Επιμόρφωση Εκπαιδευτικών Αναλυτικό Πρόγραμμα Μαθηματικών Δ Τάξης

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Επιμόρφωση Εκπαιδευτικών Αναλυτικό Πρόγραμμα Μαθηματικών Δ Τάξης"

Transcript

1 Επιμόρφωση Εκπαιδευτικών Αναλυτικό Πρόγραμμα Μαθηματικών Δ Τάξης Κωνσταντίνος Χρίστου Ρίτα Παναούρα Δήμητρα Πίττα-Πανταζή Μάριος Πιττάλης Οκτώβριος 2014 Συγγραφική ομάδα: Συντονιστές: Επιστημονικός Συνεργάτης: Σύνδεσμος Επιθεωρητής: Επιθεωρητές Ενδοτμηματικής Επιτροπής Μαθηματικών : Σύμβουλοι Μαθηματικών: Aθανασίου Αλαμπρίτη Χρύσω Δεληγιάννη Ελένη Μάκη-Παναούρα Γεωργία Παντζιαρά Μαριλένα Παπαριστοδήμου Έφη Σιακαλλή Μύρια Χειμωνή Μαρία Παναούρα Ρίτα, Πανεπιστήμιο Frederick Πίττα-Πανταζή Δήμητρα, Πανεπιστήμιο Κύπρου Χρίστου Κωνσταντίνος, Πανεπιστήμιο Κύπρου Πιττάλης Μάριος, Πανεπιστήμιο Κύπρου Χαμπιαούρης Κώστας Χαμπιαούρης Κώστας, Πρόεδρος Χαριδήμου Κυριάκος, ΕΔΕ, Αντιπρόεδρος Σιημητρά - Κωνσταντίνου Ανδρούλα, Γραμματέας Χρίστου Ανδρούλα, Μέλος Δημοσθένους Χρίστος, Μέλος Λουκά Πανίκος, Μέλος Αθανασίου Αλαμπρίτη Χρύσω Μάρκου Άντρη Παπαριστοδήμου Έφη Σεργίου Σέργιος Στεφάνου Λάμπρος Χειμωνή Μαρία 1

2 Ολοκληρωμένος σχεδιασμός... αντιμετωπίζει ενιαία το πλαίσιο σπουδών (Προδημοτική, Δημοτικό, Γυμνάσιο και Λύκειο), αντιμετωπίζει τη διαφορετικότητα, είναι συνέχεια υπό διαμόρφωση και αλλαγή, για να αντιμετωπίζει την εξέλιξη, σχετίζεται με την καθημερινότητα και την ζωή, στηρίζεται στην Τεχνολογία. Το αναλυτικό περιγράφει τι αναμένεται από τους εκπαιδευτικούς να διδάξουν και τι αναμένεται από τους μαθητές να μάθουν. Το αναλυτικό αναγνωρίζει ότι σε κάθε τάξη υπάρχουν πολλά επίπεδα μαθητών. Το αναλυτικό είναι γραμμένο με τρόπο που να βοηθά τους εκπαιδευτικούς να ανταποκριθούν στα επίπεδα των μαθητών κάθε τάξης. 2

3 ΠΕΡΙΕΧΟΜΕΝΟ Αριθμοί Άλγεβρα Γεωμετρία Μέτρηση Στατιστική - Πιθανότητες Διασύνδεση των θεμάτων και του περιεχομένου ΔΙΑΔΙΚΑΣΙΕΣ Υπόθεση Εξερεύνηση Μοτίβα Επαγωγική σκέψη Φαντασία Αναλογίες Επιλογή μεθόδου Αναπαραστάσεις Κατασκευή αλγορίθμων Μοντελοποίηση Παραγωγική σκέψη Δεδομένα Γενίκευση Διερεύνηση Επεξήγηση ειδικών Περιπτώσεων Δημιουργικότητα Αφηρημένες ιδιότητες Κατασκευή προβλήματος Εφαρμογή αλγορίθμων Μαθηματικός Συλλογισμός Έμπνευση 3

4 ΙΚΑΝΟΤΗΤΕΣ Κατανόηση: Οικοδόμηση εννοιών με τρόπο που: να μπορούν να μεταφερθούν σε διαφορετικό περιεχόμενο, να μπορούν να αλληλοσυνδεθούν, να συμβάλλουν στην ανάπτυξη νέων ιδεών και εννοιών, να απαντούν στο «Γιατί» και το «Πώς». Επάρκεια: επιλογή κατάλληλης διαδικασίας, εκτέλεση διαδικασιών με ακρίβεια και ευελιξία, εκμάθηση βασικών και πυρηνικών γνώσεων. ΙΚΑΝΟΤΗΤΕΣ Λύση προβλήματος: Η ικανότητα: επιλογής, ερμηνείας, κατασκευής, μοντελοποίησης, μαθηματικοποίησης, διερεύνησης καταστάσεων, παρουσίασης λύσης. Συλλογισμός: Η ικανότητα: λογικής σκέψης, ανάλυσης, απόδειξης, αξιολόγησης, επεξήγησης και γενίκευσης. 4

5 ΕΝΣΩΜΑΤΩΣΗ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Όχι μόνο γιατί μπορούμε να κάνουμε με καλύτερο τρόπο κάποια πράγματα, αλλά γιατί μπορούμε να κάνουμε διαφορετικά πράγματα ΑΞΙΟΛΟΓΗΣΗ Έμφαση στη διαμορφωτική αξιολόγηση Καταγραφή π.χ. Εννοιολογικοί χάρτες Εκθέσεις Αξιολόγηση Ερώτηση π.χ. Διαγνωστικές Ανοικτές, Κλειστές Αναστοχασμός π.χ. Πορτφόλιο Δείγμα εργασιών Αυτοαξιολόγηση 5

6 ΔΟΜΗ ΑΝΑΛΥΤΙΚΟΥ 1. Αριθμοί 2. Μέτρηση 3. Γεωμετρία 4. Άλγεβρα 5. Στατιστική - Πιθανότητες Κάθε ενότητα περιγράφεται σε 8 κλίμακες Διαδικασίες Ικανότητες Κάθε κλίμακα καλύπτεται σε περισσότερες από μια τάξεις ΔΟΜΗ ΑΝΑΛΥΤΙΚΟΥ ΑΝΑΠΤΥΞΗ ΚΛΙΜΑΚΩΝ 6

7 Κλίμακες και Δείκτες Επιτυχίας ΕΝΟΤΗΤΕΣ ΠΕΡΙΕΧΟΜΕΝΟΥ Αριθμοί (Αρ) Άλγεβρα (Α) Γεωμετρία (Γ) Μέτρηση (Μ) Στατιστική - Πιθανότητες (ΣΠ) ΕΠΕΞΗΓΗΣΗ Μ 1.2 ΑΡΙΘΜΗΣΗ ΔΕΙΚΤΩΝ Αρ 2.12 Α 1.4 Γ 3.12 Μ1.2 ΣΠ 3.8 Αναφέρεται στην ενότητα περιεχομένου (Μέτρηση) Αναφέρεται στην Κλίμακα (1) Αναφέρεται στο Δείκτη (2) ΔΟΜΗ ΑΝΑΛΥΤΙΚΟΥ Οι κλίμακες περιλαμβάνουν: 1. Δείκτες επιτυχίας 2. Ενδεικτικές δραστηριότητες 3. Ενδεικτικές δραστηριότητες αξιολόγησης 4. Δραστηριότητες εμπλουτισμού 7

8 Ε Ν Δ Ε Ι Κ Τ Ι Κ Ε Σ Δ Ρ Α Σ Τ Η Ρ Ι Ο Τ Η Τ Ε Σ Κλίμακα 1 Περιγράφουν το μοτίβο που επαναλαμβάνεται στο πιο κάτω περιδέραιο: A1.2 Αναγνωρίζουν και περιγράφουν μοτίβα που βασίζονται σε κοινά χαρακτηριστικά Κλίμακα 2 Πιο κάτω παρουσιάζεται ένα τμήμα του πίνακα του 100. (Α) Ποιος αριθμός υπάρχει στο τετράγωνο Α; (Β) Ποια σχέση υπάρχει μεταξύ των αριθμών που βρίσκονται στα τετράγωνα Β και Γ; A2.3 Χρησιμοποιούν λεκτικές και Α αλγεβρικές εκφράσεις, για να αναπαραστήσουν Β αθροιστικές και πολλαπλασιαστικές σχέσεις Γ Ε Ν Δ Ε Ι Κ Τ Ι Κ Ε Σ Δ Ρ Α Σ Τ Η Ρ Ι Ο Τ Η Τ Ε Σ Κλίμακα 3 Βρίσκουν τους επόμενους όρους στα πιο κάτω μοτίβα: 1ος 2ος 3ος 4ος 5ος Κλίμακα 4 Α3.1 Περιγράφουν, συμπληρώνουν, επεκτείνουν, κατασκευάζουν, επεξηγούν τον κανόνα και βρίσκουν με επαγωγικό τρόπο το γενικό όρο αριθμητικών και γεωμετρικών μοτίβων Διακρίνουν και επεξηγούν τον κανόνα υπολογισμού του επόμενου όρου σε αριθμητικές προόδους, όπως: Α4.3 Κατανοούν τις ιδιότητες αριθμητικών και 35, 29, 23, 17, γεωμετρικών προόδων και διερευνούν τον τρόπο υπολογισμού του γενικού όρου 8

9 ΦΙΛΟΣΟΦΙΑ ΔΙΔΑΣΚΑΛΙΑΣ 1. Εξερεύνηση -Περιέργεια-Πρόκληση - μέσω καταστάσεων που ενδιαφέρουν τους μαθητές. 2. Διερεύνηση. Επέκταση - Εφαρμογή Δημιουργικότητα - Χρόνος για εργασία μαθητών. Παρέμβαση εκπαιδευτικού. 3. Αναστοχασμός μαθητή για το τι έχει μάθει. Εξερεύνηση-Συζήτηση τρόπων εργασίας μαθητών. 4. Αξιολόγηση για το τι έχει μάθει ο μαθητής, ευκαιρίες για αυτοαξιολόγηση Εξερεύνηση (Mathematical exploration) Δραστηριότητες στις οποίες οι μαθητές εξερευνούν ελεύθερα μαθηματικές έννοιες. Οι δραστηριότητες αυτές συμβάλλουν: στη διαφοροποίηση και εξατομίκευση της διδασκαλίας στην παροχή κινήτρων και στη χαρά της μάθησης στην εννοιολογική διασύνδεση εννοιών στην ανάπτυξη του μαθηματικού συλλογισμού, της δημιουργικότητας και της φαντασίας στα μαθηματικά. Η ΕΠΙΤΥΧΙΑ ΤΩΝ ΕΙΔΙΚΩΝ ΣΚΟΠΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΣΤΗΡΙΖΕΤΑΙ ΣΤΗΝ ΕΝΝΟΙΑ ΤΩΝ ΕΞΕΡΕΥΝΗΣΕΩΝ 9

10 Εξερεύνηση (Mathematical exploration) Επικεντρώνουν την προσοχή των μαθητών σε μοτίβα, σχέσεις και σχήματα. Ενθαρρύνουν τους μαθητές να κάνουν ερωτήσεις για το τι βλέπουν. Ενθαρρύνουν τους μαθητές να μιλήσουν για το τι κάνουν, τι σκέφτονται, τι φαντάζονται. Είναι ανοικτού τύπου (δεν υπάρχει ερώτηση). Ικανοποιούν τις ανάγκες των μαθητών ανάλογα με το επίπεδό τους. Αναπτύσσουν την αποκλίνουσα σκέψη. Βλέπουν τα μαθηματικά στο περιβάλλον τους. Εξερεύνηση (Mathematical exploration) 1. Σύνδεση με άλλα αντικείμενα του αναλυτικού προγράμματος 2. Διασύνδεση μαθηματικών εννοιών 3. Λύση προβλήματος για εισαγωγή στην έννοια ή επέκταση και ολοκλήρωση της έννοιας 4. Ιστορικά στοιχεία 5. Εφαρμογές μαθηματικών εννοιών 10

11 Συζήτηση 1 Να μελετήσετε τις πιο κάτω Εξερευνήσεις και να προτείνετε κατάλληλες διδακτικές προσεγγίσεις. Σύνδεση με άλλα αντικείμενα του αναλυτικού προγράμματος 11

12 Εισαγωγή στην έννοια Λύση Προβλήματος Μοντελοποίηση Λήψη Απόφασης 12

13 Εφαρμογές μαθηματικών εννοιών Διερεύνηση (Mathematical investigation) Δραστηριότητες στις οποίες οι μαθητές διερευνούν μαθηματικές ιδέες σε ένα συγκεκριμένο πλαίσιο και στις οποίες έχουν τη δυνατότητα: να διατυπώσουν υποθέσεις να ελέγξουν την εγκυρότητα των υποθέσεών τους να αιτιολογήσουν τις απαντήσεις τους 13

14 Διερεύνηση (Mathematical investigation) 1. Με παραδείγματα 2. Με εποπτικά μέσα ή και ψηφιακά εποπτικά μέσα Υπόθεση Επαλήθευση Συμπέρασμα 3. Με προβλήματα Συζήτηση 2 Να μελετήσετε τις πιο κάτω Διερευνήσεις και να προτείνετε κατάλληλες διδακτικές προσεγγίσεις. 14

15 Εισαγωγή σε έννοια Υπόθεση Επαλήθευση 15

16 Χρήση στρατηγικών ΟΙ ΕΞΕΡΕΥΝΗΣΕΙΣ ΚΑΙ ΟΙ ΔΙΕΡΕΥΝΗΣΕΙΣ ΓΙΝΟΝΤΑΙ ΠΑΝΤΟΤΕ ΣΤΗΝ ΤΑΞΗ ΔΕΝ ΕΙΝΑΙ ΑΠΑΡΑΙΤΗΤΟ ΝΑ ΓΙΝΟΝΤΑΙ ΟΛΕΣ ΟΙ ΔΡΑΣΤΗΡΙΟΤΗΤΕΣ ΑΠΟ ΤΑ ΒΙΒΛΙΑ ΓΙΝΕΤΑΙ ΕΠΙΛΟΓΗ ΔΡΑΣΤΗΡΙΟΤΗΤΩΝ ΑΠΟ ΤΟΝ ΕΜΠΛΟΥΤΙΣΜΟ 16

17 ΔΟΜΗΣΗ ΟΔΗΓΟΥ ΕΚΠΑΙΔΕΥΤΙΚΟΥ Δείκτες Ενδεικτική οργάνωση μαθημάτων Σημεία προσοχής Τεχνολογία *Υπάρχει μόνο σε ηλεκτρονική μορφή ΔΟΜΗΣΗ ΣΧΟΛΙΚΟΥ ΕΓΧΕΙΡΙΔΙΟΥ 1.Εξερεύνηση 2.Διερεύνηση 3.Δραστηριότητες 4.Δραστηριότητες Εμπλουτισμού: Υπάρχουν στο τέλος κάθε ενότητας - Διαβαθμισμένες με βάση την έννοια που διδάσκεται. Μπορούν να αξιοποιηθούν σε όλα τα μαθήματα και όχι μόνο στο τέλος της ενότητας. 17

18 Μοντέλο διδασκαλίας των Μαθηματικών με βάση το ΝΑΠ Εξερεύνηση Περιέργεια /Πρόκληση Ενδιαφέροντος Διερεύνηση Αξιολόγηση / Αναστοχασμός 1 Περιέργεια Εξερεύνηση 18

19 2 Επεξήγηση Εφαρμογή Να κατασκευάσεις εξάγωνο, χρησιμοποιώντας όσο το δυνατόν λιγότερα σχήματα μοτίβου. Είναι δυνατόν να κατασκευάσεις επτάγωνο, χρησιμοποιώντας σχήματα μοτίβου; 3 Επέκταση 19

20 4 Αξιολόγηση 40 Δ ΤΑΞΗ ΑΝΑΛΥΤΙΚΗ ΠΑΡΟΥΣΙΑΣΗ ΠΕΡΙΕΧΟΜΕΝΟΥ ΑΝΑ ΕΝΟΤΗΤΑ 20

21 ΣΕΠΤΕΜΒΡΗΣ-Μέσα Νοεμβρίου 1_Πρόσθεση-αφαίρεση μέχρι το _Μοτίβα πολλαπλασιασμού 3_Γεωμετρία ΝΟΕΜΒΡΗΣ- ΓΕΝΑΡΗΣ 4_Πράξεις μέχρι το _Πολλαπλασιασμός (ιδιότητες-αλγόριθμος) 6_Διαίρεση ΦΕΒΡΟΥΑΡΙΟΣ-Αρχές Μαρτίου 7_Στερεομετρία 8_Κλάσματα Δεκαδικοί 9_Κατευθύνσεις, μετασχηματισμοί, μέτρηση ΜΑΡΤΗΣ-ΑΠΡΙΛΗΣ 10_Εξαψήφιοι Αριθμοί Πράξεις 11_Κλάσματα Μικτοί Αριθμοί ΜΑΗΣ-ΙΟΥΝΗΣ 12_ Διαίρεση 13_Γεωμετρία 14_Αρνητικοί Αριθμοί 21

22 43 ΕΝΟΤΗΤΑ 1 ΠΡΟΣΘΕΣΗ-ΑΦΑΙΡΕΣΗ ΜΕΧΡΙ ΤΟ 1000 ΠΕΡΙΕΧΟΜΕΝΟ ΕΝΟΤΗΤΑΣ Πρόσθεση-αφαίρεση μέχρι το 1000 Αριθμοί μέχρι το Εκτίμηση αθροίσματος Νοερές πράξεις με τετραψήφιους Μοτίβα Λύση προβλήματος Έννοιες στατιστικής Δομή αριθμητικού συστήματος 22

23 Τα μαθηματικά ως γλώσσα: κατεύθυνση, ημερολόγιο, σύμβολα, λεκτική διατύπωση Επέκταση 23

24 Μοτίβα, δημιουργικότητα, δοκιμή και έλεγχος Συλλογισμός, εκτίμηση, νοεροί υπολογισμοί 24

25 Αθροιστικές και πολλαπλασιαστικές σχέσεις, ανάδρομη πορεία Διασύνδεση υπολογισμών με σχέσεις στο αριθμητικό σύστημα, εντοπισμός κανονικοτήτων 25

26 Συλλογισμός, πρόκληση, λεκτική έκφραση, μέγεθος αριθμών, πρωτοβουλία Αναπαράσταση αριθμών στην αριθμητική γραμμή 26

27 Ανάλυση αριθμών με πολλαπλούς τρόπους Εντοπισμός και ανάπτυξη στρατηγικών, ΕΠΑΡΚΕΙΑ 27

28 Επίλυση προβλήματος, έμφαση στην παρουσίαση και στην ανάπτυξη επιχειρημάτων 56 ΕΝΟΤΗΤΑ 2 ΜΟΤΙΒΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΥ ΠΕΡΙΕΧΟΜΕΝΟ ΕΝΟΤΗΤΑΣ Μοτίβα πολλαπλασιασμού μέχρι το 100 Εννοιολογική κατανόηση πολλαπλασιασμού και διαίρεσης Έννοια ατελούς διαίρεσης Κλάσμα ως τελεστής, συμπλήρωση ακεραίας μονάδας Πολλαπλασιαστικές σχέσεις 28

29 Πολλαπλασιαστικές σχέσεις, αναλογικός συλλογισμός Έμφαση στη λεκτική έκφρασης της επίλυσης ενός προβλήματος 29

30 Ανάπτυξη στρατηγικών, συλλογισμός Διασύνδεση εννοιών: πολλαπλάσιο, παράγοντας, διαιρέτης, 30

31 Διασύνδεση στρατηγικών εκτίμησης πηλίκου με πολλαπλάσια Κλάσμα ως τελεστής 31

32 Συμπλήρωση ακεραίας μονάδας 64 ΕΝΟΤΗΤΑ 3 ΓΕΩΜΕΤΡΙΑ ΠΕΡΙΕΧΟΜΕΝΟ ΕΝΟΤΗΤΑΣ Πολύγωνα Είδη γωνιών (ορθή, οξεία, αμβλεία) Παράλληλες και κάθετες ευθείες Ανάκλαση Συμπλήρωση συμμετρικού σχήματος 32

33 Είδη γωνιών (ορθή, γωνία, αμβλεία) Αναγνώριση παραλληλογράμμων, κριτήριο ταξινόμησης 33

34 Αναγνώριση και κατασκευή παράλληλων και κάθετων ευθειών Ανάκλαση, εντοπισμός άξονα συμμετρίας 34

35 Συμπλήρωση συμμετρικού σχήματος 70 ΕΝΟΤΗΤΑ 4 ΠΡΑΞΕΙΣ ΑΡΙΘΜΩΝ ΜΕΧΡΙ ΤΟ ΠΕΡΙΕΧΟΜΕΝΟ ΕΝΟΤΗΤΑΣ Έτος, δεκαετία, αιώνας Στρογγυλοποίηση αριθμών Πρόσθεση-αφαίρεση μέχρι το 10000: Νοεροί υπολογισμοί και αλγόριθμοί Προβλήματα αθροιστικής δομής (Αλλαγής, ομαδοποίησης) Προβλήματα διαδικασίας Άλγεβρα, διερεύνηση εννοιών από τη θεωρία αριθμών 35

36 Πρακτική αξία στρογγυλοποίησης αριθμών Αναπαράσταση προβλήματος με μαθηματικές προτάσεις, μελέτη δομής προβλήματος 36

37 Αξιοποίηση σχεδιαγράμματος για μελέτη δομής προβλήματος Το σχεδιάγραμμα ως εργαλείο οπτικοποίησης του προβλήματος, διασύνδεση με μαθηματική πρόταση 37

38 Μελέτη δομής προβλημάτων ομαδοποίησης Πρόσθεση, διερεύνηση αλγορίθμου, συσχέτιση με αξία θέσης ψηφίου 38

39 Ελεύθερη ανάδυση νοερών στρατηγικών, ανάπτυξη επάρκειας μέσω της μελέτης διαφορετικών στρατηγικών Συλλογισμός, εκτίμηση αθροίσματος και διαφοράς 39

40 Πρόβλημα ενότητας, ανάπτυξη στρατηγικών κατανόησης προβλήματος Ανάπτυξη και έλεγχος υποθέσεων, εργάζομαι ως «μαθηματικός», ανάπτυξη συλλογισμού, διατύπωση επιχειρημάτων 40

41 Προβλήματα διαδικασία, δοκιμή και έλεγχος 82 ΕΝΟΤΗΤΑ 5 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ, ΠΡΟΒΛΗΜΑΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΤΙΚΗΣ ΔΟΜΗΣ ΠΕΡΙΕΧΟΜΕΝΟ ΕΝΟΤΗΤΑΣ Αλγόριθμος Πολλαπλασιασμού Πολλαπλασιαστικές σχέσεις (Εντός και εκτός) Προβλήματα αναλογίας Προβλήματα διαδικασίας Ανάγνωση και γραφή ώρας 41

42 Πρόβλημα μοντελοποίησης Εντός και εκτός πολλαπλασιαστικές σχέσεις 42

43 Εκτίμηση γινομένου Αντίστροφες πράξεις 43

44 Οπτικοποίηση προβλημάτων αναλογίας Αξιοποίηση σχεδιαγράμματος για μελέτη δομής προβλημάτων αναλογίας 44

45 Επίλυση προβλήματος χωρίς περιορισμούς Εννοιολογική κατανόηση αλγόριθμου πολλαπλασιασμού 45

46 Διασύνδεση αλγόριθμου με τρόπο εργασίας με το υλικό ΕΝΟΤΗΤΑ 6 ΔΙΑΙΡΕΣΗ, ΠΡΟΒΛΗΜΑΤΑ ΑΝΑΛΟΓΙΑΣ 92 ΠΕΡΙΕΧΟΜΕΝΟ ΕΝΟΤΗΤΑΣ Αλγόριθμος Διαίρεσης Προβλήματα αναλογίας Προβλήματα διαδικασίας 46

47 Ελεύθερη ανάδυση στρατηγικών, αξιοποίηση υλικού, χρήση διαφορετικών αναπαραστάσεων Κατασκευή προβλήματος 47

48 Ερμηνεία αναπαραστάσεων Εισαγωγή διαφορετικών σταδίων διαίρεσης 48

49 Ερμηνεία όρων διαίρεσης σε πρόβλημα Χρήση συμβόλων, αναστοχασμός 49

50 Αναπαράσταση προβλημάτων δύο πράξεων με μαθηματικές προτάσεις Συζήτηση 3 Να προτείνετε την ενδεικτική οργάνωση δύο διαδοχικών μαθημάτων που στηρίζονται στο πιο κάτω διδακτικό υλικό. Γενικός σκοπός: Επιμεριστική ιδιότητα 50

51 51

52 ΕΜΠΛΟΥΤΙΣΜΟΣ 52

ΕΝΟΤΗΤΑ 11 ΠΕΝΤΑΨΗΦΙΟΙ ΚΑΙ ΕΞΑΨΗΦΙΟΙ ΑΡΙΘΜΟΙ - ΠΡΑΞΕΙΣ ΑΚΕΡΑΙΩΝ ΑΡΙΘΜΩΝ ΔΕΚΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΜΕΤΡΗΣΗ ΜΗΚΟΥΣ ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ

ΕΝΟΤΗΤΑ 11 ΠΕΝΤΑΨΗΦΙΟΙ ΚΑΙ ΕΞΑΨΗΦΙΟΙ ΑΡΙΘΜΟΙ - ΠΡΑΞΕΙΣ ΑΚΕΡΑΙΩΝ ΑΡΙΘΜΩΝ ΔΕΚΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΜΕΤΡΗΣΗ ΜΗΚΟΥΣ ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΠΕΝΤΑΨΗΦΙΟΙ ΚΑΙ ΕΞΑΨΗΦΙΟΙ ΑΡΙΘΜΟΙ - ΠΡΑΞΕΙΣ ΑΚΕΡΑΙΩΝ ΑΡΙΘΜΩΝ ΔΕΚΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΜΕΤΡΗΣΗ ΜΗΚΟΥΣ ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΑΡΙΘΜΟΙ Διερεύνηση αριθμών ΑΡ2.5 Αναπαριστούν, συγκρίνουν και σειροθετούν ομώνυμα κλάσματα

Διαβάστε περισσότερα

ΕΠΙΜΟΡΦΩΣΗ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΣΤΟ ΝΕΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΟ ΝΕΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΣΤΟ ΝΗΠΙΑΓΩΓΕΙΟ

ΕΠΙΜΟΡΦΩΣΗ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΣΤΟ ΝΕΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΟ ΝΕΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΣΤΟ ΝΗΠΙΑΓΩΓΕΙΟ ΕΠΙΜΟΡΦΩΣΗ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΣΤΟ ΝΕΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΟ ΝΕΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΣΤΟ ΝΗΠΙΑΓΩΓΕΙΟ 2011 ΝΕΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΣΤΟ ΝΗΠΙΑΓΩΓΕΙΟ Τα σύγχρονα

Διαβάστε περισσότερα

ΕΠΙΜΟΡΦΩΤΙΚΟ ΥΛΙΚΟ ΓΙΑ ΤΟΥΣ ΚΑΘΗΓΗΤΕΣ ΜΑΘΗΜΑΤΙΚΩΝ ΓΥΜΝΑΣΙΟΥ

ΕΠΙΜΟΡΦΩΤΙΚΟ ΥΛΙΚΟ ΓΙΑ ΤΟΥΣ ΚΑΘΗΓΗΤΕΣ ΜΑΘΗΜΑΤΙΚΩΝ ΓΥΜΝΑΣΙΟΥ Πράξη «ΝΕΟ ΣΧΟΛΕΙΟ (Σχολείο 21ου αιώνα) ΠΙΛΟΤΙΚΗ ΕΦΑΡΜΟΓΗ, στους Άξονες Προτεραιότητας 1,2,3, -Οριζόντια Πράξη», ΕΠΙΜΟΡΦΩΤΙΚΟ ΥΛΙΚΟ ΓΙΑ ΤΟΥΣ ΚΑΘΗΓΗΤΕΣ ΜΑΘΗΜΑΤΙΚΩΝ ΓΥΜΝΑΣΙΟΥ Θεοδόσιος Ζαχαριάδης, Καθηγητής

Διαβάστε περισσότερα

Μαθηματικά στην Πρωτοβάθμια Εκπαίδευση (Δημοτικό)

Μαθηματικά στην Πρωτοβάθμια Εκπαίδευση (Δημοτικό) ΕΣΠΑ 2007-13\Ε.Π. Ε&ΔΒΜ\Α.Π. 1-2-3 «ΝΕΟ ΣΧΟΛΕΙΟ (Σχολείο 21 ου αιώνα) Νέο Πρόγραμμα Σπουδών, Οριζόντια Πράξη» MIS: 295450 Με την συγχρηματοδότηση της Ελλάδας και της Ευρωπαϊκής Ένωσης (Ε. Κ. Τ.) Μαθηματικά

Διαβάστε περισσότερα

ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ: ΜΑΘΗΜΑΤΙΚΑ ΣΤ ΔΗΜΟΤΙΚΟΥ «ΤΑ ΚΛΑΣΜΑΤΑ»

ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ: ΜΑΘΗΜΑΤΙΚΑ ΣΤ ΔΗΜΟΤΙΚΟΥ «ΤΑ ΚΛΑΣΜΑΤΑ» ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ: ΜΑΘΗΜΑΤΙΚΑ ΣΤ ΔΗΜΟΤΙΚΟΥ «ΤΑ ΚΛΑΣΜΑΤΑ» Νικόλαος Μπαλκίζας 1. ΕΙΣΑΓΩΓΗ Σκοπός του σχεδίου μαθήματος είναι να μάθουν όλοι οι μαθητές της τάξης τις έννοιες της ισοδυναμίας των κλασμάτων,

Διαβάστε περισσότερα

Επιμόρφωση Εκπαιδευτών Εκπαιδευτικών ΜΑΘΗΜΑΤΙΚΑ. Μαριάννα Τζεκάκη Καθηγήτρια Α.Π.Θ

Επιμόρφωση Εκπαιδευτών Εκπαιδευτικών ΜΑΘΗΜΑΤΙΚΑ. Μαριάννα Τζεκάκη Καθηγήτρια Α.Π.Θ Επιμόρφωση Εκπαιδευτών Εκπαιδευτικών ΜΑΘΗΜΑΤΙΚΑ Για την Πρωτοβάθμια Εκπαίδευση Μαριάννα Τζεκάκη Καθηγήτρια Α.Π.Θ Αθήνα, Οκτώβριος 2011 Βασικοί στόχοι της επιμόρφωσης Οι εκπαιδευτές επιδιώκουν να υποστηρίξουν

Διαβάστε περισσότερα

ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. Η διαίρεση καλείται Ευκλείδεια και είναι τέλεια όταν το υπόλοιπο είναι μηδέν.

ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. Η διαίρεση καλείται Ευκλείδεια και είναι τέλεια όταν το υπόλοιπο είναι μηδέν. ΑΛΓΕΒΡΑ 1 ο ΚΕΦΑΛΑΙΟ ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ 1. Τι είναι αριθμητική παράσταση; Με ποια σειρά εκτελούμε τις πράξεις σε μια αριθμητική παράσταση ώστε να βρούμε την τιμή της; Αριθμητική παράσταση λέγεται κάθε

Διαβάστε περισσότερα

ημερήσιων και εσπερινών ΕΠΑ.Λ. για το σχολικό έτος 2011-2012.

ημερήσιων και εσπερινών ΕΠΑ.Λ. για το σχολικό έτος 2011-2012. ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΔΙΑ ΒΙΟΥ ΜΑΘΗΣΗΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΕΝΙΑΙΟΣ ΔΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ Δ/ΝΣΗ ΣΠΟΥΔΩΝ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ B ----- Να διατηρηθεί μέχρι... Βαθμός

Διαβάστε περισσότερα

Υπενθύμιση Δ τάξης. Παιχνίδια στην κατασκήνωση

Υπενθύμιση Δ τάξης. Παιχνίδια στην κατασκήνωση ΚΕΦΑΛΑΙΟ 1ο Υπενθύμιση Δ τάξης Παιχνίδια στην κατασκήνωση Συγκρίνω δυο αριθμούς για να βρω αν είναι ίσοι ή άνισοι. Στην περίπτωση που είναι άνισοι μπορώ να βρω ποιος είναι μεγαλύτερος (ή μικρότερος). Ανάμεσα

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΠΡΑΚΤΙΚΗ ΑΣΚΗΣΗ ΜΑΘΗΜΑΤΙΚΩΝ Β ΦΑΣΗΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΠΡΑΚΤΙΚΗ ΑΣΚΗΣΗ ΜΑΘΗΜΑΤΙΚΩΝ Β ΦΑΣΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΠΡΑΚΤΙΚΗ ΑΣΚΗΣΗ ΜΑΘΗΜΑΤΙΚΩΝ Β ΦΑΣΗΣ Θέμα Διδασκαλίας Προβλήματα με πρόσθεση και αφαίρεση κλασμάτων (Κεφάλαιο 23 ο ) Σχολείο: 2 ο

Διαβάστε περισσότερα

ΔΙΔΑΚΤΙΚΗ της ΠΛΗΡΟΦΟΡΙΚΗΣ

ΔΙΔΑΚΤΙΚΗ της ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΔΙΔΑΚΤΙΚΗ της ΠΛΗΡΟΦΟΡΙΚΗΣ Μ. Γρηγοριάδου Ρ. Γόγουλου Ενότητα: Η Διδασκαλία του Προγραμματισμού Περιεχόμενα Παρουσίασης

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 12 ΠΡΑΞΕΙΣ ΜΕΧΡΙ ΤΟ 20

ΕΝΟΤΗΤΑ 12 ΠΡΑΞΕΙΣ ΜΕΧΡΙ ΤΟ 20 ΠΡΑΞΕΙΣ ΜΕΧΡΙ ΤΟ 20 ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΑΡΙΘΜΟΙ Διερεύνηση αριθμών Αρ 1.6 Συνθέτουν και αναλύουν αριθμούς μέχρι το 100 με βάση την αξία θέσης ψηφίου, χρησιμοποιώντας αντικείμενα, εικόνες, και σύμβολα. Αρ

Διαβάστε περισσότερα

ΓΙΑΝΝΗΣ ΚΑΡΑΓΙΑΝΝΑΚΗΣ. Οι αριθμοί πέρα απ τους κανόνες

ΓΙΑΝΝΗΣ ΚΑΡΑΓΙΑΝΝΑΚΗΣ. Οι αριθμοί πέρα απ τους κανόνες ΓΙΑΝΝΗΣ ΚΑΡΑΓΙΑΝΝΑΚΗΣ Οι αριθμοί πέρα απ τους κανόνες Οι αριθμοί πέρα απ τους κανόνες Γιάννης Καραγιαννάκης Copyright Γιάννης Καραγιαννάκης Eκδότης: Διερευνητική Μάθηση, Αθήνα 2012 Επιμέλεια: Γιάννης Καραγιαννάκης

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 13 ΜΕΤΡΗΣΗ ΜΗΚΟΥΣ ΜΕ ΣΥΜΒΑΤΙΚΕΣ ΜΟΝΑΔΕΣ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΕΡΙΜΕΤΡΟ ΚΑΙ ΕΜΒΑΔΟΝ

ΕΝΟΤΗΤΑ 13 ΜΕΤΡΗΣΗ ΜΗΚΟΥΣ ΜΕ ΣΥΜΒΑΤΙΚΕΣ ΜΟΝΑΔΕΣ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΕΡΙΜΕΤΡΟ ΚΑΙ ΕΜΒΑΔΟΝ ΕΝΟΤΗΤΑ 13 ΜΕΤΡΗΣΗ ΜΗΚΟΥΣ ΜΕ ΣΥΜΒΑΤΙΚΕΣ ΜΟΝΑΔΕΣ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΕΡΙΜΕΤΡΟ ΚΑΙ ΕΜΒΑΔΟΝ ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΜΕΤΡΗΣΗ Εκτίμηση και μέτρηση Μ1.1 Συγκρίνουν και σειροθετούν αντικείμενα με βάση το ύψος, το μήκος,

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Α ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ

ΕΡΩΤΗΣΕΙΣ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Α ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ 1 ο ΚΕΦΑΛΑΙΟ ΕΡΩΤΗΣΕΙΣ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Α ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ 1. α. Τι γνωρίζετε για την Ευκλείδεια διαίρεση; Πότε λέγεται τέλεια; β. Αν σε μια διαίρεση είναι Δ=δ, πόσο είναι το πηλίκο και

Διαβάστε περισσότερα

Δυαδικό Σύστημα Αρίθμησης

Δυαδικό Σύστημα Αρίθμησης Δυαδικό Σύστημα Αρίθμησης Το δυαδικό σύστημα αρίθμησης χρησιμοποιεί δύο ψηφία. Το 0 και το 1. Τα ψηφία ενός αριθμού στο δυαδικό σύστημα αρίθμησης αντιστοιχίζονται σε δυνάμεις του 2. Μονάδες, δυάδες, τετράδες,

Διαβάστε περισσότερα

μαθηματικά β γυμνασίου

μαθηματικά β γυμνασίου μαθηματικά β γυμνασίου Κάθε αντίτυπο φέρει την υπογραφή ενός εκ των συγγραφέων Σειρά: Γυμνάσιο, Θετικές Επιστήμες Μαθηματικά Β Γυμνασίου, Βασίλης Διολίτσης Ιωάννα Κοσκινά Νικολέττα Μπάκου Θεώρηση Κειμένου:

Διαβάστε περισσότερα

ΕΡΕΥΝΑ ΔΙΕΘΝΩΝ ΤΑΣΕΩΝ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΤΙΣ ΦΥΣΙΚΕΣ ΕΠΙΣΤΗΜΕΣ

ΕΡΕΥΝΑ ΔΙΕΘΝΩΝ ΤΑΣΕΩΝ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΤΙΣ ΦΥΣΙΚΕΣ ΕΠΙΣΤΗΜΕΣ ΕΡΕΥΝΑ ΔΙΕΘΝΩΝ ΤΑΣΕΩΝ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΤΙΣ ΦΥΣΙΚΕΣ ΕΠΙΣΤΗΜΕΣ Trends in International Mathematics and Science Study ΕΠΑΡΧΙΑΚΕΣ ΣΥΝΑΝΤΗΣΕΙΣ ΕΠΙΘΕΩΡΗΤΩΝ - ΔΙΕΥΘΥΝΤΩΝ Φεβρουάριος 2014 Περιεχόμενο συνάντησης

Διαβάστε περισσότερα

Αφαίρεση και Γενίκευση στα Μαθηματικά

Αφαίρεση και Γενίκευση στα Μαθηματικά 1 Αφαίρεση και Γενίκευση στα Μαθηματικά Δρ. Παναγιώτης Λ. Θεοδωρόπουλος Σχολικός Σύμβουλος κλάδου ΠΕ3 www.p-theodoropoulos.gr ΠΕΡΙΛΗΨΗ Στην εργασία αυτή εξετάζεται εντός του πλαισίου της Διδακτικής των

Διαβάστε περισσότερα

Στρατηγική επίλυσης προβλημάτων: Διερεύνηση περιμέτρου κι εμβαδού με τη βοήθεια του Ms Excel.

Στρατηγική επίλυσης προβλημάτων: Διερεύνηση περιμέτρου κι εμβαδού με τη βοήθεια του Ms Excel. Στρατηγική επίλυσης προβλημάτων: Διερεύνηση περιμέτρου κι εμβαδού με τη βοήθεια του Ms Excel. Έντυπο Α Φύλλα εργασίας Μαθητή Διαμαντής Κώστας Τερζίδης Σωτήρης 31/1/2008 Φύλλο εργασίας 1. Ομάδα: Ημερομηνία:

Διαβάστε περισσότερα

Μαθηματικά Δημοτική Εκπαίδευση

Μαθηματικά Δημοτική Εκπαίδευση Επιμορφωτικό Υποστηρικτικό Υλικό για την ενσωμάτωση των ΤΠΕ στη μαθησιακή διαδικασία Θέμα Μαθηματικά Δημοτική Εκπαίδευση Εργαλείο Διαδίκτυο Παιδαγωγικό Ινστιτούτο Κύπρου Τομέας Εκπαιδευτικής Τεχνολογίας

Διαβάστε περισσότερα

ΕΠΑ 331 Διδακτική των Μαθηματικών. Παρουσίαση «Γεωμετρία» ΤΑ ΕΠΙΠΕΔΑ Van Hiele Επίπεδο 0. Επίπεδο Σφαιρικής ή ολικής αντίληψης

ΕΠΑ 331 Διδακτική των Μαθηματικών. Παρουσίαση «Γεωμετρία» ΤΑ ΕΠΙΠΕΔΑ Van Hiele Επίπεδο 0. Επίπεδο Σφαιρικής ή ολικής αντίληψης ΕΠΑ 331 Διδακτική των Μαθηματικών Παρουσίαση «Γεωμετρία» ΤΑ ΕΠΙΠΕΔΑ Van Hiele Επίπεδο 0. Επίπεδο Σφαιρικής ή ολικής αντίληψης 1 ΤΑ ΕΠΙΠΕΔΑ Van Hiele Επίπεδο 0. Επίπεδο Σφαιρικής ή ολικής αντίληψης 1. Αναγνωρίζουν

Διαβάστε περισσότερα

Παράδειγμα 1 Γράψε ένα δεκαδικό αριθμό μεταξύ του 2 και του 3 που δεν περιέχει το 5 που περιέχει το 7 και που βρίσκεται όσο πιο κοντά γίνεται με το

Παράδειγμα 1 Γράψε ένα δεκαδικό αριθμό μεταξύ του 2 και του 3 που δεν περιέχει το 5 που περιέχει το 7 και που βρίσκεται όσο πιο κοντά γίνεται με το Παράδειγμα 1 Γράψε ένα δεκαδικό αριθμό μεταξύ του 2 και του 3 που δεν περιέχει το 5 που περιέχει το 7 και που βρίσκεται όσο πιο κοντά γίνεται με το 5/2 1 Παράδειγμα 2: Γράψε ένα κλάσμα που χρησιμοποιεί

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου Κεφάλαιο ο Αλγεβρικές Παραστάσεις ΛΕΜΟΝΙΑ ΜΠΟΥΤΣΚΟΥ Γυμνάσιο Αμυνταίου ΜΑΘΗΜΑ Α. Πράξεις με πραγματικούς αριθμούς ΑΣΚΗΣΕΙΣ ) ) Να συμπληρώσετε τα κενά ώστε στην κατακόρυφη στήλη

Διαβάστε περισσότερα

ΕΝΔΕΙΚΤΙΚΕΣ ΔΟΚΙΜΑΣΙΕΣ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΤΗΝ ΕΙΣΑΓΩΓΗ ΜΑΘΗΤΩΝ ΣΤΑ ΠΡΟΤΥΠΑ-ΠΕΙΡΑΜΑΤΙΚΑ ΓΥΜΝΑΣΙΑ

ΕΝΔΕΙΚΤΙΚΕΣ ΔΟΚΙΜΑΣΙΕΣ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΤΗΝ ΕΙΣΑΓΩΓΗ ΜΑΘΗΤΩΝ ΣΤΑ ΠΡΟΤΥΠΑ-ΠΕΙΡΑΜΑΤΙΚΑ ΓΥΜΝΑΣΙΑ ΕΝΔΕΙΚΤΙΚΕΣ ΔΟΚΙΜΑΣΙΕΣ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΤΗΝ ΕΙΣΑΓΩΓΗ ΜΑΘΗΤΩΝ ΣΤΑ ΠΡΟΤΥΠΑ-ΠΕΙΡΑΜΑΤΙΚΑ ΓΥΜΝΑΣΙΑ ΔΟΚΙΜΑΣΙΑ 6 1) Να εκφράσετε τον αριθμό 48 σε γινόμενο πρώτων παραγόντων με δενδροδιάγραμμα. 2) Να συγκρίνετε

Διαβάστε περισσότερα

LEARNING / ASSESSMENT SCENARIOS

LEARNING / ASSESSMENT SCENARIOS x LEARNING / ASSESSMENT SCENARIOS Deliverable 7.6 Products from students Demetra Pitta-Pantazi, Constantinos Christou, Maria Kattou, Marios Pittalis, Paraskevi Sophocleous ΠΕΡΙΕΧΟΜΕΝΑ ΑΡΙΘΜΟΙ & ΠΡΑΞΕΙΣ..3

Διαβάστε περισσότερα

Η έννοια του εγγραμματισμού στα Μαθηματικά προσδιορίζεται από τρία συστατικά στοιχεία που αναπαρίστανται στο παρακάτω σχήμα:

Η έννοια του εγγραμματισμού στα Μαθηματικά προσδιορίζεται από τρία συστατικά στοιχεία που αναπαρίστανται στο παρακάτω σχήμα: Στο πλαίσιο του προγράμματος PISA, ο εγγραμματισμός στα Μαθηματικά ορίζεται ως η ικανότητα του ατόμου να προσδιορίζει και να κατανοεί τον ρόλο των Μαθηματικών στην καθημερινότητα, να αναπτύσσει τεκμηριωμένες

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ. Α' τάξης Γενικού Λυκείου

ΑΛΓΕΒΡΑ. Α' τάξης Γενικού Λυκείου ΑΛΓΕΒΡΑ Α' τάξης Γενικού Λυκείου ΣΥΓΓΡΑΦΕΙΣ Ανδρεαδάκης Στυλιανός Κατσαργύρης Βασίλειος Παπασταυρίδης Σταύρος Πολύζος Γεώργιος Σβέρκος Ανδρέας ΟΜΑΔΑ ΑΝΑΜΟΡΦΩΣΗΣ Ανδρεαδάκης Στυλιανός Κατσαργύρης Βασίλειος

Διαβάστε περισσότερα

Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα

Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7, α) Να αιτιολογήσετε γιατί η (α ν ) είναι αριθμητική πρόοδος και να βρείτε τον εκατοστό

Διαβάστε περισσότερα

1 η υπό-ομάδα (Wind): Ισμαήλ Σερκάν Τσουλουχόπουλος Ιωάννης Φαρμακίδης Πασχάλης Τσακίρη Άννα Αριστινίδης Παύλος. 2 η υπό-ομάδα (Cosmote):

1 η υπό-ομάδα (Wind): Ισμαήλ Σερκάν Τσουλουχόπουλος Ιωάννης Φαρμακίδης Πασχάλης Τσακίρη Άννα Αριστινίδης Παύλος. 2 η υπό-ομάδα (Cosmote): 1 η υπό-ομάδα (Wind): Ισμαήλ Σερκάν Τσουλουχόπουλος Ιωάννης Φαρμακίδης Πασχάλης Τσακίρη Άννα Αριστινίδης Παύλος 2 η υπό-ομάδα (Cosmote): Αμυγδαλούδης Κωνσταντίνος Νερατζάκης Κωνσταντίνος Μποτούρ Μεμέτ

Διαβάστε περισσότερα

Σχέδιο παρουσίασης των διδασκαλιών ή των project

Σχέδιο παρουσίασης των διδασκαλιών ή των project Σχέδιο παρουσίασης των διδασκαλιών ή των project Σην παρουσίαση των διδασκαλιών ή των project μπορούμε να ακολουθήσουμε την φόρμα που παρουσιάζεται παρακάτω. Μια παρουσίαση σύντομη και μια λεπτομερής.

Διαβάστε περισσότερα

ΠΛΑΙΣΙΟ ΠΡΟΓΡΑΜΜΑΤΩΝ ΣΠΟΥΔΩΝ (ΠΣ) Χρίστος Δούκας Αντιπρόεδρος του ΠΙ

ΠΛΑΙΣΙΟ ΠΡΟΓΡΑΜΜΑΤΩΝ ΣΠΟΥΔΩΝ (ΠΣ) Χρίστος Δούκας Αντιπρόεδρος του ΠΙ ΠΛΑΙΣΙΟ ΠΡΟΓΡΑΜΜΑΤΩΝ ΣΠΟΥΔΩΝ (ΠΣ) Χρίστος Δούκας Αντιπρόεδρος του ΠΙ Οι Δ/τές ως προωθητές αλλαγών με κέντρο τη μάθηση Χαράσσουν τις κατευθύνσεις Σχεδιάσουν την εφαρμογή στη σχολική πραγματικότητα Αναπτύσσουν

Διαβάστε περισσότερα

Πληρουορική Γ Γσμμασίοσ

Πληρουορική Γ Γσμμασίοσ Πληρουορική Γ Γσμμασίοσ Προγραμματισμός και Αλγόριθμοι Από το και τημ Χελώμα στημ Ευριπίδης Βραχνός http://evripides.mysch.gr/ 2014 2015 1 Προγραμματισμός Ζάννειο Πρότυπο Πειραματικό Γυμνάσιο Πειραιά Ενότητα:

Διαβάστε περισσότερα

Ο ΕΚΣΥΓΧΡΟΝΙΣΜΟΣ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΠΕΡΙΕΧΟΜΕΝΩΝ ΣΤΑ ΝΕΑ ΒΙΒΛΙΑ ΤΗΣ Α ΚΑΙ Γ ΤΑΞΗΣ ΤΟΥ ΔΗΜΟΤΙΚΟΥ ΣΧΟΛΕΙΟΥ

Ο ΕΚΣΥΓΧΡΟΝΙΣΜΟΣ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΠΕΡΙΕΧΟΜΕΝΩΝ ΣΤΑ ΝΕΑ ΒΙΒΛΙΑ ΤΗΣ Α ΚΑΙ Γ ΤΑΞΗΣ ΤΟΥ ΔΗΜΟΤΙΚΟΥ ΣΧΟΛΕΙΟΥ Λεμονίδης Χ. (2007). Ο εκσυγχρονισμός των μαθηματικών περιεχομένων στα νέα βιβλία της Α και Γ τάξης του Δημοτικού Σχολείου. Γέφυρες, 31:24-31. Ο ΕΚΣΥΓΧΡΟΝΙΣΜΟΣ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΠΕΡΙΕΧΟΜΕΝΩΝ ΣΤΑ ΝΕΑ ΒΙΒΛΙΑ

Διαβάστε περισσότερα

ΑΠΌ ΤΗ «ΦΙΛΟΣΟΦΙΑ»ΤΟΥ ΠΡΟΓΡΆΜΜΑΤΟΣ ΣΠΟΥΔΏΝ ΣΤΗΝ ΕΦΑΡΜΟΓΉ ΤΗΣ ΣΤΗΝ ΤΆΞΗ Ε.ΚΟΛΈΖΑ

ΑΠΌ ΤΗ «ΦΙΛΟΣΟΦΙΑ»ΤΟΥ ΠΡΟΓΡΆΜΜΑΤΟΣ ΣΠΟΥΔΏΝ ΣΤΗΝ ΕΦΑΡΜΟΓΉ ΤΗΣ ΣΤΗΝ ΤΆΞΗ Ε.ΚΟΛΈΖΑ ΜΑΘΗΣΗ ΜΕΣΩ ΣΧΕΔΙΑΣΜΟΥ 1 ΑΠΌ ΤΗ «ΦΙΛΟΣΟΦΙΑ»ΤΟΥ ΠΡΟΓΡΆΜΜΑΤΟΣ ΣΠΟΥΔΏΝ ΣΤΗΝ ΕΦΑΡΜΟΓΉ ΤΗΣ ΣΤΗΝ ΤΆΞΗ Ε.ΚΟΛΈΖΑ ΠΕΡΙΕΧΟΜΕΝΟ ΕΙΣΗΓΗΣΗΣ 1. Τι αλλαγές επιχειρούν τα νέα ΠΣ; 2 2. Γιατί το πέρασμα στην πράξη (θα)

Διαβάστε περισσότερα

Εισαγωγή στην έννοια του Αλγορίθμου

Εισαγωγή στην έννοια του Αλγορίθμου Εισαγωγή στην έννοια του Αλγορίθμου ΟΜΑΔΑ ΑΝΑΠΤΥΞΗΣ Νίκος Μιχαηλίδης, Πληροφορικός ΠΕ19 ΣΧΟΛΕΙΟ 2 ο Πρότυπο Πειραματικό Γυμνάσιο Θεσσαλονίκης Θεσσαλονίκη, 24 Φεβρουαρίου 2015 1. Συνοπτική περιγραφή της

Διαβάστε περισσότερα

«Εισαγωγή στον Τριγωνομετρικό Κύκλο» Διδάσκοντας Μαθηματικά με Τ.Π.Ε.

«Εισαγωγή στον Τριγωνομετρικό Κύκλο» Διδάσκοντας Μαθηματικά με Τ.Π.Ε. «Εισαγωγή στον Τριγωνομετρικό Κύκλο» Διδάσκοντας Μαθηματικά με Τ.Π.Ε. Μπολοτάκης Γιώργος Μαθηματικός, Επιμορφωτής Β επιπέδου, Διευθυντής Γυμνασίου Αγ. Αθανασίου Δράμας, Τραπεζούντος 7, Άγιος Αθανάσιος,

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ 2013 ΘΕΩΡΙΑ ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ Η ΤΕΛΕΥΤΑΙΑ ΕΠΑΝΑΛΗΨΗ Βαγγέλης Α Νικολακάκης Μαθηματικός http://cutemaths.wordpress.com/ ΛΙΓΑ ΛΟΓΑ Η παρούσα εργασία μου δεν στοχεύει απλά στο κυνήγι του 20,

Διαβάστε περισσότερα

ΝEΑ ΑΝΑΛΥΤΙΚA ΠΡΟΓΡAΜΜΑΤΑ: ΕΜΦAΣΕΙΣ ΚΑΙ ΠΡΟΤΕΡΑΙOΤΗΤΕΣ. ΑΠΟ ΤΗ ΘΕΩΡΙΑ ΣΤΗΝ ΠΡΑΞΗ και στη ΔΙΑΒΙΟΥ ΑΥΤΟΜΟΡΦΩΣΗ

ΝEΑ ΑΝΑΛΥΤΙΚA ΠΡΟΓΡAΜΜΑΤΑ: ΕΜΦAΣΕΙΣ ΚΑΙ ΠΡΟΤΕΡΑΙOΤΗΤΕΣ. ΑΠΟ ΤΗ ΘΕΩΡΙΑ ΣΤΗΝ ΠΡΑΞΗ και στη ΔΙΑΒΙΟΥ ΑΥΤΟΜΟΡΦΩΣΗ ΝEΑ ΑΝΑΛΥΤΙΚA ΠΡΟΓΡAΜΜΑΤΑ: ΕΜΦAΣΕΙΣ ΚΑΙ ΠΡΟΤΕΡΑΙOΤΗΤΕΣ ΑΠΟ ΤΗ ΘΕΩΡΙΑ ΣΤΗΝ ΠΡΑΞΗ και στη ΔΙΑΒΙΟΥ ΑΥΤΟΜΟΡΦΩΣΗ ΜΕΡΟΣ Α Οι προτεραιότητες στα Νέα Αναλυτικά Προγράμματα Λειτουργική Ανάλυση (copyright: Μαίρη

Διαβάστε περισσότερα

Γεωμετρία, Αριθμοί και Μέτρηση Μαθαίνω Γεωμετρία και Μετρώ Παίζω με τους αριθμούς Βρίσκω τα πολλαπλάσια

Γεωμετρία, Αριθμοί και Μέτρηση Μαθαίνω Γεωμετρία και Μετρώ Παίζω με τους αριθμούς Βρίσκω τα πολλαπλάσια Γεωμετρία, Αριθμοί και Μέτρηση Μαθαίνω Γεωμετρία και Μετρώ Παίζω με τους αριθμούς Βρίσκω τα πολλαπλάσια Οδηγίες Εγκατάστασης & Εγχειρίδιο Χρήσης Πίνακας περιεχομένων 1. Εισαγωγή... 3 2. Οδηγίες εγκατάστασης...

Διαβάστε περισσότερα

Να φύγει ο Ευκλείδης;

Να φύγει ο Ευκλείδης; Να φύγει ο Ευκλείδης; Σωτήρης Ζωιτσάκος Βαρβάκειο Λύκειο Μαθηματικά στα ΠΠΛ Αθήνα 2014 Εισαγωγικά Dieudonné: «Να φύγει ο Ευκλείδης». Douglas Quadling: «Ο Ευκλείδης έχει φύγει, αλλά στο κενό που άφησε πίσω

Διαβάστε περισσότερα

Το ΔΕΠΠΣ- ΑΠΣ των Μαθηματικών του Δημοτικού Σχολείου, τα Νέα Βιβλία των Μαθηματικών του Δημοτικού Σχολείου

Το ΔΕΠΠΣ- ΑΠΣ των Μαθηματικών του Δημοτικού Σχολείου, τα Νέα Βιβλία των Μαθηματικών του Δημοτικού Σχολείου Το ΔΕΠΠΣ- ΑΠΣ των Μαθηματικών του Δημοτικού Σχολείου, τα Νέα Βιβλία των Μαθηματικών του Δημοτικού Σχολείου Πού στηρίζεται η συγκεκριμένη εισήγηση Στο ΔΕΠΠΣ και ΑΠΣ των μαθηματικών του Δημοτικού Σχολείου

Διαβάστε περισσότερα

Μαθηματικα Γ Γυμνασιου

Μαθηματικα Γ Γυμνασιου Μαθηματικα Γ Γυμνασιου Θεωρια και παραδειγματα livemath.eu σελ. απο 9 Περιεχομενα Α ΜΕΡΟΣ: ΑΛΓΕΒΡΑ ΚΑΙ ΠΙΘΑΝΟΤΗΤΕΣ 4 ΣΥΣΤΗΜΑΤΑ Χ 4 ΜΟΝΩΝΥΜΑ & ΠΟΛΥΩΝΥΜΑ 5 ΜΟΝΩΝΥΜΑ 5 ΠΟΛΥΩΝΥΜΑ 5 ΡΙΖΑ ΠΟΛΥΩΝΥΜΟΥ 5 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ

Διαβάστε περισσότερα

Πρότυπο Πειραματικό Γυμνάσιο Πανεπιστημίου Πατρών. Αθανασία Μπαλωμένου ΠΕ03 Βασιλική Ρήγα ΠΕ03 Λαμπρινή Βουτσινά ΠΕ04.01

Πρότυπο Πειραματικό Γυμνάσιο Πανεπιστημίου Πατρών. Αθανασία Μπαλωμένου ΠΕ03 Βασιλική Ρήγα ΠΕ03 Λαμπρινή Βουτσινά ΠΕ04.01 Πρότυπο Πειραματικό Γυμνάσιο Πανεπιστημίου Πατρών Αθανασία Μπαλωμένου ΠΕ03 Βασιλική Ρήγα ΠΕ03 Λαμπρινή Βουτσινά ΠΕ04.01 Τα ερωτήματα που προκύπτουν από την εισαγωγή της Φυσικής στην Α γυμνασίου είναι :

Διαβάστε περισσότερα

«Η ΑΞΙΟΠΟΙΗΣΗ ΚΑΙΝΟΤΟΜΩΝ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΡΓΑΛΕΙΩΝ ΣΤΟ ΜΑΘΗΣΙΑΚΟ ΠΕΡΙΒΑΛΛΟΝ»

«Η ΑΞΙΟΠΟΙΗΣΗ ΚΑΙΝΟΤΟΜΩΝ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΡΓΑΛΕΙΩΝ ΣΤΟ ΜΑΘΗΣΙΑΚΟ ΠΕΡΙΒΑΛΛΟΝ» Όμιλος Εκπαιδευτικών Χρηστών Πληροφορικής Τεχνολογίας Κύπρου «Η ΑΞΙΟΠΟΙΗΣΗ ΚΑΙΝΟΤΟΜΩΝ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΡΓΑΛΕΙΩΝ ΣΤΟ ΜΑΘΗΣΙΑΚΟ ΠΕΡΙΒΑΛΛΟΝ» ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ 6 ΝΟΕΜΒΡΙΟΥ 2010 08:30-13:30 Α107 Χορηγοί: «Η

Διαβάστε περισσότερα

Δάσκαλοι και μαθητές Παίζουμε και μαθαίνουμε!

Δάσκαλοι και μαθητές Παίζουμε και μαθαίνουμε! Δάσκαλοι και μαθητές Παίζουμε και μαθαίνουμε! Συντελεστές: Γιάννης Π. Κρόκος - Μαθηματικός Βασίλης Τσιλιβής Μαθηματικός Φιλίππια Γαλιατσάτου - Δασκάλα Πολιτικός Μηχανικός «Η επίλυση των προβλημάτων & των

Διαβάστε περισσότερα

ΟΙ ΣΤΡΑΤΗΓΙΚΕΣ ΠΡΟΣΘΕΣΗΣ ΚΑΙ ΑΦΑΙΡΕΣΗΣ ΜΕ ΑΡΙΘΜΟΥΣ ΜΕΧΡΙ ΤΟ 20

ΟΙ ΣΤΡΑΤΗΓΙΚΕΣ ΠΡΟΣΘΕΣΗΣ ΚΑΙ ΑΦΑΙΡΕΣΗΣ ΜΕ ΑΡΙΘΜΟΥΣ ΜΕΧΡΙ ΤΟ 20 ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΚΑΘΗΓΗΤΗΣ Χ. ΛΕΜΟΝΙΔΗΣ ΟΙ ΣΤΡΑΤΗΓΙΚΕΣ ΠΡΟΣΘΕΣΗΣ ΚΑΙ ΑΦΑΙΡΕΣΗΣ ΜΕ ΑΡΙΘΜΟΥΣ ΜΕΧΡΙ ΤΟ 20 Στη διδασκαλία συνήθως τα παιδιά αρχικά διδάσκονται τις

Διαβάστε περισσότερα

ΕΚΦΩΝΗΣΗ ΕΛΕΥΘΕΡΟΥ ΘΕΜΑΤΟΣ (µικρές τάξεις ηµοτικού) Σχεδιασµός σεναρίου µε θέµα «Ο καιρός» µε τη χρήση λογισµικών γενικής χρήσης, οπτικοποίησης, διαδικτύου και λογισµικών εννοιολογικής χαρτογράφησης. ΑΠΑΝΤΗΣΗ

Διαβάστε περισσότερα

Τα σχέδια μαθήματος 1 Εισαγωγή

Τα σχέδια μαθήματος 1 Εισαγωγή Τα σχέδια μαθήματος 1 Εισαγωγή Τα σχέδια μαθήματος αποτελούν ένα είδος προσωπικών σημειώσεων που κρατά ο εκπαιδευτικός προκειμένου να πραγματοποιήσει αποτελεσματικές διδασκαλίες. Περιέχουν πληροφορίες

Διαβάστε περισσότερα

ΑΞΙΟΛΟΓΗΣΗ ΤΟΥ ΜΑΘΗΤΗ

ΑΞΙΟΛΟΓΗΣΗ ΤΟΥ ΜΑΘΗΤΗ ΑΞΙΟΛΟΓΗΣΗ ΤΟΥ ΜΑΘΗΤΗ ΓΕΝΙΚΑ Βασικός στόχος είναι η ανατροφοδότηση της εκπαιδευτικής διαδικασίας και ο εντοπισμός των μαθησιακών ελλείψεων με σκοπό τη βελτίωση της παρεχόμενης σχολικής εκπαίδευσης. Ειδικότερα

Διαβάστε περισσότερα

ΡΟΜΠΟΤΙΚΗ ΚΑΙ ΕΚΠΑΙΔΕΥΣΗ

ΡΟΜΠΟΤΙΚΗ ΚΑΙ ΕΚΠΑΙΔΕΥΣΗ ΡΟΜΠΟΤΙΚΗ ΚΑΙ ΕΚΠΑΙΔΕΥΣΗ Γιατί η Ρομποτική στην Εκπαίδευση; A) Τα παιδιά όταν σχεδιάζουν, κατασκευάζουν και προγραμματίζουν ρομπότ έχουν την ευκαιρία να μάθουν παίζοντας και να αναπτύξουν δεξιότητες Η

Διαβάστε περισσότερα

B Γυμνασίου. Ενότητα 9

B Γυμνασίου. Ενότητα 9 B Γυμνασίου Ενότητα 9 Γραμμικές εξισώσεις με μία μεταβλητή Διερεύνηση (1) Να λύσετε τις πιο κάτω εξισώσεις και ακολούθως να σχολιάσετε το πλήθος των λύσεων που βρήκατε σε καθεμιά. α) ( ) ( ) ( ) Διερεύνηση

Διαβάστε περισσότερα

Αξιολόγηση του Εκπαιδευτικού Έργου στην Πρωτοβάθμια Εκπαίδευση. Διαδικασία Αυτοαξιολόγησης στη Σχολική Μονάδα

Αξιολόγηση του Εκπαιδευτικού Έργου στην Πρωτοβάθμια Εκπαίδευση. Διαδικασία Αυτοαξιολόγησης στη Σχολική Μονάδα ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΔΙΑ ΒΙΟΥ ΜΑΘΗΣΗΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΚΕΝΤΡΟ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΕΡΕΥΝΑΣ Αξιολόγηση του Εκπαιδευτικού Έργου στην Πρωτοβάθμια Εκπαίδευση Διαδικασία Αυτοαξιολόγησης στη Σχολική Μονάδα Σχέδια Εκθέσεων

Διαβάστε περισσότερα

Διδάσκοντας με τη βοήθεια λογισμικού υπολογιστικών φύλλων

Διδάσκοντας με τη βοήθεια λογισμικού υπολογιστικών φύλλων 169 Επιμορφωτικό υλικό για την επιμόρφωση των εκπαιδευτικών - Τεύχος 1 (Γενικό Μέρος) Ενότητα 3.6.2 Διδάσκοντας με τη βοήθεια λογισμικού υπολογιστικών φύλλων 1. Εισαγωγή Στο παρόν κεφάλαιο περιγράφονται

Διαβάστε περισσότερα

Διοίκηση Επιχειρήσεων

Διοίκηση Επιχειρήσεων 10 η Εισήγηση Δημιουργικότητα - Καινοτομία 1 1.Εισαγωγή στη Δημιουργικότητα και την Καινοτομία 2.Δημιουργικό Μάνατζμεντ 3.Καινοτομικό μάνατζμεντ 4.Παραδείγματα δημιουργικότητας και καινοτομίας 2 Δημιουργικότητα

Διαβάστε περισσότερα

Λογισμικό διδασκαλίας των μαθηματικών της Γ Τάξης Γυμνασίου

Λογισμικό διδασκαλίας των μαθηματικών της Γ Τάξης Γυμνασίου Λογισμικό διδασκαλίας των μαθηματικών της Γ Τάξης Γυμνασίου Δρ. Βασίλειος Σάλτας 1, Αλέξης Ηλιάδης 2, Ιωάννης Μουστακέας 3 1 Διδάκτωρ Διδακτικής Μαθηματικών, Επιστημονικός Συνεργάτης ΑΣΠΑΙΤΕ Σαπών coin_kav@otenet.gr

Διαβάστε περισσότερα

ΤΟ ΛΕΞΙΛΟΓΙΟ ΤΗΣ ΛΟΓΙΚΗΣ

ΤΟ ΛΕΞΙΛΟΓΙΟ ΤΗΣ ΛΟΓΙΚΗΣ 1. ΤΟ ΛΕΞΙΛΟΓΙΟ ΤΗΣ ΛΟΓΙΚΗΣ Στόχος Να γνωρίζουν οι μαθητές: να αξιοποιούν το σύμβολο της συνεπαγωγής και της ισοδυναμίας να αξιοποιούν τους συνδέσμους «ή», «και» ΕΙΣΑΓΩΓΗ Η συννενόηση μεταξύ των ανθρώπων

Διαβάστε περισσότερα

Διδακτικές Προσεγγίσεις και Εργαλεία για τη Διδασκαλία της Πληροφορικής

Διδακτικές Προσεγγίσεις και Εργαλεία για τη Διδασκαλία της Πληροφορικής Περιεχόμενα Πρόλογος... 11 Κεφ.1 Θεωρητικό Πλαίσιο της Διδακτικής: Βασικές Έννοιες, Σχεδιασμός και Οργάνωση Διδασκαλίας, Εκπαιδευτική Αξιολόγηση Μ. Γρηγοριάδου, Ε. Γουλή και Α. Γόγουλου... 15 1.1 Βασικές

Διαβάστε περισσότερα

Θεωρητικές και μεθοδολογικές προσεγγίσεις στη μελέτη της περιοδικότητας: Μια συστημική προσέγγιση. Δέσποινα Πόταρη, Τμήμα Μαθηματικών, ΕΚΠΑ

Θεωρητικές και μεθοδολογικές προσεγγίσεις στη μελέτη της περιοδικότητας: Μια συστημική προσέγγιση. Δέσποινα Πόταρη, Τμήμα Μαθηματικών, ΕΚΠΑ Θεωρητικές και μεθοδολογικές προσεγγίσεις στη μελέτη της περιοδικότητας: Μια συστημική προσέγγιση Δέσποινα Πόταρη, Τμήμα Μαθηματικών, ΕΚΠΑ Δομή της παρουσίασης Δυσκολίες μαθητών γύρω από την έννοια της

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Στασίνου 36, Γραφ. 102, Στρόβολος 2003 Λευκωσία, Κύπρος Τηλ: 22378101- Φαξ:22379122 cms@cms.org.cy, www.cms.org.cy ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Η Κυπριακή Μαθηματική Εταιρεία

Διαβάστε περισσότερα

Επαναλαμβάνοντας το Ισόπλευρο Τρίγωνο με Δύο Κώδικες

Επαναλαμβάνοντας το Ισόπλευρο Τρίγωνο με Δύο Κώδικες Επαναλαμβάνοντας το Ισόπλευρο Τρίγωνο με Δύο Κώδικες Λουμπαρδιά Αγγελική 1, Ναστάκου Μαρία 2 1 Καθηγήτρια Μαθηματικών, 2 o Γενικό Λύκειο Τρίπολης loumpardia@sch.gr 2 Διευθύντρια, ΙΕΚ Σπάρτης marynasta@sch.gr

Διαβάστε περισσότερα

Γενική οργάνωση σεναρίου. 1. Προαπαιτούμενες γνώσεις και πρότερες γνώσεις των μαθητών

Γενική οργάνωση σεναρίου. 1. Προαπαιτούμενες γνώσεις και πρότερες γνώσεις των μαθητών Παράρτημα 1: Τεχνική έκθεση τεκμηρίωσης σεναρίου Το εκπαιδευτικό σενάριο που θα σχεδιαστεί πρέπει να συνοδεύεται από μια τεχνική έκθεση τεκμηρίωσής του. Η τεχνική αυτή έκθεση (με τη μορφή του παρακάτω

Διαβάστε περισσότερα

εκπαίδευση Μαθηματικά Γ Λυκείου Κατεύθυνσης Λύκειο Ιδαλίου - Π.Ι. Κύπρου Μιχάλης

εκπαίδευση Μαθηματικά Γ Λυκείου Κατεύθυνσης Λύκειο Ιδαλίου - Π.Ι. Κύπρου Μιχάλης Ενσωμάτωση των ΤΠΕ στην εκπαίδευση Μαθηματικά Γ Λυκείου Κατεύθυνσης Λύκειο Ιδαλίου - Π.Ι. Κύπρου Τιμοθέου Σάββας & Χριστοφορίδης Μιχάλης Μελέτη και γραφική Παράσταση Συνάρτησης Τμήμα:Γ6 ( με 18 μαθητές)

Διαβάστε περισσότερα

Κατασκευή προγράμματος για επίλυση Φυσικομαθηματικών συναρτήσεων

Κατασκευή προγράμματος για επίλυση Φυσικομαθηματικών συναρτήσεων Κατασκευή προγράμματος για επίλυση Φυσικομαθηματικών συναρτήσεων Ιωάννης Λιακόπουλος 1, Χαράλαμπος Λυπηρίδης 2 1 Μαθητής B Λυκείου, Εκπαιδευτήρια «Ο Απόστολος Παύλος» liakopoulosjohn0@gmail.com, 2 Μαθητής

Διαβάστε περισσότερα

Άρθρο 2. Διάρθρωση Εκπαιδευτικών Προγραμμάτων Γενικού Λυκείου

Άρθρο 2. Διάρθρωση Εκπαιδευτικών Προγραμμάτων Γενικού Λυκείου Άρθρο 2 Διάρθρωση Εκπαιδευτικών Προγραμμάτων Γενικού Λυκείου 1. Η Α Τάξη Ημερήσιου Γενικού Λυκείου αποτελεί τάξη αποκλειστικά γενικής παιδείας, στην οποία εφαρμόζεται πρόγραμμα μαθημάτων τριάντα πέντε

Διαβάστε περισσότερα

Μια διδακτική αξιοποίηση της λογοτεχνίας στα μαθηματικά του δημοτικού σχολείου. Εισηγητής: Μακρής Νικόλαος Εκπαιδευτικός ΠΕ 70

Μια διδακτική αξιοποίηση της λογοτεχνίας στα μαθηματικά του δημοτικού σχολείου. Εισηγητής: Μακρής Νικόλαος Εκπαιδευτικός ΠΕ 70 Μια διδακτική αξιοποίηση της λογοτεχνίας στα μαθηματικά του δημοτικού σχολείου Εισηγητής: Μακρής Νικόλαος Εκπαιδευτικός ΠΕ 70 Εκφράζουν πρακτικότητα/πραγματικότητα Οικοδομούν τον πραγματικό κόσμο. Εκφράζει

Διαβάστε περισσότερα

ΒΑΣΕΙ ΤΩΝ ΒΙΒΛΙΩΝ ΤΟΥ ΟΡΓΑΝΙΣΜΟΥ

ΒΑΣΕΙ ΤΩΝ ΒΙΒΛΙΩΝ ΤΟΥ ΟΡΓΑΝΙΣΜΟΥ ΒΑΣΕΙ ΤΩΝ ΒΙΒΛΙΩΝ ΤΟΥ ΟΡΓΑΝΙΣΜΟΥ 1 ΦΩΤΟΓΡΑΦΙΑ ΠΕΡΙΓΡΑΦΗ ΤΑΞΗ ΤΙΜΗ 1250 Κουδούνι με μελωδία Α -ΣΤ 35 Τι σχήμα είναι; 342208 60 κομμάτια σε 5 σχήματα, 3 χρώματα, 2 πάχη και 2 μεγέθη. Σε πλαστική κασετίνα

Διαβάστε περισσότερα

Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις

Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις 2 ΕΡΩΤΗΣΕΙΙΣ ΘΕΩΡΙΙΑΣ ΑΠΟ ΤΗΝ ΥΛΗ ΤΗΣ Β ΤΑΞΗΣ ΜΕΡΟΣ Α -- ΑΛΓΕΒΡΑ Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις Α. 1 1 1. Τι ονομάζεται Αριθμητική και τι Αλγεβρική παράσταση; Ονομάζεται Αριθμητική παράσταση μια παράσταση

Διαβάστε περισσότερα

Οδηγίες για το Geogebra Μωυσιάδης Πολυχρόνης Δόρτσιος Κώστας

Οδηγίες για το Geogebra Μωυσιάδης Πολυχρόνης Δόρτσιος Κώστας Οδηγίες για το Geogebra Μωυσιάδης Πολυχρόνης Δόρτσιος Κώστας Η πρώτη οθόνη μετά την εκτέλεση του προγράμματος διαφέρει κάπως από τα προηγούμενα λογισμικά, αν και έχει αρκετά κοινά στοιχεία. Αποτελείται

Διαβάστε περισσότερα

2 ΟΥ και 7 ΟΥ ΚΕΦΑΛΑΙΟΥ

2 ΟΥ και 7 ΟΥ ΚΕΦΑΛΑΙΟΥ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΙΜΕΛΕΙΑ: ΜΑΡΙΑ Σ. ΖΙΩΓΑ ΚΑΘΗΓΗΤΡΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ 2 ΟΥ και 7 ΟΥ ΚΕΦΑΛΑΙΟΥ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΑΛΓΟΡΙΘΜΩΝ και ΔΟΜΗ ΑΚΟΛΟΥΘΙΑΣ 2.1 Να δοθεί ο ορισμός

Διαβάστε περισσότερα

ΔΟΜΕΣ ΕΠΑΝΑΛΗΨΗΣ ΟΣΟ ΣΥΝΘΗΚΗ ΕΠΑΝΑΛΑΒΕ.ΤΕΛΟΣ_ΕΠΑΝΑΛΗΨΗΣ. Κοκκαλάρα Μαρία ΠΕ19

ΔΟΜΕΣ ΕΠΑΝΑΛΗΨΗΣ ΟΣΟ ΣΥΝΘΗΚΗ ΕΠΑΝΑΛΑΒΕ.ΤΕΛΟΣ_ΕΠΑΝΑΛΗΨΗΣ. Κοκκαλάρα Μαρία ΠΕ19 ΔΟΜΕΣ ΕΠΑΝΑΛΗΨΗΣ ΟΣΟ ΣΥΝΘΗΚΗ ΕΠΑΝΑΛΑΒΕ.ΤΕΛΟΣ_ΕΠΑΝΑΛΗΨΗΣ Κοκκαλάρα Μαρία ΠΕ19 ΠΕΡΙΓΡΑΜΜΑ ΤΗΣ ΠΑΡΟΥΣΙΑΣΗΣ 1. Εισαγωγικά στοιχεία 2. Ένταξη του διδακτικού σεναρίου στο πρόγραμμα σπουδών 3. Οργάνωση της τάξης

Διαβάστε περισσότερα

Οδηγίες για αξιολόγηση στο πλαίσιο ομότιμης συνεργατικής μάθησης

Οδηγίες για αξιολόγηση στο πλαίσιο ομότιμης συνεργατικής μάθησης Οδηγίες για αξιολόγηση στο πλαίσιο ομότιμης συνεργατικής μάθησης Τι είναι το PeLe; Το PeLe είναι ένα διαδικτυακό περιβάλλον που ενθαρρύνει την αξιολόγηση στο πλαίσιο της ομότιμης συνεργατικής μάθησης και

Διαβάστε περισσότερα

είναι ένα δύσκολο στην κατανόηση θέμα, διότι έχει κατασκευαστεί σε αφηρημένες δομές. Δεδομένου ότι αυτές οι αφηρημένες δομές δεν καλύπτουν τις ζωές

είναι ένα δύσκολο στην κατανόηση θέμα, διότι έχει κατασκευαστεί σε αφηρημένες δομές. Δεδομένου ότι αυτές οι αφηρημένες δομές δεν καλύπτουν τις ζωές 1.1 Η Γεωμετρία Η Γεωμετρία αποτελεί ένα σημαντικό κεφάλαιο των Μαθηματικών και κατέχει ένα βασικό ρόλο στα προγράμματα σπουδών. Η σημασία της διδασκαλίας της συνδέεται τόσο με τη χρησιμότητά της στην

Διαβάστε περισσότερα

Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ. Βασικές Έννοιες Προγραμματισμού. Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD

Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ. Βασικές Έννοιες Προγραμματισμού. Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ Βασικές Έννοιες Προγραμματισμού Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Αριθμητικά συστήματα Υπάρχουν 10 τύποι ανθρώπων: Αυτοί

Διαβάστε περισσότερα

B) Από το βιβλίο «Άλγεβρα Β Γενικού Λυκείου» των Σ. Ανδρεαδάκη, Β. Κατσαργύρη, Σ. Παπασταυρίδη, Γ. Πολύζου και Α. Σβέρκου, έκδοση Ο.Ε..Β. 2010.

B) Από το βιβλίο «Άλγεβρα Β Γενικού Λυκείου» των Σ. Ανδρεαδάκη, Β. Κατσαργύρη, Σ. Παπασταυρίδη, Γ. Πολύζου και Α. Σβέρκου, έκδοση Ο.Ε..Β. 2010. Β Τάξη Ηµερήσιου Γενικού Λυκείου Μ α θ ή µ α τ α Γ ε ν ι κ ή ς Π α ι δ ε ί α ς Άλγεβρα Γενικής Παιδείας I. ιδακτέα ύλη A) Από το βιβλίο «Άλγεβρα Α Γενικού Λυκείου» των Σ. Ανδρεαδάκη, Β. Κατσαργύρη, Σ.

Διαβάστε περισσότερα

ΔΙΔΑΣΚΑΛΙΑΣ ΓΥΜΝΑΣΙΟΥ

ΔΙΔΑΣΚΑΛΙΑΣ ΓΥΜΝΑΣΙΟΥ ΔΙΔΑΚΤΙΚΟ ΥΛΙΚΟ ΓΙΑ ΚΑΘΗΓΗΤΕΣ ΜΑΘΗΜΑΤΙΚΩΝ ΣΧΕΔΙΑ ΔΙΔΑΣΚΑΛΙΑΣ ΓΥΜΝΑΣΙΟΥ Δημήτρης Μπουνάκης Σχ. Σύμβουλος Μαθηματικών dimitrmp@sch.gr Ηράκλειο, Οκτώβριος 2010 ΘΕΜΑ : ΔΙΔΑΚΤΙΚΟ ΥΛΙΚΟ ΓΥΜΝΑΣΙΟΥ : ΣΧΕΔΙΑ ΔΙΔΑΣΚΑΛΙΑΣ

Διαβάστε περισσότερα

Σειρά: ΕΚΠΑΙ ΕΥΤΙΚΑ ΒΙΒΛΙΑ Tίτλος: ΙΑΓΩΝΙΣΜΑΤΑ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ Συγγραφέας: ΦΩΤΗΣ ΚΟΥΝΑ ΗΣ

Σειρά: ΕΚΠΑΙ ΕΥΤΙΚΑ ΒΙΒΛΙΑ Tίτλος: ΙΑΓΩΝΙΣΜΑΤΑ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ Συγγραφέας: ΦΩΤΗΣ ΚΟΥΝΑ ΗΣ Ι Α Γ Ω Ν Ι Σ Μ Α Τ Α Γ Ι Α Τ Α Μ Α Θ Η Μ Α Τ Ι Κ Α Α Γ Υ Μ Ν Α Σ Ι Ο Υ Φώτης Κουνάδης Ι Α Γ Ω Ν Ι Σ Μ Α Τ Α Γ Ι Α Τ Α Μ Α Θ Η Μ Α Τ Ι Κ Α Α Γ Υ Μ Ν Α Σ Ι Ο Υ ΕΚ ΟΤΙΚΟΣ ΟΡΓΑΝΙΣΜΟΣ ΛΙΒΑΝΗ ΑΘΗΝΑ 2007 Σειρά:

Διαβάστε περισσότερα

Διαγνωστικά δοκίμια ελληνομάθειας για Γυμνάσια & Λύκεια /Τεχνικές Σχολές

Διαγνωστικά δοκίμια ελληνομάθειας για Γυμνάσια & Λύκεια /Τεχνικές Σχολές Πρόγραμμα Εκμάθησης της Ελληνικής ως δεύτερης /ξένης γλώσσας στη Μέση Εκπαίδευση Διαγνωστικά δοκίμια ελληνομάθειας για Γυμνάσια & Λύκεια /Τεχνικές Σχολές Σεπτέμβριος 2011 {επιμ. παρουσίασης: Μαρία Παπαλεοντίου,

Διαβάστε περισσότερα

Πρόγραμμα Σπουδών για τα Μαθηματικά στην Υποχρεωτική Εκπαίδευση

Πρόγραμμα Σπουδών για τα Μαθηματικά στην Υποχρεωτική Εκπαίδευση ΕΣΠΑ 2007-13\Ε.Π. Ε&ΔΒΜ\Α.Π. 1-2-3 «ΝΕΟ ΣΧΟΛΕΙΟ (Σχολείο 21 ου αιώνα) Νέο Πρόγραμμα Σπουδών, Οριζόντια Πράξη» MIS: 295450 Με την συγχρηματοδότηση της Ελλάδας και της Ευρωπαϊκής Ένωσης (Ε. Κ. Τ.) Το παρόν

Διαβάστε περισσότερα

Διδακτικές ενότητες Στόχος

Διδακτικές ενότητες Στόχος Η διδασκαλία του τριγωνομετρικού κύκλου με τον παραδοσιακό τρόπο στον πίνακα, είναι μία διαδικασία όχι εύκολα κατανοητή για τους μαθητές, με αποτέλεσμα τη μηχανική παπαγαλίστικη χρήση των τύπων της τριγωνομετρίας.

Διαβάστε περισσότερα

Πρόγραμμα Σπουδών για τα Μαθηματικά στην Υποχρεωτική Εκπαίδευση

Πρόγραμμα Σπουδών για τα Μαθηματικά στην Υποχρεωτική Εκπαίδευση ΕΣΠΑ 2007-13\Ε.Π. Ε&ΔΒΜ\Α.Π. 1-2-3 «ΝΕΟ ΣΧΟΛΕΙΟ (Σχολείο 21 ου αιώνα) Νέο Πρόγραμμα Σπουδών, Οριζόντια Πράξη» MIS: 295450 Με την συγχρηματοδότηση της Ελλάδας και της Ευρωπαϊκής Ένωσης (Ε. Κ. Τ.) Το παρόν

Διαβάστε περισσότερα

ΨΗΦΙΑΚΑ ΣΕΝΑΡΙΑ ΦΥΣΙΚΗ. Γνωστικό αντικείμενο. Ταυτότητα. Α Λυκείου. Επίπεδο. Στόχος. Σχεδιασμός. Διδασκαλία. Πηγές και πόροι

ΨΗΦΙΑΚΑ ΣΕΝΑΡΙΑ ΦΥΣΙΚΗ. Γνωστικό αντικείμενο. Ταυτότητα. Α Λυκείου. Επίπεδο. Στόχος. Σχεδιασμός. Διδασκαλία. Πηγές και πόροι ΨΗΦΙΑΚΑ ΣΕΝΑΡΙΑ Γνωστικό αντικείμενο Επίπεδο ΦΥΣΙΚΗ Α Λυκείου Ταυτότητα Στόχος Περιγραφή Προτεινόμενο ή υλοποιημένο Λογισμικό Λέξεις κλειδιά Δημιουργοί α) Γνώσεις για τον κόσμο: Οι δυνάμεις εμφανίζονται

Διαβάστε περισσότερα

ΤΟ ΝΕΟ ΛΥΚΕΙΟ. Αξιολόγηση, Προαγωγή και Απόλυση Μαθητών Γενικού Λυκείου

ΤΟ ΝΕΟ ΛΥΚΕΙΟ. Αξιολόγηση, Προαγωγή και Απόλυση Μαθητών Γενικού Λυκείου ΤΟ ΝΕΟ ΛΥΚΕΙΟ Στους μαθητές που θα φοιτήσουν φέτος στην Α Λυκείου θα αρχίσει να εφαρμόζεται η νέα δομή του λυκείου. Για την εισαγωγή στην τριτοβάθμια εκπαίδευση θα μετράει επιπλέον και ο μέσος όρος των

Διαβάστε περισσότερα

ΑΚΕΡΑΙΟΙ ΑΡΙΘΜΟΙ- ΠΡΑΞΕΙΣ ΑΥΤΩΝ 1.2 ΠΡΟΒΛΗΜΑΤΑ ΔΙΔΑΣΚΑΛΙΑΣ ΤΩΝ ΑΡΝΗΤΙΚΩΝ ΑΡΙΘΜΩΝ

ΑΚΕΡΑΙΟΙ ΑΡΙΘΜΟΙ- ΠΡΑΞΕΙΣ ΑΥΤΩΝ 1.2 ΠΡΟΒΛΗΜΑΤΑ ΔΙΔΑΣΚΑΛΙΑΣ ΤΩΝ ΑΡΝΗΤΙΚΩΝ ΑΡΙΘΜΩΝ ΑΚΕΡΑΙΟΙ ΑΡΙΘΜΟΙ- ΠΡΑΞΕΙΣ ΑΥΤΩΝ 1.1 ΕΙΣΑΓΩΓΗ Ασχολήθηκα 30 χρόνια με τη διδασκαλία των Μαθηματικών του Γυμνασίου, τόσο στην Μέση Εκπαίδευση όσο και σε Φροντιστήρια. Η μέθοδος που χρησιμοποιούσα για τη

Διαβάστε περισσότερα

ΔΙΔΑΣΚΑΛΙΑ ΤΗΣ ΕΝΝΟΙΑΣ ΤΟΥ ΟΡΙΟΥ ΣΥΝΑΡΤΗΣΗΣ

ΔΙΔΑΣΚΑΛΙΑ ΤΗΣ ΕΝΝΟΙΑΣ ΤΟΥ ΟΡΙΟΥ ΣΥΝΑΡΤΗΣΗΣ ΕΠΙΜΟΡΦΩΣΗ ΤΩΝ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΚΑΙ ΕΦΑΡΜΟΓΗ ΤΩΝ ΤΠΕ ΣΤΗ ΔΙΔΑΚΤΙΚΗ ΠΡΑΞΗ ΔΙΔΑΣΚΑΛΙΑ ΤΗΣ ΕΝΝΟΙΑΣ ΤΟΥ ΟΡΙΟΥ ΣΥΝΑΡΤΗΣΗΣ ΟΡΙΟ ΣΥΝΑΡΤΗΣΗΣ ΕΞ ΑΡΙΣΤΕΡΩΝ ΚΑΙ ΕΚ ΔΕΞΙΩΝ ΣΥΓΓΡΑΦΕΑΣ: ΚΟΥΤΙΔΗΣ ΙΩΑΝΝΗΣ

Διαβάστε περισσότερα

Δυνάμεις Φυσικών Αριθμών

Δυνάμεις Φυσικών Αριθμών Δυνάμεις Φυσικών Αριθμών TINΑ ΒΡΕΝΤΖΟΥ www.ma8eno.gr www.ma8eno.gr Σελίδα 1 Δυνάμεις φυσικών αριθμών Δύναμη ονομάζουμε το γινόμενο πολλών ίσων παραγόντων Πχ: 8 8= 64, 4 4 4= 64, 3 3 3 3= 81. Έτσι, το γινόμενο

Διαβάστε περισσότερα

Μ Α Θ Η Μ Α Τ Ι Κ Α Μαθηματικά Α Τάξης Γυμνασίου

Μ Α Θ Η Μ Α Τ Ι Κ Α Μαθηματικά Α Τάξης Γυμνασίου ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΕΝΙΑΙΟΣ ΔΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ Δ/ΝΣΗ ΣΠΟΥΔΩΝ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α ----- Ταχ. Δ/νση: Ανδρέα Παπανδρέου 37 Τ.Κ. Πόλη:

Διαβάστε περισσότερα

Προσαρμογές αναλυτικών προγραμμάτων για τα Μαθηματικά στο Γυμνάσιο

Προσαρμογές αναλυτικών προγραμμάτων για τα Μαθηματικά στο Γυμνάσιο ΤΕΥΧΟΣ Α ΣΧΕΔΙΑ ΔΙΔΑΣΚΑΛΙΑΣ ΚΑΙ ΥΠΟΣΤΗΡΙΚΤΙΚΟ ΥΛΙΚΟ ΓΙΑ ΜΑΘΗΤΕΣ ΜΕ ΜΑΘΗΣΙΑΚΕΣ ΔΥΣΚΟΛΙΕΣ ΥΠΟΥΡΓΕΙΟ ΕΘΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΑΙΔΑΓΩΓΙΚΟ ΙΝΣΤΙΤΟΥΤΟ «Αναλυτικά Προγράμματα Μαθησιακών Δυσκολιών-Ενημέρωση-Ευαισθητοποίηση»

Διαβάστε περισσότερα

Να υπολογίζουν αποστάσεις με τη βοήθεια ημ. και συν. Να είναι σε θέση να χρησιμοποιούν τους τριγωνομετρικούς πίνακες στους υπολογισμούς τους.

Να υπολογίζουν αποστάσεις με τη βοήθεια ημ. και συν. Να είναι σε θέση να χρησιμοποιούν τους τριγωνομετρικούς πίνακες στους υπολογισμούς τους. ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΩΝ Νίκος Γ. Τόμπρος Ενότητα : ΤΡΙΓΩΝΟΜΕΤΡΙΑ Περιεχόμενα ενότητας Τριγωνομετρικοί οξείας γωνίας αριθμοί Διδακτικοί στόχοι Διδακτικές οδηγίες - επισημάνσεις Πρέπει οι μαθητές να γνωρίζουν:

Διαβάστε περισσότερα

8. Η ΚΑΛΛΙΕΡΓΕΙΑ ΤΟΥ ΤΑΛΕΝΤΟΥ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ

8. Η ΚΑΛΛΙΕΡΓΕΙΑ ΤΟΥ ΤΑΛΕΝΤΟΥ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ 8. Η ΚΑΛΛΙΕΡΓΕΙΑ ΤΟΥ ΤΑΛΕΝΤΟΥ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Πολυάριθµες είναι οι περιοχές όπου ένα ταλέντο ή µία χαρακτηριστική κλίση µπορεί να εκδηλωθεί. Το ταλέντο στα µαθηµατικά έχει ιδιαίτερα απασχολήσει την επιστηµονική

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΗ ΣΧΟΛΗ ΦΛΩΡΙΝΑΣ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΗ ΣΧΟΛΗ ΦΛΩΡΙΝΑΣ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΗ ΣΧΟΛΗ ΦΛΩΡΙΝΑΣ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΜΑΘΗΜΑ ΔΙ.ΜΕ.ΠΑ. Β ΦΑΣΗ ΔΙΔΑΚΤΙΚΗ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΔΙΔΑΣΚΩΝ ΛΕΜΟΝΙΔΗΣ ΧΑΡΑΛΑΜΠΟΣ Θέμα Εργασίας ΔΙΔΑΣΚΑΛΙΑ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ

Διαβάστε περισσότερα

3 + 5 = 23 :13 + 18 = 23

3 + 5 = 23 :13 + 18 = 23 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 106 79 ΑΘΗΝΑ Τηλ. 3616532-3617784 - Fax: 3641025 GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou Venizelou) Street GR. 106

Διαβάστε περισσότερα

ΤΟ ΒΙΒΛΙΟ ΣΤΗ ΔΙΔΑΣΚΑΛΙΑ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ

ΤΟ ΒΙΒΛΙΟ ΣΤΗ ΔΙΔΑΣΚΑΛΙΑ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΤΟ ΒΙΒΛΙΟ ΣΤΗ ΔΙΔΑΣΚΑΛΙΑ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΔΗΜΗΤΡΗΣ ΧΑΣΑΠΗΣ Επιμέλεια 7 o Διήμερο Διαλόγου για τη Διδασκαλία των Μαθηματικών 15 & 16 Μαρτίου 2008 Ομάδα Έρευνας της Μαθηματικής Εκπαίδευσης ΘΕΣΣΑΛΟΝΙΚΗ i ΤΟ

Διαβάστε περισσότερα

Master s Degree. www.unic.ac.cy. Μεταπτυχιακό στις Επιστήμες Αγωγής (Εξ Αποστάσεως)

Master s Degree. www.unic.ac.cy. Μεταπτυχιακό στις Επιστήμες Αγωγής (Εξ Αποστάσεως) Master s Degree www.unic.ac.cy Μεταπτυχιακό στις Επιστήμες Αγωγής (Εξ Αποστάσεως) «Σε αυτό το ταξίδι για την ανακάλυψη της γνώσης μας εντυπωσίασε ιδιαίτερα η οργάνωση και το φιλικό κλίμα του Πανεπιστημίου.»

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ. Δημήτρης Σπαθάρας Σχολικός Σύμβουλος Μαθηματικών. Λαμία, 19 Απριλίου 2013 Αριθ. Πρωτ.: 317. Προς:

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ. Δημήτρης Σπαθάρας Σχολικός Σύμβουλος Μαθηματικών. Λαμία, 19 Απριλίου 2013 Αριθ. Πρωτ.: 317. Προς: ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ, ΠΟΛΙΤΙΣΜΟΥ ΚΑΙ ΑΘΛΗΤΙΣΜΟΥ ΠΕΡΙΦΕΡΕΙΑΚΗ Δ/ΝΣΗ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΣΤΕΡΕΑΣ ΕΛΛΑΔΑΣ ΓΡΑΦΕΙΟ ΣΧΟΛΙΚΩΝ ΣΥΜΒΟΥΛΩΝ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΝΟΜΟΥ ΦΘΙΩΤΙΔΑΣ

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΔΗΜΟΤΙΚΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΔΗΜΟΤΙΚΟΥ ΜΑΘΗΜΑΤΙΚΑ ΔΗΜΟΤΙΚΟΥ ΕΚΠΑΙΔΕΥΤΙΚΟ ΛΟΓΙΣΜΙΚΟ ΓΙΑ ΤΗ ΔΙΔΑΣΚΑΛΙΑ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΣΤΙΣ Α, Β, Γ, Δ, Ε & ΣΤ ΤΑΞΕΙΣ ΔΗΜΟΤΙΚΟΥ ΓΙΑ ΚΩΦΟΥΣ ΜΑΘΗΤΕΣ ΒΙΒΛΙΟ ΔΑΣΚΑΛΟΥ Περιεχόμενα Α. ΠΑΙΔΑΓΩΓΙΚΟ ΠΛΑΙΣΙΟ ΣΧΕΔΙΑΣΜΟΥ

Διαβάστε περισσότερα

ΓΥΜΝΑΣΙΟ ΑΚΡΟΠΟΛΕΩΣ ΣΧΟΛΙΚΟ ΕΤΟΣ 2014 2015 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2015. ΧΡΟΝΟΣ: 2 ώρες ΥΠ. ΚΑΘΗΓΗΤΗ:...

ΓΥΜΝΑΣΙΟ ΑΚΡΟΠΟΛΕΩΣ ΣΧΟΛΙΚΟ ΕΤΟΣ 2014 2015 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2015. ΧΡΟΝΟΣ: 2 ώρες ΥΠ. ΚΑΘΗΓΗΤΗ:... ΓΥΜΝΑΣΙΟ ΑΚΡΟΠΟΛΕΩΣ ΣΧΟΛΙΚΟ ΕΤΟΣ 2014 2015 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2015 ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΒΑΘΜΟΣ ΗΜΕΡΟΜΗΝΙΑ: 5/06/2015 ΤΑΞΗ: A Αριθμητικά... ΧΡΟΝΟΣ: 2 ώρες ΥΠ. ΚΑΘΗΓΗΤΗ:... Ολογράφως:...

Διαβάστε περισσότερα

Μαθησιακές δυσκολίες ΙΙ. Παλαιγεωργίου Γιώργος Τμήμα Μηχανικών Ηλεκτρονικών Υπολογιστών Τηλεπικοινωνιών και Δικτύων, Πανεπιστήμιο Θεσσαλίας

Μαθησιακές δυσκολίες ΙΙ. Παλαιγεωργίου Γιώργος Τμήμα Μηχανικών Ηλεκτρονικών Υπολογιστών Τηλεπικοινωνιών και Δικτύων, Πανεπιστήμιο Θεσσαλίας Μαθησιακές δυσκολίες ΙΙ Παλαιγεωργίου Γιώργος Τμήμα Μηχανικών Ηλεκτρονικών Υπολογιστών Τηλεπικοινωνιών και Δικτύων, Πανεπιστήμιο Θεσσαλίας Μάρτιος 2010 Προηγούμενη διάλεξη Μαθησιακές δυσκολίες Σε όλες

Διαβάστε περισσότερα

3ο Πανελλήνιο Εκπαιδευτικό Συνέδριο Ημαθίας. «Το Φως» Παναγιωτάκης Χαράλαμπος 1, Βενιώτη Ανθή 2

3ο Πανελλήνιο Εκπαιδευτικό Συνέδριο Ημαθίας. «Το Φως» Παναγιωτάκης Χαράλαμπος 1, Βενιώτη Ανθή 2 3ο Πανελλήνιο Εκπαιδευτικό Συνέδριο Ημαθίας ΠΡΑΚΤΙΚΑ «Το Φως» Παναγιωτάκης Χαράλαμπος 1, Βενιώτη Ανθή 2 1 Καθηγητής, Φυσικός, 2 ο Γενικό Λύκειο Αγ. Νικολάου Κρήτης xaralpan@gmail.com 2 Καθηγήτρια, Φυσικός,

Διαβάστε περισσότερα