Α.Τ.Ε.Ι. ΚΑΒΑΛΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΤΕΧΝΟΛΟΓΙΑΣ ΠΕΤΡΕΛΑΙΟΥ ΚΑΙ ΦΥΣΙΚΟΥ ΑΕΡΙΟΥ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΕΦΑΡΜΟΓΗ ΓΕΩΘΕΡΜΙΚΗΣ ΕΝΕΡΓΕΙΑΣ

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Α.Τ.Ε.Ι. ΚΑΒΑΛΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΤΕΧΝΟΛΟΓΙΑΣ ΠΕΤΡΕΛΑΙΟΥ ΚΑΙ ΦΥΣΙΚΟΥ ΑΕΡΙΟΥ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΕΦΑΡΜΟΓΗ ΓΕΩΘΕΡΜΙΚΗΣ ΕΝΕΡΓΕΙΑΣ"

Transcript

1 Α.Τ.Ε.Ι. ΚΑΒΑΛΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΤΕΧΝΟΛΟΓΙΑΣ ΠΕΤΡΕΛΑΙΟΥ ΚΑΙ ΦΥΣΙΚΟΥ ΑΕΡΙΟΥ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΕΦΑΡΜΟΓΗ ΓΕΩΘΕΡΜΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΑΝΑΦΟΡΑ ΣΕ ΚΤΙΡΙΟ ΜΕ ΧΡΗΣΗ ΤΗΣ ΓΕΩΘΕΡΜΙΑΣ ΣΤΗΝ ΠΟΛΗ ΤΗΣ ΛΑΜΙΑΣ ΣΠΟΥΔΑΣΤΗΣ : ΣΤΑΜΑΤΙΑ ΠΛΙΑΚΟΥ ΕΠΟΠΤΗΣ ΚΑΘΗΓΗΤΗΣ : ΔΗΜΗΤΡΙΟΣ ΜΑΡΜΑΝΗΣ Εκπονηθείσα πτυχιακή εργασία απαραίτητη για την κτήση του βασικού πτυχίου ΜΑΙΟΣ 2012

2 ΠΕΡΙΛΗΨΗ H θερμότητα είναι μια μορφή ενέργειας και η γεωθερμική ενέργεια είναι η θερμότητα που περιέχεται στο εσωτερικό της γης, η οποία προκαλεί τη δημιουργία διαφόρων γεωλογικών φαινομένων σε παγκόσμια κλίμακα. Συνήθως όμως, ο όρος «γεωθερμική ενέργεια» χρησιμοποιείται σήμερα για να δηλώσει εκείνο το τμήμα της γήινης θερμότητας που μπορεί να ανακτηθεί και να αξιοποιηθεί από τον άνθρωπο, και με την έννοια αυτή θα χρησιμοποιήσουμε τον όρο από τώρα και στο εξής. 1

3 ΠΕΡΙΕΧΟΜΕΝΑ ΚΑΤΑΛΟΓΟΣ ΣΧΗΜΑΤΩΝ... 4 ΚΑΤΟΛΟΓΟΣ ΕΙΚΟΝΩΝ... 5 ΚΑΤΑΛΟΓΟΣ ΠΙΝΑΚΩΝ... 5 ΚΕΦΑΛΑΙΟ : ΓΕΩΘΕΡΜΙΑ ΕΙΣΑΓΩΓΗ ΣΥΝΤΟΜΟ ΙΣΤΟΡΙΚΟ ΤΗΣ ΓΕΩΘΕΡΜΙΑΣ ΣΗΜΕΡΙΝΟ ΚΑΘΕΣΤΩΣ ΧΡΗΣΗΣ ΤΗΣ ΓΕΩΘΕΡΜΙΑΣ ΤΑΞΙΝΟΜΗΣΗ ΓΕΩΘΕΡΜΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Η ΘΕΡΜΙΚΗ ΜΗΧΑΝΗ ΤΗΣ ΓΗΣ ΣΤΑΔΙΑ ΓΕΩΘΕΡΜΙΚΗΣ ΈΡΕΥΝΑΣ ΜΕΤΡΗΣΕΙΣ ΚΑΙ ΑΠΟΤΙΜΗΣΗ ΔΥΝΑΜΙΚΟΥ ΓΕΩΘΕΡΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΟΡΙΣΜΟI ΚΑΙ ΤΑΞΙΝΟΜΗΣΗ ΤΩΝ ΓΕΩΘΕΡΜΙΚΩΝ ΠΟΡΩΝ ΆΜΕΣΕΣ ΧΡΗΣΕΙΣ ΤΗΣ ΓΕΩΘΕΡΜΙΑΣ ΑΞΙΟΠΟΙΗΣΗ ΤΗΣ ΑΒΑΘΟΥΣ ΓΕΩΘΕΡΜΙΑΣ ΤΙ ΕΙΝΑΙ Η ΑΒΑΘΗΣ ΓΕΩΘΕΡΜΙΑ ΣΥΣΤΗΜΑΤΑ ΑΞΙΟΠΟΙΗΣΗΣ ΤΗΣ ΑΒΑΘΟΥΣ ΓΕΩΘΕΡΜΙΑΣ 39 ΚΕΦΑΛΑΙΟ ΔΕΥΤΕΡΟ Η ΓΕΩΘΕΡΜΙΑ ΣΤΗΝ ΕΛΛΑΔΑ ΣΗΜΕΡΑ - ΧΡΗΣΗ ΓΕΩΘΕΡΜΙΑΣ ΣΕ ΚΤΙΡΙΑ ΆΓΝΩΣΤΗ ΣΤΗΝ ΕΛΛΑΔΑ ΕΦΑΡΜΟΓΗ ΚΑΤΑΚΟΡΥΦΟΥ ΣΥΣΤΗΜΑΤΟΣ ΑΒΑΘΟΥΣ ΓΕΩΘΕΡΜΙΑΣ ΣΤΗΝ ΕΛΛΑΔΑ ΣΤΟ ΔΗΜΑΡΧΕΙΟ ΤΗΣ ΠΥΛΑΙΑΣ ΣΤΗ ΘΕΣΣΑΛΟΝΙΚΗ ΕΦΑΡΜΟΓΗ ΓΕΩΘΕΡΜΙΑΣ ΣΕ ΞΕΝΟΔΟΧΕΙΑΚΗ ΕΓΚΑΤΑΣΤΑΣΗ ΚΕΦΑΛΑΙΟ ΤΡΙΤΟ

4 3.1. ΚΤΙΡΙΟ ΜΕ ΕΦΑΡΜΟΓΗ ΤΗΣ ΓΕΩΘΕΡΜΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΣΤΗΝ ΠΟΛΗ ΤΗΣ ΛΑΜΙΑΣ ΓΕΝΙΚΑ ΓΕΩΛΟΓΙΚΑ ΣΤΟΙΧΕΙΑ ΠΕΡΙΟΧΗΣ ΚΑΘΟΡΙΣΜΟΣ ΚΑΙ ΠΕΡΙΓΡΑΦΗ ΤΩΝ ΤΥΧΟΝ ΑΠΑΙΤΟΥΜΕΝΩΝ ΓΕΩΤΡΗΣΕΩΝ ΠΕΡΙΓΡΑΦΗ ΚΛΙΜΑΤΙΖΟΜΕΝΩΝ ΧΩΡΩΝ ΑΝΑΛΥΤΙΚΗ ΠΕΡΙΓΡΑΦΗ ΤΟΥ ΗΛΕΚΤΡΙΚΟΥ ΚΑΙ ΜΗΧΑΝΙΚΟΥ ΕΞΟΠΛΙΣΜΟΥ ΤΟΥ ΣΥΣΤΗΜΑΤΟΣ: Α. ΕΚΣΚΑΦΕΣ ΚΑΙ ΓΕΩΘΕΡΜΙΚΟΙ ΕΝΑΛΛΑΚΤΕΣ Β. ΣΥΛΛΕΚΤΕΣ ΠΡΟΣΑΓΩΓΗΣ /ΕΠΙΣΤΡΟΦΗΣ Γ. ΚΕΝΤΡΙΚΑ ΔΙΚΤΥΑ ΔΙΑΝΟΜΗΣ Δ. ΑΝΤΛΙΕΣ ΘΕΡΜΟΤΗΤΑΣ E. ΑΝΤΛΙΕΣ ΚΥΚΛΟΦΟΡΗΤΕΣ ΣΤ. ΧΡΟΝΙΚΗ ΑΛΛΗΛΟΥΧΙΑ ΕΡΓΑΣΙΩΝ Ζ. ΔΙΑΔΙΚΑΣΙΑ ΚΑΤΑΣΚΕΥΗΣ / ΠΑΡΑΛΑΒΗΣ ΕΡΓΟΥ ΔΙΑΓΡΑΜΜΑ ΡΟΗΣ ΥΠΟΛΟΓΙΣΜΟΣ ΟΡΙΖΟΝΤΙΩΝ ΓΕΩΘΕΡΜΙΚΩΝ ΕΝΑΛΛΑΚΤΩΝ ΚΕΦΑΛΑΙΟ ΤΕΤΑΡΤΟ ΜΕΤΡΑ ΓΙΑ ΤΗΝ ΥΓΙΕΙΝΗ ΤΩΝ ΕΡΓΑΖΟΜΕΝΩΝ ΚΑΙ ΤΗΝ ΑΣΦΑΛΕΙΑ ΕΡΓΑΣΙΩΝ, ΚΑΤΑ ΤΗΝ ΕΓΚΑΤΑΣΤΑΣΗ ΚΑΤΑΣΚΕΥΗ - ΛΕΙΤΟΥΡΓΙΑ ΤΟΥ ΣΥΣΤΗΜΑΤΟΣ ΔΗΛΩΣΕΙΣ ΥΠΟΓΡΑΦΟΝΤΩΝ ΠΕΡΙΒΑΛΛΟΝ ΕΠΙΠΤΩΣΕΙΣ ΣΤΟ ΠΕΡΙΒΑΛΛΟΝ ΒΙΒΛΙΟΓΡΑΦΙΑ ΠΑΡΑΡΤΗΜΑ

5 ΚΑΤΑΛΟΓΟΣ ΣΧΗΜΑΤΩΝ Σχήμα 1 - Ο Φλοιός, ο Μανδύας και ο Πυρήνας της γης. Πάνω δεξιά: τομή του φλοιού και του ανώτερου μανδύα Σχήμα 2 - Σχηματική τομή που δείχνει τις διεργασίες που λαμβάνουν χώρα στις τεκτονικές πλάκες Σχήμα 3 - Τεκτονικές πλάκες, μεσωκεάνιες ράχες, ωκεάνιες τάφροι, ζώνες καταβύθισης και γεωθερμικά πεδία. Τα βέλη δείχνουν την κατεύθυνση κίνησης των λιθοσφαιρικών πλακών προς τις ζώνες καταβύθισης Σχήμα 4 - Σχηματική αναπαράσταση ενός ιδανικού γεωθερμικού συστήματος Σχήμα 5 - Πρότυπο (μοντέλο) ενός γεωθερμικού συστήματος Η γραμμή (1) είναι η καμπύλη αναφοράς του σημείου ζέσεως του καθαρού νερού. Η καμπύλη (2) δείχνει τη θερμοκρασιακή κατανομή κατά μήκος μια τυπικής διαδρομής κυκλοφορίας του ρευστού από το σημείο Α (τροφοδο Σχήμα 6 - Σχηματική αναπαράσταση ενός συστήματος Θερμών Ξηρών Πετρωμάτων σε οικονομική κλίμακα (από Richards et al., 1994) Σχήμα 7 - Γραφική παράσταση που δίνει τις διάφορες κατηγορίες των γεωθερμικών πόρων (Από Muffler & Cataldi, 1978). Ο κάθετος άξονας παριστάνει το βαθμό της οικονομικής επιτευξιμότητας, ενώ ο οριζόντιος το βαθμό της γεωλογικής βεβαιότητας Σχήμα 8 - Απλοποιημένο διάγραμμα ροής του συστήματος τηλεθέρμανσης του Reykjavik (Από Gudmundsson, 1988_ Σχήμα 9 - Επίδραση της θερμοκρασίες στην ανάπτυξη κάποιων φυτών (Beall and Samuels, 1971) Σχήμα 10 - Συστήματα θέρμανσης σε γεωθερμικά θερμοκήπια. Εγκαταστάσεις θέρμανσης με φυσική κίνηση του αέρα (φυσική συναγωγή): (α) εναέριοι σωλήνες θέρμανσης (β) θέρμανση πάγκων (γ) σωλήνες θέρμανσης που είναι τοποθετημένοι χαμηλά (δ) θέρμανση εδάφους Εγκαταστάσεις θέρμανσης με εξαναγκασμένη κίνηση του αέρα (εξαναγκασμένη συναγωγή) (ε) πλευρική 4

6 τοποθέτηση σωλήνων (στ) εναέρια αερόθερμα (ζ) αγωγοί τοποθετημένοι ψηλά (η) αγωγοί τοποθετημένοι χαμηλά (von Zabeltitz, Σχήμα 11 - Επίδραση της θερμοκρασίας στην ανάπτυξη ή παραγωγή ζώων που εκτρέφονται για κατανάλωση (Beall and Samuels, 1971) Σχήμα 12 - Παράδειγμα κατακόρυφου γεωεναλλάκτη ΚΑΤΟΛΟΓΟΣ ΕΙΚΟΝΩΝ Εικόνα 1 - Η καλυμμένη «λιμνούλα» (covered lagoon), που χρησιμοποιούνταν κατά το πρώτο μισό του 19ου αιώνα στην περιοχή του Larderello, για τη συλλογή των βοριούχων υδάτων και την παραγωγή βορικού οξέος Εικόνα 2 - Η μηχανή που χρησιμοποιήθηκε στο Larderello το 1904 κατά την πρώτη πειραματική απόπειρα παραγωγής ηλεκτρικής ενέργειας από γεωθερμικό ατμό. Διακρίνεται επίσης ο εφευρέτης της, πρίγκιπας Piero Ginori Conti Εικόνα 3 - Εφαρμογή γεωθερμίας στο νέο κτίριο της Δημοτικηής Επιχείρησης Λαμιέων Εικόνα 4 - Εφαρμογή γεωθερμίας στο νέο κτίριο της Δημοτικής Επιχείρησης Λαμιέων Εικόνα 5 - Εφαρμογή γεωθερμίας στο νέο κτίριο της Δημοτικής Επιχείρησης Λαμιέων ΚΑΤΑΛΟΓΟΣ ΠΙΝΑΚΩΝ Πίνακας 1 - Σύνοψη των διαφόρων τύπων νερού στα γεωθερμικά συστήματα

7 ΚΕΦΑΛΑΙΟ : ΓΕΩΘΕΡΜΙΑ 1.1. ΕΙΣΑΓΩΓΗ Ο ορισμός της Γεωθερμικής Ενέργειας, σύμφωνα με το ASTM E-957 (Standard Terminology Relating to Geothermal Energy), είναι αρκετά ευρύς: «η θερμική ενέργεια που περιέχεται στα πετρώματα και στα ρευστά της γης». Όμως με τον όρο «γεωθερμική ενέργεια», που συνήθως χρησιμοποιούμε, εννοούμε το τμήμα της γήινης θερμότητας που βρίσκεται αποθηκευμένο με τη μορφή θερμού νερού, ατμού ή θερμών πετρωμάτων σε ευνοϊκές γεωλογικές συνθήκες, δηλαδή περιορίζεται στα πρώτα τρία περίπου χιλιόμετρα από την επιφάνεια της γης (Φυτίκας & Ανδρίτσος, 2004). Η ενέργεια αυτή βρίσκεται συνήθως περιορισμένη σε μία γεωθερμική περιοχή ή πεδίο με συγκεκριμένα επιφανειακά όρια. Ως γεωθερμική χρήση αναφέρεται η οικονομική εκμετάλλευση του ατμού ή των θερμών νερών, είτε αυτά ρέουν φυσικά, είτε βγαίνουν στην επιφάνεια μέσω γεώτρησης. Οι γεωθερμικές χρήσεις ακόμη περιλαμβάνουν την αξιοποίηση της θερμότητας των πετρωμάτων ή του εδάφους. Οι γεωθερμικές χρήσεις ταξινομούνται σε ηλεκτρικές (για παραγωγή ηλεκτρικής ισχύος) και σε άμεσες. 6

8 Η πλέον εντυπωσιακή απόδειξη της θερμότητας που υπάρχει στο εσωτερικό της γης αποτελεί η ηφαιστειακή δραστηριότητα. Άλλες γεωθερμικές ενδείξεις είναι οι ατμοί, τα θερμά νερά και τα αέρια που σχηματίζουν θερμοπίδακες (γκέιζερ), θερμές πηγές και ατμίδες. Ο ρυθμός αύξησης της θερμοκρασίας με το βάθος από την επιφάνεια της γης είναι γνωστός με το όνομα γεωθερμική βαθμίδα. Η γεωθερμική βαθμίδα κυμαίνεται από 5 μέχρι 70 C/km, με μέση τιμή τους 30 C/km. Η γεωθερμική ενέργεια είναι μια σχετικά ήπια, εναλλακτική μορφή ενέργειας η οποία με τα σημερινά τεχνολογικά δεδομένα μπορεί να καλύψει σημαντικό μέρος των αναγκών μας σε ενέργεια. Οι χρήσεις και οι εφαρμογές της γεωθερμικής ενέργειας, η οποία απαντά σε αρκετές περιοχές της γης, ποικίλλουν σε μεγάλο βαθμό και περιλαμβάνουν την παραγωγή ηλεκτρικής ενέργειας, τις αγροτικές διεργασίες (π.χ. ξήρανση σιτηρών), τη θέρμανση οικιών, τη δημιουργία ψύξης κτλ. Η περιοχή των θερμοκρασιών των θερμών νερών που μπορούν να χρησιμοποιηθούν εκτείνεται από τους 20 C (για θέρμανση χώρων με τη χρήση γεωθερμικών αντλιών θερμότητας) μέχρι τους 280 C (για παραγωγή ηλεκτρικής ισχύος). Επιπλέον, αρκετά γεωθερμικά ρευστά εκτός από τη θερμότητά τους περιέχουν και αξιοποιήσιμες διαλυμένες ποσότητες στερεών ή αέριων ουσιών (κοινό αλάτι, διοξείδιο του άνθρακα, πολύτιμα μέταλλα), τα οποία μπορούν να ανακτηθούν με οικονομικό τρόπο. Ενώ το δυναμικό της γεωθερμικής ενέργειας σε όλο τον κόσμο (αλλά και στην Ελλάδα) είναι σημαντικό, υπάρχουν αρκετοί περιορισμοί στο να χρησιμοποιηθεί αποτελεσματικά αυτό το δυναμικό. Οι τύποι των περιορισμών φύσεως (εκπομπές τοξικών αερίων, θερμική ρύπανση) και οικονομικής φύσεως. Οι οικονομικοί περιορισμοί παίζουν σπουδαίο ρόλο σε κάθε είναι τεχνικής φύσεως (διάβρωση, δημιουργία επικαθίσεων), περιβαλλοντικής προσπάθεια αξιοποίησης της γεωθερμικής ενέργειας. 7

9 Μπορεί να λεχθεί ότι η χώρα μας είναι ιδιαίτερα ευνοημένη γεωθερμικά και τα τελευταία 30 χρόνια έχει γίνει (κυρίως από το IΓME) συστηματική βασική έρευνα για τον εντοπισμό και χαρακτηρισμό των γεωθερμικών πεδίων. Η Ελλάδα μαζί με την Ιταλία (και την Πορτογαλία στις Αζόρες Νήσους) είναι οι μόνες χώρες της Ευρωπαϊκής Ένωσης στις οποίες υπάρχουν πεδία υψηλής ενθαλπίας, δηλαδή περιοχές στις οποίες μπορούν να παραχθούν ρευστά με θερμοκρασία μεγαλύτερη των 150 C, τα οποία χρησιμοποιούνται για παραγωγή ηλεκτρικής ισχύος. Επίσης η χώρα μας διαθέτει πληθώρα περιοχών, κυρίως στην Κεντρική και Βόρεια Ελλάδα, με θερμοκρασίες ταμιευτήρων που ξεπερνούν τους 90 C 1.2. ΣΥΝΤΟΜΟ ΙΣΤΟΡΙΚΟ ΤΗΣ ΓΕΩΘΕΡΜΙΑΣ Η παρουσία ηφαιστείων, θερμών πηγών και άλλων επιφανειακών εκδηλώσεων θερμότητας είναι αυτή που οδήγησε τους προγόνους μας στο συμπέρασμα ότι το εσωτερικό της γης είναι ζεστό. Όμως, μόνο κατά την περίοδο μεταξύ του 16ου και 17ου αιώνα, όταν δηλαδή κατασκευάστηκαν τα πρώτα μεταλλεία που ανορύχθηκαν σε βάθος μερικών εκατοντάδων μέτρων κάτω από την επιφάνεια του εδάφους, οι άνθρωποι, με τη βοήθεια κάποιων απλών φυσικών παρατηρήσεων, κατέληξαν στο συμπέρασμα ότι η θερμοκρασία της γης αυξάνεται με το βάθος. Οι πρώτες μετρήσεις με θερμόμετρο έγιναν κατά πάσα πιθανότητα το 1740, σε ένα ορυχείο κοντά στο Belfort της Γαλλίας (Bullard, 1965). Ήδη από το 1870, για τη μελέτη της θερμικής κατάστασης του εσωτερικού της γης χρησιμοποιούνταν κάποιες προχωρημένες για την εποχή επιστημονικές μέθοδοι, ενώ η θερμική κατάσταση που διέπει τη γη, η θερμική ισορροπία και εξέλιξή της κατανοήθηκαν καλύτερα τον 20ο αιώνα, με την ανακάλυψη του ρόλου της «ραδιενεργής θερμότητας». Πράγματι, σε όλα τα σύγχρονα πρότυπα (μοντέλα) της θερμικής κατάστασης του εσωτερικού της γης πρέπει να συμπεριλαμβάνεται η θερμότητα που συνεχώς παράγεται από τη διάσπαση των μακράς διάρκειας ζωής ραδιενεργών 8

10 ισοτόπων του ουρανίου (U238, U235), του θορίου (Th232) και του καλίου (Κ40), τα οποία βρίσκονται στο εσωτερικό της γης (Lubimova, 1968). Εκτός από τη ραδιενεργό θερμότητα, δρουν αθροιστικά, σε απροσδιόριστες όμως ποσότητες, και άλλες δυνητικές πηγές θερμότητας, όπως είναι η «αρχέγονη ενέργεια» από την εποχή δημιουργίας και μεγέθυνσης του πλανήτη. Μέχρι τη δεκαετία του 1980 τα μοντέλα αυτά δεν βασίζονταν σε κάποιες ρεαλιστικές θεωρίες. Τότε όμως αποδείχθηκε ότι αφενός δεν υπάρχει ισοζύγιο μεταξύ της ραδιενεργής θερμότητας που δημιουργείται στο εσωτερικό της γης και της θερμότητας που διαφεύγει από τη γη προς στο διάστημα, και αφετέρου ότι ο πλανήτης μας ψύχεται με αργό ρυθμό και στο εσωτερικό του. Ως μια γενική ιδέα της φύσης και της κλίμακας του εμπλεκόμενου φαινομένου, μπορεί να αναφερθεί η λεγόμενη «θερμική ισορροπία», όπως διατυπώθηκε από τους Stacey and Loper (1988). Σύμφωνα με αυτήν, η ολική ροή θερμότητας από τη γη (αγωγή, συναγωγή και ακτινοβολία) εκτιμάται ότι ανέρχεται στα 42x1012 W. Από αυτά, 8x1012 W προέρχονται από το φλοιό, που αντιπροσωπεύει μόνο το 2% του συνολικού όγκου της γης αλλά είναι πλούσιος σε ραδιενεργά ισότοπα, 32,3x1012 W προέρχονται από το μανδύα, ο οποίος αντιπροσωπεύει το 82% του συνολικού όγκου της γης, και 1,7x1012 W προέρχονται από τον πυρήνα, ο οποίος αντιπροσωπεύει το 16% του συνολικού όγκου της γης και δεν περιέχει ραδιενεργά ισότοπα (βλέπε Σχήμα 1, ένα σχήμα της εσωτερικής δομής της γης). Αφού η ραδιενεργή θερμότητα του μανδύα εκτιμάται σε 22x1012 W, η μείωση της θερμότητας στο συγκεκριμένο τμήμα της γης είναι 10,3x1012 W. Σύμφωνα με πιο πρόσφατες εκτιμήσεις και υπολογισμούς, που βασίζονται σε μεγαλύτερο αριθμό δεδομένων, η ολική θερμική ροή της γης είναι περίπου 6% υψηλότερη από τις τιμές που χρησιμοποίησαν οι Stacey and Loper το Ούτως ή άλλως όμως, η διαδικασία δροσισμού παραμένει αργή. Η θερμοκρασία του μανδύα δεν έχει μειωθεί περισσότερο από C τα τελευταία 3 δισεκατομμύρια χρόνια, παραμένοντας περίπου στους 4000 C 9

11 στη βάση του. Έχει υπολογιστεί ότι το συνολικό θερμικό περιεχόμενο της γης (για θερμοκρασίες πάνω από τη μέση επιφανειακή των 15 C) είναι της τάξης των 12,6x1024 MJ και του φλοιού 5,4x1021 MJ. Σχήμα 1 - Ο Φλοιός, ο Μανδύας και ο Πυρήνας της γης. Πάνω δεξιά: τομή του φλοιού και του ανώτερου μανδύα Σε πολλούς τομείς της ανθρώπινης ζωής οι πρακτικές εφαρμογές προηγούνται της επιστημονικής έρευνας και της τεχνολογικής ανάπτυξης. Η γεωθερμία αποτελεί χαρακτηριστικό παράδειγμα του φαινομένου αυτού. Αξιοποίηση του ενεργειακού περιεχόμενου των γεωθερμικών ρευστών γινόταν ήδη από τις αρχές του 19ου αιώνα. Εκείνη την περίοδο, στην Τοσκάνη της Ιταλίας, και συγκεκριμένα στην περιοχή του Larderello, λειτουργούσε μια χημική βιομηχανία για την παραγωγή βορικού οξέος από τα βοριούχα θερμά νερά που ανέβλυζαν από φυσικές πηγές ή αντλούνταν από ρηχές γεωτρήσεις. Η παραγωγή του βορικού οξέος γινόταν με εξάτμιση των βοριούχων νερών μέσα 10

12 σε σιδερένιους «λέβητες», χρησιμοποιώντας ως καύσιμη ύλη ξύλα από τα κοντινά δάση. Το 1827, ο Francesco Larderel, ιδρυτής της βιομηχανίας αυτής, αντί να καίγονται ξύλα από τα διαρκώς αποψιλούμενα δάση της περιοχής, ανέπτυξε ένα σύστημα για τη χρήση της θερμότητας των βοριούχων ρευστών στη διαδικασία εξάτμισης (Σχήμα 2). Εικόνα 1 - Η καλυμμένη «λιμνούλα» (covered lagoon), που χρησιμοποιούνταν κατά το πρώτο μισό του 19ου αιώνα στην περιοχή του Larderello, για τη συλλογή των βοριούχων υδάτων και την παραγωγή βορικού οξέος. Η εκμετάλλευση της μηχανικής ενέργειας του φυσικού ατμού ξεκίνησε περίπου την ίδια περίοδο. Ο γεωθερμικός ατμός χρησιμοποιήθηκε για την ανέλκυση των ρευστών, αρχικά με κάποιους πρωτόγονους αέριους ανυψωτήρες και στη συνέχεια με παλινδρομικές και φυγοκεντρικές αντλίες και βαρούλκα. Ανάμεσα στο 1850 και 1875, οι εγκαταστάσεις του Larderello κατείχαν το μονοπώλιο παραγωγής βορικού οξέος στην Ευρώπη. Μεταξύ του 1910 και του 1940, στην περιοχή αυτή της Τοσκάνης, ο χαμηλής πίεσης ατμός άρχισε να χρησιμοποιείται για τη θέρμανση βιομηχανικών κτιρίων, κατοικιών και θερμοκηπίων. Εν τω μεταξύ, ολοένα και περισσότερες χώρες άρχισαν να 11

13 αναπτύσσουν τους γεωθερμικούς τους πόρους σε βιομηχανική κλίμακα. Το 1892, το πρώτο γεωθερμικό σύστημα τηλε-θέρμανσης (district heating) τέθηκε σε λειτουργία στο Boise του Άινταχο των Η.Π.Α.. Το 1928, μια άλλη πρωτοπόρος χώρα στην εκμετάλλευση της γεωθερμικής ενέργειας, η Ισλανδία, ξεκίνησε επίσης την εκμετάλλευση των γεωθερμικών ρευστών (κυρίως θερμών νερών) για τη θέρμανση κατοικιών. Το 1904, έγινε η πρώτη απόπειρα παραγωγής ηλεκτρικής ενέργειας από γεωθερμικό ατμό, και πάλι στο Larderello της Ιταλίας (Σχήμα 3). Η επιτυχία της αυτής πειραματικής προσπάθειας έδωσε μια ξεκάθαρη ένδειξη για τη βιομηχανική αξία της γεωθερμικής ενέργειας και σηματοδότησε την έναρξη μιας μορφής εκμετάλλευσης, που επρόκειτο έκτοτε να αναπτυχθεί σημαντικά. Η παραγωγή ηλεκτρικής ενέργειας στο Larderello αποτέλεσε πράγματι μια εμπορική επιτυχία. Το 1942, η εγκατεστημένη γεωθερμοηλεκτρική ισχύς ανερχόταν στα kwe. Σύντομα, πολλές χώρες ακολούθησαν το παράδειγμα της Ιταλίας. Το 1919 κατασκευάστηκαν οι πρώτες γεωθερμικές γεωτρήσεις στο Beppu της Ιαπωνίας, ενώ το 1921 ακολούθησαν εκείνες στο The Geysers της Καλιφόρνιας των ΗΠΑ. Το 1958 ένα μικρό εργοστάσιο παραγωγής ηλεκτρικής ενέργειας τέθηκε σε λειτουργία στη Νέα Ζηλανδία, ένα άλλο στο Μεξικό το 1959, στις ΗΠΑ το 1960 και ακολούθησαν πολλά άλλα σε διάφορες χώρες. Εικόνα 2 - Η μηχανή που χρησιμοποιήθηκε στο Larderello το 1904 κατά την πρώτη πειραματική απόπειρα παραγωγής ηλεκτρικής ενέργειας από γεωθερμικό ατμό. Διακρίνεται επίσης ο εφευρέτης της, πρίγκιπας Piero Ginori Conti. 12

14 1.3. ΣΗΜΕΡΙΝΟ ΚΑΘΕΣΤΩΣ ΧΡΗΣΗΣ ΤΗΣ ΓΕΩΘΕΡΜΙΑΣ Μετά το 2ο Παγκόσμιο Πόλεμο, η αξιοποίηση της γεωθερμικής ενέργειας έγινε ελκυστική σε πολλές χώρες, επειδή ήταν ανταγωνιστική ως προς άλλες μορφές ενέργειας. Επιπλέον, η ενέργεια αυτή δε χρειαζόταν να εισαχθεί από άλλες χώρες, όπως συμβαίνει με τα ορυκτά καύσιμα ενώ σε πολλές περιπτώσεις αποτελούσε τον μοναδικό διαθέσιμο εγχώριο ενεργειακό πόρο. Η χρησιμοποίηση της γεωθερμικής ενέργειας στις αναπτυσσόμενες χώρες παρουσιάζει ενδιαφέρουσες τάσεις με το χρόνο. Μεταξύ των ετών 1975 και 1979 η εγκατεστημένη γεωθερμική ηλεκτρική ισχύς σ αυτές τις χώρες αυξήθηκε από 75 σε 462 MWe. Στο τέλος της επόμενης πενταετίας (1984) έφτασε στα MWe, παρουσιάζοντας ένα ρυθμό αύξησης κατά τη διάρκεια των δύο αυτών περιόδων 500% και 223% αντίστοιχα (Dickson and Fanelli, 1988). Στα επόμενα 16 χρόνια, από το 1984 έως το 2000, υπήρξε μια περαιτέρω αύξηση της τάξης του 150%.Η γεωθερμική ενέργεια συμμετέχει σημαντικά στο ενεργειακό ισοζύγιο αρκετών περιοχών. Για παράδειγμα, το 2001 η ηλεκτρική ενέργεια που παράχθηκε από γεωθερμικούς πόρους αντιπροσώπευε το 27% της συνολικής ηλεκτρικής ενέργειας στις Φιλιππίνες, το 12,4 % στην Κένυα, το 11,4% στην Κόστα Ρίκα και το 4,3% στο Ελ Σαλβαδόρ. Η πιο συνηθισμένη μη-ηλεκτρική χρήση της γεωθερμίας παγκόσμια είναι οι αντλίες θερμότητας (heat-pumps) (34,80%) και ακολουθούν η λουτροθεραπεία (26,2%), η θέρμανση χώρων (21,62%), η θέρμανση θερμοκηπίων (8,22%), οι υδατοκαλλιέργειες (3.93%) και οι βιομηχανικές χρήσεις (3,13%) (Lund and Freeston, 2001). Η πιο συνηθισμένη μη-ηλεκτρική χρήση της γεωθερμίας παγκόσμια είναι οι αντλίες θερμότητας (heat-pumps) (34,80%) και ακολουθούν η λουτροθεραπεία (26,2%), η θέρμανση χώρων (21,62%), η θέρμανση θερμοκηπίων (8,22%), οι 13

15 υδατοκαλλιέργειες (3.93%) και οι βιομηχανικές χρήσεις (3,13%) (Lund and Freeston, 2001) ΤΑΞΙΝΟΜΗΣΗ ΓΕΩΘΕΡΜΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Τα γεωθερμικά συστήματα μπορούν να ταξινομηθούν με διάφορα κριτήρια, όπως είναι το είδος των γεωθερμικών πόρων, ο τύπος και η θερμοκρασία των ρευστών, ο τύπος του πετρώματος που φιλοξενεί τα ρευστά, το είδος της εστίας θερμότητας, αν κυκλοφορούν ή όχι ρευστά στον ταμιευτήρα κ.ά. Σε σχέση με το είδος των γεωθερμικών πόρων διακρίνονται πέντε κατηγορίες συστημάτων (Σχήμα 1), που περιγράφονται συνοπτικά ως εξής: Γεωθερμική Ενέργεια Υδροθερμική Ενέργεια Αβαθής Γεωθερμία Προχωρημένα συστήματα Γεωπεπιεσμένη ενέργεια Ενέργεια μάγματος Γράφημα 1 - Μορφές γεωθερμικής ενέργειας κατά σειρά ενδιαφέροντος χρήσεων σήμερα και προοπτικής στο εγγύς μέλος, από αριστερά προς τα δεξιά. α) Τα υδροθερμικά συστήματα ή πόροι, δηλ. τα φυσικά υπόγεια θερμά ρευστά που βρίσκονται σε έναν ή περισσότερους ταμιευτήρες, θερμαίνονται από μία εστία θερμότητας και συχνά εμφανίζονται στην επιφάνεια της γης με τη μορφή θερμών εκδηλώσεων. Τα συστήματα αυτά συχνά ταυτίζονται με το σύνολο σχεδόν των γεωθερμικών πεδίων, αφού σήμερα ουσιαστικά είναι τα μόνα συστήματα που αξιοποιούνται. 14

16 β) Αβαθής γεωθερμία (earth energy), κατά την οποία λαμβάνονται (ή και απορρίπτονται) ποσότητες ενέργειας από μικρά βάθη με την ανακυκλοφορία νερού στα πρώτα 100 m από την επιφάνεια της γης ή με την κυκλοφορία υπόγειων νερών ή νερών από λίμνες, ποτάμια και τη θάλασσα. Αποτελεί την ταχύτερα αναπτυσσόμενη μορφή της γεωθερμικής ενέργειας. γ) Τα προχωρημένα γεωθερμικά συστήματα (enhanced geothermal systems) αναφέρονται στα θερμά πετρώματα σε βάθος από 2 μέχρι 10 km, από τα οποία μπορεί να ανακτηθεί ενέργεια χρησιμοποιώντας νερό που διοχετεύεται από την επιφάνεια, μέσω κατάλληλων γεωτρήσεων, και ανακτάται αρκετά θερμότερο με τη μορφή νερού ή ατμού μέσω άλλων γεωτρήσεων (Σχήμα 2). δ) Τα γεωπεπιεσμένα συστήματα (geopressured systems) αποτελούνται από ρευστά εγκλεισμένα σε μεγάλο βάθος, βρίσκονται περιορισμένα από μη περατά πετρώματα και η πίεσή u964 τους υπερβαίνει την υδροστατική Η ΘΕΡΜΙΚΗ ΜΗΧΑΝΗ ΤΗΣ ΓΗΣ Η γεωθερμική βαθμίδα ορίζεται ως ο ρυθμός αύξησης της θερμοκρασίας της γης σε συνάρτηση με το βάθος, μέσα στο γήινο φλοιό. Σε βάθη που είναι προσβάσιμα με τις σύγχρονες γεωτρητικές μεθόδους, δηλαδή μέχρι τα m, η μέση γεωθερμική βαθμίδα κυμαίνεται περίπου στους 2,5-3 C/100 m. Για παράδειγμα, εάν η θερμοκρασία στα πρώτα μέτρα κάτω από την επιφάνεια του εδάφους ανταποκρίνεται κατά μέσο όρο στη μέση ετήσια θερμοκρασία του ατμοσφαιρικού αέρα, δηλ. στους 15 C, τότε μπορούμε να υποθέσουμε ότι η θερμοκρασία στο βάθος των 2000 m θα είναι περίπου C, στα 3000 m C, κ.ο.κ. για μερικά ακόμα χιλιάδες μέτρα. Παρόλα αυτά, υπάρχουν πολλές περιοχές στις οποίες η γεωθερμική βαθμίδα αποκλίνει πολύ από τη μέση τιμή. Εκεί όπου το γεωλογικό υπόβαθρο έχει υποστεί πολύ γρήγορη βύθιση και η λεκάνη έχει πληρωθεί με γεωλογικά «πολύ νέα» ιζήματα, η γεωθερμική βαθμίδα μπορεί να είναι μικρότερη και από 1 C/100 m. Αντίθετα, σε μερικές «γεωθερμικές» καλούμενες περιοχές, η τιμή της γεωθερμικής βαθμίδας μπορεί να είναι και δεκαπλάσια της μέσης γήινης. 15

17 Σχήμα 2 - Σχηματική τομή που δείχνει τις διεργασίες που λαμβάνουν χώρα στις τεκτονικές πλάκες. Λόγω της θερμοκρασιακής διαφοράς ανάμεσα στα διάφορα στρώματα, προκαλείται ροή θερμότητας από τις βαθιές και θερμές ζώνες του υπεδάφους προς τις ρηχές και ψυχρότερες, τείνοντας έτσι στη δημιουργία ομοιόμορφων συνθηκών. Στην πραγματικότητα όμως, όπως πολύ συχνά συμβαίνει στη φύση, κάτι τέτοιο ουδέποτε επιτυγχάνεται πλήρως. Η μέση γήινη ροή θερμότητας στις ηπείρους και τους ωκεανούς είναι 65 και 101 mw/m2 αντίστοιχα, οι οποίες, υπολογίζοντας την έκταση των περιοχών, δίνουν ένα παγκόσμιο μέσο όρο της τάξης των 87 mw/. Οι τιμές αυτές προέκυψαν μετά από μετρήσεις σε θέσεις, που καλύπτουν το 62% περίπου της γήινης επιφάνειας. Υπάρχουν βέβαια και κάποιοι εμπειρικοί υπολογισμοί που αναφέρονται σε γεωλογικές χαρτογραφικές μονάδες και επιτρέπουν την εκτίμηση της θερμικής ροής χωρίς να προηγηθούν μετρήσεις 16

18 Σχήμα 3 - Τεκτονικές πλάκες, μεσωκεάνιες ράχες, ωκεάνιες τάφροι, ζώνες καταβύθισης και γεωθερμικά πεδία. Τα βέλη δείχνουν την κατεύθυνση κίνησης των λιθοσφαιρικών πλακών προς τις ζώνες καταβύθισης. 1. Γεωθερμικά πεδία όπου παράγεται ηλεκτρική ενέργεια 2. Μεσωκεάνιες ράχεις που τέμνονται από μεγάλα ρήγματα μετασχηματισμού 3. Ζώνες καταβύθισης, όπου η βυθιζόμενη πλάκα κάμπτεται προς τα κάτω και λιώνει μέσα στην ασθενόσφαιρα. Η θερμοκρασία αυξάνεται με το βάθος, και τα ηφαίστεια, οι θερμοπίδακες, οι θερμές πηγές κλπ, αποτελούν κατά μία έννοια την ορατή εκδήλωση της θερμότητας του εσωτερικού της γης. Η θερμότητα αυτή όμως προκαλεί και τη δημιουργία άλλων φαινομένων, που είναι λιγότερο διακριτά από τον άνθρωπο, τέτοιου μεγέθους όμως ώστε η ύπαρξή τους να οδηγεί στην παρομοίωση της γης με μια τεράστια «θερμική μηχανή». Τα φαινόμενα αυτά αναφέρονται συνοπτικά στη «θεωρία των τεκτονικών πλακών». 17

19 1.6. ΣΤΑΔΙΑ ΓΕΩΘΕΡΜΙΚΗΣ ΈΡΕΥΝΑΣ Η αναζήτηση των γεωθερμικών περιοχών με ρευστά που να σχηματίζουν ένα εκμεταλλεύσιμο κοίτασμα, γίνεται με κατάλληλη γεωθερμική έρευνα, η οποία πραγματοποιείται κυρίως στην επιφάνεια με τις μικρότερες κατά το δυνατόν δαπάνες. Αν η επιφανειακή έρευνα δείξει θετικά αποτελέσματα ακολουθεί ανόρυξη ερευνητικών και κατόπιν παραγωγικών γεωτρήσεων, οι οποίες στις περισσότερες περιπτώσεις είναι ιδιαίτερα δαπανηρές. Η γεωθερμική έρευνα διακρίνεται σε τέσσερα κύρια τυποποιημένα (ή τυπικά) στάδια: 1) Γενική επισκόπηση μεγάλης κλίμακας. Χρήση όσο το δυνατόν περισσότερων στοιχείων (γεωλογικοί και τεκτονικοί χάρτες, αεροφωτογραφίες, βιβλιογραφική ανασκόπηση, αναγνωριστικές επισκέψεις, θερμομετρήσεις, δειγματοληψίες-αναλύσεις νερών κτλ.) για την στην επιλογή και υπόδειξη των περιοχών με τις ευνοϊκότερες συνθήκες. 2) Λεπτομερής και συστηματική έρευνα των πιθανότερων γεωθερμικών περιοχών. Ερευνώνται με λεπτομέρεια εκείνοι οι παράγοντες (γεωλογικοί, τεκτονικοί, ηφαιστειολογικοί, στρωματογραφικοί, λιθολογικοί, υδρογεωλογικοί, γεωχημικοί, γεωφυσικοί, θερμοδυναμικοί κτλ.) που μπορούν να χαρακτηρίσουν μια γεωθερμική περιοχή. Τελικός στόχος του σταδίου αυτού είναι ο προσδιορισμός του γεωθερμικού μοντέλου κάθε γεωθερμικού κοιτάσματος και η γνώση της θέσης και κατάστασης στην οποία βρίσκονται τα γεωθερμικά ρευστά ή θερμά πετρώματα. Συγχρόνως προτείνεται η σειρά, το βάθος και τα χαρακτηριστικά των ερευνητικών-παραγωγικών γεωτρήσεων. 3) Εντοπισμός-περιχάραξη των γεωθερμικών πεδίων και μελέτη των χαρακτηριστικών. Το στάδιο αυτό καταλήγει στον προσδιορισμό των πιθανότερων γεωθερμικών περιοχών και των θέσεων στις οποίες προτείνεται η εκτέλεση των πρώτων βαθιών γεωτρήσεων έρευνας και παραγωγής. Στη συνέχεια καταρτίζεται το λεπτομερές πρόγραμμα γεωτρήσεων. 18

20 Οι γεωθερμικές γεωτρήσεις διακρίνονται, αναφορικά με το σκοπό της ανόρυξής τους, σε ερευνητικές, παραγωγικές ή επανεισαγωγής, και σε σχέση με την ενθαλπία των ρευστών, σε χαμηλής, μέσης ή υψηλής ενθαλπίας. 4) Ανάπτυξη και διαχείριση των γεωθερμικών πεδίων. Αναφέρεται στα σπουδαιότερα προβλήματα διαχείρισης και λειτουργίας ενός γεωθερμικού πεδίου. Τα παραπάνω τυποποιημένα (ή τυπικά) στάδια ισχύουν σε όλες τις περιπτώσεις της γεωθερμικής έρευνας, αν και οι επί μέρους γεωλογικές συνθήκες καθορίζουν την ξεχωριστή διάρθρωση και ανάπτυξη του κάθε σταδίου. Μπορεί να αλλάζει η λεπτομερής διάρθρωση και η ανάπτυξη των επί μέρους σταδίων, γενικά όμως οι εργασίες ακολουθούν την προαναφερθείσα τυπική σειρά. Σε κάθε φάση απαιτείται υποχρεωτικά η συνεργασία και ο συντονισμός των διαφόρων επιστημόνων και τεχνικών που εμπλέκονται στην όλη έρευνα ΜΕΤΡΗΣΕΙΣ ΚΑΙ ΑΠΟΤΙΜΗΣΗ ΔΥΝΑΜΙΚΟΥ Πρωταρχικός σκοπός ενός προγράμματος έρευνας και αποτίμησης σε μία γεωθερμική περιοχή είναι να προσδιορίσει ταχύτατα, αξιόπιστα και με το λιγότερο δυνατό κόστος τα χαρακτηριστικά των γεωθερμικών ρευστών και την ικανότητα του πεδίου για την παραγωγή αξιοποιήσιμων ποσοτήτων ρευστών. Η γεωχημεία παίζει σημαντικό ρόλο στην γεωθερμική έρευνα και αναζήτηση, αφού μπορεί να απαντήσει σε μεγάλο αριθμό ερωτημάτων με τη μελέτη του χημισμού των γεωθερμικών ρευστών και των πετρωμάτων του ταμιευτήρα. Η γεωθερμική έρευνα περιλαμβάνει τη συλλογή δειγμάτων και την ανάλυση των γεωθερμικών ρευστών από φυσικές εκδηλώσεις και από γεωτρήσεις της περιοχής που ερευνάται. Τα γεωχημικά δεδομένα που συγκεντρώνονται βοηθούν στον εντοπισμό του γεωθερμικού συστήματος, στην εκτίμηση της θερμοκρασίας του ταμιευτήρα, στον προσδιορισμό του χημικού χαρακτήρα των ρευστών και του μηχανισμού 19

21 τροφοδοσίας του πεδίου, στην εκτίμηση του πιθανού αξιοποιήσιμου δυναμικού κ.α. Οι γεωχημικές μέθοδοι που εφαρμόζονται στα διάφορα στάδια της έρευνας είναι απολύτως απαραίτητες, προτού χρησιμοποιηθούν περισσότερο δαπανηρές μέθοδοι, όπως οι γεωφυσικές και ή ανόρυξη ερευνητικών γεωτρήσεων. Αν και δεν υπάρχει κάποια γενικά αποδεκτή ταξινόμηση των γεωθερμικών νερών, συχνά τα γεωθερμικά νερά διαχωρίζονται σε σχέση με το κυρίαρχο ανιόν, όπως παρουσιάζεται στον Πίνακα 1 (Henley et al, 1984). Στα γεωθερμικά συστήματα νερού ο συνηθέστερος τύπος που συναντάται σε κάποιο βάθος είναι τα χλωριούχα νερά, με συγκεντρώσεις που φτάνουν τα mg/l (Ellis & Mahon, 1977). Σπανιότερα, η συγκέντρωση των χλωριόντων μπορεί να υπερβεί και τα mg/l. Οι δύο κυριότερες φυσικοχημικές παράμετροι που χρησιμοποιούνται για το χαρακτηρισμό ενός γεωθερμικού νερού είναι η περιεκτικότητά του σε άλατα (Total dissolved solids-tds) και το ph. Συνήθως, τα γεωθερμικά ρευστά χαμηλής θερμοκρασίας έχουν μικρότερο TDS από ότι τα ρευστά σε υψηλή θερμοκρασία, αν και υπάρχουν εξαιρέσεις αυτού του κανόνα. Οι τιμές του TDS των γεωθερμικών ρευστών κυμαίνονται από λίγες δεκάδες μέχρι και εκατοντάδες χιλιάδες mg/l. 20

22 Το μέγεθος της αλατότητας ενός νερού προσεγγίζεται στο ύπαιθρο με τη μέτρηση της ηλεκτρικής αγωγιμότητας του νερού Πίνακας 1 - Σύνοψη των διαφόρων τύπων νερού στα γεωθερμικά συστήματα. Τύπος νερού Περιοχή ph Κύρια ιόντα Υπόγεια 6 7,5 Λίγα Πλούσια σε χλωριόντα 4 9 Πλούσιο σε ανθρακικά 7 8,5 Πλούσιο σε θειικά ιόντα 1 3 Πλούσιο σε θειικά - χλωριόντα 1 5 Πλούσιο σε όξινα ανθρακικά 5 7 Αραιά χλωριούχα 6,5 7, ΓΕΩΘΕΡΜΙΚΑ ΣΥΣΤΗΜΑΤΑ Τα γεωθερμικά συστήματα εντοπίζονται στις περιοχές με κανονική ή λίγο μεγαλύτερη από τη μέση γήινη γεωθερμική βαθμίδα, και κυρίως στις περιοχές γύρω από τα περιθώρια των τεκτονικών πλακών, όπου η βαθμίδα μπορεί να είναι σημαντικά υψηλότερη της μέσης τιμής. Στην πρώτη περίπτωση, τα γεωθερμικά συστήματα χαρακτηρίζονται από χαμηλές θερμοκρασίες, που συνήθως δεν ξεπερνούν τους 100ºC σε οικονομικά και προσβάσιμα βάθη. Στη δεύτερη περίπτωση, οι θερμοκρασίες μπορεί να καλύπτουν ένα ευρύ φάσμα, από σχετικά χαμηλές τιμές μέχρι και μεγαλύτερες από 400ºC. Τι είναι όμως ένα «γεωθερμικό σύστημα» και τι συμβαίνει μέσα σε αυτό; Σχηματικά μπορεί να περιγραφεί ως «ένα σύστημα» που βρίσκεται σε περιορισμένο χώρο στον ανώτερο φλοιό της γης και αποτελείται από «κινούμενο νερό» το οποίο μεταφέρει θερμότητα από μια «πηγή» σε μια «δεξαμενή» θερμότητας, που συνήθως είναι μια ελεύθερη επιφάνεια (Hochstein, 1990). Έτσι λοιπόν, ένα γεωθερμικό σύστημα αποτελείται από 21

23 τρία στοιχεία: την εστία θερμότητας, τον ταμιευτήρα και το ρευστό, το οποίο λειτουργεί ως μέσο μεταφοράς της θερμότητας. Η εστία θερμότητας μπορεί να είναι είτε μια πολύ υψηλής (>600ºC) θερμοκρασίας μαγματική διείσδυση που έχει φτάσει σε σχετικά μικρά βάθη (5-10 km) ή, στα χαμηλής θερμοκρασίας συστήματα, η κανονική θερμοκρασία των πετρωμάτων του εσωτερικού της γης, η οποία όπως αναφέρθηκε αυξάνεται με το βάθος. Ο ταμιευτήρας είναι ένας σχηματισμός από θερμά υδατοπερατά πετρώματα, που επιτρέπει την κυκλοφορία των ρευστών μέσα σε αυτόν και από τον οποίο τα ρευστά αντλούν θερμότητα. Πάνω από τον ταμιευτήρα βρίσκεται συνήθως ένα κάλυμμα αδιαπέρατων πετρωμάτων. Ο ταμιευτήρας πολλές φορές συνδέεται με μια επιφανειακή περιοχή τροφοδοσίας, δια μέσου της οποίας μετεωρικό ή επιφανειακό γενικά νερό κατεβαίνει και αντικαθιστά μερικώς ή ολικώς τα ρευστά που φεύγουν από τον ταμιευτήρα και εξέρχονται στην επιφάνεια με τη μορφή θερμών πηγών ή αντλούνται από γεωτρήσεις. Το γεωθερμικό ρευστό συνήθως είναι νερό, στις περισσότερες περιπτώσεις μετεωρικής προέλευσης, το οποίο, ανάλογα με τις συνθήκες πίεσης και θερμοκρασίας που επικρατούν στον ταμιευτήρα, βρίσκεται σε υγρή ή αέρια κατάσταση. Συχνά το ρευστό είναι εμπλουτισμένο σε χημικά στοιχεία και αέρια, όπως CO2, H2S, κλπ. Στο Σχήμα αποτυπώνεται σε πολύ απλουστευμένη μορφή ένα πρότυπο γεωθερμικό σύστημα. Ο μηχανισμός που διέπει τη λειτουργία των γεωθερμικών συστημάτων εν γένει ελέγχεται από τη μεταφορά θερμότητας μέσω της (συναγωγής/κυκλοφορίας) των ρευστών (fluid convection). Στο Σχήμα 2 παριστάνεται σχηματικά ο μηχανισμός στην περίπτωση ενός υδροθερμικού συστήματος ενδιάμεσης θερμοκρασίας. Η θερμική συναγωγή λαμβάνει χώρα λόγω της θέρμανσης και, κατ επέκταση, της θερμικής διαστολής των ρευστών σε ένα πεδίο βαρύτητας. Η ενέργεια που προκαλεί το συγκεκριμένο φαινόμενο είναι ουσιαστικά η θερμότητα που προσφέρεται από την εστία στη βάση του συστήματος κυκλοφορίας. Η πυκνότητα των ρευστών που θερμαίνονται μειώνεται, οπότε αυτά παρουσιάζουν τάσεις ανόδου προς μικρότερα βάθη, ενώ αντικαθίστανται 22

24 στη συνέχεια από ρευστά μικρότερης θερμοκρασίας και μεγαλύτερης πυκνότητας, που προέρχονται από τα περιθώρια του γεωθερμικού συστήματος. Λόγω της θερμικής συναγωγής προκαλείται λοιπόν θερμοκρασιακή αύξηση στο ανώτερο τμήμα του γεωθερμικού συστήματος, καθώς οι θερμοκρασίες στα κατώτερα τμήματα μειώνονται (White, 1973) Σχήμα 4 - Σχηματική αναπαράσταση ενός ιδανικού γεωθερμικού συστήματος 23

25 Σχήμα 5 - Πρότυπο (μοντέλο) ενός γεωθερμικού συστήματος Η γραμμή (1) είναι η καμπύλη αναφοράς του σημείου ζέσεως του καθαρού νερού. Η καμπύλη (2) δείχνει τη θερμοκρασιακή κατανομή κατά μήκος μια τυπικής διαδρομής κυκλοφορίας του ρευστού από το σημείο Α (τροφοδο Οι διεργασίες που μόλις περιγράφηκαν πιθανώς να φαίνονται πολύ απλές, όμως η κατασκευή ενός καλού προτύπου (μοντέλου), το οποίο να αντιστοιχεί σε ένα πραγματικό γεωθερμικό σύστημα, είναι πολύ δύσκολο να πραγματοποιηθεί. Μια τέτοια εργασία απαιτεί πολύπλευρες ικανότητες, ειδικές γνώσεις και μεγάλη εμπειρία, ιδιαίτερα όταν αφορά συστήματα υψηλής θερμοκρασίας. Εξάλλου, τα γεωθερμικά συστήματα εμφανίζονται στη φύση με πάρα πολλές ιδιαιτερότητες και ιδιομορφίες, οι οποίες σχετίζονται με διάφορους συνδυασμούς γεωλογικών, φυσικών και χημικών χαρακτηριστικών που μπορεί να οδηγήσουν σε διάφορους τύπους συστημάτων. Από τα τρία στοιχεία ενός γεωθερμικού συστήματος, η εστία θερμότητας είναι το μόνο που απαραιτήτως πρέπει να έχει φυσική προέλευση. Εάν οι συνθήκες είναι ευνοϊκές, τα άλλα δύο στοιχεία μπορεί να είναι και «τεχνητά». Για παράδειγμα, τα γεωθερμικά ρευστά που αντλούνται από τον ταμιευτήρα και χρησιμοποιούνται ως η κινητήρια δύναμη ενός γεωθερμικού ατμοστρόβιλου για την παραγωγή ηλεκτρικής ενέργειας, μπορούν μετά την ενεργειακή εκμετάλλευσή τους να επανεισαχθούν στον ταμιευτήρα μέσω συγκεκριμένων 24

26 γεωτρήσεων επανεισαγωγής (injection wells). Έτσι λοιπόν, η φυσική τροφοδοσία ενός ταμιευτήρα μπορεί να συνοδευθεί και να συμπληρωθεί από μια τεχνητή επανατροφοδοσία. Εδώ και αρκετά χρόνια, η τεχνική επανεισαγωγής των ρευστών στον ταμιευτήρα εφαρμόζεται σε πολλές περιοχές του κόσμου, ως ένα μέσο δραστικής μείωσης των περιβαλλοντικών επιπτώσεων από τη λειτουργία των γεωθερμικών εγκαταστάσεων. Η χρήση των γεωτρήσεων επανεισαγωγής για τεχνητή επανατροφοδοσία μπορεί επίσης να βοηθήσει στην ανανέωση και συντήρηση κάποιων «παλιών» ή «εξαντλημένων» γεωθερμικών πεδίων. Ως παράδειγμα αναφέρεται η περίπτωση του γεωθερμικού πεδίου «The Geysers» της Καλιφόρνιας (ΗΠΑ), ενός από τα μεγαλύτερα γεωθερμικά πεδία στον κόσμο, όπου παρατηρήθηκε δραστική μείωση της παραγωγής στα τέλη της δεκαετίας του 1980, λόγω ακριβώς της έλλειψης ρευστών στον ταμιευτήρα. Το 1997 ξεκίνησε ένα πρόγραμμα, το Southeast Geysers Effluent Recycling Project, που αποσκοπούσε στη μεταφορά επεξεργασμένων αστικών αποβλήτων στο γεωθερμικό πεδίο από μια απόσταση 48 km. Το πρόγραμμα αυτό οδήγησε στην επαναλειτουργία αρκετών εργοστασίων παραγωγής ηλεκτρικής ενέργειας, τα οποία είχαν εγκαταλειφθεί εξαιτίας της έλλειψης ρευστών. Σε άλλη περίπτωση, και στα πλαίσια του Santa Rosa Geysers Recharge Project, 41,5 εκατομμύρια λίτρα επεξεργασμένων αστικών αποβλήτων θα αντλούνται κάθε μέρα από τους τοπικούς σταθμούς επεξεργασίας της Santa Rosa και άλλων γειτονικών πόλεων και θα μεταφέρονται μέσω ενός δικτύου σωληνώσεων συνολικού μήκους 66 km στο γεωθερμικό πεδίο «The Geysers», όπου θα χρησιμοποιηθούν για την επανατροφοδοσία του ταμιευτήρα διαμέσου ειδικά διατρηθέντων γεωτρήσεων. Στα Προγράμματα των αποκαλούμενων Θερμών Ξηρών Πετρωμάτων (Hot Dry Rocks), για τα οποία έγιναν για πρώτη φορά πειραματικές δοκιμές το 1970 στο Los Alamos του Νέου Μεξικού (ΗΠΑ), τόσο τα ρευστά όσο και ο ταμιευτήρας είναι τεχνητά. Στην περίπτωση λοιπόν των HDR γίνεται, μέσω ειδικών γεωτρήσεων, τεχνητή εισαγωγή νερού με μεγάλη πίεση σε ένα θερμό 25

27 και συμπαγές πέτρωμα, το οποίο βρίσκεται σε μεγάλο βάθος. Η εισπίεση αυτή προκαλεί στο πέτρωμα «υδραυλική διάρρηξη». Το νερό διαπερνά τις τεχνητές διαρρήξεις και λόγω της επαφής του με μεγάλες επιφάνειες θερμού πετρώματος αντλεί θερμότητα από αυτόν τον μεγάλο σε όγκο σχηματισμό, ο οποίος λειτουργεί ως ένας φυσικός ταμιευτήρας. Στη συνέχεια, ο «ταμιευτήρας» διαπερνάται από μια δεύτερη γεώτρηση, μέσα από την οποία αντλείται το νερό που θερμάνθηκε. Έτσι λοιπόν, το συγκεκριμένο γεωθερμικό σύστημα αποτελείται (i) από τη γεώτρηση που χρησιμοποιείται για την υδραυλική διάρρηξη, μέσω της οποίας εισπιέζεται κρύο νερό στον (ii) τεχνητό ταμιευτήρα και (iii) από τη γεώτρηση άντλησης του θερμού νερού. Όλο αυτό το σύστημα, μαζί με τις εγκαταστάσεις στην επιφάνεια, σχηματίζουν ένα κλειστό κύκλωμα (loop) (Garnish, 1987) (βλέπε Σχήμα 3). To ερευνητικό Πρόγραμμα του Los Alamos αποτέλεσε πρόδρομο για άλλες παρόμοιες εφαρμογές στην Αυστραλία, Γαλλία, Γερμανία, Ιαπωνία και Μεγ. Βρετανία. Μετά από μια περίοδο όπου κανείς δεν τις έδινε σημασία, οι εφαρμογές αυτές απέκτησαν νέα ώθηση, λόγω της ανακάλυψης σε πρώτη φάση ότι τα βαθιά πετρώματα έχουν ήδη κάποιες περιορισμένες φυσικές διαρρήξεις και στη συνέχεια ότι οι τεχνικές και η μεθοδολογία που πρέπει να χρησιμοποιηθεί εξαρτώνται κατά πολύ από τις τοπικές γεωλογικές συνθήκες. Οι πιο εξελιγμένες επιστημονικά και τεχνολογικά έρευνες στον τομέα των Θερμών Ξηρών Πετρωμάτων πραγματοποιήθηκαν στην Ιαπωνία και στο Ευρωπαϊκό Πρόγραμμα της Αλσατίας (Γαλλία). Πολλά προγράμματα που ξεκίνησαν στην Ιαπωνία τη δεκαετία του 1980 (στις περιοχές Hijiori, Ogachi και Yunomori), είχαν σημαντική χρηματοδότηση από την Ιαπωνική κυβέρνηση και τη βιομηχανία και κατέληξαν σε ενδιαφέροντα αποτελέσματα, τόσο από επιστημονική όσο και από βιομηχανική άποψη. 26

28 Σχήμα 6 - Σχηματική αναπαράσταση ενός συστήματος Θερμών Ξηρών Πετρωμάτων σε οικονομική κλίμακα (από Richards et al., 1994) 1.9. ΟΡΙΣΜΟI ΚΑΙ ΤΑΞΙΝΟΜΗΣΗ ΤΩΝ ΓΕΩΘΕΡΜΙΚΩΝ ΠΟΡΩΝ Δεν υπάρχει δυστυχώς κάποια διεθνώς καθιερωμένη ορολογία που να χρησιμοποιείται από το σύνολο της γεωθερμικής κοινότητας, ώστε να διευκολύνεται η αμοιβαία κατανόηση και συνεννόηση. Στη συνέχεια του κεφαλαίου παρατίθενται μερικοί από τους πλέον κοινώς χρησιμοποιούμενους ορισμούς και ταξινομήσεις σχετικά με τη γεωθερμία. Σύμφωνα με τους Muffler & Cataldi (1978), ο γενικός όρος «γεωθερμικός πόρος» αναφέρεται στην προσβάσιμη βασική πηγή (accessible resource base). Η προσβάσιμη βασική πηγή είναι ουσιαστικά όλη η θερμική ενέργεια που βρίσκεται αποθηκευμένη κάτω από συγκεκριμένη περιοχή μεταξύ της επιφάνειας της γης και ενός συγκεκριμένου βάθους στο φλοιό. Αυτή η ενέργεια ξεκινά από την τοπική μέση ετήσια θερμοκρασία. Η προσβάσιμη πηγή περιλαμβάνει τον ωφέλιμο προσβάσιμο πόρο (useful accessible resource 27

29 base), εκείνο δηλαδή το τμήμα της γεωθερμικής ενέργειας που μπορεί να ανακτηθεί με οικονομικά συμφέροντα και νόμιμο τρόπο, κάποια στιγμή στο σχετικά άμεσο μέλλον (μέσα σε λιγότερο από 100 χρόνια). Αυτή η κατηγορία περιλαμβάνει τους ταυτοποιημένους οικονομικά συμφέροντες πόρους (identified economic resources), οι οποίοι είναι γνωστοί και ως αποθέματα (reserves) και αναφέρονται στις ποσότητες της γεωθερμικής ενέργειας μιας συγκεκριμένης περιοχής που μπορούν να αξιοποιηθούν με ανταγωνιστικό κόστος σε σχέση με τις άλλες πηγές ενέργειας, και οι οποίοι πόροι είναι γνωστό ότι υπάρχουν και έχουν προκύψει ως αποτέλεσμα γεωτρητικών, γεωχημικών, γεωφυσικών και άλλων γεωλογικών ερευνών-μελετών. Το Σχήμα 4 παρουσιάζει σε γραφική μορφή τους παραπάνω και άλλους όρους, που μπορούν να χρησιμοποιούνται από τους ειδικούς στη γεωθερμία. Το πλέον συνηθισμένο κριτήριο για την ταξινόμηση των γεωθερμικών πόρων είναι αυτό που βασίζεται στην ενθαλπία των γεωθερμικών ρευστών, τα οποία λειτουργούν ως ο φορέας «μεταφοράς» της θερμότητας από τα βαθιά και θερμά πετρώματα προς την επιφάνεια. Η ενθαλπία, η οποία σε γενικές γραμμές θεωρείται ότι είναι ανάλογη της θερμοκρασίας, χρησιμοποιείται για να εκφράσει την περιεχόμενη θερμική ενέργεια των ρευστών και δίνει μια γενική εικόνα της ενεργειακής «αξίας» τους. Οι γεωθερμικοί πόροι διακρίνονται σε χαμηλής, μέσης και υψηλής ενθαλπίας (ή θερμοκρασίας), σύμφωνα με το ενεργειακό τους περιεχόμενο και τις πιθανές μορφές αξιοποίησής τους. Στον Πίνακα 3 αναφέρονται οι χαρακτηριστικοί τρόποι ταξινόμησης, όπως αυτοί προτάθηκαν από διάφορους συγγραφείς. Όπως ακριβώς και για την ορολογία, μια κοινώς αποδεκτή μέθοδος ταξινόμησης θα βοηθούσε στην αποφυγή συγχύσεων και παρανοήσεων. Όμως, μέχρι να γίνει αυτό, θα πρέπει κάθε φορά και κατά περίπτωση να δηλώνουμε τις τιμές των θερμοκρασιών ή το εύρος τους, διότι όροι όπως «χαμηλή», «ενδιάμεση» ή «υψηλή» δεν έχουν πάντα την ίδια ερμηνεία και πολλές φορές είναι παραπλανητικοί. 28

30 Σχήμα 7 - Γραφική παράσταση που δίνει τις διάφορες κατηγορίες των γεωθερμικών πόρων (Από Muffler & Cataldi, 1978). Ο κάθετος άξονας παριστάνει το βαθμό της οικονομικής επιτευξιμότητας, ενώ ο οριζόντιος το βαθμό της γεωλογικής βεβαιότητας ΆΜΕΣΕΣ ΧΡΗΣΕΙΣ ΤΗΣ ΓΕΩΘΕΡΜΙΑΣ Οι άμεσες χρήσεις της θερμότητας των γεωθερμικών ρευστών για θέρμανση είναι οι παλαιότερες, οι πιο πολύπλευρες και οι πλέον συνηθισμένες μορφές αξιοποίησης της γεωθερμικής ενέργειας. Η λουτροθεραπεία, η θέρμανση χώρων και η τηλεθέρμανση, οι αγροτικές εφαρμογές, οι υδατοκαλλιέργειες και κάποιες βιομηχανικές χρήσεις είναι οι πιο γνωστές μορφές χρήσεις, όμως οι αντλίες θερμότητας αποτελούν την πιο διαδεδομένη μορφή αξιοποίησης (12,5 % της συνολικής χρήσης της γεωθερμικής ενέργειας κατά το έτος 2000). Υπάρχουν φυσικά και κάποιοι άλλοι μικρότερης κλίμακας τρόποι εκμετάλλευσης της γεωθερμίας, οι οποίοι όμως δεν είναι τόσον συνηθισμένη θέρμανση χώρων και η τηλεθέρμανση (space and district heating) παρουσίασαν μεγάλη ανάπτυξη στην Ισλανδία, όπου η συνολική ισχύς του γεωθερμικού συστήματος τηλεθέρμανσης ανέρχονταν στα τέλη του 1999 σε περίπου 1200 MWt (Σχήμα 5). Αποτελούν επίσης ιδιαίτερα διαδεδομένες 29

31 εφαρμογές και στις χώρες της Ανατολικής Ευρώπης, καθώς και τις Η.Π.Α., Κίνα, Ιαπωνία, Γαλλία, κλπ. Σχήμα 8 - Απλοποιημένο διάγραμμα ροής του συστήματος τηλεθέρμανσης του Reykjavik (Από Gudmundsson, 1988_ Τα γεωθερμικά συστήματα τηλεθέρμανσης είναι έντασης κεφαλαίου, δηλαδή απαιτούν μεγάλα αρχικά κεφάλαια. Το κύριο κόστος αφορά την αρχική επένδυση για την κατασκευή των γεωτρήσεων παραγωγής και επανεισαγωγής, την αγορά των συστημάτων άντλησης και μεταφοράς των ρευστών, την κατασκευή των δικτύων και των σωληνώσεων, την προμήθεια του εξοπλισμού ελέγχου και παρακολούθησης των εγκαταστάσεων, την κατασκευή των σταθμών διανομής και των δεξαμενών αποθήκευσης. Παρόλα αυτά, τα λειτουργικά έξοδα, τα οποία αφορούν στην ενέργεια που καταναλώνεται για την άντληση των ρευστών, τη συντήρηση του συστήματος και τη διαχείριση της εγκατάστασης, είναι σημαντικά μικρότερα σε σύγκριση με αυτά μιας συμβατικής μονάδας. Ένας κρίσιμος παράγοντας για τον υπολογισμό του αρχικού κόστους του συστήματος είναι η πυκνότητα του θερμικού φορτίου ή, αλλιώς, οι απαιτήσεις σε θέρμανση δια την επιφάνεια που καλύπτει η περιοχή που πρόκειται να θερμανθεί. Η υψηλή θερμική πυκνότητα καθορίζει την οικονομική βιωσιμότητα-σκοπιμότητα του έργου τηλεθέρμανσης, αφού το 30

32 δίκτυο διανομής απορροφά μεγάλα κεφάλαια. Κάποια οικονομικά οφέλη θα μπορούσαν να προκύψουν από το συνδυασμό θέρμανσης και ψύξης σε περιοχές όπου οι κλιματικές συνθήκες επιτρέπουν τέτοιες εφαρμογές. Ο συντελεστής φορτίου σε ένα τέτοιο σύστημα ψύξης-θέρμανσης θα πρέπει να είναι μεγαλύτερος από αυτόν που αντιστοιχεί μόνο στη θέρμανση, και η τιμή της ενεργειακής μονάδας πρέπει να είναι κατά συνέπεια χαμηλότερη (Gudmundsson, 1988).Η ψύξη χώρων αποτελεί μια αρκετά εφικτή και βιώσιμη επιλογή, στην περίπτωση όπου μπορούν να χρησιμοποιηθούν μηχανές απορρόφησης, οι οποίες βρίσκονται εύκολα στο εμπόριο και η τεχνολογία τους είναι ευρέως γνωστή. Ο κύκλος της απορρόφησης είναι μια διαδικασία που χρησιμοποιεί ως πηγή ενέργειας τη θερμότητα έναντι του ηλεκτρισμού. Η ψύξη επιτυγχάνεται με τη χρήση δύο υγρών: ενός ψυκτικού, το οποίο κυκλοφορεί, εξατμίζεται και συμπυκνώνεται, και ενός δευτερεύοντος ρευστού ή απορροφητικού (absorbent). Για εφαρμογές πάνω από 0ºC, ο κύκλος χρησιμοποιεί βρωμίδιο του λιθίου ως απορροφητικό και νερό ως ψυκτικό υγρό. Για εφαρμογές κάτω από τους 0ºC χρησιμοποιείται ο κύκλος αμμωνίας/νερού, με την αμμωνία στο ρόλο του ψυκτικού και του νερού στο ρόλο του απορροφητικού μέσου. Τα γεωθερμικά ρευστά παρέχουν την απαιτούμενη ενέργεια για την κίνηση αυτών των μηχανών, όμως η αποτελεσματικότητά τους μειώνεται όταν οι θερμοκρασίες είναι χαμηλότερες των 105ºC. Ο γεωθερμικός κλιματισμός (θέρμανση και ψύξη) χώρων άρχισε να αναπτύσσεται σημαντικά από τη δεκαετία του 1980, ακολουθώντας την εμφάνιση και την ευρεία διάδοση των αντλιών θερμότητας (heat pumps). Οι πολλοί διαθέσιμοι τύποι αντλιών θερμότητας επιτρέπουν την απόληψη και χρήση με οικονομικό τρόπο του θερμικού περιεχομένου των σωμάτων χαμηλής θερμοκρασίας, όπως είναι το έδαφος ή οι ρηχοί υδροφόροι, τεχνητές ή φυσικές συγκεντρώσεις νερού (ponds), κλπ. (Sanner, 2001) (Σχήμα 6). 31

33 Η πιο συνηθισμένη γεωθερμική εφαρμογή στον αγροτικό τομέα είναι η θέρμανση θερμοκηπίων, η οποία αναπτύχθηκε ιδιαίτερα σε πολλές χώρες. Η εκτός εποχής καλλιέργεια κηπουρικών, οπωρικών και ανθοκομικών προϊόντων ή η ανάπτυξή τους σε περιοχές με μη ευνοϊκές κλιματολογικές συνθήκες, μπορεί σήμερα να βασιστεί σε μια ευρέως εφαρμοσμένη τεχνολογία. Υπάρχουν ποικίλες λύσεις για την επίτευξη των βέλτιστων συνθηκών ανάπτυξης των φυτών, οι οποίες βασίζονται στη χρήση της καλύτερης θερμοκρασίας για το κάθε είδος (Σχήμα 7), στη σωστή ένταση του φωτός, στην ιδανική συγκέντρωση CO2 μέσα στο θερμοκήπιο, στην κατάλληλη υγρασία του εδάφους και του αέρα και στην κίνηση του αέρα μέσα στα θερμοκήπια Σχήμα 9 - Επίδραση της θερμοκρασίες στην ανάπτυξη κάποιων φυτών (Beall and Samuels, 1971) Το υλικό κάλυψης των τοιχωμάτων ενός θερμοκηπίου μπορεί να αποτελείται από γυαλί, fiberglass, πλάκες σκληρού πλαστικού ή πλαστικά φύλλα. Το γυαλί 32

34 είναι το πλέον διαφανές υλικό και, σε σχέση με το πλαστικό, επιτρέπει σε μεγαλύτερο βαθμό τη διέλευση φωτός. Από την άλλη, το γυαλί προσφέρει μικρότερη θερμική μόνωση, είναι λιγότερο ανθεκτικό στην κρούση, είναι βαρύτερο και πολύ πιο ακριβό. Τα πιο απλά θερμοκήπια κατασκευάζονται από μονά φύλλα πλαστικού, όμως τελευταίως χρησιμοποιούνται και διπλά στρώματα πλαστικών, μεταξύ των οποίων υπάρχει ένα κενό αέρος. Με το σύστημα αυτό μειώνονται οι θερμικές απώλειες από τα τοιχώματα σε ποσοστό μέχρι και 30-40%, οπότε αυξάνεται σημαντικά η απόδοση του θερμοκηπίου. Η θέρμανση ενός θερμοκηπίου μπορεί επίσης να επιτευχθεί με εξαναγκασμένη κυκλοφορία αέρα στους εναλλάκτες θερμότητας, στους σωλήνες ή τους αγωγούς θερμού νερού που βρίσκονται τοποθετημένοι μέσα ή πάνω στο έδαφος, στα θερμαντικά σώματα κατά μήκος των πλευρικών τοιχωμάτων και κάτω από τους πάγκους ή με συνδυασμό των παραπάνω μεθόδων (Σχήμα 8). Η χρήση των γεωθερμικών ρευστών για τη θέρμανση ενός θερμοκηπίου μειώνει σημαντικά τα λειτουργικά του έξοδα, τα οποία σε κάποιες περιπτώσεις φτάνουν το 35% του κόστους παραγωγής (οπωρικά, άνθη, διακοσμητικά φυτά και δενδρύλλια). Η εκτροφή κτηνοτροφικών ειδών και οι υδρόβιοι οργανισμοί, όπως ακριβώς και τα φυτά, επωφελούνται σημαντικά από τις άριστες συνθήκες της θερμοκρασίας του περιβάλλοντος χώρου, τόσο ως προς την ποιότητα όσο και ως προς την ποσότητα παραγωγής τους (Σχήμα 9). Σε πολλές περιπτώσεις τα γεωθερμικά νερά θα μπορούσαν να αξιοποιηθούν ακόμη επικερδέστερα, μέσα από τη συνδυασμένη χρήση τους σε κτηνοτροφικές μονάδες και γεωθερμικά θερμοκήπια. Η ενέργεια που χρειάζεται για τη θέρμανση μιας μονάδας εκτροφής ζώων είναι περίπου το 50% αυτής που απαιτείται για ένα θερμοκήπιο ίδιας επιφάνειας, οπότε η κλιμακωτή χρήση των γεωθερμικών ρευστών θεωρείται ενδεδειγμένη. Η εκτροφή ζώων σε ένα περιβάλλον ελεγχόμενης θερμοκρασίας συνεισφέρει 33

35 στη βελτίωση της υγείας τους, ενώ η χρήση των θερμών ρευστών θα μπορούσε να επεκταθεί στον καθαρισμό και την εξυγίανση των χώρων τους, αλλά και στην ξήρανση των αποβλήτων τους (Barbier and Fanelli, 1977). Σχήμα 10 - Συστήματα θέρμανσης σε γεωθερμικά θερμοκήπια. Εγκαταστάσεις θέρμανσης με φυσική κίνηση του αέρα (φυσική συναγωγή): (α) εναέριοι σωλήνες θέρμανσης (β) θέρμανση πάγκων (γ) σωλήνες θέρμανσης που είναι τοποθετημένοι χαμηλά (δ) θέρμανση εδάφους Εγκαταστάσεις θέρμανσης με εξαναγκασμένη κίνηση του αέρα (εξαναγκασμένη συναγωγή) (ε) πλευρική τοποθέτηση σωλήνων (στ) εναέρια αερόθερμα (ζ) αγωγοί τοποθετημένοι ψηλά (η) αγωγοί τοποθετημένοι χαμηλά (von Zabeltitz,

36 Σχήμα 11 - Επίδραση της θερμοκρασίας στην ανάπτυξη ή παραγωγή ζώων που εκτρέφονται για κατανάλωση (Beall and Samuels, 1971) Οι υδατοκαλλιέργειες, οι οποίες στην ουσία αποτελούν την ελεγχόμενη εκτροφή υδρόβιων οργανισμών, αποκτούν σήμερα ολοένα και μεγαλύτερη σπουδαιότητα σε παγκόσμιο επίπεδο, λόγω της αυξημένης ζήτησής τους στην αγορά. Ο έλεγχος της θερμοκρασίας εκτροφής των ειδών αυτών είναι πολύ πιο σημαντικός σε σχέση με τα είδη που αναπτύσσονται στην ξηρά (θηλαστικά και πτηνά), όπως άλλωστε φαίνεται και στο Σχήμα 19, το οποίο δείχνει πόσο πιο διαφορετική είναι η τάση της καμπύλης ανάπτυξης των υδρόβιων ειδών. Διατηρώντας με τεχνητά μέσα τη θερμοκρασία σε βέλτιστα επίπεδα, καθίσταται δυνατή και η εκτροφή εξωτικών ειδών, η βελτίωση της παραγωγής ή ακόμη και ο διπλασιασμός του αναπαραγωγικού κύκλου σε μερικά είδη (Barbier and Fanelli, 1977). 35

37 Τα είδη που κατά παράδοση εκτρέφονται σε τέτοιες μονάδες είναι: κυπρίνος, γατόψαρο, λαβράκια, κέφαλοι, χέλια, σολωμοί, μουρούνες, γαρίδες, αστακοί, καραβίδες, κάβουρες, στρείδια, μύδια, χτένια κλπ. Οι υδατοκαλλιέργειες περιλαμβάνουν επίσης την εκτροφή κροκοδείλων και αλιγατόρων, που αξιοποιούνται συνήθως ως τουριστικό αξιοθέατο αλλά και για την εκμετάλλευση του δέρματός τους, η οποία μπορεί να αποτελέσει μια πολύ επικερδή δραστηριότητα. Με βάση την εμπειρία από τις Η.Π.Α., φαίνεται ότι, διατηρώντας τη θερμοκρασία ανάπτυξής του σταθερή στους 30ºC, ένας αλιγάτορας μπορεί να μεγαλώσει σε μήκος περίπου 2 μέτρα μέσα σε 3 χρόνια, ενώ εάν ζούσε σε φυσικές συνθήκες η αύξηση του μήκους του δεν θα ξεπερνούσε τα 1,20 μέτρα κατά την ίδια χρονική περίοδο. Τέτοια ερπετά εκτρέφονται εδώ και χρόνια σε ειδικές εγκαταστάσεις στο Κολοράντο και το Άινταχο των Η.Π.Α., ενώ παρόμοιες εφαρμογές σχεδιάζονται και στην Ισλανδία. Οι θερμοκρασίες που απαιτούνται για τα υδρόβια είδη κυμαίνονται κατά βάση μεταξύ 20 και 30ºC. Το μέγεθος των εγκαταστάσεων εξαρτάται από την αρχική θερμοκρασία των ρευστών, τη θερμοκρασία που απαιτείται στις δεξαμενές εκτροφής και από τις θερμικές απώλειες των τελευταίων. Τα γεωθερμικά ρευστά, σε ολόκληρο το θερμοκρασιακό τους εύρος, είτε πρόκειται για ατμό είτε για νερό, μπορούν να αξιοποιηθούν και σε βιομηχανικές εφαρμογές, όπως άλλωστε φαίνεται από το διάγραμμα του Lindal Οι διάφορες δυνατές μορφές αξιοποίησης περιλαμβάνουν θέρμανση κατά τη διεργασία, εξάτμιση, ξήρανση, απόσταξη, αποστείρωση, πλύσιμο, λιώσιμο πάγων και ανάκτηση αλάτων. Η χρήση της γεωθερμικής θερμότητας κατά τη βιομηχανική επεξεργασία διάφορων προϊόντων εφαρμόζεται σε 19 χώρες (Lund and Freeston, 2001), όπου οι εγκαταστάσεις είναι γενικά πολύ μεγάλες και η κατανάλωση ενέργειας 36

38 υψηλή. Άλλα συγκεκριμένα παραδείγματα βιομηχανικών εφαρμογών είναι η εμφιάλωση νερού και ανθρακούχων ποτών, η παραγωγή χαρτιού, τμημάτων αυτοκινήτων, η ανάκτηση λαδιού, η παστερίωση γάλακτος, η χρήση στη βυρσοδεψία, η χημική ανάκτηση προϊόντων, η παραγωγή με διαχωρισμό του CO2, η χρήση σε πλυντήρια, η ξήρανση γης διατόμων, η επεξεργασία πολτού και χαρτιού και η παραγωγή βορικών αλάτων και βορικού οξέος. Υπάρχουν επίσης εφαρμογές για χρήση των γεωθερμικών ρευστών χαμηλής θερμοκρασίας για λιώσιμο πάγου και αντιπαγετική προστασία πεζοδρομίων, δρόμων και πλατειών, ως και σχέδια για τη διάλυση της ομίχλης σε κάποια αεροδρόμια. Στην Ιαπωνία λειτουργεί μια μικρή βιομηχανία που χρησιμοποιεί τις λευκαντικές ιδιότητες του υδρόθειου (H2S) των γεωθερμικών νερών για την παραγωγή πρωτοποριακών και εξαιρετικής ποιότητας υφασμάτων για γυναικεία ρούχα. Στην ίδια χώρα, εφαρμόζεται σε πειραματικό στάδιο μια τεχνική για τη βιοτεχνική-βιομηχανική παρασκευή ενός ελαφρού «γεωθερμικού ξύλου», το οποίο θεωρείται ιδιαίτερα κατάλληλο για ειδικές κατασκευές. Κατά την επεξεργασία του κανονικού ξύλου με το νερό μιας γεωθερμικής πηγής, τα πολυσακχαρίδιά του υφίστανται υδρόλυση, οπότε το υλικό γίνεται πιο πορώδες και συνεπώς ελαφρύτερο ΑΞΙΟΠΟΙΗΣΗ ΤΗΣ ΑΒΑΘΟΥΣ ΓΕΩΘΕΡΜΙΑΣ ΤΙ ΕΙΝΑΙ Η ΑΒΑΘΗΣ ΓΕΩΘΕΡΜΙΑ Είναι γνωστό ότι τα πηγάδια έχουν ζεστό νερό το χειμώνα, ενώ το καλοκαίρι το ίδιο νερό είναι δροσερό. Βέβαια, το νερό δεν αλλάζει θερμοκρασία, όμως στο βάθος που ρέει, η θερμοκρασία της γης είναι περίπου σταθερή ανεξάρτητα αν είναι καλοκαίρι ή χειμώνας. Θα μπορούσαμε να πούμε ότι σε βάθος από 6 μ. έως 100 μ. η θερμοκρασία παραμένει σταθερή και είναι περίπου ίση με την μέση ετήσια θερμοκρασία του αέρα για τον συγκεκριμένο τόπο. Στην χώρα μας αυτό σημαίνει ότι σε τέτοιο βάθος η θερμοκρασία βρίσκεται ανάμεσα στους C. 37

Νίκος Ανδρίτσος. Συνέδριο ΙΕΝΕ, Σύρος, 20-21 Ιουνίου 2008. Τμήμα Γεωλογίας Α.Π.Θ. Τμήμα Μηχανολόγων Μηχανικών Βιομηχανίας Πανεπιστήμιο Θεσσαλίας

Νίκος Ανδρίτσος. Συνέδριο ΙΕΝΕ, Σύρος, 20-21 Ιουνίου 2008. Τμήμα Γεωλογίας Α.Π.Θ. Τμήμα Μηχανολόγων Μηχανικών Βιομηχανίας Πανεπιστήμιο Θεσσαλίας Το Ενεργειακό Πρόβλημα των Κυκλάδων: Κρίσιμα Ερωτήματα και Προοπτικές Συνέδριο ΙΕΝΕ, Σύρος, 20-21 Ιουνίου 2008 Γεωθερμικές Εφαρμογές στις Κυκλάδες και Εφαρμογές Υψηλής Ενθαλπίας Μιχάλης Φυτίκας Τμήμα Γεωλογίας

Διαβάστε περισσότερα

ΜΕΛΕΤΗ ΤΗΣ ΔΥΝΑΤΟΤΗΤΑΣ ΑΞΙΟΠΟΙΗΣΗΣ ΤΩΝ ΓΕΩΘΕΡΜΙΚΩΝ ΠΕΔΙΩΝ ΤΟΥ ΝΟΜΟΥ ΣΕΡΡΩΝ

ΜΕΛΕΤΗ ΤΗΣ ΔΥΝΑΤΟΤΗΤΑΣ ΑΞΙΟΠΟΙΗΣΗΣ ΤΩΝ ΓΕΩΘΕΡΜΙΚΩΝ ΠΕΔΙΩΝ ΤΟΥ ΝΟΜΟΥ ΣΕΡΡΩΝ Τ.Ε.Ι. ΚΑΒΑΛΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΙΑΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΜΕΛΕΤΗ ΤΗΣ ΔΥΝΑΤΟΤΗΤΑΣ ΑΞΙΟΠΟΙΗΣΗΣ ΤΩΝ ΓΕΩΘΕΡΜΙΚΩΝ ΠΕΔΙΩΝ ΤΟΥ ΝΟΜΟΥ ΣΕΡΡΩΝ Πούλιος Δημήτριος Α.Ε.Μ.: 4389 Χαραλαμπίδης Ιωάννης

Διαβάστε περισσότερα

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ: ΓΕΩΘΕΡΜΙΚΗ ΕΝΕΡΓΕΙΑ ΤΣΑΝΑΚΑΣ ΑΝΑΣΤΑΣΙΟΣ ΜΩΥΣΙΔΗΣ ΓΕΩΡΓΙΟΣ

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ: ΓΕΩΘΕΡΜΙΚΗ ΕΝΕΡΓΕΙΑ ΤΣΑΝΑΚΑΣ ΑΝΑΣΤΑΣΙΟΣ ΜΩΥΣΙΔΗΣ ΓΕΩΡΓΙΟΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ: ΓΕΩΘΕΡΜΙΚΗ ΕΝΕΡΓΕΙΑ ΤΣΑΝΑΚΑΣ ΑΝΑΣΤΑΣΙΟΣ ΜΩΥΣΙΔΗΣ ΓΕΩΡΓΙΟΣ ΕΠΙΒΛΕΠΩΝ ΚΑΘΗΓΗΤΗΣ ΚΟΝΙΤΟΠΟΥΛΟΣ ΓΕΩΡΓΙΟΣ Εισαγωγή Άνθρωπος και ενέργεια Σχεδόν ταυτόχρονα με την εμφάνιση του ανθρώπου στη γη,

Διαβάστε περισσότερα

Η Γεωθερμία στην Ελλάδα

Η Γεωθερμία στην Ελλάδα ΤΕΙ ΠΕΙΡΑΙΑ Τμήμα Ηλεκτρολόγων Μηχανικών Τ.Ε. Η Γεωθερμία στην Ελλάδα Ομάδα Παρουσίασης Επιβλέπουσα Θύμιος Δημήτρης κ. Ζουντουρίδου Εριέττα Κατινάς Νίκος Αθήνα 2014 Τι είναι η γεωθερμία; Η Γεωθερμική ενέργεια

Διαβάστε περισσότερα

Θέρμανση θερμοκηπίων με τη χρήση αβαθούς γεωθερμίας γεωθερμικές αντλίες θερμότητας

Θέρμανση θερμοκηπίων με τη χρήση αβαθούς γεωθερμίας γεωθερμικές αντλίες θερμότητας Θέρμανση θερμοκηπίων με τη χρήση αβαθούς γεωθερμίας γεωθερμικές αντλίες θερμότητας Η θερμοκρασία του εδάφους είναι ψηλότερη από την ατμοσφαιρική κατά τη χειμερινή περίοδο, χαμηλότερη κατά την καλοκαιρινή

Διαβάστε περισσότερα

Εισαγωγή στην Ενεργειακή Τεχνολογία Γεωθερµική Ενέργεια. Ιωάννης Στεφανάκος

Εισαγωγή στην Ενεργειακή Τεχνολογία Γεωθερµική Ενέργεια. Ιωάννης Στεφανάκος Εισαγωγή στην Ενεργειακή Τεχνολογία Γεωθερµική Ενέργεια Ιωάννης Στεφανάκος Τοµέας Υδατικών Πόρων & Περιβάλλοντος - Εθνικό Μετσόβιο Πολυτεχνείο Αθήνα 2010 ιάρθρωση παρουσίασης: Γεωθερµική Ενέργεια Εισαγωγή

Διαβάστε περισσότερα

ΓΕΩΘΕΡΜΙΚΗ ΕΝΕΡΓΕΙΑ Geothermal Energy

ΓΕΩΘΕΡΜΙΚΗ ΕΝΕΡΓΕΙΑ Geothermal Energy Τεχνολογικό Εκπαιδευτικό Ίδρυμα Καβάλας Σχολή Τεχνολογικών Εφαρμογών Τμήμα Τεχνολογίας Πετρελαίου και Φυσικού Αερίου ΓΕΩΘΕΡΜΙΚΗ ΕΝΕΡΓΕΙΑ Geothermal Energy Πτυχιακή εργασία της σπουδάστριας: ΣΟΦΙΑΣ ΦΙΣΤΗ

Διαβάστε περισσότερα

Ανανεώσιμες Πηγές Ενέργειας (Α.Π.Ε.)

Ανανεώσιμες Πηγές Ενέργειας (Α.Π.Ε.) ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Ανανεώσιμες Πηγές Ενέργειας (Α.Π.Ε.) Ενότητα 5: Γεωθερμία Σπύρος Τσιώλης Τμήμα Ηλεκτρολόγων Μηχανικών ΤΕ Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

Ενότητα 2: Τεχνικές πτυχές και διαδικασίες εγκατάστασης συστημάτων αβαθούς γεθερμίας

Ενότητα 2: Τεχνικές πτυχές και διαδικασίες εγκατάστασης συστημάτων αβαθούς γεθερμίας ΚΕΝΤΡΟ ΑΝΑΝΕΩΣΙΜΩΝ ΠΗΓΩΝ ΚΑΙ ΕΞΟΙΚΟΝΟΜΗΣΗΣ ΕΝΕΡΓΕΙΑΣ Ενότητα 2: Τεχνικές πτυχές και διαδικασίες εγκατάστασης συστημάτων αβαθούς γεθερμίας «Συστήματα ΓΑΘ Ταξινόμηση Συστημάτων ΓΑΘ και Εναλλαγή Θερμότητας

Διαβάστε περισσότερα

Γεωθερμία Εξοικονόμηση Ενέργειας

Γεωθερμία Εξοικονόμηση Ενέργειας GRV Energy Solutions S.A Γεωθερμία Εξοικονόμηση Ενέργειας Ανανεώσιμες Πηγές Σκοπός της GRV Ενεργειακές Εφαρμογές Α.Ε. είναι η κατασκευή ενεργειακών συστημάτων που σέβονται το περιβάλλον με εκμετάλλευση

Διαβάστε περισσότερα

ΓΕΩΘΕΡΜΙΑ - Η ΘΕΡΜΙΚΗ ΕΝΕΡΓΕΙΑ ΤΗΣ ΓΗΣ ΩΣ ΛΥΣΗ ΣΤΟ ΕΝΕΡΓΕΙΑΚΟ ΕΛΛΕΙΜΑ ΤΗΣ ΕΠΟΧΗΣ

ΓΕΩΘΕΡΜΙΑ - Η ΘΕΡΜΙΚΗ ΕΝΕΡΓΕΙΑ ΤΗΣ ΓΗΣ ΩΣ ΛΥΣΗ ΣΤΟ ΕΝΕΡΓΕΙΑΚΟ ΕΛΛΕΙΜΑ ΤΗΣ ΕΠΟΧΗΣ 2 ο Λύκειο Λαμίας Τμήμα: Α 3 2 η ομάδα ΓΕΩΘΕΡΜΙΑ - Η ΘΕΡΜΙΚΗ ΕΝΕΡΓΕΙΑ ΤΗΣ ΓΗΣ ΩΣ ΛΥΣΗ ΣΤΟ ΕΝΕΡΓΕΙΑΚΟ ΕΛΛΕΙΜΑ ΤΗΣ ΕΠΟΧΗΣ Θεματική ενότητα: Γεωλογικό μέρος της γεωθερμίας ΜΑΣ ΜΕΛΗ ΟΜΑΔΑΣ: Πανάγου Ράνια,

Διαβάστε περισσότερα

Αντλίες θερμότητας πολλαπλών πηγών (αέρας, γη, ύδατα) συνδυασμένης παραγωγής θέρμανσης / ψύξης Εκδήλωση ελληνικού παραρτήματος ASHRAE 16.02.

Αντλίες θερμότητας πολλαπλών πηγών (αέρας, γη, ύδατα) συνδυασμένης παραγωγής θέρμανσης / ψύξης Εκδήλωση ελληνικού παραρτήματος ASHRAE 16.02. Αντλίες θερμότητας πολλαπλών πηγών (αέρας, γη, ύδατα) συνδυασμένης παραγωγής θέρμανσης / ψύξης Εκδήλωση ελληνικού παραρτήματος ASHRAE 16.02.2012 Μητσάκης Ευάγγελος, Μηχανολόγος Μηχανικός Υπεύθυνος πωλήσεων

Διαβάστε περισσότερα

ΓΕΝΙΚΕΣ ΑΡΧΕΣ ΓΕΩΘΕΡΜΙΑΣ ΕΦΑΡΜΟΓΗ ΣΕ ΟΙΚΙΑΚΕΣ ΕΓΚΑΤΑΣΤΑΣΕΙΣ

ΓΕΝΙΚΕΣ ΑΡΧΕΣ ΓΕΩΘΕΡΜΙΑΣ ΕΦΑΡΜΟΓΗ ΣΕ ΟΙΚΙΑΚΕΣ ΕΓΚΑΤΑΣΤΑΣΕΙΣ ΓΕΝΙΚΕΣ ΑΡΧΕΣ ΓΕΩΘΕΡΜΙΑΣ ΕΦΑΡΜΟΓΗ ΣΕ ΟΙΚΙΑΚΕΣ ΕΓΚΑΤΑΣΤΑΣΕΙΣ ΠΛΕΟΝΕΚΤΗΜΑΤΑ Δ.Μενδρινός, Κ.Καρύτσας Κέντρο Ανανεώσιμων Πηγών και Εξοικονόμησης Ενέργειας Νοέμβριος 2009 Γεωθερμική Ενέργεια: η θερμότητα της

Διαβάστε περισσότερα

Περιβαλλοντικές επιδράσεις γεωθερμικών εκμεταλλεύσεων

Περιβαλλοντικές επιδράσεις γεωθερμικών εκμεταλλεύσεων ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΓΕΩΛΟΓΙΑΣ ΗΠΙΕΣ ΜΟΡΦΕΣ ΕΝΕΡΓΕΙΑΣ ΔΙΑΛΕΞΗ ΙΙI Περιβαλλοντικές επιδράσεις γεωθερμικών εκμεταλλεύσεων ΑΠΟ Δρ. Α. ΤΖΑΝΗ ΕΠΙΚΟΥΡΟ ΚΑΘΗΓΗΤΗ ΓΕΩΦΥΣΙΚΗΣ ΚΛΑΣΣΙΚΗ

Διαβάστε περισσότερα

Γεωθερµικό Σύστηµα: Γεωθερµική Αντλία Θερµότητας

Γεωθερµικό Σύστηµα: Γεωθερµική Αντλία Θερµότητας Γεωθερµικό Σύστηµα: Γεωθερµική Αντλία Θερµότητας Η Αντλία Θερµότητας ανήκει στην κατηγορία των Ανανεώσιµων Πηγών Ενέργειας. Για την θέρµανση, το ζεστό νερό χρήσης και για την ψύξη, το 70-80% της ενέργειας

Διαβάστε περισσότερα

Εγκρίνεται η Πτυχιακή Εργασία Καβάλα, / /2010

Εγκρίνεται η Πτυχιακή Εργασία Καβάλα, / /2010 Εγκρίνεται η Πτυχιακή Εργασία Καβάλα, / /2010 Η επιβλέπουσα Καθηγήτρια Ο Προϊστάμενος του Τμήματος Κόγια Φωτεινή Σωτηρόπουλος Φίλιππος Η Εξεταστική Επιτροπή 1. Κόγια Φωτεινή 2. Ανδρεάδου Ελισάβετ 3. Αντωνιάδης

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΓΕΩΘΕΡΜΙΑΣ. Τους δάνεισα το περιβάλλον που θα ζήσω. Θα μου το επιστρέψουν καθαρό;

ΣΥΣΤΗΜΑΤΑ ΓΕΩΘΕΡΜΙΑΣ. Τους δάνεισα το περιβάλλον που θα ζήσω. Θα μου το επιστρέψουν καθαρό; ΣΥΣΤΗΜΑΤΑ ΓΕΩΘΕΡΜΙΑΣ Τους δάνεισα το περιβάλλον που θα ζήσω. Θα μου το επιστρέψουν καθαρό; ΠΡΟΓΡΑΜΜΑ ΕΞΟΙΚΟΝΩΜΗΣΗΣ ΕΝΕΡΓΕΙΑΣ APOLYTON : ΠΑΡΑΓΩΓΗ ΕΝΕΡΓΕΙΑΣ ΚΟΥΦΩΜΑΤΑ ΥΨΗΛΗΣ Θ Προστατέψτε το περιβάλλον και

Διαβάστε περισσότερα

Ορισμοί και βασικές έννοιες της αβαθούς γεωθερμίας Συστήματα αβαθούς γεωθερμίας

Ορισμοί και βασικές έννοιες της αβαθούς γεωθερμίας Συστήματα αβαθούς γεωθερμίας Ορισμοί και βασικές έννοιες της αβαθούς γεωθερμίας Συστήματα Ενότητες: 1.1 Η παροχή θερμικής ενέργειας στα κτίρια 1.2 Τα συστήματα της σε ευρωπαϊκό & τοπικό επίπεδο 1.3 Το δυναμικό των συστημάτων της 1.1

Διαβάστε περισσότερα

Γεωθερμική ενέργεια και Τοπική Αυτοδιοίκηση Το παράδειγμα του γεωθερμικού πεδίου Αρίστηνου-Αλεξανδρούπολης

Γεωθερμική ενέργεια και Τοπική Αυτοδιοίκηση Το παράδειγμα του γεωθερμικού πεδίου Αρίστηνου-Αλεξανδρούπολης Σχεδιάζοντας τη Μετάβαση προς Ενεργειακά Αποδοτικές Πόλεις Εξοικονόμηση Ενέργειας σε επίπεδο Δήμων και Δημοτών 11 12 Ιουνίου 2015, Αθήνα Γεωθερμική ενέργεια και Τοπική Αυτοδιοίκηση Το παράδειγμα του γεωθερμικού

Διαβάστε περισσότερα

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ. Θέµα: «EΞΟΙΚΟΝΟΜΗΣΗ ΕΝΕΡΓΕΙΑΣ ΘΕΡΜΑΝΣΗΣ- ΚΛΙΜΑΤΙΣΜΟΥ ΜΕ ΓΕΩΘΕΡΜΙΑ ΣΕ ΚΑΤΟΙΚΙΑ» ΣΠΟΥ ΑΣΤΗΣ : ΜΠΙΝΙΑΡΗΣ ΓΕΩΡΓΙΟΣ

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ. Θέµα: «EΞΟΙΚΟΝΟΜΗΣΗ ΕΝΕΡΓΕΙΑΣ ΘΕΡΜΑΝΣΗΣ- ΚΛΙΜΑΤΙΣΜΟΥ ΜΕ ΓΕΩΘΕΡΜΙΑ ΣΕ ΚΑΤΟΙΚΙΑ» ΣΠΟΥ ΑΣΤΗΣ : ΜΠΙΝΙΑΡΗΣ ΓΕΩΡΓΙΟΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ Θέµα: «EΞΟΙΚΟΝΟΜΗΣΗ ΕΝΕΡΓΕΙΑΣ ΘΕΡΜΑΝΣΗΣ- ΚΛΙΜΑΤΙΣΜΟΥ ΜΕ ΓΕΩΘΕΡΜΙΑ ΣΕ ΚΑΤΟΙΚΙΑ» ΣΠΟΥ ΑΣΤΗΣ : ΜΠΙΝΙΑΡΗΣ ΓΕΩΡΓΙΟΣ ΕΙΣΗΓΗΤΗΣ ΚΑΘΗΓΗΤΗΣ ΦΡΑΓΚΙΑ ΑΚΗΣ ΜΙΧΑΗΛ ΗΡΑΚΛΕΙΟ 2012 ΠΡΟΛΟΓΟΣ Η εργασία

Διαβάστε περισσότερα

Ήπιες και νέες μορφές ενέργειας

Ήπιες και νέες μορφές ενέργειας Τμήμα Μηχανολόγων Μηχανικών Ήπιες και νέες μορφές ενέργειας Ενότητα : Γεωθερμική Ενέργεια IΙ Σκόδρας Γεώργιος, Αν. Καθηγητής gskodras@uowm.gr Τμήμα Μηχανολόγων Μηχανικών Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Γεωθερμικές Αντλίες Θερμότητας στον κτιριακό τομέα

Γεωθερμικές Αντλίες Θερμότητας στον κτιριακό τομέα 1 3η ΔιεθνήςΈκθεσηΕξοικονόμησηςκαι Ανανεώσιμων Πηγών Ενέργειας EnergyReS 2009 19-22 Φεβρουαρίου 2009 Γεωθερμικές Αντλίες Θερμότητας στον κτιριακό τομέα Αναστασία Μπένου Διπλ. Μηχανολόγος Μηχανικός, MSc

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΑΠΕ. Βισκαδούρος Γ. Ι. Φραγκιαδάκης Φ. Μαυροματάκης

ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΑΠΕ. Βισκαδούρος Γ. Ι. Φραγκιαδάκης Φ. Μαυροματάκης ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΑΠΕ Βισκαδούρος Γ. Ι. Φραγκιαδάκης Φ. Μαυροματάκης ΕΙΣΑΓΩΓΗ Ο όρος βιομάζα μπορεί να δηλώσει : α) Τα υλικά ή τα υποπροϊόντα και κατάλοιπα της φυσικής, ζωικής δασικής και αλιευτικής παραγωγής

Διαβάστε περισσότερα

Γεωθερμικές Αντλίες Θερμότητας Τεχνολογία και παραδείγματα εφαρμογών

Γεωθερμικές Αντλίες Θερμότητας Τεχνολογία και παραδείγματα εφαρμογών 2η Διεθνής Έκθεση Εξοικονόμησης και Ανανεώσιμων Πηγών Ενέργειας EnergyReS 2008 10-13 Απριλίου 2008 Γεωθερμικές Αντλίες Θερμότητας Τεχνολογία και παραδείγματα εφαρμογών Αναστασία Μπένου Διπλ. Μηχανολόγος

Διαβάστε περισσότερα

Ετήσια απόδοση συστημάτων θέρμανσης

Ετήσια απόδοση συστημάτων θέρμανσης Ετήσια απόδοση συστημάτων θέρμανσης Παρουσίαση ASHRAE, 09.04.2013 Σωτήρης Κατσιμίχας, Δρ. Μηχανολόγος Μηχανικός Διευθύνων Σύμβουλος Θερμογκάζ Α.Ε. Μελέτη θερμικών απωλειών 1 kw 3 kw 3 kw θερμαντικά σώματα

Διαβάστε περισσότερα

Πράσινη θερµότητα Ένας µικρός πρακτικός οδηγός

Πράσινη θερµότητα Ένας µικρός πρακτικός οδηγός Πράσινη θερµότητα Ένας µικρός πρακτικός οδηγός Αν δεν πιστεύετε τις στατιστικές, κοιτάξτε το πορτοφόλι σας. Πάνω από τη µισή ενέργεια που χρειάζεται ένα σπίτι, καταναλώνεται για τις ανάγκες της θέρµανσης

Διαβάστε περισσότερα

ΑΝΤΛΙΕΣ ΘΕΡΜΟΤΗΤΑΣ ΚΑΙ ΕΝΔΟΔΑΠΕΔΙΑ ΘΕΡΜΑΝΣΗ: ΕΦΑΡΜΟΓΕΣ ΣΕ ΣΥΣΤΗΜΑΤΑ ΘΕΡΜΑΝΣΗΣ ΚΤΙΡΙΩΝ ΚΑΤΟΙΚΙΩΝ

ΑΝΤΛΙΕΣ ΘΕΡΜΟΤΗΤΑΣ ΚΑΙ ΕΝΔΟΔΑΠΕΔΙΑ ΘΕΡΜΑΝΣΗ: ΕΦΑΡΜΟΓΕΣ ΣΕ ΣΥΣΤΗΜΑΤΑ ΘΕΡΜΑΝΣΗΣ ΚΤΙΡΙΩΝ ΚΑΤΟΙΚΙΩΝ ΑΝΩΤΑΤΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΠΕΙΡΑΙΑ ΣΧΟΛΗ: ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ: ΗΛΕΚΤΡΟΛΟΓΙΑΣ Επιβλέπων: ΠΕΤΡΟΣ Γ. ΒΕΡΝΑΔΟΣ, Καθηγητής ΑΝΤΛΙΕΣ ΘΕΡΜΟΤΗΤΑΣ ΚΑΙ ΕΝΔΟΔΑΠΕΔΙΑ ΘΕΡΜΑΝΣΗ:

Διαβάστε περισσότερα

ΗλιακοίΣυλλέκτες. Γιάννης Κατσίγιαννης

ΗλιακοίΣυλλέκτες. Γιάννης Κατσίγιαννης ΗλιακοίΣυλλέκτες Γιάννης Κατσίγιαννης Ηλιακοίσυλλέκτες Ο ηλιακός συλλέκτης είναι ένα σύστηµα που ζεσταίνει συνήθως νερό ή αέρα χρησιµοποιώντας την ηλιακή ακτινοβολία Συνήθως εξυπηρετεί ανάγκες θέρµανσης

Διαβάστε περισσότερα

Γεωθερµική Ενέργεια και Εφαρµογές Νίκος Ανδρίτσος

Γεωθερµική Ενέργεια και Εφαρµογές Νίκος Ανδρίτσος Γεωθερµική Ενέργεια και Εφαρµογές Νίκος Ανδρίτσος Επίκουρος Καθηγητής Τµήµα Μηχανολόγων Μηχανικών Βιοµηχανίας, Πανεπιστήµιο Θεσσαλίας Γεωθερµική Ενέργεια Γεωθερµική ενέργεια είναι στην κυριολεξία η θερµότητα

Διαβάστε περισσότερα

ΓΕΩΘΕΡΜΙΑ ΚΑΙ ΤΥΠΟΠΟΙΗΣΗ

ΓΕΩΘΕΡΜΙΑ ΚΑΙ ΤΥΠΟΠΟΙΗΣΗ ΓΕΩΘΕΡΜΙΑ ΚΑΙ ΤΥΠΟΠΟΙΗΣΗ Μ. Φυτίκας Οµότιµος καθηγητής ΑΠΘ Ν. Ανδρίτσος, ΧΜ, Αναπλ. Καθηγητής Τµήµατος Μηχ/γων Μηχ/κών Παν. Θεσσαλίας Ρ. ρακούλης, ΜΜ, Σύµβουλος Επιχειρήσεων Λέξεις κλειδιά Γεωθερµία και

Διαβάστε περισσότερα

ΥΠΕΥΘΥΝΕΣ ΚΑΘΗΓΗΤΡΙΕΣ: Κωνσταντινιά Τσιρογιάννη. Βασιλική Χατζηκωνσταντίνου (ΠΕ04)

ΥΠΕΥΘΥΝΕΣ ΚΑΘΗΓΗΤΡΙΕΣ: Κωνσταντινιά Τσιρογιάννη. Βασιλική Χατζηκωνσταντίνου (ΠΕ04) ΥΠΕΥΘΥΝΕΣ ΚΑΘΗΓΗΤΡΙΕΣ: Κωνσταντινιά Τσιρογιάννη (ΠΕ02) Βασιλική Χατζηκωνσταντίνου (ΠΕ04) Β T C E J O R P Υ Ν Η Μ Α Ρ Τ ΤΕ Α Ν Α Ν Ε Ω ΣΙ Μ ΕΣ Π Η ΓΕ Σ ΕΝ Ε Ρ ΓΕ Ι Α Σ. Δ Ι Ε Ξ Δ Σ Α Π ΤΗ Ν Κ Ρ Ι ΣΗ 2 Να

Διαβάστε περισσότερα

Τ.Ε.Ι. ΗΡΑΚΛΕΙΟΥ ΚΡΗΤΗΣ ΣΧΟΛΗ ΜΗΧΑΝΟΛΟΓΙΑΣ

Τ.Ε.Ι. ΗΡΑΚΛΕΙΟΥ ΚΡΗΤΗΣ ΣΧΟΛΗ ΜΗΧΑΝΟΛΟΓΙΑΣ Τ.Ε.Ι. ΗΡΑΚΛΕΙΟΥ ΚΡΗΤΗΣ ΣΧΟΛΗ ΜΗΧΑΝΟΛΟΓΙΑΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ Τεχνικοοικονοµική µελέτη σκοπιµότητας και ενδεικτική µελέτη εγκατάστασης για κλιµατισµό σχολικού κτηρίου µε αβαθή γεωθερµία. Σπουδαστής: Τσατσάκης

Διαβάστε περισσότερα

Ανανεώσιμες Πηγές Ενέργειας

Ανανεώσιμες Πηγές Ενέργειας Ορισμός «Ανανεώσιμες Πηγές Ενέργειας (ΑΠΕ) είναι οι μη ορυκτές ανανεώσιμες πηγές ενέργειας, δηλαδή η αιολική, η ηλιακή και η γεωθερμική ενέργεια, η ενέργεια κυμάτων, η παλιρροϊκή ενέργεια, η υδραυλική

Διαβάστε περισσότερα

Παρουσίαση του συστήµατος γεωθερµικών αντλιών του ηµαρχείου Πυλαίας

Παρουσίαση του συστήµατος γεωθερµικών αντλιών του ηµαρχείου Πυλαίας ηµήτρης Μπόζης ρ. Μηχανολόγος Μηχανικός, Μελετητής Παρουσίαση του συστήµατος γεωθερµικών αντλιών του ηµαρχείου Πυλαίας Ηµερίδα «Κτίρια σχεδόν Μηδενικής Κατανάλωσης Ενέργειας - Από τη θεωρία στην πράξη»

Διαβάστε περισσότερα

4η Εβδοµάδα Ενέργειας ΙΕΝΕ Επιχειρηµατική Συνάντηση «ΙΕΝΕ B2B» Συνεδριακό Κέντρο Εθνικής Ασφαλιστικής 25-27 Νοεµβρίου 2010 Αξιοποίηση Γεωθερµικών Αντλιών Θερµότητας στο δοµηµένο περιβάλλον A. Μπένου, Ι.

Διαβάστε περισσότερα

ΓΕΩΘΕΡΜΙΑ & ΣΥΣΤΗΜΑΤΑ ΕΦΑΡΜΟΓΩΝ: Yr host 4 today: Νικόλαος Ψαρράς

ΓΕΩΘΕΡΜΙΑ & ΣΥΣΤΗΜΑΤΑ ΕΦΑΡΜΟΓΩΝ: Yr host 4 today: Νικόλαος Ψαρράς ΓΕΩΘΕΡΜΙΑ & ΣΥΣΤΗΜΑΤΑ ΕΦΑΡΜΟΓΩΝ: Γιατί να επιλέξει κανείς τη γεωθερµία ; Ποιος ο ρόλος των γεωθερµικών αντλιών θερµότητας ; Yr host 4 today: Νικόλαος Ψαρράς ΓΕΩΘΕΡΜΙΑ ( Με στόχο την ενηµέρωση περί γεωθερµικών

Διαβάστε περισσότερα

ΑΞΙΟΠΟΙΗΣΗ ΓΕΩΘΕΡΜΙΑΣ ΜΕ ΧΡΗΣΗ ΑΝΤΛΙΩΝ ΘΕΡΜΟΤΗΤΑΣ

ΑΞΙΟΠΟΙΗΣΗ ΓΕΩΘΕΡΜΙΑΣ ΜΕ ΧΡΗΣΗ ΑΝΤΛΙΩΝ ΘΕΡΜΟΤΗΤΑΣ ΤΕΙ ΣΕΡΡΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΙΑΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΑΞΙΟΠΟΙΗΣΗ ΓΕΩΘΕΡΜΙΑΣ ΜΕ ΧΡΗΣΗ ΑΝΤΛΙΩΝ ΘΕΡΜΟΤΗΤΑΣ ΛΙΟΥΤΑΣ ΓΕΩΡΓΙΟΣ-ΑΕΜ 4869 ΠΑΠΑΔΑΚΗΣ ΖΑΧΑΡΙΑΣ-ΑΕΜ 4817 ΕΠΙΒΛΕΠΩΝ ΓΚΑΒΑΛΙΑΣ ΒΑΣΙΛΕΙΟΣ ΣΕΡΡΕΣ 2009 1 ΠΕΡΙΕΧΟΜΕΝΑ

Διαβάστε περισσότερα

Μήλου και προοπτικές ανάπτυξης του. Θόδωρος. Τσετσέρης

Μήλου και προοπτικές ανάπτυξης του. Θόδωρος. Τσετσέρης Το γεωθερμικό πεδίο της Μήλου και προοπτικές ανάπτυξης του 21 Ιουνίου, 2008 Θόδωρος. Τσετσέρης Τι είναι η Γεωθερμία; Η Γεωθερμική ενέργεια δημιουργείται από την αποθηκευμένη θερμότητα στο εσωτερικό της

Διαβάστε περισσότερα

Κώστας Κωνσταντίνου Τμήμα Γεωλογικής Επισκόπησης

Κώστας Κωνσταντίνου Τμήμα Γεωλογικής Επισκόπησης Έρευνες για τεχνητό εμπλουτισμό των υπόγειων νερών της Κύπρου με νερό τριτοβάθμιας επεξεργασίας (παραδείγματα από Λεμεσό και Κοκκινοχώρια) Κώστας Κωνσταντίνου Τμήμα Γεωλογικής Επισκόπησης Υπουργείο Γεωργίας,

Διαβάστε περισσότερα

ΔΙΕΞΑΓΩΓΗ ΔΙΕΘΝΟΥΣ ΔΙΑΓΩΝΙΣΜΟΥ ΓΙΑ ΤΗΝ ΕΚΜΙΣΘΩΣΗ ΠΕΡΙΟΧΩΝ ΓΙΑ ΕΡΕΥΝΑ ΓΕΩΘΕΡΜΙΑΣ ΥΨΗΛΩΝ ΘΕΡΜΟΚΡΑΣΙΩΝ

ΔΙΕΞΑΓΩΓΗ ΔΙΕΘΝΟΥΣ ΔΙΑΓΩΝΙΣΜΟΥ ΓΙΑ ΤΗΝ ΕΚΜΙΣΘΩΣΗ ΠΕΡΙΟΧΩΝ ΓΙΑ ΕΡΕΥΝΑ ΓΕΩΘΕΡΜΙΑΣ ΥΨΗΛΩΝ ΘΕΡΜΟΚΡΑΣΙΩΝ ΔΙΕΞΑΓΩΓΗ ΔΙΕΘΝΟΥΣ ΔΙΑΓΩΝΙΣΜΟΥ ΓΙΑ ΤΗΝ ΕΚΜΙΣΘΩΣΗ ΠΕΡΙΟΧΩΝ ΓΙΑ ΕΡΕΥΝΑ ΓΕΩΘΕΡΜΙΑΣ ΥΨΗΛΩΝ ΘΕΡΜΟΚΡΑΣΙΩΝ Το ΥΠΕΚΑ αναλαμβάνει συντονισμένες πρωτοβουλίες ώστε να αξιοποιηθεί σωστά και υπεύθυνα το γεωθερμικό

Διαβάστε περισσότερα

4 η Εβδομάδα Ενέργειας ΙΕΝΕ, 22-27 Νοεμβρίου 2010, Αθήνα Μ. ΦΥΤΙΚΑΣ-Μ. ΠΑΠΑΧΡΗΣΤΟΥ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΓΕΩΛΟΓΙΑΣ

4 η Εβδομάδα Ενέργειας ΙΕΝΕ, 22-27 Νοεμβρίου 2010, Αθήνα Μ. ΦΥΤΙΚΑΣ-Μ. ΠΑΠΑΧΡΗΣΤΟΥ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΓΕΩΛΟΓΙΑΣ 4 η Εβδομάδα Ενέργειας ΙΕΝΕ, 22-27 Νοεμβρίου 2010, Αθήνα Επιχειρηµατική Συνάντηση «ΕΝΕΡΓΕΙΑ Β2Β» - Workshop J «ΓΕΩΘΕΡΜΙΑ» Μ. ΦΥΤΙΚΑΣ-Μ. ΠΑΠΑΧΡΗΣΤΟΥ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΓΕΩΛΟΓΙΑΣ

Διαβάστε περισσότερα

Γεωθερμικές Αντλίες Θερμότητας Εφαρμογές του ΚΑΠΕ στην Ελλάδα

Γεωθερμικές Αντλίες Θερμότητας Εφαρμογές του ΚΑΠΕ στην Ελλάδα GROUNDREACH HEATING AND COOLING WITH GROUND SOURCE HEAT PUMPS Airotel Stratos Vasilikos, Μιχαλακοπούλου 144 24 Ιανουαρίου 2008 Γεωθερμικές Αντλίες Θερμότητας Εφαρμογές του ΚΑΠΕ στην Ελλάδα Αναστασία Μπένου

Διαβάστε περισσότερα

ΦΥΣΙΚΟ ΑΕΡΙΟ. Εργασία των μαθητριών: Μπουδαλάκη Κλεοπάτρα, Λιολιοσίδου Χριστίνα, Υψηλοπούλου Δέσποινα.

ΦΥΣΙΚΟ ΑΕΡΙΟ. Εργασία των μαθητριών: Μπουδαλάκη Κλεοπάτρα, Λιολιοσίδου Χριστίνα, Υψηλοπούλου Δέσποινα. ΦΥΣΙΚΟ ΑΕΡΙΟ Εργασία των μαθητριών: Μπουδαλάκη Κλεοπάτρα, Λιολιοσίδου Χριστίνα, Υψηλοπούλου Δέσποινα. ΤΙ ΕΙΝΑΙ ΤΟ ΦΥΣΙΚΟ ΑΕΡΙΟ Το φυσικό αέριο είναι: Το φυσικό αέριο είναι ένα φυσικό προϊόν που βρίσκεται

Διαβάστε περισσότερα

1. Εναλλάκτες θερµότητας (Heat Exchangers)

1. Εναλλάκτες θερµότητας (Heat Exchangers) 1. Εναλλάκτες θερµότητας (Heat Exangers) Οι εναλλάκτες θερµότητας είναι συσκευές µε τις οποίες επιτυγχάνεται η µεταφορά ενέργειας από ένα ρευστό υψηλής θερµοκρασίας σε ένα άλλο ρευστό χαµηλότερης θερµοκρασίας.

Διαβάστε περισσότερα

Εναλλακτικές λύσεις θέρμανσης & δροσισμού στα δημοτικά κτίρια με συστήματα γεωθερμίας

Εναλλακτικές λύσεις θέρμανσης & δροσισμού στα δημοτικά κτίρια με συστήματα γεωθερμίας ΗΜΕΡΙΔΑ Ευρωπαϊκού Έργου REGEOCITIES Γεωθερμικές Αντλίες Θερμότητας Τεχνολογία Αιχμής για το παρόν & το μέλλον Εναλλακτικές λύσεις θέρμανσης & δροσισμού στα δημοτικά κτίρια με συστήματα γεωθερμίας Δρ.

Διαβάστε περισσότερα

Ήπιες και νέες μορφές ενέργειας

Ήπιες και νέες μορφές ενέργειας Τμήμα Μηχανολόγων Μηχανικών Ήπιες και νέες μορφές ενέργειας Ενότητα : Γεωθερμική Ενέργεια I Σκόδρας Γεώργιος, Αν. Καθηγητής gskodras@uowm.gr Τμήμα Μηχανολόγων Μηχανικών Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Ν. Κολιός Γεωλόγος ρ. Γεωθερµίας

Ν. Κολιός Γεωλόγος ρ. Γεωθερµίας ΠΡΟΟΠΤΙΚΕΣ ΑΞΙΟΠΟΙΗΣΗΣ ΤΟΥ ΓΕΩΘΕΡΜΙΚΟΥ ΥΝΑΜΙΚΟΥ ΣΤΟΝ ΑΓΡΟ ΙΑΤΡΟΦΙΚΟ ΤΟΜΕΑ Ν. Κολιός Γεωλόγος ρ. Γεωθερµίας Ι.Γ.Μ.Ε. Σε σχέση µε τις υπόλοιπες Α.Π.Ε., η γεωθερµική ενέργεια παρουσιάζει την υψηλότερη εγκατεστηµένη

Διαβάστε περισσότερα

Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Τμήμα Γεωλογίας/Τομέας Γεωλογίας Μιχάλης Φυτίκας, Ομ. Καθηγητής Γεωθερμίας Α.Π.Θ. Μαρία Παπαχρήστου, MSc Γεωλόγος Α.Π.Θ. Περιοχές γεωθερμικού ενδιαφέροντος στην Ελλάδα

Διαβάστε περισσότερα

ΕΦΑΡΜΟΓΗ ΜΟΝΑ Α ΑΝΑΚΥΚΛΩΣΗΣ ΝΕΡΟΥ ΚΑΙ ΜΗ ΕΝΙΚΗΣ ΑΠΟΡΡΙΨΗΣ ΥΓΡΩΝ ΑΠΟΒΛΗΤΩΝ

ΕΦΑΡΜΟΓΗ ΜΟΝΑ Α ΑΝΑΚΥΚΛΩΣΗΣ ΝΕΡΟΥ ΚΑΙ ΜΗ ΕΝΙΚΗΣ ΑΠΟΡΡΙΨΗΣ ΥΓΡΩΝ ΑΠΟΒΛΗΤΩΝ ΕΦΑΡΜΟΓΗ ΜΟΝΑ Α ΑΝΑΚΥΚΛΩΣΗΣ ΝΕΡΟΥ ΚΑΙ ΜΗ ΕΝΙΚΗΣ ΑΠΟΡΡΙΨΗΣ ΥΓΡΩΝ ΑΠΟΒΛΗΤΩΝ Πηγή: Mr.Matteo Villa HAR srl. Επιµέλεια: Κων/νος I. Νάκος SHIELCO Ltd Σελίδα 1/5 O οίκος HAR srl, Ιταλίας εξειδικεύεται στον σχεδιασµό

Διαβάστε περισσότερα

ΕΝΕΡΓΕΙΑΚΗ ΑΝΑΒΑΘΜΙΣΗ ΜΕ ΧΡΗΣΗ ΑΝΑΝΕΩΣΙΜΩΝ ΠΗΓΩΝ ΕΝΕΡΓΕΙΑΣ ΣΤΟ ΚΤΙΡΙΟ ΤΗΣ ΠΕΡΙΦΕΡΕΙΑΣ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ

ΕΝΕΡΓΕΙΑΚΗ ΑΝΑΒΑΘΜΙΣΗ ΜΕ ΧΡΗΣΗ ΑΝΑΝΕΩΣΙΜΩΝ ΠΗΓΩΝ ΕΝΕΡΓΕΙΑΣ ΣΤΟ ΚΤΙΡΙΟ ΤΗΣ ΠΕΡΙΦΕΡΕΙΑΣ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ Δρ Δημήτρης Μακρής ZiMech engineers 54642 Θεσσαλονίκη Τ +30 2310 839039 Ε email@zimech.com www. zimech.com ΕΝΕΡΓΕΙΑΚΗ ΑΝΑΒΑΘΜΙΣΗ ΜΕ ΧΡΗΣΗ ΑΝΑΝΕΩΣΙΜΩΝ ΠΗΓΩΝ ΕΝΕΡΓΕΙΑΣ ΣΤΟ ΚΤΙΡΙΟ ΤΗΣ ΠΕΡΙΦΕΡΕΙΑΣ ΚΕΝΤΡΙΚΗΣ

Διαβάστε περισσότερα

Μετρήσεις επιλεγμένων εφαρμογών Γεωθερμικών Αντλιών Θερμότητας (Μέρος 1 ο )

Μετρήσεις επιλεγμένων εφαρμογών Γεωθερμικών Αντλιών Θερμότητας (Μέρος 1 ο ) 1 Γεωθερμικές Αντλίες Θερμότητας (ΓΑΘ) στην Ελλάδα: οφέλη, υποστηρικτικές δράσεις, εφαρμογές και μετρήσεις Αθήνα 14 Μαΐου 2012 Μετρήσεις επιλεγμένων εφαρμογών Γεωθερμικών Αντλιών Θερμότητας (Μέρος 1 ο

Διαβάστε περισσότερα

Περιβαλλοντική μηχανική

Περιβαλλοντική μηχανική Περιβαλλοντική μηχανική 2 Εισαγωγή στην Περιβαλλοντική μηχανική Enve-Lab Enve-Lab, 2015 1 Environmental Μεγάλης κλίμακας περιβαλλοντικά προβλήματα Παγκόσμια κλιματική αλλαγή Όξινη βροχή Μείωση στρατοσφαιρικού

Διαβάστε περισσότερα

Γεωθερµία. Εργαστήριο Αιολικής Ενέργειας Τ.Ε.Ι. Κρήτης. ηµήτρης Αλ. Κατσα ρακάκης

Γεωθερµία. Εργαστήριο Αιολικής Ενέργειας Τ.Ε.Ι. Κρήτης. ηµήτρης Αλ. Κατσα ρακάκης Γεωθερµία Εργαστήριο Αιολικής Ενέργειας Τ.Ε.Ι. Κρήτης ηµήτρης Αλ. Κατσα ρακάκης Η γεωθερµική ενέργεια Γεωθερµία Με τον όρο «γεωθερµική ενέργεια» περιγράφεται η θερµική ενέργεια που προέρχεται από το εσωτερικό

Διαβάστε περισσότερα

ΔΡΑΣΗ ΕΘΝΙΚΗΣ ΕΜΒΕΛΕΙΑΣ. «ΣΥΝΕΡΓΑΣΙΑ 2009» ΠΡΑΞΗ Ι:«Συνεργατικά έργα μικρής και μεσαίας κλίμακας»

ΔΡΑΣΗ ΕΘΝΙΚΗΣ ΕΜΒΕΛΕΙΑΣ. «ΣΥΝΕΡΓΑΣΙΑ 2009» ΠΡΑΞΗ Ι:«Συνεργατικά έργα μικρής και μεσαίας κλίμακας» ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΔΙΑ ΒΙΟΥ ΜΑΘΗΣΗΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΕΙΔΙΚΗ ΥΠΗΡΕΣΙΑ ΣΥΝΤΟΝΙΣΜΟΥ ΚΑΙ ΕΦΑΡΜΟΓΗΣ ΔΡΑΣΕΩΝ ΣΤΟΥΣ ΤΟΜΕΙΣ ΤΗΣ ΕΡΕΥΝΑΣ ΤΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΑΝΑΠΤΥΞΗΣ ΚΑΙ ΤΗΣ ΚΑΙΝΟΤΟΜΙΑΣ (ΕΥΣΕΔ-ΕΤΑΚ)

Διαβάστε περισσότερα

ΘΕΡΜΑΝΣΗ & ΚΛΙΜΑΤΙΣΜΟΣ ΜΕ ΓΕΩΘΕΡΜΙΚΕΣ ΑΝΤΛΙΕΣ ΘΕΡΜΟΤΗΤΑΣ. Δ. Μενδρινός, Κ. Καρύτσας

ΘΕΡΜΑΝΣΗ & ΚΛΙΜΑΤΙΣΜΟΣ ΜΕ ΓΕΩΘΕΡΜΙΚΕΣ ΑΝΤΛΙΕΣ ΘΕΡΜΟΤΗΤΑΣ. Δ. Μενδρινός, Κ. Καρύτσας ΘΕΡΜΑΝΣΗ & ΚΛΙΜΑΤΙΣΜΟΣ ΜΕ ΓΕΩΘΕΡΜΙΚΕΣ ΑΝΤΛΙΕΣ ΘΕΡΜΟΤΗΤΑΣ Δ. Μενδρινός, Κ. Καρύτσας ENNEREG, Πάρος 15 Οκτωβρίου 2012 ΓΕΩΘΕΡΜΙΚΕΣ ΑΝΤΛΙΕΣ ΘΕΡΜΟΤΗΤΑΣ Παρέχουν θέρμανση, κλιματισμό & ζεστό νερό Ώριμη τεχνολογία

Διαβάστε περισσότερα

Ήπιες µορφές ενέργειας

Ήπιες µορφές ενέργειας ΕΒ ΟΜΟ ΚΕΦΑΛΑΙΟ Ήπιες µορφές ενέργειας Α. Ερωτήσεις πολλαπλής επιλογής Επιλέξετε τη σωστή από τις παρακάτω προτάσεις, θέτοντάς την σε κύκλο. 1. ΥΣΑΡΕΣΤΗ ΟΙΚΟΝΟΜΙΚΗ ΣΥΝΕΠΕΙΑ ΤΗΣ ΧΡΗΣΗΣ ΤΩΝ ΟΡΥΚΤΩΝ ΚΑΥΣΙΜΩΝ

Διαβάστε περισσότερα

Παγκόσμια Ημέρα Νερού

Παγκόσμια Ημέρα Νερού ΣΥΝΔΕΣΜΟΣ ΕΤΑΙΡΙΩΝ ΕΜΦΙΑΛΩΣΕΩΣ ΕΛΛΗΝΙΚΟΥ ΦΥΣΙΚΟΥ ΜΕΤΑΛΛΙΚΟΥ ΝΕΡΟΥ Παγκόσμια Ημέρα Νερού Ενημερωτική Εκδήλωση «Οι ευεργετικές ιδιότητες του νερού στη διατήρηση της καλής υγείας και ενυδάτωσης» HILTON ATHENS

Διαβάστε περισσότερα

Τεχνολογίες θερμάνσεως. Απόστολος Ευθυμιάδης Δρ. Μηχανικός, Διπλ. Μηχ/γος-Ηλ/γος Μηχανικός Μέλος Δ.Σ. ΠΣΔΜΗ

Τεχνολογίες θερμάνσεως. Απόστολος Ευθυμιάδης Δρ. Μηχανικός, Διπλ. Μηχ/γος-Ηλ/γος Μηχανικός Μέλος Δ.Σ. ΠΣΔΜΗ Τεχνολογίες θερμάνσεως Απόστολος Ευθυμιάδης Δρ. Μηχανικός, Διπλ. Μηχ/γος-Ηλ/γος Μηχανικός Μέλος Δ.Σ. ΠΣΔΜΗ Τα οικονομικά της κεντρικής θέρμανσης με πετρέλαιο θέρμανσης ή κίνησης Κατωτέρα θερμογόνος δύναμη

Διαβάστε περισσότερα

ΦΟΙΤΗΤΗΣ: ΔΗΜΑΣ ΝΙΚΟΣ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΠΕΙΡΑΙΑ ΣΧΟΛΗ: ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ: ΗΛΕΚΤΡΟΛΟΓΙΑΣ

ΦΟΙΤΗΤΗΣ: ΔΗΜΑΣ ΝΙΚΟΣ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΠΕΙΡΑΙΑ ΣΧΟΛΗ: ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ: ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΦΟΙΤΗΤΗΣ: ΔΗΜΑΣ ΝΙΚΟΣ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΠΕΙΡΑΙΑ ΣΧΟΛΗ: ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ: ΗΛΕΚΤΡΟΛΟΓΙΑΣ Θέμα της εργασίας είναι Η αξιοποίηση βιομάζας για την παραγωγή ηλεκτρικής ενέργειας. Πρόκειται

Διαβάστε περισσότερα

Ήπιες Μορφές Ενέργειας

Ήπιες Μορφές Ενέργειας Ήπιες Μορφές Ενέργειας Ενότητα 10: Ελευθέριος Αμανατίδης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Περιεχόμενα ενότητας Γεωθερμία Μορφές Γεωθερμικής Ενέργειας Υψηλής Ενθαλπίας Χαμηλής Ενθαλπίας Αβαθούς

Διαβάστε περισσότερα

Τμήμα Ηλεκτρολόγων Μηχανικών

Τμήμα Ηλεκτρολόγων Μηχανικών Α.Τ.Ε.Ι Ανατολικής Μακεδονίας και Θράκης Σχολή Τεχνολογικών Εφαρμογών Τμήμα Ηλεκτρολόγων Μηχανικών Σύγκριση συστημάτων θέρμανσης χώρων με τη χρήση πετρελαίου και αντλίας θερμότητας Comparison of heating

Διαβάστε περισσότερα

Πρακτικός Οδηγός Εφαρμογής Μέτρων

Πρακτικός Οδηγός Εφαρμογής Μέτρων Πρακτικός Οδηγός Εφαρμογής Μέτρων Φ ο ρ έ α ς υ λ ο π ο ί η σ η ς Ν Ο Ι Κ Ο Κ Υ Ρ Ι Α Άξονες παρέμβασης Α. Κτιριακές υποδομές Β. Μεταφορές Γ. Ύ δρευση και διαχείριση λυμάτων Δ. Δ ιαχείριση αστικών στερεών

Διαβάστε περισσότερα

ΟΡΘΟΛΟΓΙΚΗ ΧΡΗΣΗ ΤΗΣ ΓΕΩΘΕΡΜΙΚΗΣ ΕΝΕΡΓΕΙΑΣ

ΟΡΘΟΛΟΓΙΚΗ ΧΡΗΣΗ ΤΗΣ ΓΕΩΘΕΡΜΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΓΕΩΘΕΡΜΙΑ Είναι η θερμότητα που μεταφέρεται από το εσωτερικό της γης προς την επιφάνεια. Κατά μέσο όρο η ροή θερμότητας είναι 87 mw/cm2 και εκδηλώνεται υπό μορφή ζεστών νερών και ατμών. ΓΕΩΘΕΡΜΙΚΗ ΕΝΕΡΓΕΙΑ

Διαβάστε περισσότερα

Γεωθερμικές Αντλίες Θερμότητας Inverter ACTEA SI

Γεωθερμικές Αντλίες Θερμότητας Inverter ACTEA SI Γεωθερμικές Αντλίες Θερμότητας Inverter ACTEA SI Actea SI Πεδίο εφαρμογής: Θέρμανση Ψύξη Ζεστό νερό χρήσης Χρήσεις: Διαμερίσματα, γραφεία και καταστήματα Συνδυασμός με ακτινοβόλα συστήματα Συνδυασμός με

Διαβάστε περισσότερα

Πανεπιστήμιο Πατρών Πολυτεχνική σχολή Τμήμα Χημικών Μηχανικών Ακαδημαϊκό Έτος 2007-20082008 Μάθημα: Οικονομία Περιβάλλοντος για Οικονομολόγους Διδάσκων:Σκούρας Δημήτριος ΚΑΤΑΛΥΤΙΚΗ ΑΝΤΙΔΡΑΣΗ ΠΑΡΑΓΩΓΗΣ

Διαβάστε περισσότερα

Χρήση Γεωθερμίας και ΓΑΘ στην γεωργία - Η περίπτωση της Νιγρίτας

Χρήση Γεωθερμίας και ΓΑΘ στην γεωργία - Η περίπτωση της Νιγρίτας Χρήση Γεωθερμίας και ΓΑΘ στην γεωργία - Η περίπτωση της Νιγρίτας Κωνσταντίνος ΚΑΡΥΤΣΑΣ Άγγελος ΓΚΟΥΜΑΣ Γιάννης ΧΑΛΔΕΖΟΣ Δημήτριος ΜΕΝΔΡΙΝΟΣ Κέντρο Ανανεώσιμων Πηγών & Εξοικονόμησης Ενέργειας (ΚΑΠΕ) 1 9

Διαβάστε περισσότερα

2. Γεωθερμία Χαμ. Ενθ.: Πρόταση αξιοποίησης ΜΗΧ/ΚΟΣ ΕΜΠ ΔΝΤΗΣ ΤΟΜΕΑ ΘΕΡΜΟΗΛΕΚΤΡΙΚΩΝ ΕΡΓΩΝ ΟΜΙΛΟΣ

2. Γεωθερμία Χαμ. Ενθ.: Πρόταση αξιοποίησης ΜΗΧ/ΚΟΣ ΕΜΠ ΔΝΤΗΣ ΤΟΜΕΑ ΘΕΡΜΟΗΛΕΚΤΡΙΚΩΝ ΕΡΓΩΝ ΟΜΙΛΟΣ 1. Τηλεθέρμανση / Τηλεψύξη: Ευρωπαϊκή οδηγία 2. Γεωθερμία Χαμ. Ενθ.: Πρόταση αξιοποίησης ΔΗΜ. ΜΟΙΡΑΣ, ΗΛ/ΓΟΣ ΜΗΧ/ΚΟΣ ΕΜΠ ΔΝΤΗΣ ΤΟΜΕΑ ΘΕΡΜΟΗΛΕΚΤΡΙΚΩΝ ΕΡΓΩΝ ΟΜΙΛΟΣ Περιοχή τηλεθέρμανσης 2009 ΣΗΘΥΑ: : 16

Διαβάστε περισσότερα

Θέρμανση και τον κλιματισμός του κτιρίου της ΙΩΝΙΑ ΕΚΤΥΠΩΤΥΚΑΙ ΑΕ με τη χρήση της γεωθερμικής ενέργειας Μια Προ-μελέτη Εφαρμογής της BONAIR

Θέρμανση και τον κλιματισμός του κτιρίου της ΙΩΝΙΑ ΕΚΤΥΠΩΤΥΚΑΙ ΑΕ με τη χρήση της γεωθερμικής ενέργειας Μια Προ-μελέτη Εφαρμογής της BONAIR Θέρμανση και τον κλιματισμός του κτιρίου της ΙΩΝΙΑ ΕΚΤΥΠΩΤΥΚΑΙ ΑΕ με τη χρήση της γεωθερμικής ενέργειας Μια Προ-μελέτη Εφαρμογής της BONAIR Σε αυτό το κεφάλαιο θα πραγματοποιηθεί μια μελέτη εφαρμογής σε

Διαβάστε περισσότερα

Λύσεις Εξοικονόμησης Ενέργειας

Λύσεις Εξοικονόμησης Ενέργειας Λύσεις Εξοικονόμησης Ενέργειας Φωτοβολταϊκά Αστείρευτη ενέργεια από τον ήλιο! Η ηλιακή ενέργεια είναι μια αστείρευτη πηγή ενέργειας στη διάθεση μας.τα προηγούμενα χρόνια η τεχνολογία και το κόστος παραγωγής

Διαβάστε περισσότερα

ΤΕΙ Καβάλας, Τμήμα Δασοπονίας και Διαχείρισης Φυσικού Περιβάλλοντος Μάθημα Μετεωρολογίας-Κλιματολογίας Υπεύθυνη : Δρ Μάρθα Λαζαρίδου Αθανασιάδου

ΤΕΙ Καβάλας, Τμήμα Δασοπονίας και Διαχείρισης Φυσικού Περιβάλλοντος Μάθημα Μετεωρολογίας-Κλιματολογίας Υπεύθυνη : Δρ Μάρθα Λαζαρίδου Αθανασιάδου ΘΕΡΜΟΚΡΑΣΙΑ ΑΕΡΑ ΚΑΙ ΕΔΑΦΟΥΣ ΤΕΙ Καβάλας, Τμήμα Δασοπονίας και Διαχείρισης Φυσικού Περιβάλλοντος Μάθημα Μετεωρολογίας-Κλιματολογίας Υπεύθυνη : Δρ Μάρθα Λαζαρίδου Αθανασιάδου 3. ΘΕΡΜΟΚΡΑΣΙΑ ΑΕΡΑ ΚΑΙ ΕΔΑΦΟΥΣ

Διαβάστε περισσότερα

ΓΕΩΘΕΡΜΙΚΕΣ ΑΝΤΛΙΕΣ ΘΕΡΜΟΤΗΤΑΣ REACH

ΓΕΩΘΕΡΜΙΚΕΣ ΑΝΤΛΙΕΣ ΘΕΡΜΟΤΗΤΑΣ REACH ΓΕΩΘΕΡΜΙΚΕΣ ΑΝΤΛΙΕΣ ΘΕΡΜΟΤΗΤΑΣ και το ΕΡΓΟ GROUND-REACH REACH Δ. Μενδρινός, Κ. Καρύτσας Κέντρο Ανανεώσιμων Πηγών Ενέργειας Ref: http://www.groundreach.eu/ Οι γεωθερμικές αντλίες θερμότητας αξιοποιούν την

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΘΕΡΜΑΝΣΗΣ ΚΑΥΣΗ

ΣΥΣΤΗΜΑΤΑ ΘΕΡΜΑΝΣΗΣ ΚΑΥΣΗ ΣΥΣΤΗΜΑΤΑ ΘΕΡΜΑΝΣΗΣ ΚΑΥΣΗ Την εργασία επιμελήθηκαν οι: Αναστασοπούλου Ευτυχία Ανδρεοπούλου Μαρία Αρβανίτη Αγγελίνα Ηρακλέους Κυριακή Καραβιώτη Θεοδώρα Καραβιώτης Στέλιος Σπυρόπουλος Παντελής Τσάτος Σπύρος

Διαβάστε περισσότερα

Συστήματα γεωθερμικών αντλιών θερμότητας Οικονομικά & περιβαλλοντικά οφέλη από τη χρήση τους

Συστήματα γεωθερμικών αντλιών θερμότητας Οικονομικά & περιβαλλοντικά οφέλη από τη χρήση τους ΗΜΕΡΙΔΑ Ευρωπαϊκού Έργου REGEOCITIES Γεωθερμικές Αντλίες Θερμότητας Τεχνολογία Αιχμής για το παρόν & το μέλλον 1 Συστήματα γεωθερμικών αντλιών θερμότητας Οικονομικά & περιβαλλοντικά οφέλη από τη χρήση

Διαβάστε περισσότερα

Ενσωμάτωση Βιοκλιματικών Τεχνικών και Ανανεώσιμων Πηγών Ενέργειας στα Σχολικά Κτήρια σε Συνδυασμό με Περιβαλλοντική Εκπαίδευση

Ενσωμάτωση Βιοκλιματικών Τεχνικών και Ανανεώσιμων Πηγών Ενέργειας στα Σχολικά Κτήρια σε Συνδυασμό με Περιβαλλοντική Εκπαίδευση Ενσωμάτωση Βιοκλιματικών Τεχνικών και Ανανεώσιμων Πηγών Ενέργειας στα Σχολικά Κτήρια σε Συνδυασμό με Περιβαλλοντική Εκπαίδευση Κατερίνα Χατζηβασιλειάδη Αρχιτέκτων Μηχανικός ΑΠΘ 1. Εισαγωγή Η προστασία

Διαβάστε περισσότερα

ΕΝΑΛΛΑΚΤΕΣ ΜΠΟΪΛΕΡ ΖΕΣΤΟΥ ΝΕΡΟΥ ΧΡΗΣΗΣ Μέρος 1 ο.

ΕΝΑΛΛΑΚΤΕΣ ΜΠΟΪΛΕΡ ΖΕΣΤΟΥ ΝΕΡΟΥ ΧΡΗΣΗΣ Μέρος 1 ο. 1 ΕΝΑΛΛΑΚΤΕΣ ΜΠΟΪΛΕΡ ΖΕΣΤΟΥ ΝΕΡΟΥ ΧΡΗΣΗΣ Μέρος 1 ο. Οι ανάγκες του σύγχρονου ανθρώπου για ζεστό νερό χρήσης, ήταν η αρχική αιτία της επινόησης των εναλλακτών θερμότητας. Στους εναλλάκτες ένα θερμαντικό

Διαβάστε περισσότερα

ΟΙ ΥΔΡΙΤΕΣ ΚΑΙ Η ΣΗΜΑΣΙΑ ΤΟΥΣ ΩΣ ΚΑΥΣΙΜΗ ΥΛΗ ΤΟΥ ΜΕΛΛΟΝΤΟΣ. ΤΟ ΕΡΕΥΝΗΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ANAXIMANDER. Από Δρ. Κωνσταντίνο Περισοράτη

ΟΙ ΥΔΡΙΤΕΣ ΚΑΙ Η ΣΗΜΑΣΙΑ ΤΟΥΣ ΩΣ ΚΑΥΣΙΜΗ ΥΛΗ ΤΟΥ ΜΕΛΛΟΝΤΟΣ. ΤΟ ΕΡΕΥΝΗΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ANAXIMANDER. Από Δρ. Κωνσταντίνο Περισοράτη ΟΙ ΥΔΡΙΤΕΣ ΚΑΙ Η ΣΗΜΑΣΙΑ ΤΟΥΣ ΩΣ ΚΑΥΣΙΜΗ ΥΛΗ ΤΟΥ ΜΕΛΛΟΝΤΟΣ. ΤΟ ΕΡΕΥΝΗΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ANAXIMANDER Από Δρ. Κωνσταντίνο Περισοράτη Οι υδρίτες (εικ. 1) είναι χημικές ενώσεις που ανήκουν στους κλειθρίτες, δηλαδή

Διαβάστε περισσότερα

Είδη Συλλεκτών. 1.1 Συλλέκτες χωρίς κάλυμμα

Είδη Συλλεκτών. 1.1 Συλλέκτες χωρίς κάλυμμα ΕΝΩΣΗ ΒΙΟΜΗΧΑΝΙΩΝ ΗΛΙΑΚΗΣ ΕΝΕΡΓΕΙΑΣ ΣΕΜΙΝΑΡΙΟ ΘΕΡΜΙΚΩΝ ΗΛΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Είδη Συλλεκτών ΧΡΙΣΤΟΔΟΥΛΑΚΗ ΡΟΖA υπ. Διδ. Μηχ. Μηχ. ΕΜΠ MSc Environmental Design & Engineering Φυσικός Παν. Αθηνών ΚΑΠΕ - ΤΜΗΜΑ

Διαβάστε περισσότερα

ΑΝΑΝΕΩΣΙΜΕΣ ΠΗΓΕΣ ΕΝΕΡΓΕΙΑΣ

ΑΝΑΝΕΩΣΙΜΕΣ ΠΗΓΕΣ ΕΝΕΡΓΕΙΑΣ ΑΝΑΝΕΩΣΙΜΕΣ ΠΗΓΕΣ ΕΝΕΡΓΕΙΑΣ ΙΝΣΤΙΤΟΥΤΟ ΕΝΕΡΓΕΙΑΣ ΝΟΤΙΟΑΝΑΤΟΛΙΚΗΣ ΕΥΡΩΠΗΣ Εφαρμογές Α.Π.Ε. σε Κτίρια και Οικιστικά Σύνολα Μαρία Κίκηρα, ΚΑΠΕ - Τμήμα Κτιρίων Αρχιτέκτων MSc Αναφορές: RES Dissemination, DG

Διαβάστε περισσότερα

Αναερόβιες Μονάδες για την παραγωγή βιο-αερίου από βιοµάζα

Αναερόβιες Μονάδες για την παραγωγή βιο-αερίου από βιοµάζα Αναερόβιες Μονάδες για την παραγωγή βιο-αερίου από βιοµάζα Βιο-αέριο? Το αέριο που παράγεται από την ζύµωση των οργανικών, ζωικών και φυτικών υπολειµµάτων και το οποίο µπορεί να χρησιµοποιηθεί για την

Διαβάστε περισσότερα

Όσα υγρά απόβλητα μπορούν να επαναχρησιμοποιηθούν, πρέπει να υποστούν

Όσα υγρά απόβλητα μπορούν να επαναχρησιμοποιηθούν, πρέπει να υποστούν 7. Επαναχρησιμοποίηση νερού στο δήμο μας! Όσα υγρά απόβλητα μπορούν να επαναχρησιμοποιηθούν, πρέπει να υποστούν επεξεργασία πριν την επανάχρησή τους. Ο βαθμός επεξεργασίας εξαρτάται από την χρήση για την

Διαβάστε περισσότερα

Τι γνώµη έχετε για την παγκόσµια ενεργειακή κρίση & πώς νοµίζετε ότι θα αντιµετωπισθεί το πρόβληµα αυτό στην Ελλάδα;

Τι γνώµη έχετε για την παγκόσµια ενεργειακή κρίση & πώς νοµίζετε ότι θα αντιµετωπισθεί το πρόβληµα αυτό στην Ελλάδα; Τι γνώµη έχετε για την παγκόσµια ενεργειακή κρίση & πώς νοµίζετε ότι θα αντιµετωπισθεί το πρόβληµα αυτό στην Ελλάδα; Κατ αρχήν το πρόβληµα της ενέργειας είναι διεθνές, µεγάλο και θα συνεχίσει να υπάρχει

Διαβάστε περισσότερα

ΔΙΑΡΚΗΣ ΤΕΧΝΙΚΗ ΕΠΙΜΟΡΦΩΣΗ Εφαρμογές Αβαθούς Γεωθερμίας Με Χρήση Γεωθερμικών Αντλιών Θερμότητας (ΓΑΘ)

ΔΙΑΡΚΗΣ ΤΕΧΝΙΚΗ ΕΠΙΜΟΡΦΩΣΗ Εφαρμογές Αβαθούς Γεωθερμίας Με Χρήση Γεωθερμικών Αντλιών Θερμότητας (ΓΑΘ) ΔΙΑΡΚΗΣ ΤΕΧΝΙΚΗ ΕΠΙΜΟΡΦΩΣΗ Εφαρμογές Αβαθούς Γεωθερμίας Με Χρήση Γεωθερμικών Αντλιών Θερμότητας (ΓΑΘ) Αντώνιος Ακογλάνης, Διπλ. Μηχανολόγος Μηχανικός M.Sc. Στην παρούσα ενότητα διερευνώνται εφαρμογές της

Διαβάστε περισσότερα

Συστήματα και Νομοθετικό Πλαίσιο Γεωθερμικών Εγκαταστάσεων Κλιματισμού

Συστήματα και Νομοθετικό Πλαίσιο Γεωθερμικών Εγκαταστάσεων Κλιματισμού ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ - ΕΝΕΡΓΕΙΑΚΟΣ ΤΟΜΕΑΣ ΕΡΓΑΣΤΗΡΙΟ ΚΑΤΑΣΚΕΥΗΣ ΣΥΣΚΕΥΩΝ ΔΙΕΡΓΑΣΙΩΝ Συστήματα και Νομοθετικό Πλαίσιο Γεωθερμικών Εγκαταστάσεων

Διαβάστε περισσότερα

Γεωθερμικές αντλίες θερμότητας και βιομάζα

Γεωθερμικές αντλίες θερμότητας και βιομάζα Γεωθερμικές αντλίες θερμότητας και βιομάζα Καλλιακούδη Κωνσταντίνα Μηχανολόγος Μηχανικός Ε.Μ.Π, M.sc Εισαγωγή Οι εναλλακτικοί τρόποι ζωής (στις ανταλλαγές αγαθών, στο κίνημα «χωρίς μεσάζοντες», στις επιλογές

Διαβάστε περισσότερα

Συµπαραγωγή Η/Θ στη νήσο Ρεβυθούσα ηµήτριος Καρδοµατέας Γεν. ιευθυντήςεργων, Ρυθµιστικών Θεµάτων & Στρατηγικού Σχεδιασµού ΕΣΦΑ Α.Ε. FORUM ΑΠΕ/ΣΗΘ «Ανανεώσιµες Πηγές Ενέργειας στην Ελλάδα σήµερα», Υπουργείο

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΤΕΧΝΟΛΟΓΙΑ Τ.Σ. (ΙΙ) ΠΡΑΚΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΤΕΧΝΟΛΟΓΙΑ Τ.Σ. (ΙΙ) ΠΡΑΚΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2014 ΤΕΧΝΟΛΟΓΙΑ Τ.Σ. (ΙΙ) ΠΡΑΚΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΜΑΘΗΜΑ : ΤΕΧΝΟΛΟΓΙΑ ΥΔΡΑΥΛΙΚΩΝ ΘΕΡΜΙΚΩΝ

Διαβάστε περισσότερα

ΔΙΑΘΕΣΗ ΣΤΕΡΕΩΝ ΚΑΙ ΥΓΡΩΝ ΑΠΟΒΛΗΤΩΝ ΣΤΟ ΓΕΩΛΟΓΙΚΟ ΠΕΡΙΒΑΛΛΟΝ

ΔΙΑΘΕΣΗ ΣΤΕΡΕΩΝ ΚΑΙ ΥΓΡΩΝ ΑΠΟΒΛΗΤΩΝ ΣΤΟ ΓΕΩΛΟΓΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΔΙΑΘΕΣΗ ΣΤΕΡΕΩΝ ΚΑΙ ΥΓΡΩΝ ΑΠΟΒΛΗΤΩΝ ΣΤΟ ΓΕΩΛΟΓΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Ενότητα 12: Βιομηχανική ρύπανση- Υγρά βιομηχανικά απόβλητα και διάθεση αυτών (Μέρος 1 ο ) Ζαγγανά Ελένη Σχολή : Θετικών Επιστημών Τμήμα : Γεωλογίας

Διαβάστε περισσότερα

ΘΕΡΜΙΚΕΣ Ι ΙΟΤΗΤΕΣ ΤΟΥ ΞΥΛΟΥ ΕΙΣΑΓΩΓΗ ΣΤΙΣ Ι ΙΟΤΗΤΕΣ ΞΥΛΟΥ

ΘΕΡΜΙΚΕΣ Ι ΙΟΤΗΤΕΣ ΤΟΥ ΞΥΛΟΥ ΕΙΣΑΓΩΓΗ ΣΤΙΣ Ι ΙΟΤΗΤΕΣ ΞΥΛΟΥ ΕΙΣΑΓΩΓΗ ΣΤΙΣ Ι ΙΟΤΗΤΕΣ ΞΥΛΟΥ ΘΕΡΜΙΚΕΣ Ι ΙΟΤΗΤΕΣ ΤΟΥ ΞΥΛΟΥ ρ. Γεώργιος Μαντάνης Εργαστήριο Επιστήµης Ξύλου Τµήµα Σχεδιασµού & Τεχνολογίας Ξύλου - Επίπλου ΙΑΣΤΟΛΗ - ΣΥΣΤΟΛΗ Όταν θερµαίνεται το ξύλο αυξάνονται

Διαβάστε περισσότερα

ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΡΥΚΤΩΝ ΠΟΡΩΝ

ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΡΥΚΤΩΝ ΠΟΡΩΝ ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΡΥΚΤΩΝ ΠΟΡΩΝ «Θέρµανση-ψύξη βιοκλιµατικού οικισµού Σοφάδων "το πλίθινο χωριό" µε γεωθερµικές αντλίες θερµότητας. Τεχνικοοικονοµική µελέτη και σύγκριση αποδοτικότητας

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΑΝΑΤΟΛΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΚΑΙ ΘΡΑΚΗΣ

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΑΝΑΤΟΛΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΚΑΙ ΘΡΑΚΗΣ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΑΝΑΤΟΛΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΚΑΙ ΘΡΑΚΗΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΤΕΧΝΟΛΟΓΙΑΣ ΠΕΤΡΕΛΑΙΟΥ ΚΑΙ ΦΥΣΙΚΟΥ ΑΕΡΙΟΥ Τ.Ε ΚΑΙ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

Διαβάστε περισσότερα

Ανανεώσιμες Πηγές Ενέργειας Πολιτικές, Επιπτώσεις και ηανάγκη για έρευνα και καινοτομίες

Ανανεώσιμες Πηγές Ενέργειας Πολιτικές, Επιπτώσεις και ηανάγκη για έρευνα και καινοτομίες Τ.Ε.Ι. Πάτρας - Εργαστήριο Η.Μ.Ε Ανανεώσιμες Πηγές Ενέργειας Πολιτικές, Επιπτώσεις και ηανάγκη για έρευνα και καινοτομίες ΜΕΡΟΣ 2 ο Καθ Σωκράτης Καπλάνης Υπεύθυνος Εργαστηρίου Α.Π.Ε. Τ.Ε.Ι. Πάτρας kaplanis@teipat.gr

Διαβάστε περισσότερα

Το smart cascade και η λειτουργία του

Το smart cascade και η λειτουργία του Καινοτομία HITACHI Έξυπνος διαδοχικός ψυκτικός κύκλος (Smart Cascade) Από τον Γιάννη Κονίδη, Μηχανολόγο Μηχανικό Τομέας Συστημάτων Κλιματισμού ΑΒΒ Ελλάδος Το συνεχώς αυξανόμενο κόστος θέρμανσης, με τη

Διαβάστε περισσότερα

Με βάση το ενεργειακό τους περιεχόμενο, τα γεωθερμικά πεδία διακρίνονται σε:

Με βάση το ενεργειακό τους περιεχόμενο, τα γεωθερμικά πεδία διακρίνονται σε: ΓΕΩΘΕΡΜΙΑ Η θερμοκρασία της Γής αυξάνεται με το βάθος και το γεγονός αυτό προκαλεί μία ροή θερμότητας προς την επιφάνεια της (η μέση ροή γεωθερμικής θερμότητας στον ηπειρωτικό φλοιό της Γής είναι 60 mw/m

Διαβάστε περισσότερα

Πηγές ενέργειας - Πηγές ζωής

Πηγές ενέργειας - Πηγές ζωής Πηγές ενέργειας - Πηγές ζωής Κέντρο Περιβαλλοντικής Εκπαίδευσης Καστρίου 2014 Παράγει ενέργεια το σώμα μας; Πράγματι, το σώμα μας παράγει ενέργεια! Για να είμαστε πιο ακριβείς, παίρνουμε ενέργεια από τις

Διαβάστε περισσότερα

Ένα από τα πολλά πλεονεκτήματα της θερμογραφίας είναι ότι είναι μη καταστροφική.

Ένα από τα πολλά πλεονεκτήματα της θερμογραφίας είναι ότι είναι μη καταστροφική. Θερμογραφία είναι η παρατήρηση, μέτρηση και καταγραφή της θερμότητας και της ροής της. Όλα τα σώματα στη γη, με θερμοκρασία πάνω από το απόλυτο μηδέν ( 273 ο C) εκπέμπουν θερμική ενέργεια στο υπέρυθρο

Διαβάστε περισσότερα

Εγκαταστάσεις Κλιματισμού. Α. Ευθυμιάδης,

Εγκαταστάσεις Κλιματισμού. Α. Ευθυμιάδης, ΙΕΝΕ : Ετήσιο 13ο Εθνικό Συνέδριο - «Ενέργεια & Ανάπτυξη 08» (12-13/11-Ίδρυμα Ευγενίδου) Ενεργειακές Επιθεωρήσεις σε Λεβητοστάσια και Εγκαταστάσεις Κλιματισμού Α. Ευθυμιάδης, ρ. Μηχανικός, ιπλ. Μηχ/γος-Ηλ/γος

Διαβάστε περισσότερα

Αντλίες Θερμότητας Υψηλών Θερμοκρασιών

Αντλίες Θερμότητας Υψηλών Θερμοκρασιών Αντλίες Θερμότητας Υψηλών Θερμοκρασιών Με το κόστος θέρμανσης να ανεβαίνει χρόνο με το χρόνο, η βασική αυτή ανάγκη έχει γίνει δυστυχώς πολυτέλεια για τους περισσότερους. Η αύξηση των τιμών ενέργειας οδηγεί

Διαβάστε περισσότερα

Εργασία στο μάθημα «Οικολογία για μηχανικούς» Θέμα: «Το φαινόμενο του θερμοκηπίου»

Εργασία στο μάθημα «Οικολογία για μηχανικούς» Θέμα: «Το φαινόμενο του θερμοκηπίου» Εργασία στο μάθημα «Οικολογία για μηχανικούς» Θέμα: «Το φαινόμενο του θερμοκηπίου» Επιβλέπουσα καθηγήτρια: κ.τρισεύγενη Γιαννακοπούλου Ονοματεπώνυμο: Πάσχος Απόστολος Α.Μ.: 7515 Εξάμηνο: 1 ο Το φαινόμενο

Διαβάστε περισσότερα

Συστήματα Θέρμανσης θερμοκηπίων. Εργαστήριο Γεωργικών Κατασκευών και Ελέγχου Περιβάλλοντος Ν. Κατσούλας, Κ. Κίττας

Συστήματα Θέρμανσης θερμοκηπίων. Εργαστήριο Γεωργικών Κατασκευών και Ελέγχου Περιβάλλοντος Ν. Κατσούλας, Κ. Κίττας Συστήματα Θέρμανσης θερμοκηπίων Εργαστήριο Γεωργικών Κατασκευών και Ελέγχου Περιβάλλοντος Ν. Κατσούλας, Κ. Κίττας Θέρμανση Μη θερμαινόμενα Ελαφρώς θερμαινόμενα Πλήρως θερμαινόμενα θερμοκήπια Συστήματα

Διαβάστε περισσότερα

kwh/m 2 640.. 900 900.. 1050 1200.. 1350 1350.. 1500 1500.. 1700 1700.. 1900 1900.. 2300 > 2300

kwh/m 2 640.. 900 900.. 1050 1200.. 1350 1350.. 1500 1500.. 1700 1700.. 1900 1900.. 2300 > 2300 Εφαρµογή Θερµικών Ηλιακών Συστηµάτων Στον Οικιακό Τοµέα ηµήτριος Χασάπης Μηχανικός Τεχνολογίας Α.Π.Ε. ΚΑΠΕ Τοµέας Θερµικών Ηλιακών Συστηµάτων Ηλιακά Θερµικά Συστήµατα Συστήµατα που απορροφούν ενέργεια

Διαβάστε περισσότερα