΑΣΗ ÅÐÉËÏÃÇ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2015 Β ΦΑΣΗ ÅÐÉËÏÃÇ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 15 ΤΑΞΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ Ηµεροµηνία: Κυριακή 1 Μαΐου 15 ιάρκεια Εξέτασης: ώρες ΕΚΦΩΝΗΣΕΙΣ Στις ηµιτελείς προτάσεις Α1 Α4 να γράψετε στο τετράδιό σας τον αριθµό

Διαβάστε περισσότερα

ΛΥΚΕΙΟ ΑΓΙΟΥ ΣΠΥΡΙΔΩΝΑ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2011-2012 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ

ΛΥΚΕΙΟ ΑΓΙΟΥ ΣΠΥΡΙΔΩΝΑ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2011-2012 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΛΥΚΕΙΟ ΑΓΙΟΥ ΠΥΡΙΔΩΝΑ ΧΟΛΙΚΗ ΧΡΟΝΙΑ 2011-2012 ΓΡΑΠΤΕ ΠΡΟΑΓΩΓΙΚΕ ΕΞΕΤΑΕΙ ΦΥΙΚΗ ΚΑΤΕΥΘΥΝΗ Β ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: 31-05-2012 ΔΙΑΡΚΕΙΑ: 07.45 10.15 Οδηγίες 1. Το εξεταστικό δοκίμιο αποτελείται από 9 σελίδες.

Διαβάστε περισσότερα

w w w.k z a c h a r i a d i s.g r

w w w.k z a c h a r i a d i s.g r ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Ασκήσεις με δοκό που ισορροπεί, και το ένα άκρο της συνδέεται με άρθρωση Έστω ότι έχουμε ομογενή δοκό η οποία συνδέεται στο ένα άκρο της με άρθρωση.

Διαβάστε περισσότερα

1) Πάνω σε ευθύγραµµο οριζόντιο δρόµο ένας τροχός κυλάει χωρίς να ολισθαίνει. Ποιες από τις παρακάτω σχέσεις είναι σωστές ;

1) Πάνω σε ευθύγραµµο οριζόντιο δρόµο ένας τροχός κυλάει χωρίς να ολισθαίνει. Ποιες από τις παρακάτω σχέσεις είναι σωστές ; 45 Χρόνια ΦΡΟΝΤΙΣΤΗΡΙΑ ΜΕΣΗΣ ΕΚΠΑΙ ΕΥΣΗΣ ΣΑΒΒΑΪ Η-ΜΑΝΩΛΑΡΑΚΗ ΠΑΓΚΡΑΤΙ : Χρυσ Σµύρνης 3 : Τηλ.: 107601470 ΙΑΓΩΝΙΣΜΑ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 006 ΘΕΜΑ 1 1) Πάνω σε ευθύγραµµο οριζόντιο δρόµο ένας τροχός

Διαβάστε περισσότερα

ΘΕΜΑ Α Στις παρακάτω προτάσεις Α1-Α4 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.

ΘΕΜΑ Α Στις παρακάτω προτάσεις Α1-Α4 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. 53 Χρόνια ΦΡΟΝΤΙΣΤΗΡΙΑ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΣΑΒΒΑΪΔΗ-ΜΑΝΩΛΑΡΑΚΗ ΠΑΓΚΡΑΤΙ : Φιλολάου & Εκφαντίδου 26 : Τηλ.: 2107601470 ΔΙΑΓΩΝΙΣΜΑ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2013 ΘΕΜΑ Α Στις παρακάτω προτάσεις Α1-Α4 να

Διαβάστε περισσότερα

6. Να βρείτε ποια είναι η σωστή απάντηση.

6. Να βρείτε ποια είναι η σωστή απάντηση. 12ΑΣΚΗΣΕΙΣ ΔΥΝΑΜΙΚΗΣ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ 1. Να βρείτε ποια είναι η σωστή απάντηση. Το όργανο μέτρησης του βάρους ενός σώματος είναι : α) το βαρόμετρο, β) η ζυγαριά, γ) το δυναμόμετρο, δ) ο αδρανειακός ζυγός.

Διαβάστε περισσότερα

Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ε π α ν α λ η π τ ι κ ά θ έ µ α τ α 0 0 5 Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 1 ΘΕΜΑ 1 o Για τις ερωτήσεις 1 4, να γράψετε στο τετράδιο σας τον αριθµό της ερώτησης και δίπλα το γράµµα που

Διαβάστε περισσότερα

Μονάδες 5 1.3 β. Μονάδες 5 1.4 Μονάδες 5

Μονάδες 5 1.3 β. Μονάδες 5 1.4 Μονάδες 5 ΘΕΜΑ 1 ο ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΕΥΤΕΡΑ 29 ΜΑΪΟΥ 2006 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ: ΦΥΣΙΚΗ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΠΤΑ (7) Για τις ημιτελείς

Διαβάστε περισσότερα

Ã. ÁÓÉÁÊÇÓ ÐÅÉÑÁÉÁÓ Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ. ΘΕΜΑ 1 ο

Ã. ÁÓÉÁÊÇÓ ÐÅÉÑÁÉÁÓ Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ. ΘΕΜΑ 1 ο Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ ο Στι ερωτήσει - 4 να γράψετε στο τετράδιό σα τον αριθµό των ερώτηση και δίπλα σε κάθε αριθµό το γράµµα που αντιστοιχεί στη σωστή απάντηση.. Τροχό κυλίεται πάνω σε οριζόντιο

Διαβάστε περισσότερα

ΥΝΑΜΙΚΗ ΤΗΣ ΠΕΡΙΣΤΡΟΦΙΚΗΣ ΚΙΝΗΣΗΣ 18/11/2011 ΚΕΦ. 10

ΥΝΑΜΙΚΗ ΤΗΣ ΠΕΡΙΣΤΡΟΦΙΚΗΣ ΚΙΝΗΣΗΣ 18/11/2011 ΚΕΦ. 10 ΚΕΦΑΛΑΙΟ 10 ΥΝΑΜΙΚΗ ΤΗΣ ΠΕΡΙΣΤΡΟΦΙΚΗΣ ΚΙΝΗΣΗΣ 1 ΕΞΩΤΕΡΙΚΟ ΓΙΝΟΜΕΝΟ (ΕΠΑΝΑΛΗΨΗ) Μέτρο εξωτερικού γινομένου 2 C A B C ABsin διανυσμάτων A και B Ιδιότητες εξωτερικού γινομένου A B B A εν είναι αντιμεταθετικό.

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2006 ΕΚΦΩΝΗΣΕΙΣ

ΦΥΣΙΚΗ Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2006 ΕΚΦΩΝΗΣΕΙΣ ΦΥΣΙΚΗ Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 006 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ ο Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις - 4 και δίπλα το γράµµα που αντιστοιχεί στη σωστή

Διαβάστε περισσότερα

r r r r r r r r r r r Μονάδες 5 ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

r r r r r r r r r r r Μονάδες 5 ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ Γ ΤΑΞΗΣ ΕΠΑΛ (ΟΜΑ Α Β ) ΠΑΡΑΣΚΕΥΗ 0 ΜΑÏΟΥ 011 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΑΙ

Διαβάστε περισσότερα

ΕΜΒΙΟΜΗΧΑΝΙΚΟΙ ΠΑΡΑΓΟΝΤΕΣ. Σοφία Α. Ξεργιά PT, MSc, PhD

ΕΜΒΙΟΜΗΧΑΝΙΚΟΙ ΠΑΡΑΓΟΝΤΕΣ. Σοφία Α. Ξεργιά PT, MSc, PhD ΕΜΒΙΟΜΗΧΑΝΙΚΟΙ ΠΑΡΑΓΟΝΤΕΣ Σοφία Α. Ξεργιά PT, MSc, PhD Ανάλυση της Ανθρώπινης Κίνησης Εμβιομηχανική Κινησιολογία Κινηματική Κινητική Λειτουργική Ανατομική Γραμμική Γωνιακή Γραμμική Γωνιακή Θέση Ταχύτητα

Διαβάστε περισσότερα

Να σχεδιάσετε και να υπολογίσετε τη συνισταμένη δύναμη στις πιο κάτω περιπτώσεις.

Να σχεδιάσετε και να υπολογίσετε τη συνισταμένη δύναμη στις πιο κάτω περιπτώσεις. ΔΥΝΑΜΕΙΣ ΝΟΜΟΙ ΤΟΥ ΝΕΥΤΩΝΑ ΓΙΑ ΤΗΝ ΚΙΝΗΣΗ Να σχεδιάσετε και να υπολογίσετε τη συνισταμένη δύναμη στις πιο κάτω περιπτώσεις. F 2=2N F 1=6N F 3=3N F 4=5N (α) (β) F 5=4N F 6=1N F 7=3N (γ) Να σχεδιάσετε και

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ & ΤΕΧΝ/ΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ & ΤΕΧΝ/ΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 5 ΧΡΟΝΙΑ ΕΜΠΕΙΡΙΑ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ & ΤΕΧΝ/ΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑΤΑ ΘΕΜΑ Α Στις ερωτήσεις Α1-Α4 να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης και, δίπλα, το γράμμα που αντιστοιχεί στη

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ. ΘΕΜΑ Α A1 α Α2 β Α3 β Α4 α Α5. α Σ β Σ γ Λ δ Λ ε Σ

ΑΠΑΝΤΗΣΕΙΣ. ΘΕΜΑ Α A1 α Α2 β Α3 β Α4 α Α5. α Σ β Σ γ Λ δ Λ ε Σ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΤΕΚΝΩΝ ΕΛΛΗΝΩΝ ΤΟΥ ΕΞΩΤΕΡΙΚΟΥ ΚΑΙ ΤΕΚΝΩΝ ΕΛΛΗΝΩΝ ΥΠΑΛΛΗΛΩΝ ΣΤΟ ΕΞΩΤΕΡΙΚΟ ΠΕΜΠΤΗ 6 ΣΕΠΤΕΜΡΙΟΥ 0 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ: ΦΥΣΙΚΗ ΘΕΜΑ Α α Α β Α β Α α Α5. α Σ β Σ γ Λ

Διαβάστε περισσότερα

ΛΑΝΙΤΕΙΟ ΛΥΚΕΙΟ Α ΣΧΟΛΙΚΟ ΕΤΟΣ 2010-2011 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2011 ΟΝΟΜΑ:... ΤΜΗΜΑ:... ΑΡ.:...

ΛΑΝΙΤΕΙΟ ΛΥΚΕΙΟ Α ΣΧΟΛΙΚΟ ΕΤΟΣ 2010-2011 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2011 ΟΝΟΜΑ:... ΤΜΗΜΑ:... ΑΡ.:... ΛΑΝΙΤΕΙΟ ΛΥΚΕΙΟ Α ΣΧΟΛΙΚΟ ΕΤΟΣ 2010-2011 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2011 ΜΑΘΗΜΑ: Φυσική ΤΑΞΗ: Α ΗΜΕΡΟΜΗΝΊΑ: 27 Μαίου 2011 ΧΡΟΝΟΣ: 2 ώρες ΩΡΑ: 11.00 1.00 ΒΑΘΜΟΣ: Αριθμητικά:... Ολογράφως:...

Διαβάστε περισσότερα

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ- Η ΠΑΓΚΥΠΡΙΑΟΛΥΜΠΙΑ Α ΦΥΣΙΚΗΣ Γ ΓΥΜΝΑΣΙΟΥ- ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΛΥΣΕΙΣ ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑ Α ΦΥΣΙΚΗΣ Γ ΓΥΜΝΑΣΙΟΥ Κυριακή, 0 Μαΐου 05 Ώρα : 0:0 - :00 ΘΕΜΑ 0 (µονάδες

Διαβάστε περισσότερα

από τον κατακόρυφο τοίχο, της οποίας ο φορέας είναι οριζόντιος και την δύναµη επα φής N!

από τον κατακόρυφο τοίχο, της οποίας ο φορέας είναι οριζόντιος και την δύναµη επα φής N! Οµογενής συµπαγής κύβος ακµής α και µάζας m, ισορροπεί ακουµπώντας µε µια ακµή του σε κατακόρυφο τοίχο και µε µια του έδρα σε κεκλιµένο επίπεδο γωνίας κλίσεως φ ως προς τον ορίζοντα, όπως φαίνεται στο

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2004

ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2004 ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 4 ΘΕΜΑ ο ΕΚΦΩΝΗΣΕΙΣ Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις - 4 και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση..

Διαβάστε περισσότερα

ΛΑΝΙΤΕΙΟ ΛΥΚΕΙΟ Β ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2009-2010 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ. Επιτρεπόμενη διάρκεια γραπτού 2,5 ώρες (150 λεπτά)

ΛΑΝΙΤΕΙΟ ΛΥΚΕΙΟ Β ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2009-2010 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ. Επιτρεπόμενη διάρκεια γραπτού 2,5 ώρες (150 λεπτά) ΛΑΝΙΤΕΙΟ ΛΥΚΕΙΟ Β ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2009-2010 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΣΕΙΡΑ: Α ΗΜΕΡΟΜΗΝΙΑ: 31/05/2010 ΤΑΞΗ: Β ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΧΡΟΝΟΣ: 07:30 10:00 π.μ. ΟΝΟΜΑΤΕΠΩΝΥΜΟ:... ΤΜΗΜΑ:...

Διαβάστε περισσότερα

Μονάδες 5. Μονάδες 5. Μονάδες 5. Μονάδες 5 ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ

Μονάδες 5. Μονάδες 5. Μονάδες 5. Μονάδες 5 ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΘΕΜΑ ο ΑΡΧΗ ΗΣ ΣΕΛΙΔΑΣ ΕΞΕΤΑΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗΣ Γ ΤΑΞΗΣ ου ΓΕΛ ΠΕΤΡΟΥΠΟΛΗΣ ΔΕΥΤΕΡΑ 3 ΜΑΪΟΥ 200 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΠΕΝΤΕ () Να γράψετε στο τετράδιό

Διαβάστε περισσότερα

Επιτάχυνση της Βαρύτητας g = 10m/s 2

Επιτάχυνση της Βαρύτητας g = 10m/s 2 ΛΥΚΕΙΟ ΑΚΡΟΠΟΛΗΣ ΠΡΟΤΕΙΟΜΕΕΣ ΑΠΑΤΗΣΕΙΣ Σχολική Χρονιά:2014-2015 αθμός :. ΔΙΑΓΩΙΣΜΑ κατ. ΣΧΕΔΙΑΣΜΟΣ ΔΥΑΜΕΩ-ΚΙΗΜΑΤΙΚΗ-ΔΥΑΜΙΚΗ-ΤΡΙΗ Υπ. Κηδεμόνα :.. Μάθημα : ΦΥΣΙΚΗ Όνομα μαθητή/τριας: Ημερομηνία : Τμήμα

Διαβάστε περισσότερα

ΦΥΣ. 211 Τελική Εξέταση 11-Μάη-2015

ΦΥΣ. 211 Τελική Εξέταση 11-Μάη-2015 ΦΥΣ. 211 Τελική Εξέταση 11-Μάη-2015 Πριν ξεκινήσετε συµπληρώστε τα στοιχεία σας (ονοµατεπώνυµο, αριθµό ταυτότητας) στο πάνω µέρος της σελίδας αυτής. Για τις λύσεις των ασκήσεων θα πρέπει να χρησιµοποιήσετε

Διαβάστε περισσότερα

Κεφάλαιο 10 Περιστροφική Κίνηση. Copyright 2009 Pearson Education, Inc.

Κεφάλαιο 10 Περιστροφική Κίνηση. Copyright 2009 Pearson Education, Inc. Κεφάλαιο 10 Περιστροφική Κίνηση Περιεχόµενα Κεφαλαίου 10 Γωνιακές Ποσότητες Διανυσµατικός Χαρακτήρας των Γωνιακών Ποσοτήτων Σταθερή γωνιακή Επιτάχυνση Ροπή Δυναµική της Περιστροφικής Κίνησης, Ροπή και

Διαβάστε περισσότερα

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ 28 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑΔΑ ΦΥΣΙΚΗΣ Β ΛΥΚΕΙΟΥ Κυριακή, 13 Απριλίου, 2014 Ώρα: 10:00-13:00 Παρακαλώ διαβάστε πρώτα τα πιο κάτω, πριν απαντήσετε οποιαδήποτε ερώτηση. Γενικές οδηγίες: 1.

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙ ΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2011

ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙ ΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2011 ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙ ΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2011 Μάθηµα: ΦΥΣΙΚΗ Ηµεροµηνία και ώρα εξέτασης: Σάββατο, 4 Ιουνίου 2011 8:30 11:30

Διαβάστε περισσότερα

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ 9η Ολυμπιάδα Φυσικής Γ Λυκείου (Β φάση) Κυριακή 9 Μαρτίου 01 Ώρα:.00-1.00 ΟΔΗΓΙΕΣ: 1. Το δοκιμιο αποτελειται απο εννεα (9) σελιδες και επτα (7) θεματα.. Να απαντησετε σε ολα τα θεματα του δοκιμιου.. Μαζι

Διαβάστε περισσότερα

ΘΕΜΑ Α Παράδειγμα 1. Α1. Ο ρυθμός μεταβολής της ταχύτητας ονομάζεται και α. μετατόπιση. β. επιτάχυνση. γ. θέση. δ. διάστημα.

ΘΕΜΑ Α Παράδειγμα 1. Α1. Ο ρυθμός μεταβολής της ταχύτητας ονομάζεται και α. μετατόπιση. β. επιτάχυνση. γ. θέση. δ. διάστημα. ΘΕΜΑ Α Παράδειγμα 1 Α1. Ο ρυθμός μεταβολής της ταχύτητας ονομάζεται και α. μετατόπιση. β. επιτάχυνση. γ. θέση. δ. διάστημα. Α2. Για τον προσδιορισμό μιας δύναμης που ασκείται σε ένα σώμα απαιτείται να

Διαβάστε περισσότερα

Δ 4. Το ποσοστό της αρχικής κινητικής ενέργειας του βέλους που μεταφέρεται στο περιβάλλον του συστήματος μήλο-βέλος κατά τη διάρκεια της διάτρησης.

Δ 4. Το ποσοστό της αρχικής κινητικής ενέργειας του βέλους που μεταφέρεται στο περιβάλλον του συστήματος μήλο-βέλος κατά τη διάρκεια της διάτρησης. Σε οριζόντιο επίπεδο βρίσκεται ακίνητο ένα μήλο μάζας Μ = 200 g. Ένα μικρό βέλος μάζας m = 40 g κινείται οριζόντια με ταχύτητα μέτρου, υ 1 = 10 m / s, χτυπά το μήλο με αποτέλεσμα να το διαπεράσει. Αν γνωρίζετε

Διαβάστε περισσότερα

ΕΥΘΥΓΡΑΜΜΗ ΚΙΝΗΣΗ ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΦΡΟΝΤΙΣΤΗΡΙΟ ΕΠΙΛΟΓΗ

ΕΥΘΥΓΡΑΜΜΗ ΚΙΝΗΣΗ ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΦΡΟΝΤΙΣΤΗΡΙΟ ΕΠΙΛΟΓΗ ΕΥΘΥΓΡΑΜΜΗ ΚΙΝΗΣΗ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ 1. Τι ονομάζουμε κίνηση ενός κινητού; 2. Τι ονομάζουμε τροχιά ενός κινητού; 3. Τι ονομάζουμε υλικό σημείο; 4. Ποια μεγέθη ονομάζονται μονόμετρα και ποια διανυσματικά;

Διαβάστε περισσότερα

Κεφάλαιο M11. Στροφορµή

Κεφάλαιο M11. Στροφορµή Κεφάλαιο M11 Στροφορµή Στροφορµή Η στροφορµή παίζει σηµαντικό ρόλο στη δυναµική των περιστροφών. Αρχή διατήρησης της στροφορµής Η αρχή αυτή είναι ανάλογη µε την αρχή διατήρησης της ορµής. Σύµφωνα µε την

Διαβάστε περισσότερα

Μονάδες 5 Απαντήσεις Α5. Σ, Σ, Λ, Λ, Σ

Μονάδες 5 Απαντήσεις Α5. Σ, Σ, Λ, Λ, Σ ΠΑΝΕΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΟΥ ΥΕΙΟΥ & ΕΠΑ (ΟΜΑΔΑ Β ) ΠΑΡΑΣΕΥΗ 5 ΜΑÏΟΥ 0 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΗ ΘΕΤΙΗΣ & ΤΕΧΝΟΟΓΙΗΣ ΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α Στις ημιτελείς προτάσεις Α-Α4 να γράψετε στο τετράδιό

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΠΑΝΕΛΛΗΝΙΕΣ ΘΕΜΑΤΑ

ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΠΑΝΕΛΛΗΝΙΕΣ ΘΕΜΑΤΑ ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΠΑΝΕΛΛΗΝΙΕΣ 2002 ΘΕΜΑΤΑ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Σ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 6 ΙΟΥΝΙΟΥ 2002 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΑΙ ΤΩΝ ΥΟ ΚΥΚΛΩΝ): ΦΥΣΙΚΗ

Διαβάστε περισσότερα

Οδηγός βαθμολόγησης Εξεταστικού Δοκιμίου Α Λυκείου

Οδηγός βαθμολόγησης Εξεταστικού Δοκιμίου Α Λυκείου ΛΥΚΕΙΟ ΜΑΚΑΡΙΟΥ Γ ΛΑΡΝΑΚΑΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2014-15 Οδηγός βαθμολόγησης Εξεταστικού Δοκιμίου Α Λυκείου 1) Να γράψετε 3 διανυσματικά μεγέθη και 2 μονόμετρα μεγέθη καθώς και τις μονάδες μέτρησής τους (στο

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ - Γ ΛΥΚΕΙΟΥ

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ - Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ - Γ ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΘΕΜΑ Στις ηµιτελείς προτάσεις Α1-Α4 να γράψετε στο τετράδιό σας τον αριθµό της πρότασης και δίπλα το γράµµα που αντιστοιχεί στη φράση, η οποία

Διαβάστε περισσότερα

ΘΕΜΑ GI_A_FYS_0_4993

ΘΕΜΑ GI_A_FYS_0_4993 ΘΕΜΑ GI_A_FYS_0_4993 ΘΕΜΑ Β Β Ένας αλεξιπτωτιστής που έχει μαζί με τον εξοπλισμό του συνολική μάζα Μ, πέφτει από αεροπλάνο που πετάει σε ύψος Η Αφού ανοίξει το αλεξίπτωτο, κινούμενος για κάποιο χρονικό

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘEMA 1 ο Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση A1.

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Δ ΕΣΠΕΡΙΝΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Δ ΕΣΠΕΡΙΝΩΝ Θέμα Α ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Δ ΕΣΠΕΡΙΝΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Δ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΠΑΡΑΣΚΕΥΗ 9 ΜΑΪΟΥ 015 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΑΙ

Διαβάστε περισσότερα

8. Σύνθεση και ανάλυση δυνάμεων

8. Σύνθεση και ανάλυση δυνάμεων 8. Σύνθεση και ανάλυση δυνάμεων Βασική θεωρία Σύνθεση δυνάμεων Συνισταμένη Σύνθεση δυνάμεων είναι η διαδικασία με την οποία προσπαθούμε να προσδιορίσουμε τη δύναμη εκείνη που προκαλεί τα ίδια αποτελέσματα

Διαβάστε περισσότερα

ΘΕΜΑ 1 Nα γράψετε στο τετράδιο σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση.

ΘΕΜΑ 1 Nα γράψετε στο τετράδιο σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση. 9 Χρόνια ΦΡΟΝΤΙΣΤΗΡΙΑ ΜΕΣΗΣ ΕΚΠΑΙ ΕΥΣΗΣ ΣΑΒΒΑΪ Η-ΜΑΝΩΑΡΑΚΗ ΠΑΓΚΡΑΤΙ : Φιλολάου & Εκφαντίδου 6 : Τηλ.: 076070 ΙΑΓΩΝΙΣΜΑ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΥΚΕΙΟΥ 009 ΘΕΜΑ Nα γράψετε στο τετράδιο σας τον αριθµό καθεµιάς

Διαβάστε περισσότερα

Γ' ΤΑΞΗ ΓΕΝ.ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ ΕΚΦΩΝΗΣΕΙΣ

Γ' ΤΑΞΗ ΓΕΝ.ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ ΕΚΦΩΝΗΣΕΙΣ Γ' ΤΑΞΗ ΓΕΝ.ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ ΘΕΜΑ ο ΕΚΦΩΝΗΣΕΙΣ. Αρµονικό κύµα διαδίδεται σε ένα εθύγραµµο ελαστικό µέσο. Όλα τα σηµεία το µέσο διάδοσης, πο ταλαντώνονται λόγω της διέλεσης

Διαβάστε περισσότερα

Πεδίο, ονομάζεται μια περιοχή του χώρου, όπου σε κάθε σημείο της ένα ορισμένο φυσικό μέγεθος

Πεδίο, ονομάζεται μια περιοχή του χώρου, όπου σε κάθε σημείο της ένα ορισμένο φυσικό μέγεθος ΗΛΕΚΤΡΙΚΟ ΠΕΔΙΟ Πεδίο, ονομάζεται μια περιοχή του χώρου, όπου σε κάθε σημείο της ένα ορισμένο φυσικό μέγεθος παίρνει καθορισμένη τιμή. Ηλεκτρικό πεδίο Ηλεκτρικό πεδίο ονομάζεται ο χώρος, που σε κάθε σημείο

Διαβάστε περισσότερα

Στροφορµή. ΦΥΣ 131 - Διαλ.25 1

Στροφορµή. ΦΥΣ 131 - Διαλ.25 1 Στροφορµή ΦΥΣ 131 - Διαλ.25 1 ΦΥΣ 131 - Διαλ.25 2 Στροφορµή q Ένα από τα βασικά µεγέθη που σχετίζονται µε την περιστροφική κίνηση είναι η στροφορµή q Θυµηθείτε ότι για µάζα m που κινείται µε ταχύτητα v

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΠΑΡΑΣΚΕΥΗ 9 ΜΑΪΟΥ 015 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΑΙ ΤΩΝ

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΠΑΝΕΛΛΗΝΙΕΣ ΘΕΜΑΤΑ

ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΠΑΝΕΛΛΗΝΙΕΣ ΘΕΜΑΤΑ ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΠΑΝΕΛΛΗΝΙΕΣ 2008 ΘΕΜΑΤΑ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 29 ΜΑÏΟΥ 2008 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΑΙ

Διαβάστε περισσότερα

3.6 ΕΜΒΑ ΟΝ ΚΥΚΛΙΚΟΥ ΤΟΜΕΑ

3.6 ΕΜΒΑ ΟΝ ΚΥΚΛΙΚΟΥ ΤΟΜΕΑ 1 3.6 ΕΜΝ ΚΥΚΛΙΚΥ ΤΜΕ ΘΕΩΡΙ 1. Εµβαδόν κυκλικού τοµέα γωνίας µ ο : Ε = πρ. µ, όπου ρ η ακτίνα του κύκλου και π ο γνωστός αριθµός. Εµβαδόν κυκλικού τοµέα γωνίας α rad: Ε = 1 αρ, όπου ρ η ακτίνα του κύκλου

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΚΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΙΓΩΝΙΣΜ ΘΕΜ 1 Ο Να επιλέξετε την σωστή απάντηση. ) Η απόσταση µεταξύ δύο διαδοχικών δεσµών το στάσιµο κύµα είναι: 1/ λ/4 / λ/6 3/ λ/ 4/ λ όπου λ είναι το µήκος κύµατος των τρεχόντων

Διαβάστε περισσότερα

Μελέτη ευθύγραμμης ομαλά επιταχυνόμενης κίνησης και. του θεωρήματος μεταβολής της κινητικής ενέργειας. με τη διάταξη της αεροτροχιάς

Μελέτη ευθύγραμμης ομαλά επιταχυνόμενης κίνησης και. του θεωρήματος μεταβολής της κινητικής ενέργειας. με τη διάταξη της αεροτροχιάς Εργαστηριακή Άσκηση 4 Μελέτη ευθύγραμμης ομαλά επιταχυνόμενης κίνησης και του θεωρήματος μεταβολής της κινητικής ενέργειας με τη διάταξη της αεροτροχιάς Βαρσάμης Χρήστος Στόχος: Μελέτη της ευθύγραμμης

Διαβάστε περισσότερα

3. Σε στάσιμο κύμα δύο σημεία του ελαστικού μέσου βρίσκονται μεταξύ δύο διαδοχικών δεσμών. Τότε τα σημεία αυτά έχουν

3. Σε στάσιμο κύμα δύο σημεία του ελαστικού μέσου βρίσκονται μεταξύ δύο διαδοχικών δεσμών. Τότε τα σημεία αυτά έχουν ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΠΑΝΕΛΛΑ ΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΠΑΛ (ΟΜΑ Α Β ) ΕΥΤΕΡΑ 25 ΜΑÏΟΥ 2009 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 2

ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 2 ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ 50. Σε ένα σώμα μάζας m=2kg που ηρεμεί σε λείο επίπεδο ενεργεί οριζόντια δύναμη F=10Ν για χρόνο t=20s. Να βρεθεί πόσο διάστημα διανύει το σώμα σε χρόνο 25s και να γίνει γραφική παράσταση

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Β ΓΥΜΝΑΣΙΟΥ ΚΕΦΑΛΑΙΟ 3 Ο ΔΥΝΑΜΕΙΣ

ΦΥΣΙΚΗ Β ΓΥΜΝΑΣΙΟΥ ΚΕΦΑΛΑΙΟ 3 Ο ΔΥΝΑΜΕΙΣ ΦΥΣΙΚΗ Β ΓΥΜΝΑΣΙΟΥ ΚΕΦΑΛΑΙΟ 3 Ο ΔΥΝΑΜΕΙΣ 3.1 Η έννοια της δύναμης ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ Στο κεφάλαιο των κινήσεων ασχοληθήκαμε με τη μελέτη της κίνησης χωρίς να μας απασχολούν τα αίτια που προκαλούν την κίνηση

Διαβάστε περισσότερα

ΕΚΠΑΙΔΕΥΤΙΚΗ ΚΛΙΜΑΚΑ http://edu.klimaka.gr ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ

ΕΚΠΑΙΔΕΥΤΙΚΗ ΚΛΙΜΑΚΑ http://edu.klimaka.gr ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΠΑΝΕΛΛΑ ΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΕΣΠΕΡΙΝΟΥ ΕΠΑΛ (ΟΜΑ ΑΣ Β ) ΠΕΜΠΤΗ 27 MAΪΟΥ 2010 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ:

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ ο Α) Στις ερωτήσεις 4 να σημειώσετε την σωστή. ) Σώμα εκτελεί απλή αρμονική ταλάντωση. Η συνολική δύναμη που δέχεται: (α) είναι σταθερή.

Διαβάστε περισσότερα

Απαντήσεις Λύσεις σε Θέματα από την Τράπεζα Θεμάτων. Μάθημα: Φυσική Α Λυκείου

Απαντήσεις Λύσεις σε Θέματα από την Τράπεζα Θεμάτων. Μάθημα: Φυσική Α Λυκείου Απαντήσεις Λύσεις σε Θέματα από την Τράπεζα Θεμάτων Μάθημα: Φυσική Α Λυκείου Στο παρών παρουσιάζουμε συνοπτικές λύσεις σε επιλεγμένα Θέματα («Θέμα 2 ο, 4 ο») από την Τράπεζα θεμάτων. Το αρχείο αυτό τις

Διαβάστε περισσότερα

ΤΟ ΝΗΜΑ (ΑΝΕΛΑΣΤΙΚΟ ΚΑΙ ΧΩΡΙΣ ΜΑΖΑ) ΚΑΙ Η α.α.τ.

ΤΟ ΝΗΜΑ (ΑΝΕΛΑΣΤΙΚΟ ΚΑΙ ΧΩΡΙΣ ΜΑΖΑ) ΚΑΙ Η α.α.τ. ΤΟ ΝΗΜΑ (ΑΝΕΛΑΣΤΙΚΟ ΚΑΙ ΧΩΡΙΣ ΜΑΖΑ) ΚΑΙ Η α.α.τ. Οι ασκήσεις με τα νήματα, ένα σημαντικό θέμα της μηχανικής, συχνά αιφνιδιάζει τους μελετητές της Φυσικής. Το αβαρές και μη εκτακτό νήμα δεν είναι παρά ένας

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 14: ΣΤΟΙΧΕΙΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΜΗΧΑΝΙΚΗΣ ΕΠΙΣΤΗΜΗΣ

ΕΝΟΤΗΤΑ 14: ΣΤΟΙΧΕΙΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΜΗΧΑΝΙΚΗΣ ΕΠΙΣΤΗΜΗΣ ΕΝΟΤΗΤΑ 14: ΣΤΟΙΧΕΙΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΜΗΧΑΝΙΚΗΣ ΕΠΙΣΤΗΜΗΣ 159 Εισαγωγή: Μηχανική ονομάζεται το τμήμα της Φυσικής, το οποίο εξετάζει την κίνηση και την ισορροπία των σωμάτων. Επειδή η σημασία της είναι μεγάλη

Διαβάστε περισσότερα

ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ: ΣΤΑΤΙΚΗ ΤΡΙΒΗ ΣΤΗΝ ΚΥΛΙΣΗ

ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ: ΣΤΑΤΙΚΗ ΤΡΙΒΗ ΣΤΗΝ ΚΥΛΙΣΗ ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ: ΣΤΑΤΙΚΗ ΤΡΙΒΗ ΣΤΗΝ ΚΥΛΙΣΗ 1) Στερεό κυκικής διατοµής µε κατανοµή µάζας συµµετρική ως προς το κέντρο του (το στερεό µπορεί να είναι συµπαγής σφαίρα, συµπαγής κύινδρος, κοίη σφαίρα, κούφιος

Διαβάστε περισσότερα

EΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

EΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ EΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Ο Να επιλέξετε τη σωστή απάντηση σε κάθε μία από τις ερωτήσεις - που ακολουθούν: Η ενεργός ταχύτητα των μορίων ορισμένης ποσότητας

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 1.2 ΔΥΝΑΜΙΚΗ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ

ΕΝΟΤΗΤΑ 1.2 ΔΥΝΑΜΙΚΗ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ ΕΝΟΤΗΤΑ 1.2 ΔΥΝΑΜΙΚΗ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ 1. Τι λέμε δύναμη, πως συμβολίζεται και ποια η μονάδα μέτρησής της. Δύναμη είναι η αιτία που προκαλεί τη μεταβολή της κινητικής κατάστασης των σωμάτων ή την παραμόρφωσή

Διαβάστε περισσότερα

1. Ένας κασκαντέρ θέλει με το αυτοκίνητό του, να πηδήξει πάνω από

1. Ένας κασκαντέρ θέλει με το αυτοκίνητό του, να πηδήξει πάνω από 1. Ένας κασκαντέρ θέλει με το αυτοκίνητό του, να πηδήξει πάνω από 8 αυτοκίνητα σταθμευμένα ένα μετά το άλλο κάτω από μια οριζόντια πλατφόρμα. Το κάθε αυτοκίνητο έχει μήκος d = 3 m και ύψος h = 1,2 m. Τo

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Β ΓΥΜΝΑΣΙΟΥ ΙΑΓΩΝΙΣΜΑ

ΦΥΣΙΚΗ Β ΓΥΜΝΑΣΙΟΥ ΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗ Β ΓΥΜΝΑΣΙΟΥ ΙΑΓΩΝΙΣΜΑ ΘΕΜΑ 1 Α) Τί είναι µονόµετρο και τί διανυσµατικό µέγεθος; Β) Τί ονοµάζουµε µετατόπιση και τί τροχιά της κίνησης; ΘΕΜΑ 2 Α) Τί ονοµάζουµε ταχύτητα ενός σώµατος και ποιά η µονάδα

Διαβάστε περισσότερα

Β ΛΥΚΕΙΟΥ: ΦΥΣΙΚΗΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ

Β ΛΥΚΕΙΟΥ: ΦΥΣΙΚΗΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΛΥΚΕΙΟΥ: ΦΥΣΙΚΗΣ ΠΡΟΣΑΑΤΟΛΙΣΜΟΥ Διαγωνίσματα 2014-2015 1 ο Διαγώνισμα Θεματικό πεδίο: Επαναληπτικό (Οριζόντια ολή Κυκλική Κίνηση Κρούσεις) Ημερομηνία 16 οεμβρίου 2014 Διάρκεια Επιμέλεια 2 Ώρες ΘΕΜΑ 1 25

Διαβάστε περισσότερα

Κεφάλαιο 11 Στροφορµή

Κεφάλαιο 11 Στροφορµή Κεφάλαιο 11 Στροφορµή Περιεχόµενα Κεφαλαίου 11 Στροφορµή Περιστροφή Αντικειµένων πέριξ σταθερού άξονα Το Εξωτερικό γινόµενο-η ροπή ως διάνυσµα Στροφορµή Σωµατιδίου Στροφορµή και Ροπή για Σύστηµα Σωµατιδίων

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ κ Θέµα ο Οδηγία: Στις ερωτήσεις - να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα πο αντιστοιχεί στη σωστή απάντηση.. Ένα κύκλωµα LC εκτελεί αµείωτες ηλεκτρικές ταλαντώσεις: α.

Διαβάστε περισσότερα

ΘΕΜΑΤΑ : ΦΥΣΙΚΗ B ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΕΞΕΤΑΖΟΜΕΝΗ ΥΛΗ: ΕΦ ΟΛΗΣ ΤΗΣ ΥΛΗΣ 17/4/2015

ΘΕΜΑΤΑ : ΦΥΣΙΚΗ B ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΕΞΕΤΑΖΟΜΕΝΗ ΥΛΗ: ΕΦ ΟΛΗΣ ΤΗΣ ΥΛΗΣ 17/4/2015 ΘΕΜΑΤΑ : ΦΥΣΙΚΗ B ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΕΞΕΤΑΖΟΜΕΝΗ ΥΛΗ: ΕΦ ΟΛΗΣ ΤΗΣ ΥΛΗΣ ΘΕΜΑ 1 ο 17/4/2015 Στις ερωτήσεις 1-5 να γράψετε στο φύλλο απαντήσεων τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί

Διαβάστε περισσότερα

Κεφάλαιο 1.1 Ευθύγραμμη κίνηση

Κεφάλαιο 1.1 Ευθύγραμμη κίνηση Κεφάλαιο 1.1 Ευθύγραμμη κίνηση 1 H θέση ενός κινητού που κινείται σε ένα επίπεδο, προσδιορίζεται κάθε στιγμή αν: Είναι γνωστές οι συντεταγμένες του κινητού (x,y) ως συναρτήσεις του χρόνου Είναι γνωστό

Διαβάστε περισσότερα

υναµική στο επίπεδο.

υναµική στο επίπεδο. στο επίπεδο. 1.3.1. Η τάση του νήµατος, πού και γιατί; Έστω ότι σε ένα λείο οριζόντιο επίπεδο ηρεµούν δύο σώµατα Α και Β µε µάζες Μ=3kg και m=2kg αντίστοιχα, τα οποία συνδέονται µε ένα νήµα. Σε µια στιγµή

Διαβάστε περισσότερα

ΘΕΜΑ Β Παράδειγμα 1. Να δικαιολογήσετε την επιλογή σας. (Μονάδες 8)

ΘΕΜΑ Β Παράδειγμα 1. Να δικαιολογήσετε την επιλογή σας. (Μονάδες 8) ΘΕΜΑ Β Παράδειγμα 1 Β1. Στο σχολικό εργαστήριο μια μαθήτρια περιεργάζεται ένα ελατήριο και λέει σε συμμαθητή της: «Θα μπορούσαμε να βαθμολογήσουμε αυτό το ελατήριο και με τον τρόπο αυτό να κατασκευάσουμε

Διαβάστε περισσότερα

w w w.k z a c h a r i a d i s.g r

w w w.k z a c h a r i a d i s.g r Πως αποδεικνύουμε ότι ένα σώμα εκτεί απλή αρμονική ταλάντωση Μεθοδολογία i) Βρίσκουμε την θέση ισορροπίας του σώματος και σχεδιάζουμε το σώμα σε αυτή την θέση. ii) Σχεδιάζουμε τις δυνάμεις που ενεργούν

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 6 ΚΕΝΤΡΟ ΒΑΡΟΥΣ-ΡΟΠΕΣ Α ΡΑΝΕΙΑΣ

ΚΕΦΑΛΑΙΟ 6 ΚΕΝΤΡΟ ΒΑΡΟΥΣ-ΡΟΠΕΣ Α ΡΑΝΕΙΑΣ ΚΕΦΑΛΑΙΟ 6 ΚΕΝΤΡΟ ΒΑΡΟΥΣ-ΡΟΠΕΣ Α ΡΑΝΕΙΑΣ 6.. ΕΙΣΑΓΩΓΙΚΕΣ ΠΛΗΡΟΦΟΡΙΕΣ Για τον υπολογισµό των τάσεων και των παραµορφώσεων ενός σώµατος, που δέχεται φορτία, δηλ. ενός φορέα, είναι βασικό δεδοµένο ή ζητούµενο

Διαβάστε περισσότερα

α. Μόνο η ορμή του συστήματος των σωμάτων. β. Η ορμή και η κινητική ενέργεια του κάθε σώματος.

α. Μόνο η ορμή του συστήματος των σωμάτων. β. Η ορμή και η κινητική ενέργεια του κάθε σώματος. ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ. ΦΡΟΝΤΙΣΤΗΡΙΟ ΓΝΩΣΗ ΘΕΜΑ 1 1. Σε μια ελαστική κρούση δύο σωμάτων διατηρείται: α. Μόνο η ορμή του συστήματος των σωμάτων. β. Η ορμή και η κινητική ενέργεια του κάθε σώματος.

Διαβάστε περισσότερα

1 ΦΕΠ 012 Φυσική και Εφαρμογές

1 ΦΕΠ 012 Φυσική και Εφαρμογές 1 ΦΕΠ 012 Φυσική και Εφαρμογές Διάλεξη 10 η Ομαλή κυκλική κίνηση Δθ = ω = σταθερό Δt X = Rσυν (ωt) => X 2 +Υ 2 = R 2 Υ = Rημ(ωt) Οι προβολές της κίνησης στους άξονες των x και y είναι αρμονικές ταλαντώσεις

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΤΡΙΤΗ 10 ΙΟΥΝΙΟΥ 014 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΑΙ ΤΩΝ ΔΥΟ

Διαβάστε περισσότερα

1 ΦΕΠ 012 Φυσική και Εφαρμογές

1 ΦΕΠ 012 Φυσική και Εφαρμογές 1 ΦΕΠ 012 Φυσική και Εφαρμογές Διάλεξη 5 η Παραδείγματα: (1) Δύο σώματα είναι δεμένα με σχοινί όπως στο σχήμα. Στο πρώτο σώμα μάζας m 1 = 2Κg ασκούμε δύναμη F = 4N. Αν η μάζα του σώματος (2) είναι m 2

Διαβάστε περισσότερα

ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ

ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ ΠΡΟΤΕΙΝΟΜΕΝ ΘΕΜΤ ΦΥΙΚΗ Γ ΛΥΚΕΙΟΥ γαπητοί μαθητές και μαθήτριες, Τα σας προτείνουν για άλλη μια χρονιά, ένα ολοκληρωμένο επαναληπτικό υλικό στη Φυσική Κατεύθυνσης της Γ Λυκείου, αποτελούμενο από: Επαναληπτικό

Διαβάστε περισσότερα

ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ

ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΘΕΜΑ ο _6950 α) Να κατασκευάσετε ένα γραμμικό σύστημα δυο εξισώσεων με δυο αγνώστους με συντελεστές διάφορους του

Διαβάστε περισσότερα

3.5 ΕΜΒΑ ΟΝ ΚΥΚΛΙΚΟΥ ΙΣΚΟΥ

3.5 ΕΜΒΑ ΟΝ ΚΥΚΛΙΚΟΥ ΙΣΚΟΥ 1 3.5 ΕΜΒ Ν ΚΥΚΛΙΚΥ ΙΣΚΥ ΘΕΩΡΙ Εµβαδόν κυκλικού δίσκου ακτίνας ρ : Ε = πρ Σηµείωση : Tο εµβαδόν του κυκλικού δίσκου, χάριν ευκολίας αναφέρεται σαν εµβαδόν του κύκλου. ΣΧΛΙ Για το εµβαδόν του κυκλικού δίσκου

Διαβάστε περισσότερα

ΦΥΣ 131 - Διαλ.12 1. Μη αδρανειακά συστήµατα Φαινοµενικό βάρος

ΦΥΣ 131 - Διαλ.12 1. Μη αδρανειακά συστήµατα Φαινοµενικό βάρος ΦΥΣ 3 - Διαλ.2 Μη αδρανειακά συστήµατα Φαινοµενικό βάρος ΦΥΣ 3 - Διαλ.2 2 Μη αδρανειακά συστήµατα x Έστω ότι το S αποκτά επιτάχυνση α 0 S z 0 Α x z S y, y Ο παρατηρητής S µετρά µια επιτάχυνση: A = A +

Διαβάστε περισσότερα

ΠΕΙΡΑΜΑ 6. Διατήρηση της Μηχανικής Ενέργειας

ΠΕΙΡΑΜΑ 6. Διατήρηση της Μηχανικής Ενέργειας ΠΕΙΡΑΜΑ 6 Διατήρηση της Μηχανικής Ενέργειας Σκοπός του πειράµατος Σκοπός του πειράµατος είναι η µελέτη του Νόµου διατήρησης της Μηχανικής Ενέργειας ενός συστήµατος µέσα από τη µετατροπή της Δυναµικής Ενέργειας

Διαβάστε περισσότερα