Σε ποιους απευθύνεται: Χρόνος υλοποίησης: Χώρος υλοποίησης: Κοινωνική ενορχήστρωση της τάξης Στόχοι:... 4

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Σε ποιους απευθύνεται: Χρόνος υλοποίησης: Χώρος υλοποίησης: Κοινωνική ενορχήστρωση της τάξης Στόχοι:... 4"

Transcript

1 Περιεχόμενα Νικόλαος Μανάρας... 2 Σενάριο για διδασκαλία/ εκμάθηση σε μια σύνθεση μεικτής μάθησης (Blended Learning) με τη χρήση του δυναμικού μαθηματικού λογισμικού Geogebra σε διαδραστικό πίνακα και της εκπαιδευτικής πλατφόρμας ηλεκτρονικής μάθησης GUNET... 3 Διανύσματα... 3 Γνωστική περιοχή:... 3 Θέμα:... 3 Τεχνολογικά εργαλεία:... 3 Σκεπτικό:... 3 Πλαίσιο εφαρμογής... 4 Σε ποιους απευθύνεται:... 4 Χρόνος υλοποίησης:... 4 Χώρος υλοποίησης:... 4 Κοινωνική ενορχήστρωση της τάξης... 4 Στόχοι:... 4 Ανάλυση του σεναρίου... 5 Τα εργαλεία που θα χρησιμοποιηθούν... 6 Επέκταση... 6 Αξιολόγηση μετά την εφαρμογή... 7 Ως προς τις επιδιώξεις του σεναρίου... 7 Ως προς τα εργαλεία... 7 Εργασία 1: παράλληλα κάθετα διανύσματα... 8 Δραστηριότητες... 8 Βιβλιογραφία... 9 [1]

2 Νικόλαος Μανάρας 2ο ΓΕΛ Αγίου Αθανασίου (Νέα Μεσήμβρια) [2]

3 Σενάριο για διδασκαλία/ εκμάθηση σε μια σύνθεση μεικτής μάθησης (Blended Learning) με τη χρήση του δυναμικού μαθηματικού λογισμικού Geogebra σε διαδραστικό πίνακα και της εκπαιδευτικής πλατφόρμας ηλεκτρονικής μάθησης GUNET Γνωστική περιοχή: Διανύσματα, τάξη Β Λυκείου Διανύσματα Συντεταγμένες στο επίπεδο Συντεταγμένες Διανύσματος με Γνωστά Άκρα Συνθήκη Παραλληλίας Διανυσμάτων Θέμα: Το προτεινόμενο θέμα αφορά τη μελέτη της σχέσης που έχουν οι συντεταγμένες των διανυσμάτων στην περίπτωση του αθροίσματος, της διαφοράς, της παραλληλίας και της καθετότητας. Τεχνολογικά εργαλεία: To σενάριο προτείνεται να διεξαχθεί με τη χρήση του δυναμικού μαθηματικού λογισμικού GeoGebra σε διαδραστικό πίνακα και της εκπαιδευτικής πλατφόρμας ηλεκτρονικής μάθησης (e-learning) GUNET Σκεπτικό: Βασική ιδέα: Οι μαθητές με τη βοήθεια της ψηφιακής τεχνολογίας εμπλέκονται σε μια σειρά απλών κατασκευών που αναδεικνύουν με δυναμικό τρόπο τη σχέση των συντεταγμένων των παράλληλων και κάθετων διανυσμάτων καθώς και την περίπτωση αθροίσματος και διαφοράς. [3]

4 Πλαίσιο εφαρμογής Σε ποιους απευθύνεται: To σενάριο απευθύνεται στους μαθητές της Β' Λυκείου. Χρόνος υλοποίησης: Για την εφαρμογή του σεναρίου εκτιμάται ότι απαιτείται 1 διδακτική ώρα. Χώρος υλοποίησης: To σενάριο προτείνεται να διεξαχθεί εξ' ολοκλήρου στο εργαστήριο υπολογιστών όπου είναι τοποθετημένος και ο διαδραστικός πίνακας. Κοινωνική ενορχήστρωση της τάξης Οι μαθητές εργαζόμενοι σε ομάδες 3-4 ατόμων καθοδηγούμενοι από φύλλο εργασίας, ενώ μια ομάδα καλείται στον πίνακα να πειραματίζεται και να υλοποιεί όσα και οι υπόλοιπες ομάδες προτείνουν ώστε να κατασκευάσουν και να εξερευνήσουν συγκεκριμένα σχήματα και να απαντήσουν σε συγκεκριμένες ερωτήσεις. Επομένως η διερεύνηση αυτή θα γίνει συνεργατικά. Για να υπάρχει κοινός στόχος και καλή συνεργασία οι μαθητές καλούνται να συμπληρώσουν ένα κοινό φύλλο εργασίας που περιέχει ερωτήσεις σχετικές με το θέμα. Φυσικά το φύλλο εργασίας αυτό θα πρέπει να αφήνει μια αρκετά μεγάλη ελευθερία στους μαθητές ώστε να θέτουν τα δικά τους ερωτήματα και να απαντούν σ' αυτά. Στη διάρκεια της υλοποίησης του σεναρίου ο εκπαιδευτικός θα πρέπει να ελέγχει τα συμπεράσματα των μαθητών, να συνεργάζεται μαζί τους, να τους καθοδηγεί ώστε να αντιλαμβάνονται καλύτερα τα αποτελέσματά τους και να τους ενθαρρύνει να συνεχίσουν την διερεύνηση. Με τη χρήση του διαδραστικού πίνακα είναι δυνατόν να επιτευχθεί η αξιοποίηση του συγκεκριμένου λογισμικού σε επίπεδο τάξης και σε επίπεδο ομάδας, αποφεύγοντας την απομόνωση ενός μαθητή στην οθόνη ενός Η/Υ. Στόχοι: Από την εφαρμογή του συγκεκριμένου σεναρίου οι μαθητές θα μάθουν να ανακαλύπτουν τη γνώση συνεργατικά. Επίσης με τη βοήθεια των προτεινόμενων εργαλείων θα μάθουν να διερευνούν με δυναμικό τρόπο τα γεωμετρικά σχήματα που οι ίδιοι κατασκευάζουν και θα μπορούν έτσι να κάνουν διάφορες εικασίες και υποθέσεις σχετικές με τα υπό διερεύνηση θέματα. Πιο συγκεκριμένα οι μαθητές μετά την ολοκλήρωση αυτής της διδασκαλίας: Θα έχουν εντοπίσει τη σχέση που συνδέει τις συντεταγμένες διανυσμάτων που είναι κάθετα ή παράλληλα. Θα εμπλακούν σε δραστηριότητες αυστηρά μαθηματικής απόδειξης. [4]

5 Ανάλυση του σεναρίου Ροή εφαρμογής των δραστηριοτήτων Οι μαθητές κατά την εκτέλεση αυτού του σεναρίου θα εμπλακούν στις παρακάτω δραστηριότητες: Δραστηριότητα 1: Θα διαπραγματευτούν την έννοια του αθροίσματος και της διαφοράς δύο διανυσμάτων στο αντίστοιχο καρτεσιανό επίπεδο. Αναμένεται να κάνουν τις εξής ενέργειες: Ο διδάσκων ζητά από τους μαθητές που είναι στον πίνακα να σύρουν τα άκρα Β και Γ. Οι μαθητές παρατηρούν και σχολιάζουν τις μεταβολές των ΑΔ και ΒΓ εκτιμώντας ότι πρόκειται για το γεωμετρικό άθροισμα και τη διαφορά των u και v διανυσμάτων. (διαφάνεια ν.2) Ακολούθως ο διδάσκων ζητά από τους μαθητές να μεταβάλουν τα διανύσματα u και v σύροντας τα άκρα τους. (διαφάνεια ν.3) Οι μαθητές αναμένεται να παρατηρήσουν ότι οι συντεταγμένες του διανύσματος ΑΔ είναι ίσες με το άθροισμα των συντεταγμένων των u και v ενώ οι συντεταγμένες του διανύσματος ΒΓ είναι ίσες με τη διαφορά τους. (διαφάνεια ν.4) Ο εκπαιδευτικός έχει κατασκευάσει από πριν το αρχείο λογισμικού και ζητάει από τους μαθητές να τα χρησιμοποιήσουν. Δραστηριότητα 2: Οι μαθητές αναμένεται να δικαιολογήσουν με βάση τα προηγούμενα γιατί το τετράπλευρο ΑΒΓΔ είναι παραλληλόγραμμο. (διαφάνεια ν.5) Δραστηριότητα 3: Οι μαθητές εμφανίζουν τις ευθείες ε, ζ, η από τα βοηθητικά αντικείμενα, μεταβάλλουν τη θέση τους και παρατηρούν τις μετρήσεις των κλίσεων των ευθειών λ ε, λ ζ, λ η. Αναμένεται να απαντήσουν ότι λ ε = λ ζ ενώ λ ε λ η =-1. (διαφάνεια ν.6) [5]

6 Δραστηριότητα 4: Καθώς οι μαθητές μεταβάλλουν το διάνυσμα u ή μετακινούν τα v και w μελετούν τη σχέση των συντεταγμένων τους και διαπιστώνουν ότι για τα u και v οι συντεταγμένες τους είναι ανάλογες (διαφάνεια ν.7) ενώ για τα u και w το άθροισμα των γινομένων των αντίστοιχων συντεταγμένων είναι πάντα 0. (διαφάνεια ν.8) Σε κάθε διερεύνηση ο εκπαιδευτικός πρέπει να ζητά από τους μαθητές να δικαιολογούν και αλγεβρικά τις σχέσεις που παρατηρούν να έχουν οι αριθμοί που επιλέγουν. Επίσης παροτρύνει τους μαθητές να διατυπώνουν συμπεράσματα και θεωρήματα τα οποία αποδεικνύουν και θεωρητικά. Οι εικασίες που θα κάνουν στα παραπάνω θέματα θα δώσουν την αφορμή να παρουσιαστούν διεξοδικά οι αποδείξεις των σχετικών προτάσεων μέσα στη τάξη και φυσικά ο ρόλος της απόδειξης στα Μαθηματικά. Τα εργαλεία που θα χρησιμοποιηθούν To σενάριο προτείνεται να διεξαχθεί με τη χρήση του GeoGebra στον διαδραστικό πίνακα του σχολείου. Μέσω των επιμέρους εργαλείων μετακίνησης των δεικτών των μεταβολέων και της εντολής ιδιότητες οι μαθητές θα κάνουν πειράματα και θα διατυπώσουν εικασίες και υποθέσεις. Επέκταση Μια ενδιαφέρουσα επέκταση του σεναρίου αναφορικά με την ίδια γνωστική περιοχή των μαθηματικών θα αποτελέσει ένα Κριτήριο Αυτοαξιολόγησης στα διανύσματα στην εκπαιδευτική πλατφόρμα GUNET. Η πλατφόρμα GUNET eclass αποτελεί ένα ολοκληρωμένο Σύστημα Διαχείρισης Ηλεκτρονικών Μαθημάτων. Ακολουθεί τη φιλοσοφία του λογισμικού ανοικτού κώδικα και υποστηρίζει την υπηρεσία Ασύγχρονης Τηλεκπαίδευσης χωρίς περιορισμούς και δεσμεύσεις. Η πρόσβαση στην υπηρεσία γίνεται με τη χρήση ενός απλού φυλλομετρητή (web browser) χωρίς την απαίτηση εξειδικευμένων τεχνικών γνώσεων. [6]

7 Αξιολόγηση μετά την εφαρμογή Ως προς τις επιδιώξεις του σεναρίου Ο εκπαιδευτικός ελέγχει κατά πόσο επιτεύχθηκαν οι στόχοι του σεναρίου και εξετάζει του λόγους για τους οποίους κάποιοι δεν επιτεύχθηκαν ώστε να παρέμβει ανάλογα στο σενάριο. Ως προς τα εργαλεία Ο εκπαιδευτικός ελέγχει την ευκολία με την οποία οι μαθητές αξιοποίησαν τα εργαλεία του προτεινόμενου λογισμικού σε συνδυασμό με την σαφήνεια των οδηγιών του και των περιγραφών των φύλλων εργασίας. Αφού αξιολογήσει τα δεδομένα του επεμβαίνει ανάλογα στο σενάριο για την επόμενη εφαρμογή. Η διαδραστικότητα του εργαλείου ενισχύεται με συνδυασμό των τεχνολογικών του δυνατοτήτων και την εφαρμογή μαθητο-κεντρικών μοντέλων κατά τη διδασκαλία. [7]

8 φύλλο εργασίας Εργασία 1: παράλληλα κάθετα διανύσματα Στην επιφάνεια εργασίας του διαδραστικού πίνακα προβάλλονται μία σειρά από διανύσματα και σημεία που καθορίζουν τα άκρα των διανυσμάτων. Ο στόχος μας είναι να μελετήσουμε τη σχέση που έχουν οι συντεταγμένες των διανυσμάτων στην περίπτωση του αθροίσματος, της διαφοράς, της καθετότητας και της παραλληλίας. Δραστηριότητες 1. Να μεταβάλετε τα διανύσματα ΑΒ και ΑΓ. Ποια σχέση συνδέει τις συντεταγμένες των διανυσμάτων αυτών με τις συντεταγμένες των ΑΔ και ΒΓ; Σημειώστε την απάντηση σας εδώ: 2. Να εξετάσετε αν το τετράπλευρο ΑΒΓΔ είναι παραλληλόγραμμο. Σημειώστε την απάντηση σας εδώ: 3. Να εμφανίσετε τις ευθείες ε, ζ, η από τα βοηθητικά αντικείμενα. Με βάση τις μετρήσεις των κλίσεων των ευθειών λ ε, λ ζ, λ η να εκτιμήσετε την σχέση που υπάρχει μεταξύ τους. Τι σχέση έχουν τα διανύσματα u, v, w; Σημειώστε την απάντηση σας εδώ: 4. Να εμφανίσετε τις συντεταγμένες των διανυσμάτων αυτών. Ποια σχέση έχουν οι συντεταγμένες τους; Σημειώστε την απάντηση σας εδώ: [8]

9 Βιβλιογραφία Επιμορφωτικό υλικό για την επιμόρφωση των εκπαιδευτικών στα Κέντρα Στήριξης Επιμόρφωσης, Τεύχος 1: Γενικό Μέρος, ΙΤΥ Σχολικό βιβλίο Μαθηματικά Β Γενικού Λυκείου Θετικής Τεχνολογικής Κατεύθυνσης (Αργυρόπουλος, Βλάμος, Κατσούλης, Μαρκάτης, Σίδερης), Ο.Ε.Δ.Β., Αθήνα Μανάρας Νικόλαος (2012). Ιδιαιτερότητες στην εξ Αποστάσεως Εκπαίδευση στα Μαθηματικά. Διπλωματική Εργασία στο πρόγραμμα σπουδών του ΕΑΠ Μεταπτυχιακές Σπουδές στα Μαθηματικά Maria Alessandra Mariotti, Introduction to proof: the mediation of a dynamic software environment Ackermann Edith Piaget s Constructivism, Papert s Constructionism: What is the difference? [9]

Γεωµετρία Γ' Γυµνασίου: Παραλληλία πλευρών, αναλογίες γεωµετρικών µεγεθών, οµοιότητα

Γεωµετρία Γ' Γυµνασίου: Παραλληλία πλευρών, αναλογίες γεωµετρικών µεγεθών, οµοιότητα Σενάριο 3. Τα µέσα των πλευρών τριγώνου Γνωστική περιοχή: Γεωµετρία Γ' Γυµνασίου: Παραλληλία πλευρών, αναλογίες γεωµετρικών µεγεθών, οµοιότητα τριγώνων, τριγωνοµετρικοί αριθµοί περίµετρος και εµβαδόν.

Διαβάστε περισσότερα

Το σενάριο προτείνεται να διεξαχθεί με τη χρήση του Cabri Geometry II.

Το σενάριο προτείνεται να διεξαχθεί με τη χρήση του Cabri Geometry II. 9.2.3 Σενάριο 6. Συμμεταβολές στο ισοσκελές τρίγωνο Γνωστική περιοχή: Γεωμετρία Β Λυκείου. Συμμεταβολή μεγεθών. Εμβαδόν ισοσκελούς τριγώνου. Σύστημα συντεταγμένων. Γραφική παράσταση συνάρτησης. Μέγιστη

Διαβάστε περισσότερα

Το σενάριο προτείνεται να υλοποιηθεί με το λογισμικό Geogebra.

Το σενάριο προτείνεται να υλοποιηθεί με το λογισμικό Geogebra. 9.3. Σενάριο 9. Μελέτη της συνάρτησης f(x) = αx +βx+γ Γνωστική περιοχή: Άλγεβρα Α Λυκείου. Η συνάρτηση ψ= αχ +βχ+γ (γραφική παράσταση, μονοτονία, ακρότατα). Θέμα: Το προτεινόμενο θέμα αφορά την κατασκευή

Διαβάστε περισσότερα

πολυγώνων που µπορούν να χρησιµοποιηθούν για να καλυφθεί το επίπεδο γύρω από µια

πολυγώνων που µπορούν να χρησιµοποιηθούν για να καλυφθεί το επίπεδο γύρω από µια Κάθε οµάδα παρουσιάζει στην τάξη: (1) Τις logo διαδικασίες µε τις οποίες σχεδίασε τα κανονικά πολύγωνα. (2) Τις διαδικασίες µε τις οποίες σχεδίασαν τα κανονικά πολύγωνα γύρω από µια περιοχή. (3) Τα τεχνουργήµατα

Διαβάστε περισσότερα

Γεωµετρία Β' Λυκείου. Συµµεταβολή µεγεθών. Εµβαδόν ισοσκελούς τριγώνου. Σύστηµα. συντεταγµένων. Γραφική παράσταση συνάρτησης. Μέγιστη - ελάχιστη τιµή.

Γεωµετρία Β' Λυκείου. Συµµεταβολή µεγεθών. Εµβαδόν ισοσκελούς τριγώνου. Σύστηµα. συντεταγµένων. Γραφική παράσταση συνάρτησης. Μέγιστη - ελάχιστη τιµή. Σενάριο 6. Συµµεταβολές στο ισοσκελές τρίγωνο Γνωστική περιοχή: Γεωµετρία Β' Λυκείου. Συµµεταβολή µεγεθών. Εµβαδόν ισοσκελούς τριγώνου. Σύστηµα συντεταγµένων. Γραφική παράσταση συνάρτησης. Μέγιστη - ελάχιστη

Διαβάστε περισσότερα

Η λογαριθµική συνάρτηση και οι ιδιότητές της

Η λογαριθµική συνάρτηση και οι ιδιότητές της ΕΚΦΩΝΗΣΗ ΕΛΕΥΘΕΡΟΥ ΘΕΜΑΤΟΣ Η λογαριθµική συνάρτηση και οι ιδιότητές της Η διδασκαλία της λογαριθµικής συνάρτησης, στο σχολικό εγχειρίδιο της Β Λυκείου, έχει σαν βάση την εκθετική συνάρτηση και την ιδιότητα

Διαβάστε περισσότερα

Ερωτήµατα σχεδίασης και παρατήρησης (για εστίαση σε συγκεκριµένες πτυχές των αλλαγών στο σχήµα).

Ερωτήµατα σχεδίασης και παρατήρησης (για εστίαση σε συγκεκριµένες πτυχές των αλλαγών στο σχήµα). τάξης είναι ένα από τα στοιχεία που το καθιστούν σηµαντικό. Ο εκπαιδευτικός πρέπει να λάβει σοβαρά υπόψη του αυτές τις παραµέτρους και να προσαρµόσει το σενάριο ανάλογα. Ιδιαίτερα όταν εφαρµόσει το σενάριο

Διαβάστε περισσότερα

Εικόνα 31. To σενάριο προτείνεται να διεξαχθεί µε τη χρήση του λογισµικού Geogebra.

Εικόνα 31. To σενάριο προτείνεται να διεξαχθεί µε τη χρήση του λογισµικού Geogebra. Σενάριο 4. Η µέτρηση του εµβαδού ενός παραβολικού οικοπέδου Γνωστική περιοχή: Μαθηµατικά Γ' Λυκείου. Παραβολή. Τετραγωνική συνάρτηση. Εµβαδόν. Ορισµένο ολοκλήρωµα Θέµα: Οι τέσσερις πλευρές ενός οικοπέδου

Διαβάστε περισσότερα

Σενάριο 5. Μετασχηµατισµοί στο επίπεδο. Γνωστική περιοχή: Γεωµετρία Α' Λυκείου. Συµµετρία ως προς άξονα. Σύστηµα συντεταγµένων.

Σενάριο 5. Μετασχηµατισµοί στο επίπεδο. Γνωστική περιοχή: Γεωµετρία Α' Λυκείου. Συµµετρία ως προς άξονα. Σύστηµα συντεταγµένων. Σενάριο 5. Μετασχηµατισµοί στο επίπεδο Γνωστική περιοχή: Γεωµετρία Α' Λυκείου. Συµµετρία ως προς άξονα. Σύστηµα συντεταγµένων. Απόλυτη τιµή πραγµατικών αριθµών. Συµµεταβολή σηµείων. Θέµα: Στο περιβάλλον

Διαβάστε περισσότερα

Ερωτήµατα σχεδίασης και παρατήρησης (για εστίαση σε συγκεκριµένες πτυχές των αλλαγών στο σχήµα).

Ερωτήµατα σχεδίασης και παρατήρησης (για εστίαση σε συγκεκριµένες πτυχές των αλλαγών στο σχήµα). λάβει σοβαρά υπόψη του αυτές τις παραµέτρους και να προσαρµόσει το σενάριο ανάλογα. Ιδιαίτερα όταν εφαρµόσει το σενάριο πολλές φορές και σε διαφορετικές τάξεις ή ανταλλάξει ιδέες µε άλλους συναδέλφους

Διαβάστε περισσότερα

ΣΕΝΑΡΙΟ ΤΠΕ ΓΕΝΙΚΕΥΜΕΝΟ ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ - ΝΟΜΟΣ ΣΥΝΗΜΙΤΟΝΩΝ

ΣΕΝΑΡΙΟ ΤΠΕ ΓΕΝΙΚΕΥΜΕΝΟ ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ - ΝΟΜΟΣ ΣΥΝΗΜΙΤΟΝΩΝ ΣΕΝΑΡΙΟ ΤΠΕ ΓΕΝΙΚΕΥΜΕΝΟ ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ - ΝΟΜΟΣ ΣΥΝΗΜΙΤΟΝΩΝ Γνωστική Περιοχή: Γεωμετρία Β Λυκείου Θέμα Το Πυθαγόρειο Θεώρημα είναι γνωστό στους μαθητές από το Γυμνάσιο. Το προτεινόμενα θέμα αφορά την

Διαβάστε περισσότερα

ΔΙΔΑΣΚΑΛΙΑ ΤΗΣ ΕΝΝΟΙΑΣ ΤΟΥ ΟΡΙΟΥ ΣΥΝΑΡΤΗΣΗΣ

ΔΙΔΑΣΚΑΛΙΑ ΤΗΣ ΕΝΝΟΙΑΣ ΤΟΥ ΟΡΙΟΥ ΣΥΝΑΡΤΗΣΗΣ ΕΠΙΜΟΡΦΩΣΗ ΤΩΝ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΚΑΙ ΕΦΑΡΜΟΓΗ ΤΩΝ ΤΠΕ ΣΤΗ ΔΙΔΑΚΤΙΚΗ ΠΡΑΞΗ ΔΙΔΑΣΚΑΛΙΑ ΤΗΣ ΕΝΝΟΙΑΣ ΤΟΥ ΟΡΙΟΥ ΣΥΝΑΡΤΗΣΗΣ ΟΡΙΟ ΣΥΝΑΡΤΗΣΗΣ ΕΞ ΑΡΙΣΤΕΡΩΝ ΚΑΙ ΕΚ ΔΕΞΙΩΝ ΣΥΓΓΡΑΦΕΑΣ: ΚΟΥΤΙΔΗΣ ΙΩΑΝΝΗΣ

Διαβάστε περισσότερα

ΣΕΝΑΡΙΟ: Εφαπτομένη οξείας γωνίας στη Β Γυμνασίου

ΣΕΝΑΡΙΟ: Εφαπτομένη οξείας γωνίας στη Β Γυμνασίου ΣΕΝΑΡΙΟ: Εφαπτομένη οξείας γωνίας στη Β Γυμνασίου Συγγραφέας: Κοπατσάρη Γεωργία Ημερομηνία: Φλώρινα, 5-3-2014 Γνωστική περιοχή: Μαθηματικά (Γεωμετρία) Β Γυμνασίου Προτεινόμενο λογισμικό: Προτείνεται να

Διαβάστε περισσότερα

ΕΠΙΜΟΡΦΩΣΗ ΤΩΝ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΚΑΙ ΕΦΑΡΜΟΓΗ ΤΩΝ ΤΠΕ ΣΤΗ ΔΙΔΑΚΤΙΚΗ ΠΡΑΞΗ

ΕΠΙΜΟΡΦΩΣΗ ΤΩΝ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΚΑΙ ΕΦΑΡΜΟΓΗ ΤΩΝ ΤΠΕ ΣΤΗ ΔΙΔΑΚΤΙΚΗ ΠΡΑΞΗ ΞΑΝΘΗ 2013, 2 ο ΣΕΚ ΞΑΝΘΗΣ ΕΠΙΜΟΡΦΩΣΗ ΤΩΝ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΚΑΙ ΕΦΑΡΜΟΓΗ ΤΩΝ ΤΠΕ ΣΤΗ ΔΙΔΑΚΤΙΚΗ ΠΡΑΞΗ ΕΠΙΜΟΡΦΩΤΗΣ : ΓΙΑΝΝΗΣ ΚΟΥΤΙΔΗΣ Μαθηματικός www.kutidis.gr ΑΠΡΙΛΙΟΣ ΝΟΕΜΒΡΙΟΣ 2013 Νέες

Διαβάστε περισσότερα

ΠΑΙΖΟΝΤΑΣ ΜΕ ΙΣΟΠΛΕΥΡΑ ΤΡΙΓΩΝΑ

ΠΑΙΖΟΝΤΑΣ ΜΕ ΙΣΟΠΛΕΥΡΑ ΤΡΙΓΩΝΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΟ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ 13/11/2016 ΠΑΙΖΟΝΤΑΣ ΜΕ ΙΣΟΠΛΕΥΡΑ ΤΡΙΓΩΝΑ ΜΑΘΗΜΑ ΚΑΤΑΣΚΕΥΗ ΕΚΠΑΙΔΕΥΤΙΚΟΥ ΥΛΙΚΟΥ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΜΕ ΤΗ ΧΡΗΣΗ ΤΠΕ ΥΠΕΥΘΥΝΟΣ ΚΑΘΗΓΗΤΗΣ:

Διαβάστε περισσότερα

Σενάριο 1. Σκιτσάροντας µε Παραλληλόγραµµα. Γνωστική περιοχή: Γεωµετρία (και σχέσεις µεταξύ γενικευµένων αριθµών).

Σενάριο 1. Σκιτσάροντας µε Παραλληλόγραµµα. Γνωστική περιοχή: Γεωµετρία (και σχέσεις µεταξύ γενικευµένων αριθµών). Σενάριο 1. Σκιτσάροντας µε Παραλληλόγραµµα Γνωστική περιοχή: Γεωµετρία (και σχέσεις µεταξύ γενικευµένων αριθµών). Θέµα: Η διερεύνηση µερικών βασικών ιδιοτήτων των παραλληλογράµµων από τους µαθητές µε χρήση

Διαβάστε περισσότερα

ΣΕΝΑΡΙΟ 1 Ο ΤΟ ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ

ΣΕΝΑΡΙΟ 1 Ο ΤΟ ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ ΣΕΝΑΡΙΟ 1 Ο ΤΟ ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ Γνωστική περιοχή: Γεωµετρία Β Λυκείου Αναλογίες γεωµετρικών µεγεθών, Οµοιότητα τριγώνων, Εµβαδόν Τετραγώνου. Εµβαδόν Τριγώνου Βασικές γνώσεις Ευκλείδειας Γεωµετρίας Α

Διαβάστε περισσότερα

Σενάριο 10. Ελάχιστη Απόσταση δυο Τρένων. Γνωστική περιοχή: Άλγεβρα Α' Λυκείου. Η συνάρτηση ψ= αχ 2 +βχ+γ. Γραφική παράσταση τριωνύµου

Σενάριο 10. Ελάχιστη Απόσταση δυο Τρένων. Γνωστική περιοχή: Άλγεβρα Α' Λυκείου. Η συνάρτηση ψ= αχ 2 +βχ+γ. Γραφική παράσταση τριωνύµου Σενάριο 10. Ελάχιστη Απόσταση δυο Τρένων Γνωστική περιοχή: Άλγεβρα Α' Λυκείου. Η συνάρτηση ψ= αχ 2 +βχ+γ Γραφική παράσταση τριωνύµου Εξισώσεις κίνησης. Θέµα: To προτεινόµενο θέµα αφορά την µελέτη της µεταβολής

Διαβάστε περισσότερα

Γωνίες μεταξύ παραλλήλων ευθειών που τέμνονται από τρίτη ευθεία

Γωνίες μεταξύ παραλλήλων ευθειών που τέμνονται από τρίτη ευθεία Γωνίες μεταξύ παραλλήλων ευθειών που τέμνονται από τρίτη ευθεία Επαρκές Σενάριο Γνωστικό αντικείμενο: Μαθηματικά (ΔΕ) Δημιουργός: ΙΩΑΝΝΗΣ ΟΙΚΟΝΟΜΟΥ ΙΝΣΤΙΤΟΥΤΟ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΠΟΛΙΤΙΚΗΣ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ,

Διαβάστε περισσότερα

ΠΑΙΖΟΝΤΑΣ ΜΕ ΙΣΟΠΛΕΥΡΑ ΤΡΙΓΩΝΑ

ΠΑΙΖΟΝΤΑΣ ΜΕ ΙΣΟΠΛΕΥΡΑ ΤΡΙΓΩΝΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΟ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ 13/11/2016 ΠΑΙΖΟΝΤΑΣ ΜΕ ΙΣΟΠΛΕΥΡΑ ΤΡΙΓΩΝΑ ΜΑΘΗΜΑ ΚΑΤΑΣΚΕΥΗ ΕΚΠΑΙΔΕΥΤΙΚΟΥ ΥΛΙΚΟΥ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΜΕ ΤΗ ΧΡΗΣΗ ΤΠΕ ΥΠΕΥΘΥΝΟΣ ΚΑΘΗΓΗΤΗΣ:

Διαβάστε περισσότερα

Η έννοια της κάλυψης του επιπέδου με κανονικά πολύγωνα.

Η έννοια της κάλυψης του επιπέδου με κανονικά πολύγωνα. 9.1.3 Σενάριο 3. Διερεύνηση των κανονικών πολυγώνων σε περιβάλλον που αξιοποιεί λογισμικό συμβολικής έκφρασης, την κοινωνική δικτύωση και τη συλλογική διαπραγμάτευση. Γνωστική περιοχή: Μαθηματικά Β Γυμνασίου.

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Α Τάξης Ημερησίου ΓΕΛ

ΑΛΓΕΒΡΑ Α Τάξης Ημερησίου ΓΕΛ ΑΛΓΕΒΡΑ Α Τάξης Ημερησίου ΓΕΛ ΔΙΔΑΚΤΕΑ ΥΛΗ Ι. Εισαγωγή Το μάθημα «Άλγεβρα και Στοιχεία Πιθανοτήτων» περιέχει σημαντικές μαθηματικές έννοιες, όπως, της απόλυτης τιμής, των προόδων, της συνάρτησης κ.ά.,

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΦΛΩΡΙΝΑ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΦΛΩΡΙΝΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΦΛΩΡΙΝΑ ΕΡΓΑΣΙΑ ΓΙΑ ΤΟ ΜΑΘΗΜΑ: ΚΑΤΑΣΚΕΥΗ ΕΚΠΑΙΔΕΥΤΙΚΟΥ ΥΛΙΚΟΥ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΜΕ ΧΡΗΣΗ ΤΠΕ ΘΕΜΑ ΕΡΓΑΣΙΑΣ: ΜΕΤΑΤΡΟΠΗ ΤΟΥ ΣΕΝΑΡΙΟΥ

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΑ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ

ΓΕΩΜΕΤΡΙΑ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ ΥΛΗ ΚΑΙ ΟΔΗΓΙΕΣ ΔΙΔΑΣΚΑΛΙΑΣ ΣΧΟΛ. ΕΤΟΣ 2014-15 ΓΕΩΜΕΤΡΙΑ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ Από το βιβλίο «Ευκλείδεια Γεωμετρία Α και Β Ενιαίου Λυκείου» των Αργυρόπουλου Η., Βλάμου

Διαβάστε περισσότερα

Διδάσκοντας Μαθηματικά με Τ.Π.Ε. Θέμα: «Διανύσματα: Έννοιες, Πράξεις, Ανάλυση, Συντεταγμένες»

Διδάσκοντας Μαθηματικά με Τ.Π.Ε. Θέμα: «Διανύσματα: Έννοιες, Πράξεις, Ανάλυση, Συντεταγμένες» Διδάσκοντας Μαθηματικά με Τ.Π.Ε. Θέμα: «Διανύσματα: Έννοιες, Πράξεις, Ανάλυση, Συντεταγμένες» Βέλτιστο Σενάριο Γνωστικό αντικείμενο: Μαθηματικά (ΔΕ) Δημιουργός: ΓΕΩΡΓΙΟΣ ΜΠΟΛΟΤΑΚΗΣ ΙΝΣΤΙΤΟΥΤΟ ΕΚΠΑΙΔΕΥΤΙΚΗΣ

Διαβάστε περισσότερα

Εκπαιδευτικό Σενάριο: Αναλογίες. Βασίλης Παπαγεωργίου

Εκπαιδευτικό Σενάριο: Αναλογίες. Βασίλης Παπαγεωργίου Εκπαιδευτικό Σενάριο: Αναλογίες Ιανουάριος 2011 1. Τίτλος Αναλογίες 2. Ταυτότητα Συγγραφέας: Γνωστική περιοχή των μαθηματικών: Άλγεβρα, Γεωμετρία Θέμα: Αναλογίες Συντεταγμένες στο επίπεδο 3. Σκεπτικό 2

Διαβάστε περισσότερα

222 Διδακτική των γνωστικών αντικειμένων

222 Διδακτική των γνωστικών αντικειμένων 222 Διδακτική των γνωστικών αντικειμένων 8. Χελωνόκοσμος (απαιτεί να είναι εγκατεστημένο το Αβάκιο) (6 ώρες) Τίτλος: Ιδιότητες παραλληλογράμμων Δημιουργός: Μιχάλης Αργύρης ΕΜΠΛΕΚΟΜΕΝΕΣ ΓΝΩΣΤΙΚΕΣ ΠΕΡΙΟΧΕΣ

Διαβάστε περισσότερα

Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΛ I.

Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΛ I. Γεωμετρία Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΛ I. Εισαγωγή Η διδασκαλία της Γεωμετρίας στην Α Λυκείου εστιάζει στο πέρασμα από τον εμπειρικό στο θεωρητικό τρόπο σκέψης, με ιδιαίτερη έμφαση στη μαθηματική απόδειξη. Οι

Διαβάστε περισσότερα

Τα Διδακτικά Σενάρια και οι Προδιαγραφές τους. του Σταύρου Κοκκαλίδη. Μαθηματικού

Τα Διδακτικά Σενάρια και οι Προδιαγραφές τους. του Σταύρου Κοκκαλίδη. Μαθηματικού Τα Διδακτικά Σενάρια και οι Προδιαγραφές τους του Σταύρου Κοκκαλίδη Μαθηματικού Διευθυντή του Γυμνασίου Αρχαγγέλου Ρόδου-Εκπαιδευτή Στα προγράμματα Β Επιπέδου στις ΤΠΕ Ορισμός της έννοιας του σεναρίου.

Διαβάστε περισσότερα

Εξισώσεις α βαθμού. Γνωστικό αντικείμενο: Μαθηματικά (ΔΕ) Δημιουργός: ΣΟΦΙΑ ΣΜΠΡΙΝΗ

Εξισώσεις α βαθμού. Γνωστικό αντικείμενο: Μαθηματικά (ΔΕ) Δημιουργός: ΣΟΦΙΑ ΣΜΠΡΙΝΗ Εξισώσεις α βαθμού. Επαρκές Σενάριο Γνωστικό αντικείμενο: Μαθηματικά (ΔΕ) Δημιουργός: ΣΟΦΙΑ ΣΜΠΡΙΝΗ ΙΝΣΤΙΤΟΥΤΟ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΠΟΛΙΤΙΚΗΣ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ Σημείωση Το παρόν έγγραφο

Διαβάστε περισσότερα

Εξισώσεις α βαθμού. Γνωστικό αντικείμενο: Μαθηματικά (ΔΕ) Δημιουργός: ΣΟΦΙΑ ΣΜΠΡΙΝΗ

Εξισώσεις α βαθμού. Γνωστικό αντικείμενο: Μαθηματικά (ΔΕ) Δημιουργός: ΣΟΦΙΑ ΣΜΠΡΙΝΗ Εξισώσεις α βαθμού. Επαρκές Σενάριο Γνωστικό αντικείμενο: Μαθηματικά (ΔΕ) Δημιουργός: ΣΟΦΙΑ ΣΜΠΡΙΝΗ ΙΝΣΤΙΤΟΥΤΟ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΠΟΛΙΤΙΚΗΣ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ Σημείωση Το παρόν έγγραφο

Διαβάστε περισσότερα

Εξισώσεις α βαθμού. Γνωστικό αντικείμενο: Μαθηματικά (ΔΕ) Δημιουργός: ΣΟΦΙΑ ΣΜΠΡΙΝΗ

Εξισώσεις α βαθμού. Γνωστικό αντικείμενο: Μαθηματικά (ΔΕ) Δημιουργός: ΣΟΦΙΑ ΣΜΠΡΙΝΗ Εξισώσεις α βαθμού. Επαρκές Σενάριο Γνωστικό αντικείμενο: Μαθηματικά (ΔΕ) Δημιουργός: ΣΟΦΙΑ ΣΜΠΡΙΝΗ ΙΝΣΤΙΤΟΥΤΟ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΠΟΛΙΤΙΚΗΣ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ Σημείωση Το παρόν έγγραφο

Διαβάστε περισσότερα

Άθροισµα γωνιών τριγώνου, γωνίες ισοπλεύρου, ισοσκελούς τριγώνου και εξωτερική γωνία τριγώνου στην Α Γυµνασίου

Άθροισµα γωνιών τριγώνου, γωνίες ισοπλεύρου, ισοσκελούς τριγώνου και εξωτερική γωνία τριγώνου στην Α Γυµνασίου ΣΕΝΑΡΙΟ «Προσπάθησε να κάνεις ένα τρίγωνο» Άθροισµα γωνιών τριγώνου, γωνίες ισοπλεύρου, ισοσκελούς τριγώνου και εξωτερική γωνία τριγώνου στην Α Γυµνασίου Ηµεροµηνία: Φλώρινα, 6-5-2014 Γνωστική περιοχή:

Διαβάστε περισσότερα

ΕΚΠΑΙΔΕΥΤΙΚΟ ΣΕΝΑΡΙΟ. pagioti@sch.gr

ΕΚΠΑΙΔΕΥΤΙΚΟ ΣΕΝΑΡΙΟ. pagioti@sch.gr ΕΚΠΑΙΔΕΥΤΙΚΟ ΣΕΝΑΡΙΟ Αγιώτης Πέτρος pagioti@sch.gr Εκπαιδευτικός Πληροφορικής Τίτλος διδακτικού σεναρίου Η έννοια των σταθερών και της καταχώρησης στη Visual Basic Εμπλεκόμενες γνωστικές περιοχές Στοιχεία

Διαβάστε περισσότερα

«Ψηφιακά δομήματα στα μαθηματικά ως εργαλεία μάθησης για το δάσκαλο και το μαθητή»

«Ψηφιακά δομήματα στα μαθηματικά ως εργαλεία μάθησης για το δάσκαλο και το μαθητή» Ψηφιακό σχολείο: Το γνωστικό πεδίο των Μαθηματικών «Ψηφιακά δομήματα στα μαθηματικά ως εργαλεία μάθησης για το δάσκαλο και το μαθητή» ΕΛΕΝΗ ΚΑΛΑΪΤΖΙΔΟΥ Πληροφορικός ΠΕ19 (1 ο Πρότυπο Πειραματικό Γυμνάσιο

Διαβάστε περισσότερα

Κατακόρυφη - Οριζόντια μετατόπιση συνάρτησης

Κατακόρυφη - Οριζόντια μετατόπιση συνάρτησης ΕΠΙΜΟΡΦΩΣΗ ΕΚΠΑΙΔΕΥΤΙΚΩΝ Β ΕΠΙΠΕΔΟΥ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΚΑΙ ΕΦΑΡΜΟΓΗ ΤΩΝ ΤΠΕ ΣΤΗΝ ΔΙΔΑΚΤΙΚΗ ΠΡΑΞΗ ΚΣΕ 4 ου ΣΕΚ ΠΕΡΙΣΤΕΡΙΟΥ ΕΠΙΜΟΡΦΩΤΗΣ: ΜΗΤΡΟΓΙΑΝΝΟΠΟΥΛΟΥ ΑΓΓΕΛΙΚΗ ΔΙΔΑΚΤΙΚΟ ΣΕΝΑΡΙΟ Κατακόρυφη - Οριζόντια

Διαβάστε περισσότερα

Το σενάριο προτείνεται να υλοποιηθεί με το λογισμικό Function Probe.

Το σενάριο προτείνεται να υλοποιηθεί με το λογισμικό Function Probe. 9.3.3 Σενάριο 10. Τριγωνομετρικές συναρτήσεις Γνωστική περιοχή: Άλγεβρα Β Λυκείου. Η συνάρτηση ψ= ρ ημ(λχ+κ). Γραφική παράσταση τριγωνομετρικών συναρτήσεων. Γραφική επίλυση τριγωνομετρικής εξίσωσης. Θέμα:

Διαβάστε περισσότερα

ΔΙΔΑΚΤΙΚΉ ΤΩΝ ΜΑΘΗΜΑΤΙΚΏΝ

ΔΙΔΑΚΤΙΚΉ ΤΩΝ ΜΑΘΗΜΑΤΙΚΏΝ ΔΙΔΑΚΤΙΚΉ ΤΩΝ ΜΑΘΗΜΑΤΙΚΏΝ 2. Εκπαιδευτικό Λογισμικό για τα Μαθηματικά 2.1 Κύρια χαρακτηριστικά του εκπαιδευτικού λογισμικού για την Διδακτική των Μαθηματικών 2.2 Κατηγορίες εκπαιδευτικού λογισμικού για

Διαβάστε περισσότερα

1. Τίτλος. Τετράπλευρα Είδη τετράπλευρων (παραλληλόγραµµο-ορθογώνιορόµβος-τετράγωνο) 2. Ταυτότητα του σεναρίου.

1. Τίτλος. Τετράπλευρα Είδη τετράπλευρων (παραλληλόγραµµο-ορθογώνιορόµβος-τετράγωνο) 2. Ταυτότητα του σεναρίου. 1. Τίτλος. Τετράπλευρα Είδη τετράπλευρων (παραλληλόγραµµο-ορθογώνιορόµβος-τετράγωνο) και ιδιότητες αυτών. 2. Ταυτότητα του σεναρίου. Συγγραφέας: Αλαµπορινός Σπυρίδων Γνωστική περιοχή των µαθηµατικών: Γεωµετρία

Διαβάστε περισσότερα

Παράλληλες ευθείες που τέμνονται από μια άλλη ευθεία

Παράλληλες ευθείες που τέμνονται από μια άλλη ευθεία Παράλληλες ευθείες που τέμνονται από μια άλλη ευθεία Υποδειγματικό Σενάριο Γνωστικό αντικείμενο: Μαθηματικά (ΔΕ) Δημιουργός: ΣΠΥΡΙΔΩΝ ΔΟΥΚΑΚΗΣ ΙΝΣΤΙΤΟΥΤΟ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΠΟΛΙΤΙΚΗΣ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ

Διαβάστε περισσότερα

«Χρήση εκπαιδευτικού λογισμικού για τη διδασκαλία του θεωρήματος του Bolzano»

«Χρήση εκπαιδευτικού λογισμικού για τη διδασκαλία του θεωρήματος του Bolzano» «Χρήση εκπαιδευτικού λογισμικού για τη διδασκαλία του θεωρήματος του Bolzano» Ιορδανίδης Ι. Φώτιος Καθηγητής Μαθηματικών, 2 ο Γενικό Λύκειο Πτολεμαΐδας fjordaneap@gmail.com ΠΕΡΙΛΗΨΗ Το θεώρημα του Bolzano

Διαβάστε περισσότερα

To σενάριο προτείνεται να υλοποιηθεί µε το λογισµικό Function probe.

To σενάριο προτείνεται να υλοποιηθεί µε το λογισµικό Function probe. Σενάριο 7. Η Οµοιότητα Τριγώνων ως Λόγος Πλευρών Γνωστική περιοχή: Άλγεβρα Α' Λυκείου. Η γραµµική συνάρτηση ψ= αχ. Συντελεστής διεύθυνσης ευθείας. Γεωµετρία Α' Λυκείου Οµοιότητα τριγώνων Θέµα: To προτεινόµενο

Διαβάστε περισσότερα

ΤΟ ΠΡΟΣΗΜΟ ΤΟΥ ΤΡΙΩΝΥΜΟΥ

ΤΟ ΠΡΟΣΗΜΟ ΤΟΥ ΤΡΙΩΝΥΜΟΥ ΣΕΝΑΡΙΟ του Κύπρου Κυπρίδηµου, µαθηµατικού ΤΟ ΠΡΟΣΗΜΟ ΤΟΥ ΤΡΙΩΝΥΜΟΥ Περίληψη Στη δραστηριότητα αυτή οι µαθητές καλούνται να διερευνήσουν το πρόσηµο του τριωνύµου φ(x) = αx 2 + βx + γ. Προτείνεται να διδαχθεί

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΓΝΩΣΕΙΣ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΤΟΥ ΓΕΩΜΕΤΡΙΚΟΥ ΜΕΡΟΥΣ ΤΟΥ ΛΟΓΙΣΜΙΚΟΥ GEOGEBRA

ΒΑΣΙΚΕΣ ΓΝΩΣΕΙΣ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΤΟΥ ΓΕΩΜΕΤΡΙΚΟΥ ΜΕΡΟΥΣ ΤΟΥ ΛΟΓΙΣΜΙΚΟΥ GEOGEBRA ΒΑΣΙΚΕΣ ΓΝΩΣΕΙΣ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΤΟΥ ΓΕΩΜΕΤΡΙΚΟΥ ΜΕΡΟΥΣ ΤΟΥ ΛΟΓΙΣΜΙΚΟΥ GEOGEBRA ΒΑΣΙΚΑ ΕΡΓΑΛΕΙΑ Για να κάνουμε Γεωμετρία χρειαζόμαστε εργαλεία κατασκευής, εργαλεία μετρήσεων και εργαλεία μετασχηματισμών.

Διαβάστε περισσότερα

Εισαγωγική Επιμόρφωση για την εκπαιδευτική αξιοποίηση ΤΠΕ (Επιμόρφωση Β1 Επιπέδου)

Εισαγωγική Επιμόρφωση για την εκπαιδευτική αξιοποίηση ΤΠΕ (Επιμόρφωση Β1 Επιπέδου) Εισαγωγική Επιμόρφωση για την εκπαιδευτική αξιοποίηση ΤΠΕ (Επιμόρφωση Β1 Επιπέδου) Συστάδα Β1.3: Μαθηματικά, Πληροφορική, Οικονομία Διοίκηση Επιχειρήσεων Συνεδρία 5 ΕΚΠΑΙΔΕΥΤΙΚΕΣ ΧΡΗΣΕΙΣ ΕΠΕΞΕΡΓΑΣΙΑΣ ΚΕΙΜΕΝΟΥ

Διαβάστε περισσότερα

Ε.Π. Εκπαίδευση και Δια Βίου Μάθηση, ΕΣΠΑ ( ) ΕΠΙΜΟΡΦΩΣΗ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΚΑΙ ΕΦΑΡΜΟΓΗ ΤΩΝ ΤΠΕ ΣΤΗ ΔΙΔΑΚΤΙΚΗ ΠΡΑΞΗ

Ε.Π. Εκπαίδευση και Δια Βίου Μάθηση, ΕΣΠΑ ( ) ΕΠΙΜΟΡΦΩΣΗ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΚΑΙ ΕΦΑΡΜΟΓΗ ΤΩΝ ΤΠΕ ΣΤΗ ΔΙΔΑΚΤΙΚΗ ΠΡΑΞΗ Ε.Π. Εκπαίδευση και Δια Βίου Μάθηση, ΕΣΠΑ (2007 2013) ΕΠΙΜΟΡΦΩΣΗ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΚΑΙ ΕΦΑΡΜΟΓΗ ΤΩΝ ΤΠΕ ΣΤΗ ΔΙΔΑΚΤΙΚΗ ΠΡΑΞΗ Πρακτική Άσκηση Εκπαιδευομένων στα Πανεπιστημιακά Κέντρα Επιμόρφωσης

Διαβάστε περισσότερα

Χαριτωμένη Καβουρτζικλή (ΑΕΜ: 2738)

Χαριτωμένη Καβουρτζικλή (ΑΕΜ: 2738) ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ Το μαθηματικό λογισμικό GeoGebra ως αρωγός για τη λύση προβλημάτων γεωμετρικών κατασκευών Χαριτωμένη Καβουρτζικλή (ΑΕΜ: 2738) Επιβλέπων Καθηγητής

Διαβάστε περισσότερα

Λογισμικό διδασκαλίας των μαθηματικών της Γ Τάξης Γυμνασίου

Λογισμικό διδασκαλίας των μαθηματικών της Γ Τάξης Γυμνασίου Λογισμικό διδασκαλίας των μαθηματικών της Γ Τάξης Γυμνασίου Δρ. Βασίλειος Σάλτας 1, Αλέξης Ηλιάδης 2, Ιωάννης Μουστακέας 3 1 Διδάκτωρ Διδακτικής Μαθηματικών, Επιστημονικός Συνεργάτης ΑΣΠΑΙΤΕ Σαπών coin_kav@otenet.gr

Διαβάστε περισσότερα

Βοηθήστε τη ΕΗ. Ένα µικρό νησί απέχει 4 χιλιόµετρα από την ακτή και πρόκειται να συνδεθεί µε τον υποσταθµό της ΕΗ που βλέπετε στην παρακάτω εικόνα.

Βοηθήστε τη ΕΗ. Ένα µικρό νησί απέχει 4 χιλιόµετρα από την ακτή και πρόκειται να συνδεθεί µε τον υποσταθµό της ΕΗ που βλέπετε στην παρακάτω εικόνα. Γιώργος Μαντζώλας ΠΕ03 Βοηθήστε τη ΕΗ Η προβληµατική της Εκπαιδευτικής ραστηριότητας Η επίλυση προβλήµατος δεν είναι η άµεση απόκριση σε ένα ερέθισµα, αλλά ένας πολύπλοκος µηχανισµός στον οποίο εµπλέκονται

Διαβάστε περισσότερα

Το σενάριο προτείνεται να υλοποιηθεί με το λογισμικό Function Probe.

Το σενάριο προτείνεται να υλοποιηθεί με το λογισμικό Function Probe. Σενάριο 2: Ο ερευνητής και οι χελώνες ΚΑΡΕΤΑ_ΚΑΡΕΤΑ Συγγραφέας: Καλλιόπη Αρδαβάνη, Επιμορφώτρια Μαθηματικών (Β επιπέδου). Γνωστική περιοχή: Άλγεβρα Ανεξάρτητη και εξαρτημένη μεταβλητή. Πεδίο ορισμού και

Διαβάστε περισσότερα

Χάρτινα χειροποίητα κουτιά Περίληψη: Χάρτινα κουτιά

Χάρτινα χειροποίητα κουτιά Περίληψη: Χάρτινα κουτιά Χάρτινα χειροποίητα κουτιά Περίληψη: Στη δραστηριότητα αυτή οι μαθητές διερευνούν τη χωρητικότητα κουτιών σχήματος ορθογωνίου παραλληλεπιπέδου που προκύπτουν από ένα χαρτόνι συγκεκριμένων διαστάσεων. Οι

Διαβάστε περισσότερα

Σενάριο 1. Σκιτσάροντας µε παραλληλόγραµµα. (χρήση λογισµικού Χελωνόκοσµος)

Σενάριο 1. Σκιτσάροντας µε παραλληλόγραµµα. (χρήση λογισµικού Χελωνόκοσµος) Σενάριο 1 Σκιτσάροντας µε παραλληλόγραµµα (χρήση λογισµικού Χελωνόκοσµος) Βασική ιδέα του σεναρίου Οι µαθητές σκιτσάρουν παραλληλόγραµµα και τα «ζωντανεύουν» κινώντας τα δυναµικά µε χρήση της Logo. Με

Διαβάστε περισσότερα

Εκπαιδευτικό Σενάριο 2

Εκπαιδευτικό Σενάριο 2 Εκπαιδευτικό Σενάριο 2 Τίτλος: Τα συνεργατικά περιβάλλοντα δημιουργίας και επεξεργασίας υπολογιστικών φύλλων Εκτιμώμενη διάρκεια εκπαιδευτικού σεναρίου: Προβλέπεται να διαρκέσει συνολικά 3 διδακτικές ώρες.

Διαβάστε περισσότερα

Γεωμετρία. I. Εισαγωγή

Γεωμετρία. I. Εισαγωγή I. Εισαγωγή Γεωμετρία Η διδασκαλία της Γεωμετρίας στην Α Λυκείου εστιάζει στο πέρασμα από τον εμπειρικό στο θεωρητικό τρόπο σκέψης, με ιδιαίτερη έμφαση στη μαθηματική απόδειξη. Οι μαθητές έχουν έρθει σε

Διαβάστε περισσότερα

«Εισαγωγή στον Τριγωνομετρικό Κύκλο» Διδάσκοντας Μαθηματικά με Τ.Π.Ε.

«Εισαγωγή στον Τριγωνομετρικό Κύκλο» Διδάσκοντας Μαθηματικά με Τ.Π.Ε. «Εισαγωγή στον Τριγωνομετρικό Κύκλο» Διδάσκοντας Μαθηματικά με Τ.Π.Ε. Μπολοτάκης Γιώργος Μαθηματικός, Επιμορφωτής Β επιπέδου, Διευθυντής Γυμνασίου Αγ. Αθανασίου Δράμας, Τραπεζούντος 7, Άγιος Αθανάσιος,

Διαβάστε περισσότερα

Ψηφιακό Σχολείο 2.0. Βασικές έννοιες Υποδομές Ηλεκτρονική Μάθηση Διαχείριση Ηλεκτρονικής Τάξης Οργάνωση Ηλεκτρονικού Μαθήματος

Ψηφιακό Σχολείο 2.0. Βασικές έννοιες Υποδομές Ηλεκτρονική Μάθηση Διαχείριση Ηλεκτρονικής Τάξης Οργάνωση Ηλεκτρονικού Μαθήματος Βασικές έννοιες Υποδομές Ηλεκτρονική Μάθηση Διαχείριση Ηλεκτρονικής Τάξης Οργάνωση Ηλεκτρονικού Μαθήματος Βασικές έννοιες Υποδομές H ενσωμάτωση των Τεχνολογιών Πληροφορικής και Επικοινωνίας (ΤΠΕ) στην

Διαβάστε περισσότερα

Δραστηριότητες ΕΠΙΜΟΡΦΩΤΗΣ ΟΒΑΔΙΑΣ ΣΑΒΒΑΣ. Συνεργατική εργασία συναδέλφων: Δημητρίου Καβαλιέρου Ευσταθίου Κόντου

Δραστηριότητες ΕΠΙΜΟΡΦΩΤΗΣ ΟΒΑΔΙΑΣ ΣΑΒΒΑΣ. Συνεργατική εργασία συναδέλφων: Δημητρίου Καβαλιέρου Ευσταθίου Κόντου Συνεδρία 10 η Συστάδα 2: Φυσικές Επιστήμες, Τεχνολογία, Φυσική Αγωγή μ-σενάριο Κυκλώματα στο Εναλλασσόμενο Ρεύμα Κύκλωμα RL σε σειρά Δραστηριότητες Εισαγωγή στην εκπαιδευτική αξιοποίηση των ΤΠΕ και στο

Διαβάστε περισσότερα

Εµβαδόν Παραλληλογράµµου Τριγώνου Τραπεζίου

Εµβαδόν Παραλληλογράµµου Τριγώνου Τραπεζίου Γιώργος Μαντζώλας ΠΕ03 Εµβαδόν Παραλληλογράµµου Τριγώνου Τραπεζίου Σύντοµη περιγραφή του σεναρίου Η βασική ιδέα του σεναρίου Το συγκεκριµένο εκπαιδευτικό σενάριο αναφέρεται στην εύρεση των τύπων µε τους

Διαβάστε περισσότερα

Cabri II Plus. Λογισμικό δυναμικής γεωμετρίας

Cabri II Plus. Λογισμικό δυναμικής γεωμετρίας Cabri II Plus Λογισμικό δυναμικής γεωμετρίας Cabri II Plus Ο Jean-Marie LABORDE ξεκίνησε το 1985 το πρόγραμμα με σκοπό να διευκολύνει τη διδασκαλία και την εκμάθηση της Γεωμετρίας Ο σχεδιασμός και η κατασκευή

Διαβάστε περισσότερα

ΣΕΝΑΡΙΟ ΕΚΘΕΤΙΚΗ ΣΥΝΑΡΤΗΣΗ. ΑΛΕΞΑΝΔΡΟΣ ΣΥΓΚΕΛΑΚΗΣ asygelakis@gmail.com

ΣΕΝΑΡΙΟ ΕΚΘΕΤΙΚΗ ΣΥΝΑΡΤΗΣΗ. ΑΛΕΞΑΝΔΡΟΣ ΣΥΓΚΕΛΑΚΗΣ asygelakis@gmail.com ΣΕΝΑΡΙΟ ΕΚΘΕΤΙΚΗ ΣΥΝΑΡΤΗΣΗ ΑΛΕΞΑΝΔΡΟΣ ΣΥΓΚΕΛΑΚΗΣ asygelakis@gmail.com Επιμόρφωση Β Επιπέδου Κλάδος: ΠΕ03 Περίοδος: Δεκέμβριος 2010 Ιούνιος 2011 ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΣΕΝΑΡΙΟΥ 1. Τίτλος σεναρίου: Μελέτη της εκθετικής

Διαβάστε περισσότερα

Πράξη: «Επιμόρφωση εκπαιδευτικών για την αξιοποίηση και εφαρμογή των ψηφιακών τεχνολογιών στη διδακτική πράξη (Επιμόρφωση Β επιπέδου Τ.Π.Ε.

Πράξη: «Επιμόρφωση εκπαιδευτικών για την αξιοποίηση και εφαρμογή των ψηφιακών τεχνολογιών στη διδακτική πράξη (Επιμόρφωση Β επιπέδου Τ.Π.Ε. Πράξη: «Επιμόρφωση εκπαιδευτικών για την αξιοποίηση και εφαρμογή των ψηφιακών τεχνολογιών στη διδακτική πράξη Επιχειρησιακό Πρόγραμμα «Ανάπτυξη Ανθρώπινου Δυναμικού, Εκπαίδευση και Δια Βίου Μάθηση», ΕΣΠΑ

Διαβάστε περισσότερα

ΕΠΙΜΟΡΦΩΣΗ ΤΩΝ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΚΑΙ ΕΦΑΡΜΟΓΗ ΤΩΝ ΤΠΕ ΣΤΗ ΔΙΔΑΚΤΙΚΗ ΠΡΑΞΗ

ΕΠΙΜΟΡΦΩΣΗ ΤΩΝ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΚΑΙ ΕΦΑΡΜΟΓΗ ΤΩΝ ΤΠΕ ΣΤΗ ΔΙΔΑΚΤΙΚΗ ΠΡΑΞΗ ΞΑΝΘΗ 2013, 2 ο ΣΕΚ ΞΑΝΘΗΣ ΕΠΙΜΟΡΦΩΣΗ ΤΩΝ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΚΑΙ ΕΦΑΡΜΟΓΗ ΤΩΝ ΤΠΕ ΣΤΗ ΔΙΔΑΚΤΙΚΗ ΠΡΑΞΗ ΕΠΙΜΟΡΦΩΤΗΣ : ΓΙΑΝΝΗΣ ΚΟΥΤΙΔΗΣ Μαθηματικός www.kutidis.gr ΑΠΡΙΛΙΟΣ ΝΟΕΜΒΡΙΟΣ 2013 Εκπαιδευτικό

Διαβάστε περισσότερα

9.2.4 Σενάριο 7. Η έννοια του εμβαδού επίπεδων γεωμετρικών σχημάτων με λογισμικό δυναμικής γεωμετρίας και συλλογική διαπραγμάτευση

9.2.4 Σενάριο 7. Η έννοια του εμβαδού επίπεδων γεωμετρικών σχημάτων με λογισμικό δυναμικής γεωμετρίας και συλλογική διαπραγμάτευση 9.2.4 Σενάριο 7. Η έννοια του εμβαδού επίπεδων γεωμετρικών σχημάτων με λογισμικό δυναμικής γεωμετρίας και συλλογική διαπραγμάτευση Γνωστική περιοχή: Μαθηματικά Β Γυμνασίου. Η έννοια του εμβαδού επίπεδων

Διαβάστε περισσότερα

Ενότητα: Χειρισµός αλγεβρικών ψηφιακών συστηµάτων

Ενότητα: Χειρισµός αλγεβρικών ψηφιακών συστηµάτων Ενότητα: Χειρισµός αλγεβρικών ψηφιακών συστηµάτων Σενάριο 8 (Τροποποιηµένο): Η γραµµική συνάρτηση ψ=αx Γνωστική περιοχή: Άλγεβρα Α Λυκείου. - Η γραµµική συνάρτηση ψ=αx. Θέµα: Το προτεινόµενο θέµα αφορά

Διαβάστε περισσότερα

Εισαγωγική Επιμόρφωση για την εκπαιδευτική αξιοποίηση ΤΠΕ (Επιμόρφωση Β1 Επιπέδου)

Εισαγωγική Επιμόρφωση για την εκπαιδευτική αξιοποίηση ΤΠΕ (Επιμόρφωση Β1 Επιπέδου) Εισαγωγική Επιμόρφωση για την εκπαιδευτική αξιοποίηση ΤΠΕ (Επιμόρφωση Β1 Επιπέδου) Συστάδα Β1.3: Μαθηματικά, Πληροφορική, Οικονομία Διοίκηση Επιχειρήσεων Συνεδρία 5 ΕΚΠΑΙΔΕΥΤΙΚΕΣ ΧΡΗΣΕΙΣ ΕΠΕΞΕΡΓΑΣΙΑΣ ΚΕΙΜΕΝΟΥ

Διαβάστε περισσότερα

Άλλα μέσα-υλικά Σχολικό εγχειρίδιο της Μελέτης Περιβάλλοντος.

Άλλα μέσα-υλικά Σχολικό εγχειρίδιο της Μελέτης Περιβάλλοντος. Τίτλος δραστηριότητας Ο κύκλος του νερού. Τάξη εφαρμογής Η Τάξη στην οποία απευθύνεται η 6 η δραστηριότητα είναι η Β' Δημοτικού και οι εμπλεκόμενες γνωστικές περιοχές είναι: Μελέτη περιβάλλοντος (Ο κύκλος

Διαβάστε περισσότερα

ΟΝΟΜΑΤΕΠΩΝΥΜΟ ΕΚΠ/ΚΟΥ ΕΙΔΙΚΟΤΗΤΑ. Άσε το Χάος να βάλει τάξη. ΘΕΜΑΤΙΚΗ ΟΜΙΛΟΥ. Fractals Πλακοστρώσεις(Penrose) Χάος. Α Β Γ Λυκείου ΑΡΙΘΜΟΣ ΜΑΘΗΤΩΝ

ΟΝΟΜΑΤΕΠΩΝΥΜΟ ΕΚΠ/ΚΟΥ ΕΙΔΙΚΟΤΗΤΑ. Άσε το Χάος να βάλει τάξη. ΘΕΜΑΤΙΚΗ ΟΜΙΛΟΥ. Fractals Πλακοστρώσεις(Penrose) Χάος. Α Β Γ Λυκείου ΑΡΙΘΜΟΣ ΜΑΘΗΤΩΝ ΟΝΟΜΑΤΕΠΩΝΥΜΟ ΕΚΠ/ΚΟΥ ΕΙΔΙΚΟΤΗΤΑ Δρ ΣΩΤΗΡΟΠΟΥΛΟΣ ΝΙΚΟΛΑΟΣ ΜΑΘΗΜΑΤΙΚΟΣ ΟΝΟΜΑΤΕΠΩΝΥΜΟ ΕΚΠ/ΚΟΥ ΕΙΔΙΚΟΤΗΤΑ ΘΕΜΑΤΙΚΗ ΟΜΙΛΟΥ ΤΑΞΗ Άσε το Χάος να βάλει τάξη. Fractals Πλακοστρώσεις(Penrose) Χάος Α Β Γ Λυκείου

Διαβάστε περισσότερα

Μεσοκάθετος ευθύγραμμου τμήματος- Α Γυμνασίου

Μεσοκάθετος ευθύγραμμου τμήματος- Α Γυμνασίου Μεσοκάθετος ευθύγραμμου τμήματος- Α Γυμνασίου Επαρκές Σενάριο Γνωστικό αντικείμενο: Μαθηματικά (ΔΕ) Δημιουργός: ΒΑΣΙΛΙΚΗ ΚΑΛΑΙΤΖΗ ΙΝΣΤΙΤΟΥΤΟ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΠΟΛΙΤΙΚΗΣ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ

Διαβάστε περισσότερα

ΚΣΕ ΣΟΥΦΛΙΟΥ. Συνεδρία 7

ΚΣΕ ΣΟΥΦΛΙΟΥ. Συνεδρία 7 Εισαγωγική Επιµόρφωση για την εκπαιδευτική αξιοποίηση ΤΠΕ (Επιµόρφωση Β1 Επιπέδου) ΚΣΕ ΣΟΥΦΛΙΟΥ Συνεδρία 7 Παράδειγµα Μικροσεναρίου: Έννοια Συνάρτηση στον Προγραµµατισµό ΕΠΙΜΕΛΕΙΑ: Κουτσονίκος Μιχαήλ Πληροφορικός

Διαβάστε περισσότερα

Επιμορφωτικό Σεμινάριο Διδακτικής των Μαθηματικών με ΤΠΕ

Επιμορφωτικό Σεμινάριο Διδακτικής των Μαθηματικών με ΤΠΕ ΞΑΝΘΗ ΔΕΚΕΜΒΡΙΟΣ 2016 ΙΑΝΟΥΑΡΙΟΣ 2017 Επιμορφωτικό Σεμινάριο Διδακτικής των Μαθηματικών με ΤΠΕ ΕΠΙΜΟΡΦΩΤΗΣ : ΓΙΑΝΝΗΣ ΚΟΥΤΙΔΗΣ Μαθηματικός www.kutidis.gr Διδακτική της Άλγεβρας με χρήση ψηφιακών τεχνολογιών

Διαβάστε περισσότερα

Εργαστηριακή εισήγηση

Εργαστηριακή εισήγηση Εργαστηριακή εισήγηση «Διδακτικό Σενάριο: Προσεγγίζοντας Κωνικές Τομές με τη βοήθεια της Μεσοκαθέτου στο Δυναμικό Περιβάλλον του Geometer s Sketchpad» Σάββας Πιπίνος 1, Σταύρος Κοκκαλίδης 2, Χρήστος Ηρακλείδης

Διαβάστε περισσότερα

Στρατηγική επίλυσης προβλημάτων: Διερεύνηση περιμέτρου κι εμβαδού με τη βοήθεια του Ms Excel.

Στρατηγική επίλυσης προβλημάτων: Διερεύνηση περιμέτρου κι εμβαδού με τη βοήθεια του Ms Excel. Στρατηγική επίλυσης προβλημάτων: Διερεύνηση περιμέτρου κι εμβαδού με τη βοήθεια του Ms Excel. Έντυπο Α Φύλλα εργασίας Μαθητή Διαμαντής Κώστας Τερζίδης Σωτήρης 31/1/2008 Φύλλο εργασίας 1. Ομάδα: Ημερομηνία:

Διαβάστε περισσότερα

Διδακτικές ενότητες Στόχος

Διδακτικές ενότητες Στόχος Η διδασκαλία του τριγωνομετρικού κύκλου με τον παραδοσιακό τρόπο στον πίνακα, είναι μία διαδικασία όχι εύκολα κατανοητή για τους μαθητές, με αποτέλεσμα τη μηχανική παπαγαλίστικη χρήση των τύπων της τριγωνομετρίας.

Διαβάστε περισσότερα

ΣΕΝΑΡΙΟ ΔΙΔΑΣΚΑΛΙΑΣ. Σκεπτικό της δραστηριότητας Βασική ιδέα του σεναρίου

ΣΕΝΑΡΙΟ ΔΙΔΑΣΚΑΛΙΑΣ. Σκεπτικό της δραστηριότητας Βασική ιδέα του σεναρίου ΣΕΝΑΡΙΟ ΔΙΔΑΣΚΑΛΙΑΣ Τίτλος: Ο Σωκράτης και η εποχή του Συγγραφέας: Καλλιόπη Στυλιανή Κοντιζά Γνωστικό Αντικείμενο: Ανθολόγιο Φιλοσοφικών Κειμένων Τάξη: Γ Γυμνασίου Κείμενο: Κεφάλαιο 3 ο : Σωκράτης και

Διαβάστε περισσότερα

ΣΧΕΔΙΟ ΔΙΔΑΣΚΑΛΙΑΣ ΕΞΙΣΩΣΗΣ ΕΥΘΕΙΑΣ Β Λυκ. Κατ/νση

ΣΧΕΔΙΟ ΔΙΔΑΣΚΑΛΙΑΣ ΕΞΙΣΩΣΗΣ ΕΥΘΕΙΑΣ Β Λυκ. Κατ/νση Page1 ΣΧΕΔΙΟ ΔΙΔΑΣΚΑΛΙΑΣ ΕΞΙΣΩΣΗΣ ΕΥΘΕΙΑΣ Β Λυκ. Κατ/νση ΔΙΔΑΚΤΙΚΗ ΕΝΟΤΗΤΑ:.3 Εμβαδόν τριγώνου - Μέρος 3 ο 1) ΔΙΔΑΚΤΙΚΟΙ ΣΤΟΧΟΙ: Να υπολογίζουν την απόσταση σημείου από ευθεία και το εμβαδόν τριγώνου με

Διαβάστε περισσότερα

Διδακτέα-εξεταστέα ύλη μαθηματικών Ημερησίου και Εσπερινού ΓΕ.Λ. Ο Δ Η Γ Ο Σ ΔΙΔΑΚΤΕΑΣ-ΕΞΕΤΑΣΤΕΑΣ ΥΛΗΣ ΗΜΕΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΓΕΝΙΚΩΝ ΛΥΚΕΙΩΝ

Διδακτέα-εξεταστέα ύλη μαθηματικών Ημερησίου και Εσπερινού ΓΕ.Λ. Ο Δ Η Γ Ο Σ ΔΙΔΑΚΤΕΑΣ-ΕΞΕΤΑΣΤΕΑΣ ΥΛΗΣ ΗΜΕΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΓΕΝΙΚΩΝ ΛΥΚΕΙΩΝ Ο Δ Η Γ Ο Σ ΔΙΔΑΚΤΕΑΣ-ΕΞΕΤΑΣΤΕΑΣ ΥΛΗΣ ΜΑΘΗΜΑΤΙΚΩΝ ΗΜΕΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΓΕΝΙΚΩΝ ΛΥΚΕΙΩΝ Γενική Επιμέλεια: Καραγιάννης Ιωάννης Σχολικός Σύμβουλος Μαθηματικός Περιηγητής 1 ΠΕΡΙΕΧΟΜΕΝΑ 1. Διδακτέα-εξεταστέα

Διαβάστε περισσότερα

1. Τίτλος: Οι κρυµµένοι τριγωνοµετρικοί αριθµοί Συγγραφέας Βλάστος Αιµίλιος. Γνωστική περιοχή των µαθηµατικών: Τριγωνοµετρία

1. Τίτλος: Οι κρυµµένοι τριγωνοµετρικοί αριθµοί Συγγραφέας Βλάστος Αιµίλιος. Γνωστική περιοχή των µαθηµατικών: Τριγωνοµετρία 1. Τίτλος: Οι κρυµµένοι τριγωνοµετρικοί αριθµοί Συγγραφέας Βλάστος Αιµίλιος Γνωστική περιοχή των µαθηµατικών: Τριγωνοµετρία Θέµα- Σκεπτικό της δραστηριότητας. Η ιδέα πάνω στην οποία έχει στηριχτεί ο σχεδιασµός

Διαβάστε περισσότερα

4.4 Δραστηριότητα: Θεώρημα Μέσης Τιμής του Διαφορικού Λογισμού

4.4 Δραστηριότητα: Θεώρημα Μέσης Τιμής του Διαφορικού Λογισμού 4.4 Δραστηριότητα: Θεώρημα Μέσης Τιμής του Διαφορικού Λογισμού Θέμα της δραστηριότητας Η δραστηριότητα αυτή εισάγει το θεώρημα Μέσης Τιμής του διαφορικού λογισμού χωρίς την απόδειξή του. Στόχοι της δραστηριότητας

Διαβάστε περισσότερα

Εφαρμογές παραγώγων. Γνωστικό αντικείμενο: Μαθηματικά (ΔΕ) Δημιουργός: ΒΑΣΙΛΙΚΗ ΘΩΜΑ

Εφαρμογές παραγώγων. Γνωστικό αντικείμενο: Μαθηματικά (ΔΕ) Δημιουργός: ΒΑΣΙΛΙΚΗ ΘΩΜΑ Εφαρμογές παραγώγων Επαρκές Σενάριο Γνωστικό αντικείμενο: Μαθηματικά (ΔΕ) Δημιουργός: ΒΑΣΙΛΙΚΗ ΘΩΜΑ ΙΝΣΤΙΤΟΥΤΟ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΠΟΛΙΤΙΚΗΣ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ Σημείωση Το παρόν έγγραφο

Διαβάστε περισσότερα

Τα σχέδια μαθήματος 1 Εισαγωγή

Τα σχέδια μαθήματος 1 Εισαγωγή Τα σχέδια μαθήματος 1 Εισαγωγή Τα σχέδια μαθήματος αποτελούν ένα είδος προσωπικών σημειώσεων που κρατά ο εκπαιδευτικός προκειμένου να πραγματοποιήσει αποτελεσματικές διδασκαλίες. Περιέχουν πληροφορίες

Διαβάστε περισσότερα

Καθορισµός και διαχείριση διδακτέας ύλης των θετικών µαθηµάτων της Α Ηµερησίου Γενικού Λυκείου για το σχολικό έτος

Καθορισµός και διαχείριση διδακτέας ύλης των θετικών µαθηµάτων της Α Ηµερησίου Γενικού Λυκείου για το σχολικό έτος Καθορισµός και διαχείριση διδακτέας ύλης των θετικών µαθηµάτων της Α Ηµερησίου Γενικού Λυκείου για το σχολικό έτος 2013-14 Μετά από σχετική εισήγηση του Ινστιτούτου Εκπαιδευτικής Πολιτικής (πράξη 32/2013

Διαβάστε περισσότερα

Η Έννοια κι η Γραφική Επίλυση Γραμμικού Συστήματος Δύο Εξισώσεων με Δύο Αγνώστους με τη Βοήθεια του Λογισμικού Geogebra

Η Έννοια κι η Γραφική Επίλυση Γραμμικού Συστήματος Δύο Εξισώσεων με Δύο Αγνώστους με τη Βοήθεια του Λογισμικού Geogebra Η Έννοια κι η Γραφική Επίλυση Γραμμικού Συστήματος Δύο Εξισώσεων με Δύο Αγνώστους με τη Βοήθεια του Λογισμικού Geogebra Κιούφτη Ροϊδούλα 1 1 Εκπαιδευτικός Δευτεροβάθμιας Εκπαίδευσης, rkioufti@hotmail.com

Διαβάστε περισσότερα

Διερευνητική μάθηση We are researchers, let us do research! (Elbers and Streefland, 2000)

Διερευνητική μάθηση We are researchers, let us do research! (Elbers and Streefland, 2000) Διερευνητική μάθηση We are researchers, let us do research! (Elbers and Streefland, 2000) Πρόκειται για την έρευνα που διεξάγουν οι επιστήμονες. Είναι μια πολύπλοκη δραστηριότητα που απαιτεί ειδικό ακριβό

Διαβάστε περισσότερα

GEOGEBRA και Γεωμετρία, Μέτρηση και Αριθμοί. Ανδρέας Σάββα Σύμβουλος Πληροφορικής ΤΠΕ, Δημοτικής Εκπαίδευσης

GEOGEBRA και Γεωμετρία, Μέτρηση και Αριθμοί. Ανδρέας Σάββα Σύμβουλος Πληροφορικής ΤΠΕ, Δημοτικής Εκπαίδευσης GEOGEBRA και Γεωμετρία, Μέτρηση και Αριθμοί Ανδρέας Σάββα Σύμβουλος Πληροφορικής ΤΠΕ, Δημοτικής Εκπαίδευσης Ενημερωτική Συνάντηση Ομάδων Εργασίας Ν.Α.Π. Παιδαγωγικό Ινστιτούτο, Λευκωσία, 8 Μαΐου 2012 Ιδιότητες

Διαβάστε περισσότερα

ΔΙΔΑΚΤΕΑ ΥΛΗ ΚΑΙ ΣΥΝΟΠΤΙΚΕΣ

ΔΙΔΑΚΤΕΑ ΥΛΗ ΚΑΙ ΣΥΝΟΠΤΙΚΕΣ Επιμέλεια: Καραγιάννης Β. Ιωάννης Σχολικός Σύμβουλος Μαθηματικών ΔΙΔΑΚΤΕΑ ΥΛΗ ΚΑΙ ΣΥΝΟΠΤΙΚΕΣ ΟΔΗΓΙΕΣ ΔΙΔΑΣΚΑΛΙΑΣ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΤΗΣ ΥΛΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Σχολικό Έτος: 016-017 Μαθηματικός Περιηγητής:

Διαβάστε περισσότερα

Περιοχές λειτουργίας τρανζίστορ BJT Ευθεία φόρτου - Σημείο Q

Περιοχές λειτουργίας τρανζίστορ BJT Ευθεία φόρτου - Σημείο Q Περιοχές λειτουργίας τρανζίστορ BJT Ευθεία φόρτου - Σημείο Q Υποδειγματικό Σενάριο Γνωστικό αντικείμενο: Ηλεκτρονική - Αυτοματισμός (Ε.Ε.) Δημιουργός: ΑΝΑΡΓΥΡΟΣ ΜΑΡΜΑΡΙΝΟΣ ΙΝΣΤΙΤΟΥΤΟ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΠΟΛΙΤΙΚΗΣ

Διαβάστε περισσότερα

«Ανάλογα ποσά Γραφική παράσταση αναλογίας» ΠΡΟΤΕΙΝΟΜΕΝΟ ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ

«Ανάλογα ποσά Γραφική παράσταση αναλογίας» ΠΡΟΤΕΙΝΟΜΕΝΟ ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ ΠΡΟΤΕΙΝΟΜΕΝΟ ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ ΜΑΘΗΜΑ: Μαθηματικά ΤΑΞΗ: Α Γυμνασίου ΕΝΟΤΗΤΕΣ: 1. Ανάλογα ποσά Ιδιότητες αναλόγων ποσών 2. Γραφική παράσταση σχέσης αναλογίας ΕΙΣΗΓΗΤΕΣ: Άγγελος Γιαννούλας Κωνσταντίνος Ρεκούμης

Διαβάστε περισσότερα

ΠΑΡΑΛΛΗΛΟΓΡΑΜΜΑ. Γνωστικό αντικείμενο: Μαθηματικά (ΔΕ) Δημιουργός: ΣΤΑΥΡΟΥΛΑ ΔΑΦΝΟΜΗΛΗ

ΠΑΡΑΛΛΗΛΟΓΡΑΜΜΑ. Γνωστικό αντικείμενο: Μαθηματικά (ΔΕ) Δημιουργός: ΣΤΑΥΡΟΥΛΑ ΔΑΦΝΟΜΗΛΗ ΠΑΡΑΛΛΗΛΟΓΡΑΜΜΑ Επαρκές Σενάριο Γνωστικό αντικείμενο: Μαθηματικά (ΔΕ) Δημιουργός: ΣΤΑΥΡΟΥΛΑ ΔΑΦΝΟΜΗΛΗ ΙΝΣΤΙΤΟΥΤΟ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΠΟΛΙΤΙΚΗΣ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ Σημείωση Το παρόν έγγραφο

Διαβάστε περισσότερα

ΠΑΡΑΛΛΗΛΟΓΡΑΜΜΑ. Γνωστικό αντικείμενο: Μαθηματικά (ΔΕ) Δημιουργός: ΣΤΑΥΡΟΥΛΑ ΔΑΦΝΟΜΗΛΗ

ΠΑΡΑΛΛΗΛΟΓΡΑΜΜΑ. Γνωστικό αντικείμενο: Μαθηματικά (ΔΕ) Δημιουργός: ΣΤΑΥΡΟΥΛΑ ΔΑΦΝΟΜΗΛΗ ΠΑΡΑΛΛΗΛΟΓΡΑΜΜΑ Επαρκές Σενάριο Γνωστικό αντικείμενο: Μαθηματικά (ΔΕ) Δημιουργός: ΣΤΑΥΡΟΥΛΑ ΔΑΦΝΟΜΗΛΗ ΙΝΣΤΙΤΟΥΤΟ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΠΟΛΙΤΙΚΗΣ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ Σημείωση Το παρόν έγγραφο

Διαβάστε περισσότερα

Σ.Ε.Π. (Σύνθετο Εργαστηριακό Περιβάλλον)

Σ.Ε.Π. (Σύνθετο Εργαστηριακό Περιβάλλον) ΔΡΑΣΤΗΡΙΟΤΗΤΑ: ΝΟΜΟΙ ΙΔΑΝΙΚΩΝ ΑΕΡΙΩΝ με τη βοήθεια του λογισμικού Σ.Ε.Π. (Σύνθετο Εργαστηριακό Περιβάλλον) Φυσική Β Λυκείου Θετικής & Τεχνολογικής Κατεύθυνσης Νοέμβριος 2013 0 ΤΙΤΛΟΣ ΝΟΜΟΙ ΙΔΑΝΙΚΩΝ ΑΕΡΙΩΝ

Διαβάστε περισσότερα

ΕΝΔΕΙΚΤΙΚΟΙ ΤΡΟΠΟΙ ΣΧΕΔΙΑΣΜΟΥ ΤΗΣ ΔΙΔΑΣΚΑΛΙΑΣ ΤΗΣ ΜΕΛΕΤΗΣ ΠΡΟΣΗΜΟΥ ΤΡΙΩΝΥΜΟΥ.

ΕΝΔΕΙΚΤΙΚΟΙ ΤΡΟΠΟΙ ΣΧΕΔΙΑΣΜΟΥ ΤΗΣ ΔΙΔΑΣΚΑΛΙΑΣ ΤΗΣ ΜΕΛΕΤΗΣ ΠΡΟΣΗΜΟΥ ΤΡΙΩΝΥΜΟΥ. Στέφανος Κεΐσογλου Σχολικός σύμβουλος ΕΝΕΙΚΤΙΚΟΙ ΤΡΟΠΟΙ ΣΧΕΙΑΣΜΟΥ ΤΗΣ ΙΑΣΚΑΛΙΑΣ ΤΗΣ ΜΕΛΕΤΗΣ ΠΡΟΣΗΜΟΥ ΤΡΙΩΝΥΜΟΥ. Στο κείμενο που ακολουθεί έχει γίνει προσπάθεια να φανεί ότι ο σχεδιασμός της διδασκαλίας

Διαβάστε περισσότερα

Σενάριο µαθήµατος µε τίτλο: «Μελέτη του 2 ου νόµου του Newton στο περιβάλλον του Interactive Physics»

Σενάριο µαθήµατος µε τίτλο: «Μελέτη του 2 ου νόµου του Newton στο περιβάλλον του Interactive Physics» Σενάριο µαθήµατος µε τίτλο: «Μελέτη του 2 ου νόµου του Newton στο περιβάλλον του Interactive Physics» ΣΧΟΛΕΙΟ Π.Π.Λ.Π.Π. ΤΑΞΗ: Α ΜΑΘΗΜΑ: Β Νόµος του Νεύτωνα ΚΑΘΗΓΗΤΗΣ: Σφαέλος Ιωάννης Συνοπτική Παρουσίαση

Διαβάστε περισσότερα

Να εξοικειωθούν µε την εύρεση, αξιολόγηση και αξιοποίηση πληροφοριών µέσω του διαδικτύου. Να ενηµερωθούν για τα µέρη από τα οποία αποτελείται ο σκελετ

Να εξοικειωθούν µε την εύρεση, αξιολόγηση και αξιοποίηση πληροφοριών µέσω του διαδικτύου. Να ενηµερωθούν για τα µέρη από τα οποία αποτελείται ο σκελετ Τίτλος διδακτικού σεναρίου Τα οστά Πώς κινούµαστε Εµπλεκόµενες γνωστικές περιοχές Μελέτη Περιβάλλοντος Τάξεις στις οποίες απευθύνεται ηµοτικού Συµβατότητα µε το αναλυτικό πρόγραµµα Το σενάριο είναι συµβατό

Διαβάστε περισσότερα

Εκπαιδευτική Αξιοποίηση Λογισμικού Γενικής Χρήσης

Εκπαιδευτική Αξιοποίηση Λογισμικού Γενικής Χρήσης Εκπαιδευτική Αξιοποίηση Λογισμικού Γενικής Χρήσης Δρ. Χαράλαμπος Μουζάκης Διδάσκων Π.Δ.407/80 Παιδαγωγικό Τμήμα Δημοτικής Εκπαίδευσης Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών Στόχοι ενότητας Το λογισμικό

Διαβάστε περισσότερα

ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ: 1. ΑΛΓΕΒΡΑΣ ΚΑΙ ΓΕΩΜΕΤΡΙΑΣ Β ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ Γ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ 2

ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ: 1. ΑΛΓΕΒΡΑΣ ΚΑΙ ΓΕΩΜΕΤΡΙΑΣ Β ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ Γ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ 2 ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ: 1. ΑΛΓΕΒΡΑΣ ΚΑΙ ΓΕΩΜΕΤΡΙΑΣ Β ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ Γ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ 2. ΜΑΘΗΜΑΤΙΚΩΝ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ

Διαβάστε περισσότερα

Μεσοκάθετος ευθυγράμμου τμήματος

Μεσοκάθετος ευθυγράμμου τμήματος Μεσοκάθετος ευθυγράμμου τμήματος Επαρκές Σενάριο Γνωστικό αντικείμενο: Μαθηματικά (ΔΕ) Δημιουργός: ΑΛΕΞΑΝΔΡΑ ΠΟΥΛΟΥ ΙΝΣΤΙΤΟΥΤΟ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΠΟΛΙΤΙΚΗΣ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ Σημείωση

Διαβάστε περισσότερα

«Αειφορική διαχείριση του νερού»

«Αειφορική διαχείριση του νερού» «Αειφορική διαχείριση του νερού» Παράδειγμα εκπαιδευτικής δραστηριότητας με διαδραστικούς πίνακες Μαρία Μαχαιρίδου, Ph.D. Παιδαγωγική Ομάδα Κ.Π.Ε. Μαρώνειας Επιστ. συνεργάτης Τ.Ε.Φ.Α.Α., Δ.Π.Θ. Υποτομέας

Διαβάστε περισσότερα

ΔΙΔΑΚΤΙΚΗ ΤΗΣ ΧΗΜΕΙΑΣ

ΔΙΔΑΚΤΙΚΗ ΤΗΣ ΧΗΜΕΙΑΣ ΔΙΔΑΚΤΙΚΗ ΤΗΣ ΧΗΜΕΙΑΣ Κατερίνα Σάλτα ΔιΧηΝΕΤ 2017-2018 Θέματα Διδακτικής Φυσικών Επιστήμων 1. ΟΙ ΙΔΕΕΣ ΤΩΝ ΜΑΘΗΤΩΝ 2. ΤΑ ΜΟΝΤΕΛΑ ΚΑΙ Η ΜΟΝΤΕΛΟΠΟΙΗΣΗ 3. ΤΟ ΕΡΓΑΣΤΗΡΙΟ & ΤΟ ΠΕΙΡΑΜΑ 4. ΔΙΔΑΚΤΙΚΕΣ ΠΡΟΣΕΓΓΙΣΕΙΣ

Διαβάστε περισσότερα

«Οι γραφικές παραστάσεις απαραίτητο εργαλείο στη φαρέτρα του μαθητή»

«Οι γραφικές παραστάσεις απαραίτητο εργαλείο στη φαρέτρα του μαθητή» «Οι γραφικές παραστάσεις απαραίτητο εργαλείο στη φαρέτρα του μαθητή» Αρδαβάνη Καλλιόπη 1, Μαργιόρα Φιλίππα 2, Μαυρουδής Σπύρος 3 1 Καθηγήτρια Μαθηματικών 3ο Γυμνάσιο Γλυφάδας, επιμορφώτρια Β επιπέδου popiardv@hotmail.com

Διαβάστε περισσότερα

ΕΚΠΑΙΔΕΥΤΙΚΗ ΔΡΑΣΤΗΡΙΟΤΗΤΑ ΓΙΑ ΤΗΝ ΕΡΜΗΝΕΙΑ ΤΩΝ ΓΡΑΦΙΚΩΝ ΠΑΡΑΣΤΑΣΕΩΝ ΣΕ ΜΟΡΦΗ ΔΙΑΔΡΑΣΤΙΚΩΝ ΣΕΛΙΔΩΝ ΜΕ ΤΗ ΒΟΗΘΕΙΑ ΤΟΥ DESCARTES

ΕΚΠΑΙΔΕΥΤΙΚΗ ΔΡΑΣΤΗΡΙΟΤΗΤΑ ΓΙΑ ΤΗΝ ΕΡΜΗΝΕΙΑ ΤΩΝ ΓΡΑΦΙΚΩΝ ΠΑΡΑΣΤΑΣΕΩΝ ΣΕ ΜΟΡΦΗ ΔΙΑΔΡΑΣΤΙΚΩΝ ΣΕΛΙΔΩΝ ΜΕ ΤΗ ΒΟΗΘΕΙΑ ΤΟΥ DESCARTES 3 Ο ΣΥΝΕΔΡΙΟ ΣΤΗ ΣΥΡΟ-ΤΠΕ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ 167 ΕΚΠΑΙΔΕΥΤΙΚΗ ΔΡΑΣΤΗΡΙΟΤΗΤΑ ΓΙΑ ΤΗΝ ΕΡΜΗΝΕΙΑ ΤΩΝ ΓΡΑΦΙΚΩΝ ΠΑΡΑΣΤΑΣΕΩΝ ΣΕ ΜΟΡΦΗ ΔΙΑΔΡΑΣΤΙΚΩΝ ΣΕΛΙΔΩΝ ΜΕ ΤΗ ΒΟΗΘΕΙΑ ΤΟΥ DESCARTES Καστανιώτης Δημήτρης Μαθηματικός-επιμορφωτής

Διαβάστε περισσότερα