Ροπή αδράνειας. q Ας δούµε την ροπή αδράνειας ενός στερεού περιστροφέα: I = m(2r) 2 = 4mr 2

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Ροπή αδράνειας. q Ας δούµε την ροπή αδράνειας ενός στερεού περιστροφέα: I = m(2r) 2 = 4mr 2"

Transcript

1 ΦΥΣ Διαλ.22 1 Ροπή αδράνειας q Ας δούµε την ροπή αδράνειας ενός στερεού περιστροφέα: m (α) m (β) m r r 2r 2 2 I =! m i r i = 2mr 2 1 I = m(2r) 2 = 4mr 2 Ø Είναι δυσκολότερο να προκαλέσεις περιστροφή στην (β) περίπτωση q Η ροπή αδράνειας εξαρτάται από τον άξονα περιστροφής. q Η ροπή αδράνειας ορίζεται ως προς κάποιο σταθερό άξονα Ø Η τιµή της εξαρτάται από την θέση και τον προσανατολισµό του άξονα περιστροφής

2 ΦΥΣ Διαλ.22 2 Ροπή αδράνειας για στερεά συνεχούς κατανοµής q Για στερεά σώµατα συνεχούς κατανοµής µάζας η ροπή αδράνειας υπολογίζεται αντικαθιστώντας το άθροισµα µε ολοκλήρωµα: (αντικαθιστούµε όλες τις µάζες m i µε dm) 2 I =! m i r i " lim i #m i " 0! r 2 i #m i $ I = r 2 dm Ροπή αδράνειας i Θυµίζει τον υπολογισµό του κέντρου µάζας ενός σώµατος r CM = q Για παράδειγµα: έστω ρ η πυκνότητα = m/v για ένα στερεό! = dm / dv " dm =!dv " I = # r 2!dV Για οµοιογενή κατανοµή µάζας, η πυκνότητα είναι σταθερή και έχουµε: I =!" r 2 dv Περισσότερη µάζα πιο αποµακρυσµένη από τον άξονα περιστροφής, µεγαλύτερη η ροπή αδράνειας Ι, και εποµένως µεγαλύτερη η αντίσταση του σώµατος στο να αλλάξει την περιστροφική του κίνηση %! rdm

3 Παράδειγµα υπολογισµού ροπής αδράνειας q Οµοιογενής κύλινδρος µάζας m, ακτίνας R και µήκους L. ΦΥΣ Διαλ.22 3 y dr r R Θεωρήστε ένα κυλινδρικό φλοιό ακτίνας r και πάχους dr. Αυτό το κάνουµε για να έχουµε την ίδια ακτίνα για όλες τις στοιχειώδεις µάζες dm. Το εµβαδό του δακτυλίου του κυλινδρικού φλοιού είναι: L da = 2!rdr I y =! dv = LdA! r 2 dm =! r 2 "dv R I y = 2!"L # r 3 dr 0! I y = 2"#L R4 4! I y = 1 2 "#LR4 z x Αλλά V!"#. = $R 2 L και! = " V = M # R 2 L Εποµένως I y = 1 2!"LR4 = 1 2 MR2 Αυτή είναι η ροπή αδράνειας ως προς τον άξονα συµµετρίας y. Ποια θα ναι η Ι ως προς ένα άξονα παράλληλο προς τον y?

4 ΦΥΣ Διαλ.22 4 Θεώρηµα παράλληλων αξόνων z y dm(x,y) D CM y' CM y I =! r 2 dm =! ( x 2 + y 2 )dm x = x! + x CM y = y! + y CM x [ ] y CM I = " ( x! + x CM ) 2 + ( y! + y ) 2 dm # CM D xcm I = ( x! 2 + y! " )dm + 2x CM " x! dm + 2y CM " y! dm + ( x CM + y CM )" dm Επομένως: I = I CM MD 2 x x' I = I CM + MD 2 Θεώρηµα παράλληλων αξόνων

5 ΦΥΣ Διαλ.22 5 Εφαρµογή του θεωρήµατος παράλληλων αξόνων q Κυκλικό στεφάνι ακτίνας R και µάζας Μ κρέµεται από ένα σηµείο στην περιφέρειά του Θέλουµε την ροπή αδράνειας γύρω από αυτό το σηµείο R I!"#$. = % CM + MR 2 & MR 2 + MR 2 I!"#$. = 2%R 2 q Οµοιόµορφη λεπτή ράβδος µάζας Μ και µήκους L µε άξονα κάθετο στο µήκος της Έστω dm στοιχειώδης µάζα µήκους dx σε απόσταση x από τον άξονα περιστροφής Ο. I O = Από την εξίσωση της ροπής αδράνειας: x 2 L#h! dm = "! x 2 dx = M #h L x 3 L#h 3 #h $ I O = 1 3 M ( L2 # 3Lh + 3h 2 ) Για h = 0!"# h = L $ I O,L = 1 3 ML2 Για L h =! IC = ML 2

6 ΦΥΣ Διαλ.22 6 Ροπή αδράνειας - Σηµεία προσοχής Ø Δεν έχει νόηµα να αναφέρεστε στη ροπή αδράνειας ενός σώµατος χωρίς να προσδιορίζετε την θέση και προσανατολισµό του άξονα ως προς τον οποίο υπολογίζετε την ροπή αδράνειας Ø Για συνεχείς κατανοµές µάζας χρειάζεται να υπολογίσουµε τα ολοκληρώµατα για την εύρεση της ροπής αδράνειας. q Μην προσπαθήσετε να υπολογίσετε τη ροπή αδράνειας θεωρώντας ότι όλη η µάζα βρίσκεται στο κέντρο µάζας του σώµατος και παίρνοντας την απόσταση του κέντρου µάζας από τον άξονα περιστροφής ΛΑΘΟΣ ü Η ροπή αδράνειας της ράβδου στο προηγούµενο παράδειγµα είναι Ι=ΜL 3 /3 ως προς άξονα που περνά από ένα άκρο της. Αν υποθέσω το κέντρο µάζας το οποίο βρίσκεται στο µέσο της η ροπή αδράνειας θα ήταν Μ(L/2) 2 =ML 2 /4 που είναι λάθος.

7 ΦΥΣ Διαλ.22 7 Περισσότερες περιπτώσεις (α) ομοιογενής ράβδος άξονας στο κέντρο (β) ομοιογενής ράβδος άξονας στο άκρο της (γ) ομοιογενές φύλλο άξονας στο μέσο (δ) ομοιογενές φύλλο άξονας σε πλευρά (ε) συμπαγής κυλινδρικός δακτύλιος (στ) συμπαγής κύλινδρος (ζ) κοίλος κύλινδρος (λεπτά τοιχώματα) (η) ομοιογενής σφαίρα (η) κοίλη σφαίρα

8 Δυναµική στην περιστροφική κίνηση στερεού ΦΥΣ Διαλ.22 8 q Μέχρι τώρα είδαµε: ü Ροπή αδράνειας: I! = " r 2 dm ü σε αντιστοιχία µε τη θέση του CM: q Θεώρηµα παράλληλων αξόνων I! = " CM + MD 2 r CM = 1! M rdm D CM q Κινητική ενέργεια ενός περιστρεφόµενου στερεού γύρω από σταθερό άξονα K = 1 2 I! 2 q Όλα τα σημεία του στερεού κινούνται με ίδια γωνιακή ταχύτητα και γωνιακή επιτάχυνση

9 ΦΥΣ Διαλ.22 9 Ενέργεια περιστροφής - µεθοδολογία προβληµάτων Ότι έχουµε δει µέχρι τώρα σε προβλήµατα ενέργειας ισχύουν και για την περίπτωση ενός περιστρεφόµενου στερεού. Ø Χρησιµοποιώντας το θεώρηµα έργου-ενέργειας και διατήρηση της µηχανικής ενέργειας µπορούν να βρεθούν εξισώσεις για τη θέση και κίνηση του στερεού. v Μόνη διαφορά ότι τη θέση της µάζας και ταχύτητας παίρνουν η ροπή αδράνειας και γωνιακή ταχύτητα. K = 1 2 m! 2 K = 1 2 I! 2 Ø Πολλά προβλήµατα περιέχουν σχοινιά γύρω από στερεά σώµατα που δρουν σα τροχαλίες: ü Το σηµείο της επαφής του σχοινιού στην τροχαλία έχει την ίδια γραµµική ταχύτητα µε αυτή του σχοινιού (το σχοινί δεν γλιστρά στην τροχαλία) ü Από τις σχέσεις µεταξύ εφαπτοµενικής και ακτινικής επιτάχυνσης βρίσκουµε τις γωνιακές ταχύτητες και επιταχύνσεις! v =! " r "! a = d! dt " r! +! " d! r dt! a! =! " # r " + $! # v! εφαπτοµενική ακτινική

10 Παράδειγµα ΦΥΣ Διαλ Νήµα αµελητέας µάζας είναι τυλιγµένο γύρω από κύλινδρο µάζας 50kg και διαµέτρου 0.12m, ο οποίος µπορεί να περιστρέφεται γύρω από σταθερό οριζόντιο άξονα που στηρίζεται σε σηµεία χωρίς τριβές. Τραβούµε το ελεύθερο άκρο του νήµατος µε σταθερή δύναµη F=9.0N κατά απόσταση 2.0m. To νήµα ξετυλίγεται χωρίς να γλιστρά προκαλώντας περιστροφή στον κύλινδρο. Να βρεθεί η τελική γωνιακή ταχύτητα του κυλίνδρου και τελική γραµµική ταχύτητα του νήµατος αν ο κύλινδρος αρχικά είναι ακίνητος. Από το θεώρηµα έργου-ενέργειας: Η ροπή αδράνειας του κυλίνδρου είναι: I = 1 2 MR2 W F = F! s = 1 2 " 1 % # $ 2 MR2 2 & ' ( f! " f = 2 R Ο κύλινδρος περιστρέφεται επειδή υπάρχει τριβή µεταξύ του νήµατος και κυλίνδρου Επειδή το νήµα δεν γλιστρά, δεν υπάρχει ολίσθηση του νήµατος ως προς το κύλινδρο Άρα δεν υπάρχει απώλεια ενέργειας λόγω τριβών W F = F! s = K f " K i = 1 2 I# 2 f " 1 2 I# i2 Fs M! " f = 20rad /s ενώ ω i = 0 και εποµένως έχουµε: Η υ f του νήµατος είναι η τελική εφαπτοµενική του κυλίνδρου:! f = " f r =1.2 m s

11 ΦΥΣ Διαλ Δυναµική στερεού σώµατος - Ροπή q Η ικανότητα µιας δύναµης να περιστρέφει ένα σώµα γύρω από ένα άξονα περιγράφεται από ένα καινούριο µέγεθος που ονοµάζεται ροπή. Η ροπή µιας δύναµης ορίζεται:! F = m a! = d! p dt ροπή:! = r! " F! = Fr sin# = Fd Ø Στην παραπάνω εξίσωση ορισµού F η δύναµη και d η απόσταση του σηµείου εφαρµογής της από τον άξονα περιστροφής Ø Χρησιµοποιούµε τον κανόνα του δεξιού χεριού για να βρούµε τη διεύθυνση της ροπής. Μονάδες: Νm q Εµπειρικά έχει βρεθεί ότι είναι πιο εύκολα να περιστρέψουµε ένα σώµα αν εφαρµόσουµε µια δύναµη µακριά από τον άξονα στροφής και εποµένως d µεγάλη. Αν d=0 τότε η ροπή είναι µηδέν q Δυνάµεις που η διεύθυνσή τους περνά από τον άξονα ή σηµείο περιστροφής έχουν µηδενική ροπή

12 ΦΥΣ Διαλ Παραδείγµατα ροπών q Για ένα µόνο σωµατίδιο που κινείται σε κύκλο κάτω από την επίδραση µιας δύναµης F είναι:! r F = m a! = ma!". = m#r $ F Ανάλογο του F=mα 2 q Για ένα στερεό σώµα I =! m i r i και για οµοιογενές στερεό: I = r 2 dm i rf = m!r 2 = (mr 2 )! " rf = I! " # = I! Aπό τις δυνάµεις που ενεργούν σε κάθε στοιχειώδη µάζα έχουµε: df!" = (dm)a!" = (dm)!r = (rdm)!! rdf "# = r(rdm)$! d" = r 2 dm# Όλα τα σηµεία όµως έχουν την ίδια γωνιακή επιτάχυνση α εποµένως ολοκληρώνουµε την τελευταία σχέση:! "#$%"!&µ'$( = ) (r 2 dm)& = &) r 2 dm = I&! Οποιαδήποτε στιγµή το στερεό περιγράφεται από ω, α και τ συνισταµένη

13 Παράδειγµα q Εκκρεµές εξαρτάται από αβαρή ράβδο. Ποια είναι η ροπή στη µάζα m? θ l T Μ! = r! " M g! = lmgsin# Προς το εσωτερικό του χαρτιού ΦΥΣ Διαλ Μg q Θέλετε να ξεβιδώσετε µια βίδα και το κλειδί που χρησιµοποιείται είναι κοντό. Βάζετε ένα σωλήνα και πατάτε πάνω του µε όλο το βάρος σας (900kg). Η απόσταση του άκρου του σωλήνα από τη βίδα είναι 0.8m, ενώ η γωνία του κλειδιού µε οριζόντιο είναι 19. Ποια η ροπή l = r! sin71 = 0.76! = lf = 900" 0.76 = 680N " m Διαφορετικά! = r! " F! = rf sin# $! = 0.8" 900sin(109 ) Η δύναµη προκαλεί περιστροφή προς τη φορά των δεικτών του ρολογιού και εποµένως η ροπή είναι κάθετη στη διαφάνεια και προς το εσωτερικό

14 ΦΥΣ Διαλ Παράδειγµα F 2 L F 3 F 1 = F 2 = F 3 = F 4 F 1 L θ L L F 4 Ποια από τις δυνάµεις έχει την µεγαλύτερη ροπή ως προς το σηµείο θ? κλειδί βίδα κλειδί βίδα ράβδος κλειδί βίδα ράβδος κλειδί βίδα Θέλετε να ξεβιδώσετε µια σκουριασµένη βίδα. Ποια η καλύτερη διάταξη που µπορείτε να χρησιµοποιήσετε; Επειδή η δύναµη είναι ίδια σε όλες τις περιπτώσεις χρειάζεται να συγκρίνουµε την απόσταση του σηµείου εφαρµογής της από το σηµείο περιστροφής (βίδα)

15 Παράδειγµα ΦΥΣ Διαλ Ένα στεφάνι και ένας κύλινδρος και τα δυο µάζας Μ και ακτίνας R κυλούν κατά µήκος κεκλιµένου επιπέδου κλίσης θ από ύψος h. Ποιό από τα δυό σώµατα φθάνει στη βάση του κεκλιµένου επιπέδου µε την µεγαλύτερη κινητική ενέργεια; (Α) Στεφάνι (Β) Κύλινδρος (Γ) Ίδια ΚΕ h

16 Παράδειγµα ΦΥΣ Διαλ Ένα στεφάνι και ένας κύλινδρος και τα δυο µάζας Μ και ακτίνας R κυλούν κατά µήκος κεκλιµένου επιπέδου κλίσης θ από ύψος h. Ποιo από τα δυό σώµατα φθάνει στη βάση του κεκλιµένου επιπέδου µε την µεγαλύτερη ταχύτητα (Α) Στεφάνι (Β) Κύλινδρος (Γ) Ίδια ΚΕ I = MR 2 I = 1 2 MR2 h

17 ΦΥΣ Διαλ Παράδειγµα Θεωρήστε δυο σώµατα τα οποία συνδέονται µέσω µιας αβαρούς τροχαλίας όπως στο σχήµα. Από διατήρηση ενέργειας υπολογίστε την ταχύτητα των δυο σωµάτων όταν η µάζα m 2 έχει κατέβει ένα ύψος h. Από διατήρηση µηχανικής ενέργειας: (δεν υπάρχουν µη συντηρητικές δυνάµεις)!e µ"#. = 0 $!E %&' +!E ()'. = 0 Τροχαλία i! E "#$ i + E %&$ f = E "#$ f + E %&$ Θεωρούµε την αρχική θέση της m 2 σαν επίπεδο µε Ε δυν = 0 ενώ οι ταχύτητες των σωµάτων είναι αρχικά µηδέν. Οπότε: = 1 2 m 1! m 2! 2 2 " m 2 gh Αλλά υ 1 =υ 2 m 2 gh = 1 ( 2 m + m 1 2 )! 2 "! = 2m 2 gh ( ) m 1 + m 2 Προσέξτε ότι η τάση του σχοινιού εκτελεί θετικό έργο στη µάζα m 1 και αρνητικό έργο στη µάζα m 2. Το συνολικό της έργο είναι µηδέν

18 ΦΥΣ Διαλ Παράδειγµα Θεωρήστε δυο σώµατα τα οποία συνδέονται µέσω µιας τροχαλίας µάζας Μ όπως στο σχήµα. Όταν η µάζα m 2 έχει κατέβει ένα ύψος h, οι δυο µάζες θα κινούνται: (Α) Με µεγαλύτερη ταχύτητα (Β) Με µικρότερη ταχύτητα (Γ) Με ίδια ταχύτητα µε αυτή που είχαν όταν η τροχαλία ήταν αβαρής Κινούνται µε µικρότερη ταχύτητα επειδή ένα µέρος της ενέργειας πηγαίνει στην περιστροφή της τροχαλίας Τροχαλία i E!"# i + E $%# f = E!"# f + E $%# =!m 2 gh m 1" m 2" I# 2 m 2 gh = 1! 2 m + m + I $ 1 2 " # R 2 % & ' 2 (! 1 =! 2 =! "#. " 1 % (Τα σηµεία της περιφέρειας της τροχαλίας! m έχουν την ίδια ταχύτητα µε το σχοινί) 2 gh = 1 $ 2 m + m + 2 MR2 ' $ 1 2 R 2 '! = " # $ & ' #$. 2m R! " = 2 gh m 1 + m 2 + M 2 ( 2

19 Πως η ροπή δύναµης µπαίνει σε ασκήσεις Θεωρήστε µια τροχαλία µε µια µάζα εξαρτηµένη από ένα νήµα. Αφήνετε τη µάζα να πέσει. Ποια είναι η γωνιακή επιτάχυνση της τροχαλίας µάζας Μ? ΦΥΣ Διαλ Λύση M R m Άξονας περιστροφής T mg Διαλέγουµε κάποιο σηµείο για αρχή. Στην προκειµένη περίπτωση τον άξονα περιστροφής "! = I# I = 1 2 MR2 "! = TR = I# $ T = I# R Αλλά δεν ξέρουµε την τάση Τ!! Χρησιµοποιούµε 2 ο νόµο Newton: "F y =!ma m = T! mg ( α m προς τα κάτω) %& Αφού το σκοινί δεν γλιστρά: a m = a!"#$. (1) (2) = R' (3) (1),(3) (2)!m"R = I" R! mg! " = (3) mg mr MR2! a m = g 1+ 1 M 2 m R

ΦΥΕ 14 5η ΕΡΓΑΣΙΑ Παράδοση 19-05-08 ( Οι ασκήσεις είναι βαθµολογικά ισοδύναµες) Άσκηση 1 : Aσκηση 2 :

ΦΥΕ 14 5η ΕΡΓΑΣΙΑ Παράδοση 19-05-08 ( Οι ασκήσεις είναι βαθµολογικά ισοδύναµες) Άσκηση 1 : Aσκηση 2 : ΦΥΕ 14 5 η ΕΡΓΑΣΙΑ Παράδοση 19-5-8 ( Οι ασκήσεις είναι βαθµολογικά ισοδύναµες) Άσκηση 1 : Συµπαγής κύλινδρος µάζας Μ συνδεδεµένος σε ελατήριο σταθεράς k = 3. N / και αµελητέας µάζας, κυλίεται, χωρίς να

Διαβάστε περισσότερα

Μηχανικό Στερεό. Μια εργασία για την Επανάληψη

Μηχανικό Στερεό. Μια εργασία για την Επανάληψη Μηχανικό Στερεό. Μια εργασία για την Επανάληψη Απλές προτάσεις Για τον έλεγχο της κατανόησης και εφαρμογής των εννοιών Δογραματζάκης Γιάννης 9/5/2013 Απλές προτάσεις για τον έλεγχο της κατανόησης και εφαρμογής

Διαβάστε περισσότερα

ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ. Άσκηση 1. (Ροπή αδράνειας - Θεμελιώδης νόμος στροφικής κίνησης)

ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ. Άσκηση 1. (Ροπή αδράνειας - Θεμελιώδης νόμος στροφικής κίνησης) ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ Άσκηση. (Ροπή αδράνειας - Θεμελιώδης νόμος στροφικής κίνησης) Ένας ομογενής οριζόντιος δίσκος, μάζας Μ και ακτίνας R, περιστρέφεται γύρω από κατακόρυφο ακλόνητο άξονα z, ο οποίος διέρχεται

Διαβάστε περισσότερα

ΦΥΕ14-5 η Εργασία Παράδοση

ΦΥΕ14-5 η Εργασία Παράδοση ΦΥΕ4-5 η Εργασία Παράδοση.5.9 Πρόβληµα. Συµπαγής οµογενής κύλινδρος µάζας τυλιγµένος µε λεπτό νήµα αφήνεται να κυλίσει από την κορυφή κεκλιµένου επιπέδου µήκους l και γωνίας φ (ϐλέπε σχήµα). Το ένα άκρο

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 3 ο ΔΙΑΓΩΝΙΣΜΑ ΘΕΜΑΤΑ ΘΕΜΑ Α Στις ημιτελείς προτάσεις 1-4 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το γράμμα που αντιστοιχεί στη φράση,

Διαβάστε περισσότερα

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού - µέρος Ι Ενδεικτικές Λύσεις Θέµα Α

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού - µέρος Ι Ενδεικτικές Λύσεις Θέµα Α ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού - µέρος Ι Ενδεικτικές Λύσεις Θέµα Α Α.1. Η γωνιακή επιτάχυνση ενός οµογενούς δίσκου που στρέφεται γύρω από σταθερό άξονα, που διέρχεται από το κέντρο

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 9 ΠΕΡΙΣΤΡΟΦΗ ΣΤΕΡΕΩΝ ΣΩΜΑΤΩΝ 18/11/2011 ΚΕΦ. 9

ΚΕΦΑΛΑΙΟ 9 ΠΕΡΙΣΤΡΟΦΗ ΣΤΕΡΕΩΝ ΣΩΜΑΤΩΝ 18/11/2011 ΚΕΦ. 9 ΚΕΦΑΛΑΙΟ 9 ΠΕΡΙΣΤΡΟΦΗ ΣΤΕΡΕΩΝ ΣΩΜΑΤΩΝ 18/11/011 ΚΕΦ. 9 1 ΓΩΝΙΑΚΗ ΚΙΝΗΣΗ: ΟΡΙΣΜΟΙ Περιστροφική κινηματική: περιγράφει την περιστροφική κίνηση. Στερεό Σώμα: Ιδανικό μοντέλο σώματος που έχει τελείως ορισμένα

Διαβάστε περισσότερα

ΠΡΟΩΘΗΣΗ ΠΥΡΑΥΛΩΝ. Η προώθηση των πυραύλων στηρίζεται στην αρχή διατήρησης της ορμής.

ΠΡΟΩΘΗΣΗ ΠΥΡΑΥΛΩΝ. Η προώθηση των πυραύλων στηρίζεται στην αρχή διατήρησης της ορμής. ΠΡΟΩΘΗΣΗ ΠΥΡΑΥΛΩΝ Η προώθηση των πυραύλων στηρίζεται στην αρχή διατήρησης της ορμής. Ο πύραυλος καίει τα καύσιμα που αρχικά βρίσκονται μέσα του και εκτοξεύει τα καυσαέρια προς τα πίσω. Τα καυσαέρια δέχονται

Διαβάστε περισσότερα

ΨΗΦΙΑΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΒΟΗΘΗΜΑ «ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ» ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΨΗΦΙΑΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΒΟΗΘΗΜΑ «ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ» ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 3 o ΔΙΑΓΩΝΙΣΜΑ ΜΑΡΤΙΟΣ 01: ΘΕΜΑΤΑ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 3 ο ΔΙΑΓΩΝΙΣΜΑ ΘΕΜΑΤΑ ΘΕΜΑ Α Στις ημιτελείς προτάσεις 1-4 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το

Διαβάστε περισσότερα

ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ ΠΡΟΣΠΑΘΕΙΑ ΣΑΣ ΚΙ 2014

ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ ΠΡΟΣΠΑΘΕΙΑ ΣΑΣ ΚΙ 2014 ΤΟ ΥΛΙΚΟ ΕΧΕΙ ΑΝΤΛΗΘΕΙ ΑΠΟ ΤΑ ΨΗΦΙΑΚΑ ΕΚΠΑΙΔΕΥΤΙΚΑ ΒΟΗΘΗΜΑΤΑ ΤΟΥ ΥΠΟΥΡΓΕΙΟΥ ΠΑΙΔΕΙΑΣ http://www.study4exams.gr/ ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ

Διαβάστε περισσότερα

Β. Συµπληρώστε τα κενά των παρακάτω προτάσεων

Β. Συµπληρώστε τα κενά των παρακάτω προτάσεων ΔΙΑΓΩΝΙΣΜΑ ΣΤΟ ΣΤΕΡΕΟ ΟΝΟΜΑΤΕΠΩΝΥΜΟ: ΘΕΜΑ Α Α. Στις ερωτήσεις 1 έως 3 επιλέξτε τη σωστή απάντηση 1. Δυο δακτύλιοι µε διαφορετικές ακτίνες αλλά ίδια µάζα κυλάνε χωρίς ολίσθηση σε οριζόντιο έδαφος µε την

Διαβάστε περισσότερα

Παράδειγµα διατήρησης στροφορµής

Παράδειγµα διατήρησης στροφορµής Παράδειγµα διατήρησης στροφορµής ΦΥΣ 3 - Διαλ.6 Κολόνα πέφτει σε γίγαντα. Δίνονται η µάζα του γίγαντα Μ, της κολόνας m, το µήκος της κολόνας l, η ταχύτητα της κολόνας v. H κίνηση γίνεται σε λεία επιφάνεια.

Διαβάστε περισσότερα

Αγώνες αυτοκινήτου σε πίστα

Αγώνες αυτοκινήτου σε πίστα Αγώνες αυτοκινήτου σε πίστα Αυτοκίνητο τρέχει στην πίστα που φαίνεται και έχει κυκλικά τόξα ένα ακτίνας 80m και ένα 40m. Αν οδηγός τρέχει ένα πλήρη κύκλο με σταθερή ταχύτητα 50m/s (80km/h) συγκρίνετε την

Διαβάστε περισσότερα

Κέντρο Μάζας - Παράδειγμα

Κέντρο Μάζας - Παράδειγμα Κέντρο Μάζας - Παράδειγμα ΦΥΣ 131 - Διαλ.1 1 Ο Ρωμαίο (m R =77kg) διασκεδάζει την Ιουλιέτα (m I =55kg) παίζοντας την κιθάρα του καθισμένος στην πρύμνη της βάρκας τους (μήκους.7 m) που είναι ακίνητη στα

Διαβάστε περισσότερα

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού - µέρος ΙΙ Ενδεικτικές Λύσεις Κυριακή 28 Φλεβάρη 2016 Θέµα Α

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού - µέρος ΙΙ Ενδεικτικές Λύσεις Κυριακή 28 Φλεβάρη 2016 Θέµα Α ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού - µέρος ΙΙ Ενδεικτικές Λύσεις Κυριακή 28 Φλεβάρη 2016 Θέµα Α Α.1. Ενα στερεό σώµα περιστρέφεται γύρω από ακλόνητο άξονα. Εάν διπλασιαστεί η στροφορµή

Διαβάστε περισσότερα

% ] Βαγγέλης Δημητριάδης 4 ο ΓΕΛ Ζωγράφου

% ] Βαγγέλης Δημητριάδης 4 ο ΓΕΛ Ζωγράφου 1. Ομογενής και ισοπαχής ράβδος μήκους L= 4 m και μάζας M= 2 kg ισορροπεί οριζόντια. Το άκρο Α της ράβδου συνδέεται με άρθρωση σε κατακόρυφο τοίχο. Σε σημείο Κ της ράβδου έχει προσδεθεί το ένα άκρο κατακόρυφου

Διαβάστε περισσότερα

Κεφάλαιο Μ10. Περιστροφή άκαµπτου σώµατος γύρω από σταθερό άξονα

Κεφάλαιο Μ10. Περιστροφή άκαµπτου σώµατος γύρω από σταθερό άξονα Κεφάλαιο Μ10 Περιστροφή άκαµπτου σώµατος γύρω από σταθερό άξονα Άκαµπτο σώµα Τα µοντέλα ανάλυσης που παρουσιάσαµε µέχρι τώρα δεν µπορούν να χρησιµοποιηθούν για την ανάλυση όλων των κινήσεων. Μπορούµε να

Διαβάστε περισσότερα

F r. www.ylikonet.gr 1

F r. www.ylikonet.gr 1 3.5. Έργο Ενέργεια. 3.5.1. Έργο δύναµης- ροπής και Κινητική Ενέργεια. Το οµοαξονικό σύστηµα των δύο κυλίνδρων µε ακτίνες R 1 =0,1m και R =0,5m ηρεµεί σε οριζόντιο επίπεδο. Τυλίγουµε γύρω από τον κύλινδρο

Διαβάστε περισσότερα

ΘΕΜΑ Α Ι. Στις ερωτήσεις 1-4 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και το γράμμα που αντιστοιχεί στη σωστή απάντηση.

ΘΕΜΑ Α Ι. Στις ερωτήσεις 1-4 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και το γράμμα που αντιστοιχεί στη σωστή απάντηση. ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α Ι. Στις ερωτήσεις 1-4 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και το γράμμα που αντιστοιχεί στη σωστή απάντηση. 1.

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ. Δίνεται ότι η ροπή αδράνειας του δίσκου ως προς τον άξονα Κ είναι Ι= M R

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ. Δίνεται ότι η ροπή αδράνειας του δίσκου ως προς τον άξονα Κ είναι Ι= M R ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 1 Η ράβδος ΟΑ του σχήματος μπορεί να στρέφεται γύρω από τον άξονα z z χωρίς τριβές Tη στιγμή t=0 δέχεται την εφαπτομενική δύναμη F σταθερού μέτρου 0 Ν, με φορά όπως φαίνεται στο σχήμα

Διαβάστε περισσότερα

Ασκήσεις. Φυσική Γ Λυκείου - Μηχανική στερεού σώματος

Ασκήσεις. Φυσική Γ Λυκείου - Μηχανική στερεού σώματος - Μηχανική στερεού σώματος Ασκήσεις 1. Στερεό στρέφεται γύρω Ένας δίσκος μπορεί να περιστρέφεται γύρω από σταθερό άξονα ο οποίος διέρχεται από το κέντρο και είναι κάθετος στο επίπεδο του. Ο δίσκος είναι

Διαβάστε περισσότερα

ΤΟ ΥΛΙΚΟ ΕΧΕΙ ΑΝΤΛΗΘΕΙ ΑΠΟ ΤΑ ΨΗΦΙΑΚΑ ΕΚΠΑΙΔΕΥΤΙΚΑ ΒΟΗΘΗΜΑΤΑ ΤΟΥ ΥΠΟΥΡΓΕΙΟΥ ΠΑΙΔΕΙΑΣ.

ΤΟ ΥΛΙΚΟ ΕΧΕΙ ΑΝΤΛΗΘΕΙ ΑΠΟ ΤΑ ΨΗΦΙΑΚΑ ΕΚΠΑΙΔΕΥΤΙΚΑ ΒΟΗΘΗΜΑΤΑ ΤΟΥ ΥΠΟΥΡΓΕΙΟΥ ΠΑΙΔΕΙΑΣ. ΤΟ ΥΛΙΚΟ ΕΧΕΙ ΑΝΤΛΗΘΕΙ ΑΠΟ ΤΑ ΨΗΦΙΑΚΑ ΕΚΠΑΙΔΕΥΤΙΚΑ ΒΟΗΘΗΜΑΤΑ ΤΟΥ ΥΠΟΥΡΓΕΙΟΥ ΠΑΙΔΕΙΑΣ http://www.study4exams.gr/ ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ

Διαβάστε περισσότερα

Ποια η ταχύτητά του τη στιγµή που έχει περάσει πλήρως από την τρύπα? Λύση µε διατήρηση της ενέργειας. + K f. ! 0 + 0 = mg " L & $ !

Ποια η ταχύτητά του τη στιγµή που έχει περάσει πλήρως από την τρύπα? Λύση µε διατήρηση της ενέργειας. + K f. ! 0 + 0 = mg  L & $ ! Παράδειγµα Ενέργειες Το ακόλουθο πρόβληµα µπορεί να λυθεί είτε µε χρήση των νόµων του Newton ( F=mα ) ή Διατήρηση ενέργειας. Ένα µικρό τµήµα σχοινιού κρέµεται προς τα κάτω µέσα από µια τρύπα σε λείο τραπέζι.

Διαβάστε περισσότερα

Επαναληπτικό διαγώνισµα Ταλαντώσεις Στερεό σώµα

Επαναληπτικό διαγώνισµα Ταλαντώσεις Στερεό σώµα Επαναληπτικό διαγώνισµα Ταλαντώσεις Στερεό σώµα Θέµα ο Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις -4 και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση.. Ένα σηµειακό

Διαβάστε περισσότερα

ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ. = 2r, τότε:

ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ. = 2r, τότε: ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ Άσκηση 1. (Διατήρηση της στροφορμής) Η Γη στρέφεται σε ελλειπτική τροχιά γύρω από τον Ήλιο. Το κοντινότερο σημείο στον Ήλιο ονομάζεται Περιήλιο (π) και το πιο απομακρυσμένο Αφήλιο (α).

Διαβάστε περισσότερα

Κέντρο µάζας. + m 2. x 2 x cm. = m 1x 1. m 1

Κέντρο µάζας. + m 2. x 2 x cm. = m 1x 1. m 1 ΦΥΣ 3 - Διαλ. Κέντρο µάζας Μέχρι τώρα είδαµε την κίνηση υλικών σηµείων µεµονωµένα. Όταν αρχίσουµε να θεωρούµε συστήµατα σωµάτων ή στερεά σώµατα κάποιων διαστάσεων είναι πιο χρήσιµο και ευκολότερο να ορίσουµε

Διαβάστε περισσότερα

ΘΕΜΑΤΑ : ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 23/2/2014 ΕΞΕΤΑΖΟΜΕΝΗ ΥΛΗ: ΚΕΦΑΛΑΙΑ 3-4

ΘΕΜΑΤΑ : ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 23/2/2014 ΕΞΕΤΑΖΟΜΕΝΗ ΥΛΗ: ΚΕΦΑΛΑΙΑ 3-4 ΚΕΝΤΡΟ Αγίας Σοφίας 39 3 ΝΤΕΠΩ Β Όλγας 3 38 ΕΥΟΣΜΟΣ ΜΑλεξάνδρου 5 37736 ΘΕΜΑΤΑ : ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 3// ΕΞΕΤΑΖΟΜΕΝΗ ΥΛΗ: ΚΕΦΑΛΑΙΑ 3- ΘΕΜΑ A Στις ερωτήσεις - να γράψετε

Διαβάστε περισσότερα

Απάντηση: α) 16,0 Ν, β) 10,2 Ν

Απάντηση: α) 16,0 Ν, β) 10,2 Ν Σώμα με μάζα m 1 τοποθετείται πάνω σε κεκλιμένο επίπεδο με γωνία κλίσεως α και είναι δεμένο με σχοινί με δεύτερο σώμα μάζας m 2 το οποίο κρέμεται, το σχοινί περνά, από μικρή άτριβη τροχαλία. Ο συντελεστής

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α (ΘΕΡΙΝΑ) ΗΜΕΡΟΜΗΝΙΑ: 09/03/2014

ΜΑΘΗΜΑ / ΤΑΞΗ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α (ΘΕΡΙΝΑ) ΗΜΕΡΟΜΗΝΙΑ: 09/03/2014 ΜΑΘΗΜΑ / ΤΑΞΗ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α (ΘΕΡΙΝΑ) ΗΜΕΡΟΜΗΝΙΑ: 09/03/014 ΘΕΜΑ Α Οδηγία: Στις ερωτήσεις Α1 Α4 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 4 (ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ) ΚΥΡΙΑΚΗ 15 ΜΑΡΤΙΟΥ 2015 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ 5

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 4 (ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ) ΚΥΡΙΑΚΗ 15 ΜΑΡΤΙΟΥ 2015 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ 5 ΑΡΧΗ 1 ΗΣ ΣΕΛΙΔΑΣ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 4 (ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ) ΚΥΡΙΑΚΗ 15 ΜΑΡΤΙΟΥ 2015 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ 5 ΘΕΜΑ Α Να γράψετε στο τετράδιό σας τον

Διαβάστε περισσότερα

Κεφάλαιο 10 Περιστροφική Κίνηση. Copyright 2009 Pearson Education, Inc.

Κεφάλαιο 10 Περιστροφική Κίνηση. Copyright 2009 Pearson Education, Inc. Κεφάλαιο 10 Περιστροφική Κίνηση Περιεχόµενα Κεφαλαίου 10 Γωνιακές Ποσότητες Διανυσµατικός Χαρακτήρας των Γωνιακών Ποσοτήτων Σταθερή γωνιακή Επιτάχυνση Ροπή Δυναµική της Περιστροφικής Κίνησης, Ροπή και

Διαβάστε περισσότερα

ΟΡΟΣΗΜΟ. Ισχύει: α. L 1. και Κ 1 β. 2L 1 =2L 2 =L 2. και 2Κ 1 γ. L 1

ΟΡΟΣΗΜΟ. Ισχύει: α. L 1. και Κ 1 β. 2L 1 =2L 2 =L 2. και 2Κ 1 γ. L 1 61 Η κινητική ενέργεια ενός δίσκου μάζας m και ακτίνας R που εκτελεί στροφική κίνηση, εξαρτάται: α Μόνο από την γωνιακή του ταχύτητα β Μόνο από την μάζα και την ακτίνα του γ Μόνο από την γωνιακή του ταχύτητα,

Διαβάστε περισσότερα

5 η Εργασία Παράδοση 20/5/2007 Οι ασκήσεις είναι ισοδύναµες

5 η Εργασία Παράδοση 20/5/2007 Οι ασκήσεις είναι ισοδύναµες 5 η Εργασία Παράδοση /5/7 Οι ασκήσεις είναι ισοδύναµες Για ένα συµµετρικό σώµα (για παράδειγµα, ϑεωρείστε ένα κυλινδρικό σώµα) που κυλά προς τα κάτω, χωρίς να ολισθαίνει, πάνω σε κεκλιµένο επίπεδο, να

Διαβάστε περισσότερα

Τίτλος Κεφαλαίου: Στερεό σώµα. Ασκήσεις που δόθηκαν στις εξετάσεις των Πανελληνίων ως. Γεώργιος Μακεδών, Φυσικός Ρ/Η Σελίδα 1

Τίτλος Κεφαλαίου: Στερεό σώµα. Ασκήσεις που δόθηκαν στις εξετάσεις των Πανελληνίων ως. Γεώργιος Μακεδών, Φυσικός Ρ/Η Σελίδα 1 Τίτλος Κεφαλαίου: Στερεό σώµα ιδακτική Ενότητα: Κινηµατική του Στερεού Σώµατος Ασκήσεις που δόθηκαν στις εξετάσεις των Πανελληνίων ως Θέµα 3ο: Γεώργιος Μακεδών, Φυσικός Ρ/Η Σελίδα 1 ιδακτική Ενότητα: Ροπή

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4 ο : ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ ΕΝΟΤΗΤΑ 1: ΚΙΝΗΣΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ [Υποκεφάλαιο 4.2 Οι κινήσεις των στερεών σωμάτων του σχολικού βιβλίου]

ΚΕΦΑΛΑΙΟ 4 ο : ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ ΕΝΟΤΗΤΑ 1: ΚΙΝΗΣΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ [Υποκεφάλαιο 4.2 Οι κινήσεις των στερεών σωμάτων του σχολικού βιβλίου] ΤΟ ΥΛΙΚΟ ΕΧΕΙ ΑΝΤΛΗΘΕΙ ΑΠΟ ΤΑ ΨΗΦΙΑΚΑ ΕΚΠΑΙΔΕΥΤΙΚΑ ΒΟΗΘΗΜΑΤΑ ΤΟΥ ΥΠΟΥΡΓΕΙΟΥ ΠΑΙΔΕΙΑΣ http://www.study4exams.gr/ ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ

Διαβάστε περισσότερα

Ερωτήσεις που δόθηκαν στις εξετάσεις των Πανελληνίων ως

Ερωτήσεις που δόθηκαν στις εξετάσεις των Πανελληνίων ως Τίτλος Κεφαλαίου: Στερεό σώµα ιδακτική Ενότητα: Κινηµατική του Στερεού Σώµατος Ερωτήσεις που δόθηκαν στις εξετάσεις των Πανελληνίων ως Θέµα ο: (Ιούνιος 009 Ηµερήσιο) Ο δίσκος του σχήµατος κυλίεται χωρίς

Διαβάστε περισσότερα

Β. Κίνηση σώματος (ή συστήματος σωμάτων)

Β. Κίνηση σώματος (ή συστήματος σωμάτων) ΚΕΦΑΛΑΙΟ 4 Γενικές ερωτήσεις Γενικές ασκήσεις Κριτήρια αξιολόγησης Ένα πρόβλημα μηχανικής στερεού σώματος είναι γενικά σύνθετο πρόβλημα και απαιτούνται όλα όσα γράψαμε μέχρι τώρα στις επιμέρους ενότητες

Διαβάστε περισσότερα

Στροφορµή. ΦΥΣ 131 - Διαλ.25 1

Στροφορµή. ΦΥΣ 131 - Διαλ.25 1 Στροφορµή ΦΥΣ 131 - Διαλ.25 1 ΦΥΣ 131 - Διαλ.25 2 Στροφορµή q Ένα από τα βασικά µεγέθη που σχετίζονται µε την περιστροφική κίνηση είναι η στροφορµή q Θυµηθείτε ότι για µάζα m που κινείται µε ταχύτητα v

Διαβάστε περισσότερα

EΡΓΑΣΙΑ 5 η Καταληκτική ηµεροµηνία παράδοσης: 20 Ιουλίου 2003

EΡΓΑΣΙΑ 5 η Καταληκτική ηµεροµηνία παράδοσης: 20 Ιουλίου 2003 1 EΡΓΑΣΙΑ 5 η Καταληκτική ηµεροµηνία παράδοσης: 20 Ιουλίου 2003 1. Από την ίδια γραµµή αφετηρίας(από το ίδιο ύψος) ενός κεκλιµένου επιπέδου αφήστε να κυλήσουν, ταυτόχρονα προς τα κάτω, δύο κυλίνδροι της

Διαβάστε περισσότερα

Γ ΛΥΚΕΙΟΥ ΟΙ ΚΙΝΗΣΕΙΣ ΤΩΝ ΣΤΕΡΕΩΝ ΣΩΜΑΤΩΝ

Γ ΛΥΚΕΙΟΥ ΟΙ ΚΙΝΗΣΕΙΣ ΤΩΝ ΣΤΕΡΕΩΝ ΣΩΜΑΤΩΝ Όποτε χρησιμοποιείτε το σταυρό ή το κλειδί της εργαλειοθήκης σας για να ξεσφίξετε τα μπουλόνια ενώ αντικαθιστάτε ένα σκασμένο λάστιχο αυτοκινήτου, ολόκληρος ο τροχός αρχίζει να στρέφεται και θα πρέπει

Διαβάστε περισσότερα

Γ ΛΥΚΕΙΟΥ (Επαναληπτικός ιαγωνισμός)

Γ ΛΥΚΕΙΟΥ (Επαναληπτικός ιαγωνισμός) 4 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑ Α ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ (Επαναληπτικός ιαγωνισμός) Κυριακή, 5 Απριλίου, 00, Ώρα:.00 4.00 Προτεινόμενες Λύσεις Άσκηση ( 5 μονάδες) Δύο σύγχρονες πηγές, Π και Π, που απέχουν μεταξύ τους

Διαβάστε περισσότερα

Διαγώνισμα: Μηχανική Στερεού Σώματος

Διαγώνισμα: Μηχανική Στερεού Σώματος Διαγώνισμα: Μηχανική Στερεού Σώματος Θέμα Α Στις ημιτελείς προτάσεις Α1-Α4 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το γράμμα που αντιστοιχεί στη φράση η οποία τη συμπληρώνει σωστά

Διαβάστε περισσότερα

υναµική στερεού. Οµάδα Γ

υναµική στερεού. Οµάδα Γ 3.3.21. Μια περίεργη κύλιση Κύλινδρος υναµική στερεού. Οµάδα Γ µάζας Μ=10Κg και ακτίνας R=0,5m αρχίζει την στιγµή t=0 να ανέρχεται κυλιόµενος (αριστερόστροφα) χωρίς να ολισθαίνει κατά µήκος αρχικά λείου

Διαβάστε περισσότερα

Α. Ροπή δύναµης ως προς άξονα περιστροφής

Α. Ροπή δύναµης ως προς άξονα περιστροφής Μηχανική στερεού σώµατος, Ροπή ΡΟΠΗ ΔΥΝΑΜΗΣ Α. Ροπή δύναµης ως προς άξονα περιστροφής Έστω ένα στερεό που δέχεται στο άκρο F Α δύναµη F όπως στο σχήµα. Στο Ο διέρχεται άξονας περιστροφής κάθετος στο στερεό

Διαβάστε περισσότερα

Κεφάλαιο M11. Στροφορµή

Κεφάλαιο M11. Στροφορµή Κεφάλαιο M11 Στροφορµή Στροφορµή Η στροφορµή παίζει σηµαντικό ρόλο στη δυναµική των περιστροφών. Αρχή διατήρησης της στροφορµής Η αρχή αυτή είναι ανάλογη µε την αρχή διατήρησης της ορµής. Σύµφωνα µε την

Διαβάστε περισσότερα

Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ ΕΚΦΩΝΗΣΕΙΣ

Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ ΕΚΦΩΝΗΣΕΙΣ Επαναληπτικά Θέµατα ΟΕΦΕ 009 ΘΕΜΑ ο Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ ΕΚΦΩΝΗΣΕΙΣ Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις -4 και δίπλα το γράµµα που αντιστοιχεί

Διαβάστε περισσότερα

Κεφάλαιο 6α. Περιστροφή στερεού σώματος γύρω από σταθερό άξονα

Κεφάλαιο 6α. Περιστροφή στερεού σώματος γύρω από σταθερό άξονα Κεφάλαιο 6α Περιστροφή στερεού σώματος γύρω από σταθερό άξονα Στερεό (ή άκαμπτο) σώμα Τα μοντέλα ανάλυσης που παρουσιάσαμε μέχρι τώρα δεν μπορούν να χρησιμοποιηθούν για την ανάλυση όλων των κινήσεων. Μπορούμε

Διαβάστε περισσότερα

Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ ΕΚΦΩΝΗΣΕΙΣ

Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ ΕΚΦΩΝΗΣΕΙΣ Επαναληπτικά Θέµατα ΟΕΦΕ 009 Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ ΘΕΜΑ ο ΕΚΦΩΝΗΣΕΙΣ Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις -4 και δίπλα το γράµµα που αντιστοιχεί

Διαβάστε περισσότερα

ΦΥΣ Διαλ Δυναµική

ΦΥΣ Διαλ Δυναµική ΦΥΣ 131 - Διαλ.08 1 Δυναµική Ø F(δύναµη), m(µάζα), E(ενέργεια), p(ορµή), Ø Πως ένα σώµα αλληλεπιδρά µε το περιβάλλον του Ø Γιατί σώµατα κινούνται µε το τρόπο που κινούνται q Θεµελιώδεις νόµοι της µηχανικής:

Διαβάστε περισσότερα

2) Ομογενής δίσκος μάζας m και ακτίνας R κυλίεται χωρίς να ολισθαίνει πάνω σε οριζόντιο

2) Ομογενής δίσκος μάζας m και ακτίνας R κυλίεται χωρίς να ολισθαίνει πάνω σε οριζόντιο - 1 - Επώνυμο.. Όνομα.. Αγρίνιο 22/3/2015 Ζήτημα 1 0 Να επιλεγεί η σωστή πρόταση 1) Ομογενής δίσκος μάζας m και ακτίνας R κυλίεται χωρίς να ολισθαίνει πάνω σε οριζόντιο επίπεδο. Ο δίσκος στρέφεται γύρω

Διαβάστε περισσότερα

mg ηµφ Σφαίρα, I = 52

mg ηµφ Σφαίρα, I = 52 Μελέτη της κίνησης ενός σώµατος που µπορεί να κυλάει σε κεκλιµένο επίπεδο (π.χ. σφόνδυλος, κύλινδρος, σφαίρα, κλπ.) Τ mg συνφ Κ Ν mg ηµφ Το σώµα του σχήµατος έχει µάζα m, ακτίνα και µπορεί να είναι: Σφόνδυλος

Διαβάστε περισσότερα

ΦΥΣ Τελική Εξέταση: 11-Δεκεµβρίου Πριν αρχίσετε συµπληρώστε τα στοιχεία σας (ονοµατεπώνυµο και αριθµό ταυτότητας).

ΦΥΣ Τελική Εξέταση: 11-Δεκεµβρίου Πριν αρχίσετε συµπληρώστε τα στοιχεία σας (ονοµατεπώνυµο και αριθµό ταυτότητας). ΦΥΣ. 131 Τελική Εξέταση: 11-Δεκεµβρίου-2011 Πριν αρχίσετε συµπληρώστε τα στοιχεία σας (ονοµατεπώνυµο και αριθµό ταυτότητας). Ονοµατεπώνυµο Αριθµός ταυτότητας Απενεργοποιήστε τα κινητά σας. Σας δίνονται

Διαβάστε περισσότερα

ΚΕΝΤΡΟ ΘΕΩΡΗΤΙΚΗΣ ΦΥΣΙΚΗΣ & ΧΗΜΕΙΑΣ Ε ΟΥΑΡ ΟΥ ΛΑΓΑΝΑ Ph.D. Λεωφ. Κηφισίας 56, Αµπελόκηποι, Αθήνα Τηλ.: ,

ΚΕΝΤΡΟ ΘΕΩΡΗΤΙΚΗΣ ΦΥΣΙΚΗΣ & ΧΗΜΕΙΑΣ Ε ΟΥΑΡ ΟΥ ΛΑΓΑΝΑ Ph.D. Λεωφ. Κηφισίας 56, Αµπελόκηποι, Αθήνα Τηλ.: , Ε ΟΥΑΡ ΟΥ ΛΑΓΑΝΑ Ph.D. Τηλ.: 10 69 97 985, www.edlag.gr ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ - ΑΣΚΗΣΕΙΣ Τηλ.: 10 69 97 985, e-mail: edlag@otenet.gr, www.edlag.gr ΣΜΑΡΑΓ Α ΣΑΡΑΝΤΟΠΟΥΛΟΥ, MSC, ΥΠΟΨΗΦΙΑ Ι ΑΚΤΩΡ ΕΜΠ Ε

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΤΕΡΕΟ. ΘΕΜΑ Α (μοναδες 25)

ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΤΕΡΕΟ. ΘΕΜΑ Α (μοναδες 25) ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΤΕΡΕΟ ΘΕΜΑ Α (μοναδες 25) Α1. Σε στερεό που περιστρέφεται γύρω από σταθερό κατακόρυφο άξονα ενεργεί σταθερή ροπή. Τότε αυξάνεται με σταθερό ρυθμό: α. η ροπή αδράνειας του β. η

Διαβάστε περισσότερα

ΜΑΘΗΜΑ /ΤΑΞΗ: ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ ΟΝΟΜΑΤΕΠΩΝΥMΟ: ΗΜΕΡΟΜΗΝΙΑ: 28/2/2016

ΜΑΘΗΜΑ /ΤΑΞΗ: ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ ΟΝΟΜΑΤΕΠΩΝΥMΟ: ΗΜΕΡΟΜΗΝΙΑ: 28/2/2016 ΜΑΘΗΜΑ /ΤΑΞΗ: ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ ΟΝΟΜΑΤΕΠΩΝΥMΟ: ΗΜΕΡΟΜΗΝΙΑ: 8//06 ΕΞΕΤΑΣΤΕΑ ΥΛΗ: ΣΤΕΡΕΟ ΚΑΙ Doppler ΘΕΜΑ Α Α Μικρότερη συχνότητα ακούει ένας παρατηρητής σε σχέση με την πραγματική συχνότητα

Διαβάστε περισσότερα

Κεφάλαιο 5 Εφαρµογές των Νόµων του Νεύτωνα: Τριβή, Κυκλική Κίνηση, Ελκτικές Δυνάµεις. Copyright 2009 Pearson Education, Inc.

Κεφάλαιο 5 Εφαρµογές των Νόµων του Νεύτωνα: Τριβή, Κυκλική Κίνηση, Ελκτικές Δυνάµεις. Copyright 2009 Pearson Education, Inc. Κεφάλαιο 5 Εφαρµογές των Νόµων του Νεύτωνα: Τριβή, Κυκλική Κίνηση, Ελκτικές Δυνάµεις Περιεχόµενα Κεφαλαίου 5 Εφαρµογές Τριβής Οµοιόµορφη Κυκλική Κίνηση Δυναµική Κυκλικής Κίνησης Οι κλήσεις στους αυτοκινητοδρόµους

Διαβάστε περισσότερα

ΕΡΓΑΣΙΑ 5 (Παράδοση 5/6/05) Οι ασκήσεις είναι βαθμολογικά ισοδύναμες

ΕΡΓΑΣΙΑ 5 (Παράδοση 5/6/05) Οι ασκήσεις είναι βαθμολογικά ισοδύναμες ΕΡΓΑΣΙΑ 5 (Παράδοση 5/6/5) Οι ασκήσεις είναι βαθμολογικά ισοδύναμες ΑΣΗΣΗ 1 Ομογενής ράβδος μάζας m και μήκους L είναι στερεωμένη σε οριζόντιο άξονα Ο. Αρχικά βρίσκεται σε κατακόρυφη θέση και αφήνεται

Διαβάστε περισσότερα

ΦΥΣ. 131 ΕΡΓΑΣΙΑ # 5

ΦΥΣ. 131 ΕΡΓΑΣΙΑ # 5 ΦΥΣ. 131 ΕΡΓΑΣΙΑ # 5 1. Ένα κιβώτιο µάζας 60kg συγκρατείται από ένα ελατήριο σταθεράς k=4.00 10 3 Ν/m) το οποίο είναι συµπιεσµένο οριζόντια κατά ένα µήκος 1.5m. Το κιβώτιο αφήνεται ελεύθερο τη χρονική

Διαβάστε περισσότερα

Επαναληπτική άσκηση: Περιστροφή Κρούση - Κύλιση με ολίσθηση

Επαναληπτική άσκηση: Περιστροφή Κρούση - Κύλιση με ολίσθηση Επαναληπτική άσκηση: Περιστροφή Κρούση - Κύλιση με ολίσθηση Η ομογενής και ισοπαχής ράβδος ΑΓ του διπλανού σχήματος έχει μήκος L=1,m και μάζα M=4kg και μπορεί να περιστρέφεται χωρίς τριβές σε κατακόρυφο

Διαβάστε περισσότερα

Φυσική Γ Λυκείου. Επαναληπτικά θέματα στο ΣΤΕΡΕΟ. Θετικής - Τεχνολογικής κατεύθυνσης. Πηγή: study4exams.gr

Φυσική Γ Λυκείου. Επαναληπτικά θέματα στο ΣΤΕΡΕΟ. Θετικής - Τεχνολογικής κατεύθυνσης. Πηγή: study4exams.gr Φυσική Γ Λυκείου Θετικής - Τεχνολογικής κατεύθυνσης Επαναληπτικά θέματα στο ΣΤΕΡΕΟ Πηγή: tudy4exam.gr Επιμέλεια: Μαρούσης Βαγγέλης - Φυσικός Φυσικής ζητήματα 1 Επαναληπτικά Θέματα στη Μηχανική του Στερεού

Διαβάστε περισσότερα

ταχύτητα μέτρου. Με την άσκηση κατάλληλης σταθερής ροπής, επιτυγχάνεται

ταχύτητα μέτρου. Με την άσκηση κατάλληλης σταθερής ροπής, επιτυγχάνεται ΚΕΦΑΛΑΙΟ 4 ο : ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ ΕΝΟΤΗΤΑ 4: ΣΤΡΟΦΟΡΜΗ 26. Δύο σημειακές σφαίρες που η καθεμιά έχει μάζα συνδέονται μεταξύ τους με οριζόντια αβαρή ράβδο. Το σύστημα περιστρέφεται γύρω από κατακόρυφο

Διαβάστε περισσότερα

ΘΕΜΑ Α Α. Στις ερωτήσεις 1-5 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και το γράμμα που αντιστοιχεί στη σωστή απάντηση

ΘΕΜΑ Α Α. Στις ερωτήσεις 1-5 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και το γράμμα που αντιστοιχεί στη σωστή απάντηση ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α Α. Στις ερωτήσεις 1-5 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και το γράμμα που αντιστοιχεί στη σωστή απάντηση 1.

Διαβάστε περισσότερα

Κεφάλαιο 11 Στροφορµή

Κεφάλαιο 11 Στροφορµή Κεφάλαιο 11 Στροφορµή Περιεχόµενα Κεφαλαίου 11 Στροφορµή Περιστροφή Αντικειµένων πέριξ σταθερού άξονα Το Εξωτερικό γινόµενο-η ροπή ως διάνυσµα Στροφορµή Σωµατιδίου Στροφορµή και Ροπή για Σύστηµα Σωµατιδίων

Διαβάστε περισσότερα

Ασκήσεις που δόθηκαν στις εξετάσεις των Πανελληνίων ως. Ασκήσεις που δόθηκαν στις εξετάσεις των Πανελληνίων ως

Ασκήσεις που δόθηκαν στις εξετάσεις των Πανελληνίων ως. Ασκήσεις που δόθηκαν στις εξετάσεις των Πανελληνίων ως Τίτλος Κεφαλαίου: Στερεό σώµα ιδακτική Ενότητα: Κινηµατική του Στερεού Σώµατος Ασκήσεις που δόθηκαν στις εξετάσεις των Πανελληνίων ως Θέµα 4ο: ιδακτική Ενότητα: Ροπή ύναµης Ισορροπία Στερεού Σώµατος Ασκήσεις

Διαβάστε περισσότερα

ΦΥΣ. 211 Τελική Εξέταση 10-Μάη-2014

ΦΥΣ. 211 Τελική Εξέταση 10-Μάη-2014 ΦΥΣ. 211 Τελική Εξέταση 10-Μάη-2014 Πριν ξεκινήσετε συµπληρώστε τα στοιχεία σας (ονοµατεπώνυµο, αριθµό ταυτότητας) στο πάνω µέρος της σελίδας αυτής. Για τις λύσεις των ασκήσεων θα πρέπει να χρησιµοποιήσετε

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 17/4/2016 ΘΕΜΑ Α

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 17/4/2016 ΘΕΜΑ Α ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 7/4/06 ΘΕΜΑ Α Στις παρακάτω ερωτήσεις - 7 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα σε κάθε αριθμό το γράµμα που αντιστοιχεί στη σωστή απάντηση:

Διαβάστε περισσότερα

Προτεινόμενα ΘΕΜΑΤΑ ΦΥΣΙΚΗΣ

Προτεινόμενα ΘΕΜΑΤΑ ΦΥΣΙΚΗΣ ΘΕΜΑΤΑ Β. Β1. Από ύψος h (σημείο Α) αφήνουμε να κυλίσει δακτύλιος μάζας m 1 =m χωρίς ολίσθηση σε οδηγό που καταλήγει σε τεταρτοκύκλιο. Στο σημείο Β και όταν η u cm είναι κατακόρυφη ο δακτύλιος εγκαταλείπει

Διαβάστε περισσότερα

Σωματίδιο μάζας m κινείται στο οριζόντιο επίπεδο xy σε κυκλική τροχιά με σταθερή γωνιακή ταχύτητα ω. Τι συμπεραίνετε για τη στροφορμή του;

Σωματίδιο μάζας m κινείται στο οριζόντιο επίπεδο xy σε κυκλική τροχιά με σταθερή γωνιακή ταχύτητα ω. Τι συμπεραίνετε για τη στροφορμή του; Άσκηση Σωματίδιο μάζας m κινείται στο οριζόντιο επίπεδο xy σε κυκλική τροχιά με σταθερή γωνιακή ταχύτητα ω. Τι συμπεραίνετε για τη στροφορμή του; Απάντηση Έστω R n η ακτίνα του κύκλου. Αφού η κίνηση είναι

Διαβάστε περισσότερα

ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ: ΔΥΝΑΜΕΙΣ ΚΑΙ ΡΟΠΕΣ

ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ: ΔΥΝΑΜΕΙΣ ΚΑΙ ΡΟΠΕΣ ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ: ΔΥΝΑΜΕΙΣ ΚΑΙ ΡΟΠΕΣ Σ ένα στερεό ασκούνται ομοεπίπεδες δυνάμεις. Όταν το στερεό ισορροπεί, δηλαδή ισχύει ότι F 0 και δεν περιστρέφεται τότε το αλγεβρικό άθροισμα των ροπών είναι μηδέν Στ=0,

Διαβάστε περισσότερα

3ωρη ΔΟΚΙΜΑΣΙΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

3ωρη ΔΟΚΙΜΑΣΙΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ωρη ΔΟΚΙΜΑΣΙΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ Θέμα Α ΕΞΕΤΑΖΟΜΕΝΗ ΥΛΗ: Κεφάλαιο 4, Μηχανικό στερεό (5Χ5 μονάδες) Για να απαντήσετε στις παρακάτω ερωτήσεις πολλαπλής επιλογής -4 αρκεί να γράψετε στο φύλλο

Διαβάστε περισσότερα

Γ ΛΥΚΕΙΟΥ (Επαναληπτικός ιαγωνισμός)

Γ ΛΥΚΕΙΟΥ (Επαναληπτικός ιαγωνισμός) 4 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑ Α ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ (Επαναληπτικός ιαγωνισμός) Κυριακή, 5 Απριλίου, 00, Ώρα:.00 4.00 Οδηγίες: ) Το δοκίμιο αποτελείται από έξι (6) θέματα. ) Να απαντήσετε σε όλα τα θέματα. ) Επιτρέπεται

Διαβάστε περισσότερα

ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 15/10/2012 ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗΣ ΣΤΗ ΦΥΣΙΚΗ

ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 15/10/2012 ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗΣ ΣΤΗ ΦΥΣΙΚΗ ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 15/1/1 ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗΣ ΣΤΗ ΦΥΣΙΚΗ ΕΞΕΤΑΣΤΗΣ: ΒΑΡΣΑΜΗΣ ΧΡΗΣΤΟΣ ΔΙΑΡΚΕΙΑ ΩΡΕΣ ΑΣΚΗΣΗ 1 Σε σώμα μάζας m = 1Kg ασκείται η δύναμη F

Διαβάστε περισσότερα

Β) Μέχρι τη στιγµή t 1 που ξετυλίγεται όλο το νήµα, Β-1) Κατά πόσο διάστηµα x έχει µετατοπιστεί ο κύλινδρος, πόση ενέργεια

Β) Μέχρι τη στιγµή t 1 που ξετυλίγεται όλο το νήµα, Β-1) Κατά πόσο διάστηµα x έχει µετατοπιστεί ο κύλινδρος, πόση ενέργεια Ένας κύλινδρος που σπινάρει Νήµα τυλίγεται σε λεπτό αυλάκι κατά µήκος της περιφέρειας κυλίνδρου, που έχει µάζα M=2kg και ακτίνα R = 0,2m. Ο κύλινδρος συγκρατείται αρχικά στη θέση που φαίνεται στο σχήµα,

Διαβάστε περισσότερα

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ- Η ΠΑΓΚΥΠΡΙΑΟΛΥΜΠΙΑ Α ΦΥΣΙΚΗΣ Γ ΓΥΜΝΑΣΙΟΥ- ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΛΥΣΕΙΣ ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑ Α ΦΥΣΙΚΗΣ Γ ΓΥΜΝΑΣΙΟΥ Κυριακή, 0 Μαΐου 05 Ώρα : 0:0 - :00 ΘΕΜΑ 0 (µονάδες

Διαβάστε περισσότερα

Κεφάλαιο M6. Κυκλική κίνηση και άλλες εφαρµογές των νόµων του Νεύτωνα

Κεφάλαιο M6. Κυκλική κίνηση και άλλες εφαρµογές των νόµων του Νεύτωνα Κεφάλαιο M6 Κυκλική κίνηση και άλλες εφαρµογές των νόµων του Νεύτωνα Κυκλική κίνηση Αναπτύξαµε δύο µοντέλα ανάλυσης στα οποία χρησιµοποιούνται οι νόµοι της κίνησης του Νεύτωνα. Εφαρµόσαµε τα µοντέλα αυτά

Διαβάστε περισσότερα

ÊÏÑÕÖÇ ÊÁÂÁËÁ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΦΥΣΙΚΗ

ÊÏÑÕÖÇ ÊÁÂÁËÁ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΦΥΣΙΚΗ Επαναληπτικά Θέµατα ΟΕΦΕ 007 Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΦΥΣΙΚΗ ZHTHMA Στις ερωτήσεις έως 4 να γράψετε στο τετράδιο σας τον αριθµό της ερώτησης και δίπλα σε κάθε αριθµό το γράµµα που αντιστοιχεί

Διαβάστε περισσότερα

Ομογενής δίσκος ροπής αδράνειας, με μάζα και ακτίνας θα χρησιμοποιηθεί σε 3 διαφορετικά πειράματα.

Ομογενής δίσκος ροπής αδράνειας, με μάζα και ακτίνας θα χρησιμοποιηθεί σε 3 διαφορετικά πειράματα. Δίσκος Σύνθετη Τρίτη 01 Μαϊου 2012 ΑΣΚΗΣΗ 5 Ομογενής δίσκος ροπής αδράνειας, με μάζα και ακτίνας θα χρησιμοποιηθεί σε 3 διαφορετικά πειράματα. ΠΕΙΡΑΜΑ Α Θα εκτοξευθεί με ταχύτητα από τη βάση του κεκλιμένου

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ (8 ΠΕΡΙΟΔΟΙ)

ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ (8 ΠΕΡΙΟΔΟΙ) ΚΕΦΑΛΑΙΟ : Κατηγορία Α ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ (8 ΠΕΡΙΟΔΟΙ) 1. Ποια στάση και ποιο άξονα θα επιλέγατε για να δώσετε στο σώμα σας τη μικρότερη ροπή αδρανείας; Τη μεγαλύτερη;. Οι κύλινδροι του σχήματος

Διαβάστε περισσότερα

12 η Εβδομάδα Δυναμική Περιστροφικής κίνησης. Αρχή διατήρησης στροφορμής

12 η Εβδομάδα Δυναμική Περιστροφικής κίνησης. Αρχή διατήρησης στροφορμής 1 η Εβδομάδα Δυναμική Περιστροφικής κίνησης Αρχή διατήρησης στροφορμής Βασικές εξισώσεις Στροφορμή υλικού σημείου μάζας m ως προς σημείο Ο. L = r p = m( r υ) Στροφορμή στερεού σώματος που περιστρέφεται

Διαβάστε περισσότερα

ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΦΥΣΙΚΗΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ

ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΦΥΣΙΚΗΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ ΑΓ.ΚΩΝΣΤΑΝΤΙΝΟΥ -- ΠΕΙΡΑΙΑΣ -- 853 -- ΤΗΛ. 0-75, 3687 ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΦΥΣΙΚΗΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΜΑ. Γ ΛΥΚΕΙΟΥ Α. Σε μια απλή αρμονική ταλάντωση, κατά τη διάρκεια μιας περιόδου η κινητική ενέργεια Κ

Διαβάστε περισσότερα

ΥΝΑΜΙΚΗ ΤΗΣ ΠΕΡΙΣΤΡΟΦΙΚΗΣ ΚΙΝΗΣΗΣ 18/11/2011 ΚΕΦ. 10

ΥΝΑΜΙΚΗ ΤΗΣ ΠΕΡΙΣΤΡΟΦΙΚΗΣ ΚΙΝΗΣΗΣ 18/11/2011 ΚΕΦ. 10 ΚΕΦΑΛΑΙΟ 10 ΥΝΑΜΙΚΗ ΤΗΣ ΠΕΡΙΣΤΡΟΦΙΚΗΣ ΚΙΝΗΣΗΣ 1 ΕΞΩΤΕΡΙΚΟ ΓΙΝΟΜΕΝΟ (ΕΠΑΝΑΛΗΨΗ) Μέτρο εξωτερικού γινομένου 2 C A B C ABsin διανυσμάτων A και B Ιδιότητες εξωτερικού γινομένου A B B A εν είναι αντιμεταθετικό.

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2003

ΦΥΣΙΚΗ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2003 ΦΥΣΙΚΗ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 003 ΘΕΜΑ 1ο Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις 1 4 και δίπλα το γράµµα που αντιστοιχεί στη σωστή

Διαβάστε περισσότερα

Για τις παραπάνω ροπές αδράνειας ισχύει: α. β. γ. δ. Μονάδες 5

Για τις παραπάνω ροπές αδράνειας ισχύει: α. β. γ. δ. Μονάδες 5 ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: ΘΕΡΙΝΑ-A ΗΜΕΡΟΜΗΝΙΑ: 01-03-2015 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ M-ΑΓΙΑΝΝΙΩΤΑΚΗ ΑΝ.-ΠΟΥΛΗ Κ. ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς

Διαβάστε περισσότερα

Περι-Φυσικής. Θέµα 1ο. Ονοµατεπώνυµο: Βαθµολογία % (α) την κατανοµή της µάζας του σώµατος. (ϐ) το µέγεθος του σώµατος.

Περι-Φυσικής. Θέµα 1ο. Ονοµατεπώνυµο: Βαθµολογία % (α) την κατανοµή της µάζας του σώµατος. (ϐ) το µέγεθος του σώµατος. Προχειρο Τεστ Ηµεροµηνία : 13/2 16/2 Ροπή Αδράνειας - Θ.Ν.Σ.Κ. Ι ιάρκεια : 75 min Ονοµατεπώνυµο: Βαθµολογία % Θέµα 1ο Στις ερωτήσεις 1.1 1.4 επιλέξτε την σωστή απάντηση (4 6 = 24 µονάδες ) 1.1. Η ϱοπή

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2003

ΦΥΣΙΚΗ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2003 ΦΥΣΙΚΗ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 003 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ 1ο Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράµµα που αντιστοιχεί

Διαβάστε περισσότερα

υ r 1 F r 60 F r A 1

υ r 1 F r 60 F r A  1 2.2. Ασκήσεις Έργου-Ενέργειας. 4.2.1. Θεώρηµα Μεταβολής της Κινητικής Ενέργειας. ΘΜΚΕ. Ένα σώµα µάζας m=2kg ηρεµεί σε οριζόντιο επίπεδο. Σε µια στιγµή δέχεται την επίδραση οριζόντιας δύνα- µης, το µέτρο

Διαβάστε περισσότερα

w w w.k z a c h a r i a d i s.g r

w w w.k z a c h a r i a d i s.g r Πως εφαρμόζουμε την αρχή διατήρησης της μηχανικής ενέργειας στα στερεά σώματα Πριν δούμε την μεθοδολογία, ας θυμηθούμε ότι : Για να εφαρμόσουμε την αρχή διατήρησης της μηχανικής ενέργειας (Α.Δ.Μ.Ε.) για

Διαβάστε περισσότερα

4 η Εργασία (Ηµεροµηνία Παράδοσης: 10-5-2004)

4 η Εργασία (Ηµεροµηνία Παράδοσης: 10-5-2004) Άσκηση (Μονάδες ) 4 η Εργασία (Ηµεροµηνία Παράδοσης: -5-4) Α) Αστροναύτης µάζας 6 Κg βρίσκεται µέσα σε διαστηµόπλοιο που κινείται µε σταθερή ταχύτητα προς τον Άρη. Σε κάποιο σηµείο του ταξιδιού βρίσκεται

Διαβάστε περισσότερα

Τελική Εξέταση Φυσικής Α Λυκείου Κυριακή 11 Μάη 2014 Σύνολο Σελίδων : (7) Πρόχειρες Λύσεις. Θέµα Α

Τελική Εξέταση Φυσικής Α Λυκείου Κυριακή 11 Μάη 2014 Σύνολο Σελίδων : (7) Πρόχειρες Λύσεις. Θέµα Α Τελική Εξέταση Φυσικής Α Λυκείου Κυριακή Μάη 24 Σύνολο Σελίδων : (7) Πρόχειρες Λύσεις Θέµα Α Στις ερωτήσεις Α. Α.4 επιλέξτε την σωστή απάντηση (4 5 = 2 µονάδες ) Α.. Ενα αυτοκίνητο κινείται µε σταθερή

Διαβάστε περισσότερα

Επαναληπτικό Διαγώνισμα Γ Λυκείου Φυσικής Θετικών Σπουδών

Επαναληπτικό Διαγώνισμα Γ Λυκείου Φυσικής Θετικών Σπουδών Επαναληπτικό Διαγώνισμα Γ Λυκείου Φυσικής Θετικών Σπουδών ΘΕΜΑ Α Α1) Η μεταβολή της στροφορμής ενός στερεού σε σχέση με τον χρόνο φαίνεται στο διπλανό L σχήμα. Να σημειώσετε τη σωστή πρόταση: α. Ο ρυθμός

Διαβάστε περισσότερα

ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ ΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 2014

ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ ΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 2014 1 ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ ΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 2014 ΘΕΜΑ Α.1 Α1. Να χαρακτηρίσετε με (Σ) τις σωστές και με (Λ) τις λανθασμένες προτάσεις Στην ευθύγραμμα ομαλά επιβραδυνόμενη κίνηση: Α. Η ταχύτητα

Διαβάστε περισσότερα

3 η ΣΕΙΡΑ ΑΣΚΗΣΕΩΝ ΓΙΑ ΕΞΑΣΚΗΣΗ

3 η ΣΕΙΡΑ ΑΣΚΗΣΕΩΝ ΓΙΑ ΕΞΑΣΚΗΣΗ 3 η ΣΕΙΡΑ ΑΣΚΗΣΕΩΝ ΓΙΑ ΕΞΑΣΚΗΣΗ ΑΠΡΙΛΙΟΣ 004. Η οµογενής ράβδος ΑΒ του σχήµατος έχει µήκος =m, βάρος W=00N και µπορεί να περιστρέφεται γύρω από άξονα, που διέρχεται από σηµείο Ο. Στη ράβδο ασκούνται οι

Διαβάστε περισσότερα

Μηχανική Στερεού σώματος

Μηχανική Στερεού σώματος ο ΘΕΜΑ Μηχανική Στερεού σώματος Α Ερωτήσεις Πολλαπλής Επιλογής Στις ερωτήσεις -4 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση Η μονάδα μέτρησης

Διαβάστε περισσότερα

4η Εργασία Ημερομηνία αποστολής 12/4/2010

4η Εργασία Ημερομηνία αποστολής 12/4/2010 4η Εργασία Ημερομηνία αποστολής 1/4/010 Άσκηση 1 Α ) Η Σελήνη περιφέρεται γύρω από τη Γη έτσι ώστε να στρέφει προς τη Γη πάντα το ίδιο ημισφαίριο. Υπολογίστε το λόγο της στροφορμής της Σελήνης λόγω ιδιοπεριστροφής

Διαβάστε περισσότερα

Εισαγωγή στις Φυσικές Επιστήµες Κλασική Μηχανική Αύγουστος 2004 Ονοµατεπώνυµο:

Εισαγωγή στις Φυσικές Επιστήµες Κλασική Μηχανική Αύγουστος 2004 Ονοµατεπώνυµο: Εισαγωγή στις Φυσικές Επιστήµες Κλασική Μηχανική Αύγουστος 004 Ονοµατεπώνυµο: Τµήµα Θέµα Α) Μικρός κοίλος κύλινδρος ακτίνας r=h/5 και µάζας m αφήνεται να κυλήσει χωρίς να ολισθαίνει κατά µήκος κεκλιµένου

Διαβάστε περισσότερα

( ) ( ) ( )! r a. Στροφορμή στερεού. ω i. ω j. ω l. ε ijk. ω! e i. ω j ek = I il. ! ω. l = m a. = m a. r i a r j. ra 2 δ ij. I ij. ! l. l i.

( ) ( ) ( )! r a. Στροφορμή στερεού. ω i. ω j. ω l. ε ijk. ω! e i. ω j ek = I il. ! ω. l = m a. = m a. r i a r j. ra 2 δ ij. I ij. ! l. l i. Στροφορμή στερεού q Η στροφορµή του στερεού γράφεται σαν: q Αλλά ο τανυστής αδράνειας έχει οριστεί σαν: q H γωνιακή ταχύτητα δίνεται από: ω = 2 l = m a ra ω ω ra ω e a ΦΥΣ 211 - Διαλ.31 1 r a I j = m a

Διαβάστε περισσότερα

Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα

Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα ΔΙΑΛΕΞΗ 04 Εφαρμογές Νόμων του Νεύτωνα ΦΥΣ102 1 Ισορροπία υλικού σημείου και Δεύτερος νομός

Διαβάστε περισσότερα

ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ

ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 10//10/01 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΕΞΕΤΑΣΤΗΣ: ΒΑΡΣΑΜΗΣ ΧΡΗΣΤΟΣ ΔΙΑΡΚΕΙΑ ΩΡΕΣ ΑΣΚΗΣΗ 1 Σώμα μάζας 1 Kg βρίσκεται πάνω σε κεκλιμένο επίπεδο γωνίας κλίσης 45º. Μεταξύ

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ. Θέµατα Εξετάσεων

ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ. Θέµατα Εξετάσεων ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ Θέµατα Εξετάσεων ΣΤΕΡΕΟ. Θέµατα Εξετάσεων 2 1) Αν το αλγεβρικό άθροισµα των ροπών που δρουν πάνω σ' ένα στερεό σώµα, το οποίο περιστρέφεται γύρω από σταθερό άξονα, είναι µηδέν, τότε α.

Διαβάστε περισσότερα

1ο ΘΕΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΕΚΦΩΝΗΣΕΙΣ

1ο ΘΕΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΕΚΦΩΝΗΣΕΙΣ 1ο ΘΕΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΕΚΦΩΝΗΣΕΙΣ Θέμα 1: Α. Στις ερωτήσεις 1-3 να σημειώσετε το γράμμα που αντιστοιχεί στη σωστή απάντηση. 1. Ένα σώμα μάζας m

Διαβάστε περισσότερα