Μπορούμε, επίσης, να ανοίξουμε τον editor της MATLAB και με την εντολή

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Μπορούμε, επίσης, να ανοίξουμε τον editor της MATLAB και με την εντολή"

Transcript

1 3 M-FILES Για να εκμεταλλευτούμε πλήρως τις δυνατότητες της MATLAB, πρέπει να μάθουμε πώς να δημιουργούμε μεγάλες και συχνά πολύπλοκες ακολουθίες εντολών. Ο καλύτερος τρόπος για να επιτύχουμε αυτό το στόχο είναι με τη χρήση αρχείων που καλούνται m-files αφού έχουν ως επίθεμα (extension) το.m, π.χ. script.m, gausse.m και function2.m Τα m-files της MATLAB είναι τα αντίστοιχα των συναρτήσεων (functions) και των υπορουτινών (subroutines) που συναντούμε σε άλλες γλώσσες προγραμματισμού όπως η C και η FORTRAN. Τα m-files που δημιουργεί ο χρήστης συμπληρώνουν τις συναρτήσεις βιβλιοθήκης της MATLAB που είναι επίσης m-files. Τα m-files διακρίνονται σε Αρχεία script ή αρχεία εντολών (script m-files or command files) τα οποία δεν έχουν ορίσματα εισόδου και εξόδου αλλά εκτελούν μια ακολουθία εντολών σε μεταβλητές του χώρου εργασίας, και σε Αρχεία συναρτήσεων (function m-files) τα οποία περιλαμβάνουν μια γραμμή ορισμού συνάρτησης, δέχονται ορίσματα εισόδου και επιστρέφουν μεταβλητές εξόδου, και των οποίων οι εσωτερικές μεταβλητές είναι τοπικές (εκτός αν δηλωθούν ως καθολικές με την εντολή global). Τόσο τα αρχεία script όσο και τα αρχεία συναρτήσεων Δημιουργούνται ξεχωριστά με κάποιο συντάκτη (editor) όπως ο notepad ή ο wordpad ή ακόμα με το συντάκτη της MATLAB: Για νέο αρχείο: Για υπάρχον αρχείο: File New M-file File Open Μπορούμε, επίσης, να ανοίξουμε τον editor της MATLAB και με την εντολή >> edit Πρέπει να βρίσκονται στον φάκελο εργασίας (working directory) ή στον φάκελο (directory) της MATLAB ή στον δρόμο αναζήτησης (research path) της MATLAB. Μπορούν να καλούν άλλα m-files ή ακόμα τον ίδιο τον εαυτό τους (αναδρομικά m-files).

2 Γ. Γεωργίου & Χρ. Ξενοφώντος 3. Αρχεία script Τα αρχεία τύπου script περιέχουν μια ακολουθία εντολών της MATLAB η οποία εκτελείται αν γράψουμε το όνομα του αρχείου (χωρίς το επίθεμα.m), π.χ. >> script Τα script files είναι χρήσιμα για την εισαγωγή δεδομένων (π.χ. μεγάλων πινάκων) και για την επανάληψη μεγάλων ακολουθιών εντολών για διαφορετικά δεδομένα. Σε αντίθεση με τα function m-files, όλες οι μεταβλητές που δημιουργούνται σε ένα script είναι ενεργές μεταβλητές του χώρου εργασίας. Παράδειγμα 3.. Έστω ότι καταχωρήσαμε τις εξής εντολές σε ένα αρχείο (χρησιμοποιώντας τον editor της MATLAB) το οποίο ονομάσαμε ex3_.m A = [2 ; 2 ; 2]; b = [;;]; disp('o pivakas A divetai apo') A disp('h orizousa tou pivaka A eivai') deta=det(a) disp('to diavusma b divetai apo') b disp('h lush tou susthmatos Ax=b eivai') x = A\b Το αρχείο φαίνεται πιο κάτω: Τότε, αν γράψουμε το όνομα του αρχείου (χωρίς το επίθεμα.m) θα εκτελεστούν όλες οι εντολές και θα πάρουμε τα εξής: 88

3 3. M-files >> ex3_ O pivakas A divetai apo A = H orizousa tou pivaka A eivai deta = 4 To diavusma b divetai apo b = H lush tou susthmatos Ax=b eivai x =.5..5 Παράδειγμα 3..2 Μετατροπή θερμοκρασίας από Κελσίου σε Φαρέναϊτ. Το εξής script το έχουμε καταχωρήσει στο αρχείο C2F.m. Ζητά από τον χρήστη να δώσει την θερμοκρασία σε βαθμούς Κελσίου και την μετατρέπει σε βαθμούς Φάρεναϊτ. %Metatroph ermokrasias apo Kelsiou se Farenheit format compact C = input('dwste th ermokrasia se bamous Kelsiou: '); disp('h ermokrasia se bamous Farenheit eivai ') F = 9*C/ %Telos tou C2F.m Ας το τρέξουμε για διάφορες τιμές: >> C2F Dwste th ermokrasia se bamous Kelsiou: 4 H ermokrasia se bamous Farenheit eivai F = 4 >> C2F Dwste th ermokrasia se bamous Kelsiou: H ermokrasia se bamous Farenheit eivai F = 32 >> C2F Dwste th ermokrasia se bamous Kelsiou: 8 H ermokrasia se bamous Farenheit eivai F =

4 Γ. Γεωργίου & Χρ. Ξενοφώντος 3.2 Αρχεία συναρτήσεων Τα αρχεία συναρτήσεων (function m-files) περιέχουν μια ολοκληρωμένη ακολουθία εντολών της MATLAB με μεταβλητές εισόδου, input, input2,. με την οποία υπολογίζονται νέες μεταβλητές εξόδου Η δομή τους είναι η εξής:. Επικεφαλίδα (header) Μια γραμμή της μορφής: output, output2,.. function [output, output2,.] = filename (input, input2,.) To filename είναι το όνομα του function το οποίο αποθηκεύεται (υποχρεωτικά) στο m-file με όνομα filename.m. Προσέξτε ότι οι μεταβλητές εισόδου είναι σε παρενθέσεις ενώ οι μεταβλητές εξόδου βρίσκονται σε αγκύλες. Οι τελευταίες δεν είναι απαραίτητες αν έχουμε μόνο μια μεταβλητή εξόδου. Για παράδειγμα αντί function [out] = parad(x, y) μπορούμε να γράψουμε 2. Σχόλια (comments) function out = parad(x, y) Αυτά ξεκινούν αναγκαστικά με το σύμβολο % και είναι προαιρετικά. Τα σχόλια μετά την επικεφαλίδα αποτελούν και το κείμενο βοήθειας για το function. Με διαφορετικά λόγια, αυτά εμφανίζονται αν γράψουμε: 3. Εντολές (statements) >> help filename Ακολουθία εντολών της MATLAB με την οποία υπολογίζονται οι μεταβλητές εξόδου Προκαταρκτικές εντολές output =. output2 =. κλπ 4. Υποσυναρτήσεις (subfunctions) Αυτές είναι εσωτερικές συναρτήσεις functions που περιέχονται στο αρχείο filename.m. Αναγνωρίζονται μόνο από τα functions που περιέχονται στο αρχείο αυτό. Ορίζονται με τον ίδιο ακριβώς τρόπο, π.χ. function [out, out2,] = subfname (x, y, z) 9

5 3. M-files Οι συναρτήσεις βιβλιοθήκης της MATLAB, όπως οι sin, max, exp και size, είναι function m-files. Το όνομα μιας νέας function δεν πρέπει να συμπίπτει με όνομα συνάρτησης βιβλιοθήκης. Για την ονομασία μιας m-συνάρτησης ακολουθούμε τους κανόνες ονοματολογίας που ισχύουν και για τις μεταβλητές (βλ. Κεφ. ): Έστω για παράδειγμα ένα function με επικεφαλίδα function [sum, prod] = onoma( a, b, c) όπου οι μεταβλητές εισόδου a, b και c είναι αριθμοί. Μπορούμε να καλέσουμε την onoma με διαφορετικούς τρόπους όπως: ή Αν για κάποιο λόγο γράψουμε >> onoma( 3, 2, ) >> [x,y] = onoma( 3, 2, ) >> z = onoma(3,2,) τότε στο z θα εκχωρηθεί η τιμή της πρώτης μεταβλητής εξόδου, δηλ. της sum. Ακολουθεί η βοήθεια που παίρνουμε για το function. Το δεύτερο παράδειγμα παρουσιάζει ενδιαφέρον αφού περιλαμβάνει μια υποσυνάρτηση (subfunction). >> help function FUNCTION Add new function. New functions may be added to MATLAB's vocabulary if they are expressed in terms of other existing functions. The commands and functions that comprise the new function must be put in a file whose name defines the name of the new function, with a filename extension of '.m'. At the top of the file must be a line that contains the syntax definition for the new function. For example, the existence of a file on disk called STAT.M with: function [mean,stdev] = stat(x) %STAT Interesting statistics. n = length(x); mean = sum(x) / n; stdev = sqrt(sum((x - mean).^2)/n); defines a new function called STAT that calculates the mean and standard deviation of a vector. The variables within the body of the function are all local variables. See SCRIPT for procedures that work globally on the workspace. A subfunction that is visible to the other functions in the same file is created by defining a new function with the FUNCTION keyword after the body of the preceding function or subfunction. For example, avg is a subfunction within the file STAT.M: function [mean,stdev] = stat(x) %STAT Interesting statistics. n = length(x); mean = avg(x,n); stdev = sqrt(sum((x-avg(x,n)).^2)/n); % function mean = avg(x,n) %MEAN subfunction mean = sum(x)/n; Subfunctions are not visible outside the file where they are 9

6 Γ. Γεωργίου & Χρ. Ξενοφώντος defined. Normally functions return when the end of the function is reached. A RETURN statement can be used to force an early return. See also SCRIPT, RETURN, VARARGIN, VARARGOUT, NARGIN, NARGOUT, INPUTNAME, MFILENAME. Ας δούμε ορισμένα παραδείγματα. Παράδειγμα 3.2. sumprod.m function [sum, prod] = sumprod (x, x2, x3) % function [sum, prod] = sumprod (x, x2, x3) % % Paradeigma function m-file % Ypologizei to aroisma kai to ginomeno triwn arimwn % % Onoma function : sumprod % Onoma m-file : sumprod.m % Metablhtes eisodou: x, x2, x3 % Metablhtes exodou : sum (aroisma twn x, x2, x3) % prod (ginomeno twn x, x2, x3) % sum = x+x2+x3; prod = x*x2*x3; % Telos tou sumprod.m Παρατηρούμε ότι ο editor της MATLAB χρησιμοποιεί διαφορετικά χρώματα για τις διάφορες δομές του αρχείου μπλε για τη λέξη function, πράσινο για τα σχόλια και μαύρο για τις εντολές. Ας δούμε τώρα τι γίνεται όταν ζητήσουμε βοήθεια για την εντολή (ή αρχείο) που δημιουργήσαμε: >> help sumprod Paradeigma function m-file Ypologizei to aroisma kai to ginomeno triwn arimwn Onoma function : sumprod Onoma m-file : sumprod.m Metablhtes eisodou: x, x2, x3 Metablhtes exodou : sum (aroisma twn x, x2, x3) prod (ginomeno twn x, x2, x3) Τώρα, ας καλέσουμε το αρχείο με δεδομένα εισόδου, π.χ., 3 και 4: >> sumprod(, -3, 4) 2 Μια και δεν καλέσαμε το αρχείο ζητώντας και τις δύο μεταβλητές εξόδου, πήραμε μόνο την πρώτη, δηλ. x+ x2 + x3 = 3+ 4= 2. Για να πάρουμε και τις δύο μεταβλητές εξόδου, πρέπει να γράψουμε >> [s,p] = sumprod(, -3, 4) s = 2 p = 92

7 3. M-files -2 Σημειώνουμε ότι αν και μπορούμε να πάρουμε μόνο τη πρώτη μεταβλητή εξόδου (όπως είδαμε πιο πάνω) δεν μπορούμε να πάρουμε μόνο τη δεύτερη το ίδιο ισχύει ακόμα και αν έχουμε περισσότερες από δύο μεταβλητές εξόδου. Αν καλέσουμε το αρχείο μας με κάποια άλλα δεδομένα εισόδου, π.χ. 2, και 5, τότε θα πάρουμε >> [s,p] = sumprod(-2,, 5) s = -7 p = Τέλος, σχολιάστε το αποτέλεσμα του >> sumprod(s,p,s+p) -4 Παράδειγμα miscop.m function [deta, ranka, Atrans, Ainv, A2] = miscop(a) % function [deta, ranka, Atrans, Ainv, A2] = miscop(a) % % Briskei (a) thn orizousa % (b) ton bamo % (c) ton anastrofo % (d) ton antistrofo kai % (e) to tetragwno enos tetragwnikou pinaka. % % Shmeiwsh: den ginetai elegxos an o pinakac einai tetragwnikos % kai antistreyimos % deta = det(a) ranka = rank(a) Atr A' Ainv = inv(a) A2 = A*A % Telos miscop.m Ας δοκιμάσουμε να τρέξουμε το αρχείο μας με ένα τυχαίο 5 5 πίνακα Α τον οποίο θα κατασκευάσουμε μέσω της εντολής rand, και θα δώσουμε σαν μεταβλητή εισόδου: >> [deta, ranka, Atrans, Ainv, A2] = miscop(rand(5,5)) deta =.292 ranka = 5 Atr Ainv = 93

8 Γ. Γεωργίου & Χρ. Ξενοφώντος A2 = deta =.292 ranka = 5 Atr Ainv = A2 = Παράδειγμα stat.m function [mean,stdev] = stat(x) % function [mean,stdev] = stat(x) % % Ypologizei tov meso oro kai thn tupikh % apoklish evos diavusmatos x. n = length(x); mean = sum(x) / n; stdev = sqrt(sum((x - mean).^2)/n); % Telos tou stat.m Ας χρησιμοποιήσουμε το πιο πάνω m-file για ένα τυχόν διάνυσμα x με συνιστώσες. (Για να μην δούμε τις συνιστώσες του x βάζουμε ; στο τέλος την εντολής που ορίζει το x). >> x=rand(,); >> [mean,stdev] = stat(x) mean = 94

9 3. M-files.5286 stdev =.283 Παράδειγμα stat2.m Ας δούμε τώρα το ίδιο m-file όπως πιο πάνω, αλλά τώρα ας χρησιμοποιήσουμε μια υποσυνάρτηση για τον υπολογισμό του μέσου όρου (η οποία φαίνεται στο τέλος του m-file και καλείται avg). function [mean,stdev] = stat2(x) % function [mean,stdev] = stat2(x) % % Ypologizei tov meso oro kai thn tupikh % apoklish evos diavusmatos x. %% n = length(x); mean = avg(x,n); stdev = sqrt(sum((x-avg(x,n)).^2)/n); % function mean = avg(x,n) % uposuvarthsh pou upologizei tov meso oro mean = sum(x)/n; Χρησιμοποιώντας πάλι ένα (άλλο) τυχόν διάνυσμα με συνιστώσες σαν δεδομένο εισόδου, έχουμε >> y =rand(,); >> [mean,stdev] = stat2(y) mean =.4652 stdev =.2776 Συναρτήσεις χωρίς ορίσματα εισόδου και εξόδου Σε μερικές περιπτώσεις τα ορίσματα εισόδου και εξόδου δεν είναι απαραίτητα. Για παράδειγμα, οι συναρτήσεις βιβλιοθήκης clock και pi δεν έχουν ορίσματα εισόδου. Αυτό ισχύει και για το function m-file που ακολουθεί: function []=star() % STAR % Παράδειγμα function m-file % χωρίς ορίσματα εισόδου και εξόδου % Κατασκευάζει το γράφημα ενός άστρου. theta=pi/2:.8*pi:4.8*pi; r=ones(,6); polar(theta,r) % End of STAR Οι κενές αγκύλες δηλώνουν ότι δεν υπάρχουν μεταβλητές εξόδου. Ομοίως οι κενές παρενθέσεις δηλώνουν ότι δεν υπάρχουν μεταβλητές εισόδου. Είναι επίσης φανερό ότι οι μεταβλητές theta και r είναι τοπικές και έτσι δεν εμφανίζονται στο χώρο εργασίας. Το star δεν επιστρέφει καμιά μεταβλητή εξόδου αλλά δημιουργεί το ακόλουθο γράφημα. 95

10 Γ. Γεωργίου & Χρ. Ξενοφώντος Ερώτηση: σε τι διαφέρει ένα function m-file χωρίς ορίσματα εισόδου και εξόδου από ένα script file; Προσδιορισμός του πλήθους των μεταβλητών εισόδου και εξόδου Οι εντολές nargin και nargout επιστρέφουν αντίστοιχα το πλήθος των μεταβλητών εισόδου και εξόδου μιας συνάρτησης. Όταν η nargin χρησιμοποιείται σε συνάρτηση ορισμένη από τον χρήστη προσδιορίζει πόσες μεταβλητές εισόδου έχουν δοθεί. Έτσι η συνάρτηση μπορεί να έχει μεταβαλλόμενο πλήθος μεταβλητών. Η nargin επιστρέφει την τιμή - όταν χρησιμοποιείται σε συνάρτηση βιβλιοθήκης με μεταβαλλόμενο πλήθος μεταβλητών εισόδου. Τέλος, όταν η nargout χρησιμοποιείται σε συνάρτηση ορισμένη από το χρήστη, τότε αυτή επιστρέφει το πλήθος των μεταβλητών εισόδου που έχουν ζητηθεί από τον χρήστη. Παράδειγμα Οι συναρτήσεις star (που ορίσαμε πιο πάνω), clock, sin, rem και surf έχουν αντίστοιχα,,, 2 και μεταβαλλόμενες σε πλήθος μεταβλητές εισόδου: >> nargin('star') >> nargin('clock') >> nargin('sin') >> nargin('rem') 2 >> nargin('surf') - >> 96

11 3. M-files Οι συναρτήσεις star, inv και eig έχουν αντίστοιχα,, και 2 μεταβλητές εξόδου: >> nargout('star') >> nargout('inv') >> nargout('eig') 2 Παρατήρηση: Ως γνωστό η συνάρτηση size επιστρέφει τις διαστάσεις (δηλ. τους αριθμούς γραμμών και στηλών) ενός πίνακα. Είναι λοιπόν λογικό να μαντέψουμε ότι η nargout( size ) έχει τιμή 2. Αυτό δεν ισχύει: >> nargout('size') Η εξήγηση βρίσκεται στο ότι έχουμε μόνο μια μεταβλητή εξόδου που είναι ένας πίνακας γραμμή με τουλάχιστον 2 στοιχεία: >> x=; u=:5; A=[:4;zeros(,4)]; S=rand(2,3,4); >> size(x), size(u), size(a), size(s) >> Τοπικές και καθολικές μεταβλητές Έχουμε ήδη αναφέρει ότι σ ένα αρχείο συνάρτησης (function m-file) μπορούμε να χρησιμοποιήσουμε τοπικές μεταβλητές (local variables) οι οποίες δεν εμφανίζονται στο χώρο εργασίας αφού η συνάρτηση επικοινωνεί με αυτόν μόνο μέσω των μεταβλητών εισόδου και εξόδου. Έτσι οι τοπικές μεταβλητές έχουν νόημα μόνο μέσα στο αρχείο συνάρτησης. Όπως ο χρήστης που εργάζεται στο παράθυρο εργασίας δεν έχει πρόσβαση στις τοπικές μεταβλητές του function m-file, έτσι και αυτό δεν έχει πρόσβαση στις μεταβλητές του χώρου εργασίας. Σε εξαιρετικές περιπτώσεις μπορούμε να ορίσουμε μια μεταβλητή ως καθολική (global variable) με την εντολή global. Για παράδειγμα, με την εντολή >> global GLOB η μεταβλητή GLOB του χώρου εργασίας γίνεται καθολική και είναι διαθέσιμη σε όλα τα m-files. To m-file αναζητεί την τιμή της GLOB στο χώρο εργασίας. Με την εντολή whos μπορούμε να δούμε τις ενεργές καθολικές μεταβλητές. >> x=; GLOB=2; >> whos Name Size Bytes Class Attributes 97

12 Γ. Γεωργίου & Χρ. Ξενοφώντος >> GLOB x 8 double global x x 8 double Η εντολή keyboard Με την εντολή keyboard διακόπτεται η εκτέλεση ενός m-file και ο έλεγχος επανέρχεται στο πληκτρολόγιο του χρήστη. Στην περίπτωση αυτή, η προτροπή στο παράθυρο εντολών αλλάζει από σε >> K>> όπου το γράμμα K δηλώνει ακριβώς ότι ο έλεγχος είναι στο πληκτρολόγιο του χρήστη ο οποίος αποκτά πρόσβαση στις τοπικές μεταβλητές αφού μπορεί να τις δει, να τις χρησιμοποιήσει σε εντολές ή ακόμα να τις τροποποιήσει. Με την εντολή K>> return ο έλεγχος επανέρχεται στο m-file. Η εντολή keyboard είναι χρήσιμη στον εντοπισμό λαθών στη ΜΑΤLAB. Παράδειγμα Δίνεται το πιο κάτω function m-file: function A2=testkeyb(A) % TESTKEYB.m % % This is an example using the command KEYBOARD. % This function constructs the block matrix % [A O] % [I A] % and calculates its inverse (A2). % The variables n, I, O, A and x are local. % n=size(a); I=eye(n); O=zeros(n); A=[A O; I A]; x=det(a); % Transfer control to the keyboard keyboard A2=inv(A) Ακολουθούν κάποια αποτελέσματα που παίρνουμε με την testkeyb: >> B=testkeyb( [ 2; 2 ] ) K>> x x = 9 K>> format rat K>> return B = -/3 2/3 2/3 -/3-5/9 4/9 -/3 2/3 4/9-5/9 2/3 -/3 >> 98

13 3. M-files 3.3 Μαθηματικές συναρτήσεις Τα m-files είναι ιδιαίτερα χρήσιμα στον ορισμό (μαθηματικών) συναρτήσεων, όπως για παράδειγμα η 2 4x f( x) = 4 x + 2. Γράφουμε ένα m-file που ορίζει αυτή τη συνάρτηση, όπως φαίνεται πιο κάτω, και το αποθηκεύουμε σε ένα αρχείο με το όνομα f.m το οποίο πρέπει να βρίσκεται στον φάκελο εργασίας (working directory) ή στον φάκελο (directory) της MATLAB ή στον δρόμο αναζήτησης (research path) της MATLAB. function [F] = f(x) F = 4*x.^2./(x.^4+2); % Telos tou f.m Για να πάρουμε την τιμή της f για x =, γράφουμε απλά >> f().3333 Πράγματι, >> 4*()^2/(()^4+2).3333 Με τον ίδιο τρόπο παίρνουμε και άλλες τιμές: >> f() >> f(-3).4337 >> f(5).595 Παρατήρηση Η f δουλεύει και στην περίπτωση που το x είναι διάνυσμα αφού στο πιο πάνω m-file ορίσαμε τις πράξεις κατά τα στοιχεία του (δηλ. βάλαμε. πριν από τα ^ και / ). Για παράδειγμα, για το διάνυσμα έχουμε >> x=[-3:.5:3]'; >> f(x) x = ( 3, 2.5, 2,.5,,.5,,.5,,.5,2,2.5,3) T 99

14 Γ. Γεωργίου & Χρ. Ξενοφώντος Αυτή η δυνατότητα θα μας φανεί πολύ χρήσιμη για την κατασκευή γραφημάτων στο Κεφ. 5. Προς το παρόν, σημειώνουμε ότι αν, για παράδειγμα, θέλουμε να κατασκευάσουμε τη γραφική παράσταση της πιο πάνω συνάρτησης για x [,], τότε διαμερίζουμε ομοιόμορφα το διάστημα αυτό με σημεία ( ίσα υποδιαστήματα) με την εντολή >> x=linspace(-,,); και μετά χρησιμοποιούμε την εντολή >> plot(x,f(x)) Παίρνουμε έτσι την γραφική παράσταση της f : Η βοήθεια που δίνει η MATLAB για την εντολή linspace, έχει ως εξής: >> help linspace LINSPACE Linearly spaced vector. LINSPACE(X, X2) generates a row vector of linearly equally spaced points between X and X2. LINSPACE(X, X2, N) generates N points between X and X2. For N < 2, LINSPACE returns X2. Class support for inputs X,X2: float: double, single See also logspace.

15 3. M-files Παράδειγμα Η συνάρτηση f 2 ( x ) = cos(4 π x ) sin(3 π x ) ορίζεται στο m-file f2.m που φαίνεται πιο κάτω: function [G] = f2(x) G = cos(4*pi*x) - sin(3*pi*x); % Telos tou f2.m Σημειώνουμε ότι για αυτή τη συνάρτηση δεν χρειάζεται να χρησιμοποιήσουμε πράξεις κατά στοιχεία μια και οι τριγωνομετρικές συναρτήσεις βιβλιοθήκης δουλεύουν και για διανύσματα. Έχουμε >> f2(-3.2) -.76 >> f2() >> f2(.85).6787 >> f2(). >> f2([:.2:]) Σχολιάστε το τελευταίο αποτέλεσμα. Παράδειγμα Με τον πιο πάνω τρόπο μπορούμε να ορίσουμε συναρτήσεις πολλών μεταβλητών, αν χρησιμοποιήσουμε περισσότερες από μια μεταβλητές εισόδου. Έστω η συνάρτηση (, ) xy ( 2 2 f )cos( ) 3 xy = e + x + y y η οποία ορίζεται στο m-file f3.m που φαίνεται πιο κάτω: function [F] = f3(x,y) F = exp(-x.*y) + (x.^2 + y.^2).*cos(y); %Telos tou f3.m Έτσι, παίρνουμε τιμές της f 3 (x, y) ως εξής: >> f3(,)

16 Γ. Γεωργίου & Χρ. Ξενοφώντος >> f3(-4,) Ο πιο πάνω τρόπος ορισμού μαθηματικών συναρτήσεων, αν και δεν είναι ο μοναδικός, είναι ο πιο λειτουργικός ειδικά όταν γράφουμε προγράμματα τα οποία καλούν αυτές τις συναρτήσεις (όπως και θα δούμε στα επόμενα κεφάλαια) Ανώνυμες συναρτήσεις Η MATLAB περιλαμβάνει ένα απλό τύπο συνάρτησης η οποία καλείται ανώνυμη συνάρτηση (anonymous function) η οποία ορίζεται είτε στο παράθυρο εντολών είτε σ ένα αρχείο script και είναι διαθέσιμη όσο διαρκεί η εργασία μας στο παράθυρο εντολών. Ας πάρουμε σαν παράδειγμα τη συνάρτηση f = sin(2 π x) Η ανώνυμη συνάρτηση ορίζεται με την εντολή όπου f sin(2*pi*x) Το δηλώνει στη MATLAB ότι η f είναι συνάρτηση. Αμέσως μετά το ακολουθεί η μεταβλητή εισόδου της συνάρτησης. Τέλος ορίζεται η συνάρτηση. Το όνομα της συνάρτησης εμφανίζεται στο παράθυρο των μεταβλητών με τον χαρακτηρισμό function_handle. Αν καθαρίσουμε το χώρο εργασίας (με την εντολή clear) η ανώνυμη συνάρτηση θα διαγραφεί. Όπως και κάθε άλλη ενεργή μεταβλητή μια ανώνυμη συνάρτηση μπορεί να αποθηκευτεί σ ένα αρχείο.mat με την εντολή save και να φορτωθεί εκ νέου με την εντολή load. Οι ανώνυμες συναρτήσεις χρησιμοποιούνται όπως κάθε άλλη συνάρτηση. Για παράδειγμα, αφού ορίσουμε την f όπως είδαμε πιο πάνω, τότε μπορούμε να πούμε >> f() >> f(.25) Η εντολή fplot H fplot είναι παράδειγμα συνάρτησης βιβλιοθήκης που έχει σαν όρισμα μια άλλη συνάρτηση. Η fplot έχει δύο ορίσματα εισόδου: μια συνάρτηση και το διάστημα στο οποίο θα κάνει το γράφημά της. Αν τη χρησιμοποιήσουμε με την ανώνυμη συνάρτηση που μόλις ορίσαμε παίρνουμε το ακόλουθο γράφημα: fplot(f, [ 4]) 2

17 3. M-files Παράδειγμα Θα ορίσουμε μια ανώνυμη συνάρτηση για την g x y x y xy (, ) = Παρατηρούμε ότι τώρα έχουμε δύο μεταβλητές εισόδου, τις x και y. Άρα γράφουμε g sqrt(x.^2+y.^2) 2*x.*y Για να μπορεί να χρησιμοποιείται και με διανύσματα σαν μεταβλητές εισόδου ορίζουμε τις πράξεις κατά τα στοιχεία των (διανυσμάτων) x και y. Ένας άλλος τρόπος ορισμού (μαθηματικών) συναρτήσεων είναι μέσω της εντολής inline, της οποίας η βοήθεια που δίνει η MATLAB φαίνεται πιο κάτω. >> help inline INLINE Construct INLINE object. INLINE(EXPR) constructs an inline function object from the MATLAB expression contained in the string EXPR. The input arguments are automatically determined by searching EXPR for variable names (see SYMVAR). If no variable exists, 'x' is used. INLINE(EXPR, ARG, ARG2,...) constructs an inline function whose input arguments are specified by the strings ARG, ARG2,... Multicharacter symbol names may be used. INLINE(EXPR, N), where N is a scalar, constructs an inline function whose input arguments are 'x', 'P', 'P2',..., 'PN'. Examples: g = inline('t^2') g = inline('sin(2*pi*f + theta)') g = inline('sin(2*pi*f + theta)', 'f', 'theta') g = inline('x^p', ) Η inline έχει κάπως πιο σύνθετη σύνταξη από την ανώνυμη συνάρτηση αλλά έχει το πλεονέκτημα ότι υποστηρίζεται από παλαιότερες εκδοχές της MATLAB. 3

18 Γ. Γεωργίου & Χρ. Ξενοφώντος Παράδειγμα Θα ορίσουμε τη συνάρτηση f που είδαμε πιο πάνω: >> f=inline('sin(2*pi*x)','x') f = Inline function: f(x) = sin(2*pi*x) >> f() >> f(.25) Παράδειγμα Θα ορίσουμε τη συνάρτηση g του Παραδείγματος έχουμε >> g=inline('sqrt(x.^2+y.^2)-2*x.*y','x','y') g = Inline function: g(x,y) = sqrt(x.^2+y.^2)-2*x.*y >> g(,) >> g(,) >> g(sqrt(2),sqrt(2)) -2. Παράδειγμα Για την συνάρτηση του Παραδείγματος 3.3. μπορούμε να γράψουμε >> f2 = inline('cos(4*pi*x) - sin(3*pi*x)','x') f2 = Inline function: f2(x) = cos(4*pi*x) - sin(3*pi*x) >> f2() >> f2(-4.).8 Ομοίως για την συνάρτηση του παραδείγματος έχουμε: >> f3 = inline('exp(-x.*y) + (x.^2 + y.^2).*cos(y)','x','y') f3 = Inline function: f3(x,y) = exp(-x.*y) + (x.^2 + y.^2).*cos(y) >> f3(,) >> f3(-4,)

19 3. M-files Η εντολή feval Ένας άλλος τρόπος να καλέσουμε μια συνάρτηση που έχει οριστεί σε ένα m-file, είναι μέσω της εντολής feval. Αν για παράδειγμα έχουμε μια m-συνάρτηση fname με μεταβλητές εισόδου τις x και x2, ένας τρόπος να υπολογίσουμε την τιμή της είναι: z = fname(x, x2) Εναλλακτικά, μπορούμε να χρησιμοποιήσουμε την εντολή feval z = x, x2) Η feval υπολογίζει λοιπόν την m-συνάρτηση που ακολουθεί μετά το για τις τιμές των μεταβλητών x και x2. Η feval χρησιμοποιείται συνήθως μέσα σε συναρτήσεις οι οποίες έχουν το όνομα μιας άλλης συνάρτησης σαν αλφαριθμητική μεταβλητή εισόδου. H feval δουλεύει και με τις γνωστές συναρτήσεις βιβλιοθήκης της MATLAB. Παράδειγμα Για να υπολογίσουμε το sin(pi/2) μπορούμε να γράψουμε >> sin(pi/2) ή ισοδύναμα >> pi/2) Επίσης, αντί της >> rem(234,) μπορούμε να γράψουμε >> 234, ) Παράδειγμα Έστω το m-file με όνομα myfunction.m: function [f] = myfunction(x,y,z) f = x.^3 + exp(y) +./(z.^2 + 2); %Telos tou myfunction.m Για να υπολογίσουμε την πιο πάνω συνάρτηση για x =, y = 2, z = 3, μπορούμε να γράψουμε >> 8.48 Ισοδύναμα, θα μπορούσαμε να γράψουμε >> myfunction(,2,3)

20 Γ. Γεωργίου & Χρ. Ξενοφώντος Παράδειγμα Το πρόγραμμα function με όνομα exfun έχει σαν μεταβλητές εισόδου ένα αλφαριθμητικό strfun που είναι το όνομα μιας συνάρτησης f(x) και ένα διάνυσμα x. Η συνάρτηση υπολογίζει την παράσταση: function z=exfun(strfun,x) f 2 ( x) 3 f( x) + 2 %EXFUN Briskei thn % f(x)^2-3 f(x) + % opou f(x) h sunartisi eisodou strfun. % Paradeigma klisis ths EXFUN: % y=feval(strfun, x); z=y.^2-3*y + 2; %End of exfun Εδώ χρησιμοποιήσαμε τη feval προκειμένου να υπολογίσουμε πρώτα την f(x). Κατά τον υπολογισμό της z υψώσαμε τα στοιχεία του y στο τετράγωνο χρησιμοποιώντας τελεία πριν από το σύμβολο ^. Για να καλέσουμε την exfun πριν από το όνομα της συνάρτησης χρησιμοποιούμε το >> >> w = 2 Και μια περίπτωση όπου το x είναι διάνυσμα: >> x=[.:.:5]; >> >> plot(x,y) Παίρνουμε έτσι την ακόλουθη γραφική παράσταση: 6

21 3. M-files Σημείωση: Αν στο πιο πάνω παράδειγμα δώσουμε σαν δεδομένο εισόδου μια συνάρτηση που δεν είναι συνάρτηση βιβλιοθήκης (π.χ. ανώνυμη ή inline συνάρτηση), τότε το πριν από το όνομα της συνάρτησης μπορεί να παραλειφθεί. Για παράδειγμα, >> f 2*x - 3 f 2*x - 3 >> exfun(f,) 6 Στην περίπτωση όμως που η συνάρτηση ορίζεται με m-file, η χρήση του είναι υποχρεωτική. 7

22 Γ. Γεωργίου & Χρ. Ξενοφώντος 3.3 Ασκήσεις 3. Γράψτε ένα script file που να ονομάζεται F2C.m το οποίο να ζητά από τον χρήστη τη θερμοκρασία σε βαθμούς Φάρεναϊτ και να την μετατρέπει σε βαθμούς Κελσίου. Βεβαιωθείτε ότι το script file σας δουλεύει σωστά χρησιμοποιώντας το για τουλάχιστον 4 μετατροπές θερμοκρασίας. 3.2 Δημιουργήστε ένα νέο function m-file με το όνομα abssumprod.m το οποίο να υπολογίζει το άθροισμα και το γινόμενο των απόλυτων τιμών 4 αριθμών. Στα σχόλια να γράψετε το ονοματεπώνυμό σας. Βεβαιωθείτε ότι το m-file σας δουλεύει σωστά χρησιμοποιώντας το για τουλάχιστον 2 παραδείγματα. 3.3 Δημιουργήστε ένα νέο function m-file με το όνομα newmiscop.m το οποίο να υπολογίζει το τετράγωνο ενός τετραγωνικού πίνακα (σύμβολο Α2) καθώς επίσης την ορίζουσα και τον βαθμό του Α2. Στα σχόλια να γράψετε το ονοματεπώνυμό σας. Βεβαιωθείτε ότι το m-file σας δουλεύει σωστά χρησιμοποιώντας το για τουλάχιστον 3 παραδείγματα. 3.4 Να γράψετε ένα function m-file με όνομα euclnrm.m το οποίο να υπολογίζει την τετραγωνική ρίζα του αθροίσματος των τετραγώνων των στοιχείων ενός πίνακα. Στα σχόλια να γράψετε το ονοματεπώνυμό σας. Βεβαιωθείτε ότι το m- file σας δουλεύει σωστά χρησιμοποιώντας το για τουλάχιστον 2 παραδείγματα. 3.5 Γράψτε ένα script file που να μετατρέπει τις μοίρες σε ακτίνια και ένα άλλο που να μετατρέπει τα ακτίνια σε μοίρες. Βεβαιωθείτε ότι το script file σας δουλεύει σωστά χρησιμοποιώντας το για τουλάχιστον 4 μετατροπές. 3.6 Γράψτε ένα function file, που να καλείται nthroot.m, το οποίο να παίρνει σαν δεδομένα εισόδου τα x και n και να δίνει σαν δεδομένο εξόδου τη νιοστή ρίζα του x. Βεβαιωθείτε ότι το m-file σας δουλεύει σωστά χρησιμοποιώντας το για τουλάχιστον 3 παραδείγματα. 3.7 (α) Γράψτε ένα function file που βρίσκει το μέγιστο κατ απόλυτη τιμή στοιχείο πίνακα. (β) Γράψτε ένα άλλο function file που βρίσκει το ελάχιστο κατ απόλυτη τιμή στοιχείο πίνακα. (γ) Γράψτε ένα function file που βρίσκει το μέγιστο και το ελάχιστο κατ απόλυτη τιμή στοιχείο πίνακα. Βεβαιωθείτε ότι τα m-file σας δουλεύει σωστά χρησιμοποιώντας τα για τουλάχιστον 2 παραδείγματα (για το καθένα). 3.8 Γράψτε ένα function file που βρίσκει το ίχνος και την ορίζουσα του γινομένου δύο τετραγωνικών πινάκων. Βεβαιωθείτε ότι τα m-file σας δουλεύει σωστά χρησιμοποιώντας τα για τουλάχιστον 2 παραδείγματα. 3.9 Γράψτε ένα function file που να υπολογίζει το πολυώνυμο 3 2 p( x) = 3x + 5x 2x+. Χρησιμοποιώντας το m-file σας, υπολογίστε τα p( 3), p( ), p(), p(), p(4), p(2). 8

23 3. M-files 3. Γράψτε ένα function m-file με όνομα ex3_2.m, το οποίο να παίρνει σαν δεδομένο εισόδου το x και να δίνει σαν δεδομένα εξόδου τα y, z, και w τα οποία ορίζονται από τις y = x/ 5, z = (x + y)/ και w = xyz. 3. Έστω ότι έχετε ένα κυλινδρικό δοχείο ύψους h με διάμετρο βάσης b στο οποίο θέλετε να βάλετε μπάλες του πιγκ πογκ με διάμετρο d. Έστω V = hπ b/2 ο ( ) 2 3 όγκος του δοχείου και VB = d ο όγκος του κύβου που περιφράσσει μια μπάλα. Τότε, ο ελάχιστος αριθμός μπάλων που χωρούν στο δοχείο δίνεται από N = VC / VB. Γράψτε ένα script file με όνομα balls.m το οποίο να λύνει αυτό το πρόβλημα (δηλ. να δίνει τη τιμή του Ν) για d =.54 cm, b= 8 cm, h= 4cm. 3.2 Επαναλάβετε την πιο πάνω άσκηση, αλλά αυτή τη φορά γράψτε ένα function m-file με όνομα balls2.m το οποίο να λύνει το ίδιο πρόβλημα για οποιαδήποτε d, b και h. (Δηλ. τα d, b και h θα είναι δεδομένα εισόδου και το Ν θα είναι το δεδομένο εξόδου.) Βεβαιωθείτε ότι το m-file σας δουλεύει σωστά χρησιμοποιώντας το για τουλάχιστον 2 παραδείγματα της επιλογής σας. 3.3 Αν καταθέσουμε Ρ σε ένα λογαριασμό με ετήσιο επιτόκιο r το οποίο ανατοκίζεται n φορές το χρόνο, τότε μετά από t χρόνια το υπόλοιπο στον λογαριασμό θα είναι B = P( + r/ n) nt. Έστω ότι καταθέτουμε 5 σε ένα λογαριασμό με ετήσιο ανατοκισμό για 7 χρόνια, και έστω ότι καταθέτουμε 5 σε έναν άλλα λογαριασμό με μηνιαίο ανατοκισμό. Αν και για τους δύο λογαριασμούς το επιτόκιο είναι 8.5%, να γράψετε ένα script file με όνομα ex3_5a.m το οποίο να βρίσκει πόσα χρόνια (και πόσους μήνες) θα πρέπει να περάσουν για να έχουμε στον δεύτερο λογαριασμό το ίδιο υπόλοιπο με τον πρώτο. 3.4 Να επαναλάβετε την προηγούμενη άσκηση, αλλά αυτή τη φορά γράψτε ένα function m-file με όνομα ex3_5b.m το οποίο να λύνει το ίδιο πρόβλημα για οποιαδήποτε P, r και t. (Δηλ. τα P, r και t θα είναι δεδομένα εισόδου και το απαιτούμενο χρονικό διάστημα θα είναι το δεδομένο εξόδου.) Βεβαιωθείτε ότι το m-file σας δουλεύει σωστά χρησιμοποιώντας το για τουλάχιστον 2 παραδείγματα της επιλογής σας. 3.5 Η απόσταση d ενός σημείου ( x, y ) από μια ευθεία με εξίσωση 2 Ax + By + C = δίνεται από την d = Ax + By + C / A + B 2. Γράψτε ένα function m-file με όνομα ex3_7.m το οποίο να παίρνει σαν δεδομένα εισόδου τα x, y, A, B, και C, και να δίνει σαν δεδομένου εξόδου το d. Χρησιμοποιείστε το για να βρείτε την απόσταση του σημείου (2, 3) από την ευθεία 3x+ 5y 6=. 3.6 Ορίστε τις πιο κάτω συναρτήσεις χρησιμοποιώντας ένα m-file για την κάθε μια, και βρείτε τις ζητούμενες τιμές, χρησιμοποιώντας την εντολή feval. (α) (β) (γ) f ( x) = cos ( x) sin ( x), f (), f ( π /2), f( π ) f ( x) = 3x 2x, f ( ), f (/ 2), f2(3) f ( x, y) = y x + xy 5, f (, ), f (,2), f (3, 6) C 9

24 Γ. Γεωργίου & Χρ. Ξενοφώντος xyz f ( x, y, z) =, f (,,), f (,2, 7), f4 ( π, e, 2) x + y + z (δ) y x 3.7 (α) Ορίστε τη συνάρτηση gxy (, ) = e με την εντολή inline, και βρείτε τα g(,), g(,), g ( ln 3, ln 2). (β) Επαναλάβετε την άσκηση ορίζοντας μια ανώνυμη συνάρτηση. 3.8 Γράψτε μια m-συνάρτηση με όνομα compfun.m που υπολογίζει τη σύνθεση μιας συνάρτησης f με τον εαυτό της, δηλ. f(f(x)). Το όνομα της f πρέπει να είναι μεταβλητή εισόδου για την compfun. Βεβαιωθείτε ότι το m-file σας δουλεύει σωστά χρησιμοποιώντας το για τουλάχιστον 2 παραδείγματα της επιλογής σας. 3.9 Γράψτε μια m-συνάρτηση με όνομα prodfun που υπολογίζει το γινόμενο δύο συναρτήσεων f(x) και g(x). Τα ονόματα της f και της g πρέπει να είναι μεταβλητές εισόδου για την prodfun. Βεβαιωθείτε ότι το m-file σας δουλεύει σωστά χρησιμοποιώντας το για τουλάχιστον 2 παραδείγματα της επιλογής σας. 3.2 Γράψτε μια m-συνάρτηση με όνομα normvec που θα κανονικοποιεί ένα διάνυσμα u. 3.2 Ορίστε τη συνάρτηση 2 3 x x f( x) = x+ 2 3 όπου το x μπορεί να είναι διάνυσμα, με τους εξής τρόπους: (α) Σαν m-συνάρτηση (β) Με ανώνυμη συνάρτηση. (γ) Με την εντολή inline 3.22 Ορίστε τη συνάρτηση 5cos( xy) hxy (, ) = π x + y όπου τα x και y μπορεί να είναι διανύσματα, με τους εξής τρόπους: (α) Σαν m-συνάρτηση (β) Με ανώνυμη συνάρτηση. (γ) Με την εντολή inline 2 2

Εισαγωγή στο GNU Octave/MATLAB

Εισαγωγή στο GNU Octave/MATLAB Εισαγωγή στο GNU Octave/MATLAB Δρ. Βασίλειος Δαλάκας Καλώς ήρθατε στο εργαστήριο Σημάτων και Συστημάτων με το λογισμικό Octave (Οκτάβα). Οι σημειώσεις αυτές έχουν βασιστεί στις σημειώσεις του εργαστηρίου

Διαβάστε περισσότερα

Τυπικές χρήσεις της Matlab

Τυπικές χρήσεις της Matlab Matlab Μάθημα 1 Τι είναι η Matlab Ολοκληρωμένο Περιβάλλον Περιβάλλον ανάπτυξης Διερμηνευμένη γλώσσα Υψηλή επίδοση Ευρύτητα εφαρμογών Ευκολία διατύπωσης Cross platform (Wintel, Unix, Mac) Τυπικές χρήσεις

Διαβάστε περισσότερα

11 ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ

11 ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ 11 ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ 11.1 Γενικά περί συνήθων διαφορικών εξισώσεων Μια συνήθης διαφορική εξίσωση (ΣΔΕ) 1 ης τάξης έχει τη μορφή dy d = f (, y()) όπου f(, y) γνωστή και y() άγνωστη συνάρτηση.

Διαβάστε περισσότερα

Εισαγωγή στο Περιβάλλον Επιστημονικού Προγραμματισμού MATLAB-Simulink. Δημήτριος Τζεράνης Λεωνίδας Αλεξόπουλος

Εισαγωγή στο Περιβάλλον Επιστημονικού Προγραμματισμού MATLAB-Simulink. Δημήτριος Τζεράνης Λεωνίδας Αλεξόπουλος Εισαγωγή στο Περιβάλλον Επιστημονικού Προγραμματισμού MATLAB-Simulink Δημήτριος Τζεράνης Λεωνίδας Αλεξόπουλος 1 Τι είναι τα Matlab και Simulink? Το Matlab (MATrix LABoratory) είναι ένα περιβάλλον επιστημονικού

Διαβάστε περισσότερα

Έναρξη Τερματισμός του MatLab

Έναρξη Τερματισμός του MatLab Σύντομος Οδηγός MATLAB Β. Χ. Μούσας 1/6 Έναρξη Τερματισμός του MatLab Η έναρξη της λειτουργίας του MatLab εξαρτάται από το λειτουργικό σύστημα. Στα συστήματα UNIX πληκτρολογούμε στη προτροπή του συστήματος

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΟ MATHLAB Α ΜΕΡΟΣ

ΕΙΣΑΓΩΓΗ ΣΤΟ MATHLAB Α ΜΕΡΟΣ ΕΙΣΑΓΩΓΗ ΣΤΟ MATHLAB Α ΜΕΡΟΣ ΕΙΣΑΓΩΓΗ ΠΙΝΑΚΩΝ ΣΤΟ MATHLAB Αν θέλουμε να εισάγουμε έναν πίνακα στο mathlab και να προβληθεί στην οθόνη βάζουμε τις τιμές του σε άγκιστρα χωρίζοντάς τις με κόμματα ή κενό

Διαβάστε περισσότερα

Νέο υλικό. www.cs.uoi.gr/~develeg. Matlab2.pdf - Παρουσίαση μαθήματος 2. Matlab-reference.pdf Σημειώσεις matlab στα ελληνικά (13 σελίδες).

Νέο υλικό. www.cs.uoi.gr/~develeg. Matlab2.pdf - Παρουσίαση μαθήματος 2. Matlab-reference.pdf Σημειώσεις matlab στα ελληνικά (13 σελίδες). Matlab Μάθημα Νέο υλικό www.cs.uoi.gr/~develeg Matlab.pdf - Παρουσίαση μαθήματος. Matlab-reference.pdf Σημειώσεις matlab στα ελληνικά (3 σελίδες). Επαναληπτικές δομές Όταν εκτελείται μια πράξη σε ένα διάνυσμα,

Διαβάστε περισσότερα

Εισαγωγή στον Προγραμματισμό Python Μάθημα 4: Συναρτήσεις (functions) και δομοστοιχεία (modules) στην Python

Εισαγωγή στον Προγραμματισμό Python Μάθημα 4: Συναρτήσεις (functions) και δομοστοιχεία (modules) στην Python Εισαγωγή στον Προγραμματισμό Python Μάθημα 4: Συναρτήσεις (functions) και δομοστοιχεία (modules) στην Python Νοέμβριος 2014 Χ. Αλεξανδράκη, Γ. Δημητρακάκης Συναρτήσεις (Functions) Στον προγραμματισμό,

Διαβάστε περισσότερα

M files RCL Κυκλώματα

M files RCL Κυκλώματα M files RCL Κυκλώματα Στο MATLAB γράφουμε τις δικές μας εντολές και προγράμματα μέσω αρχείων που καλούνται m-files. Έχουν το επίθεμα.m π.χ compute.m Υπάρχουν δύο είδη m-files: τα αρχεία script (script

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ ΓΛΩΣΣΕΣ ΚΑΙ ΜΕΤΑΦΡΑΣΤΕΣ ΗΥ340

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ ΓΛΩΣΣΕΣ ΚΑΙ ΜΕΤΑΦΡΑΣΤΕΣ ΗΥ340 ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ ΓΛΩΣΣΕΣ ΚΑΙ ΜΕΤΑΦΡΑΣΤΕΣ ΗΥ340 ΕΑΡΙΝΟ ΕΞΑΜΗΝΟ 2008 ΔΙΔΑΣΚΩΝ: ΑΝΤΩΝΙΟΣ ΣΑΒΒΙΔΗΣ ΒΑΣΙΚΗ ΕΡΓΑΣΙΑ ΦΑΣΗ 2η από 5 Παράδοση: Πέμπτη 10 Απριλίου 2008, 24:00 (μεσάνυχτα)

Διαβάστε περισσότερα

Υπο-προγράμματα στη Fortran

Υπο-προγράμματα στη Fortran ΦΥΣ 145 - Διαλ.05 1 Υπο-προγράμματα στη Fortran q Mέχρι τώρα τα προβλήματα και τα προγράμματα που έχουμε δεί ήταν αρκετά απλά και επομένως ένα και μόνο πρόγραμμα ήταν αρκετό για να τα λύσουμε q Όταν τα

Διαβάστε περισσότερα

Λογικά Διανύσματα. >>x = -3/2*pi : pi/100 : 3/2*pi; >>y = tan(x); >>plot(x, y)

Λογικά Διανύσματα. >>x = -3/2*pi : pi/100 : 3/2*pi; >>y = tan(x); >>plot(x, y) Λογικά Διανύσματα Τα λογικά διανύσματα του Matlab είναι πολύ χρήσιμα εργαλεία. Για παράδειγμα ας υποθέσουμε ότι θέλουμε να κάνουμε την γραφική παράσταση της tan(x) στο διάστημα από -3π/2 μέχρι 3π/2. >>x

Διαβάστε περισσότερα

Εισαγωγή στον Προγραμματισμό Python Μάθημα 3: πίνακες και βρόγχος επανάληψης for (για) Νοέμβριος 2014 Χ. Αλεξανδράκη, Γ.

Εισαγωγή στον Προγραμματισμό Python Μάθημα 3: πίνακες και βρόγχος επανάληψης for (για) Νοέμβριος 2014 Χ. Αλεξανδράκη, Γ. Εισαγωγή στον Προγραμματισμό Python Μάθημα 3: πίνακες και βρόγχος επανάληψης for (για) Νοέμβριος 2014 Χ. Αλεξανδράκη, Γ. Δημητρακάκης Πίνακες/Λίστες Σε πολλές περιπτώσεις στον προγραμματισμό υπάρχει η

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ ΓΛΩΣΣΕΣ ΚΑΙ ΜΕΤΑΦΡΑΣΤΕΣ ΗΥ340

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ ΓΛΩΣΣΕΣ ΚΑΙ ΜΕΤΑΦΡΑΣΤΕΣ ΗΥ340 ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ ΓΛΩΣΣΕΣ ΚΑΙ ΜΕΤΑΦΡΑΣΤΕΣ ΗΥ340 ΕΑΡΙΝΟ ΕΞΑΜΗΝΟ 2010 Ι ΑΣΚΩΝ: ΑΝΤΩΝΙΟΣ ΣΑΒΒΙ ΗΣ ΒΑΣΙΚΗ ΕΡΓΑΣΙΑ ΦΑΣΗ 2η από 5 Ανάθεση: Πέµπτη 15 Απριλίου 2010, 11:00 (πρωί)

Διαβάστε περισσότερα

ΣΥΝΑΡΤΗΣΕΙΣ. Η σύνταξη μιας συνάρτησης σ ένα κελί έχει την γενική μορφή: =όνομα_συνάρτησης(όρισμα1; όρισμα2;.)

ΣΥΝΑΡΤΗΣΕΙΣ. Η σύνταξη μιας συνάρτησης σ ένα κελί έχει την γενική μορφή: =όνομα_συνάρτησης(όρισμα1; όρισμα2;.) ΣΥΝΑΡΤΗΣΕΙΣ Συνάρτηση είναι ένας έτοιμος τύπος ο οποίος δέχεται σαν είσοδο τιμές ή συνθήκες και επιστρέφει ένα αποτέλεσμα, το οποίο μπορεί να είναι μια τιμή αριθμητική, αλφαριθμητική, λογική, ημερομηνίας

Διαβάστε περισσότερα

Δυναμικές Ιστοσελίδες Εισαγωγή στην Javascript για προγραμματισμό στην πλευρά του client

Δυναμικές Ιστοσελίδες Εισαγωγή στην Javascript για προγραμματισμό στην πλευρά του client ΕΣΔ 516 Τεχνολογίες Διαδικτύου Δυναμικές Ιστοσελίδες Εισαγωγή στην Javascript για προγραμματισμό στην πλευρά του client Περιεχόμενα Περιεχόμενα Javascript και HTML Βασική σύνταξη Μεταβλητές Τελεστές Συναρτήσεις

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Ολοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα είναι μικρότεροι το 1000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Διάρκεια: 3,5 ώρες Καλή

Διαβάστε περισσότερα

1. ΕΙΣΑΓΩΓΗ ΣΤΟ MATLAB... 13

1. ΕΙΣΑΓΩΓΗ ΣΤΟ MATLAB... 13 ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ 1. ΕΙΣΑΓΩΓΗ ΣΤΟ MATLAB... 13 1.1. Τι είναι το Matlab... 13 1.2. Περιβάλλον εργασίας... 14 1.3. Δουλεύοντας με το Matlab... 16 1.3.1. Απλές αριθμητικές πράξεις... 16 1.3.2. Σχόλια...

Διαβάστε περισσότερα

Ο πίνακας συμβόλων (symbol table) είναι μία δομή, όπου αποθηκεύεται πληροφορία σχετικά με τα σύμβολα του προγράμματος

Ο πίνακας συμβόλων (symbol table) είναι μία δομή, όπου αποθηκεύεται πληροφορία σχετικά με τα σύμβολα του προγράμματος HY340 : ΓΛΩΣΣΕΣ ΚΑΙ ΜΕΤΑΦΡΑΣΤΕΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ, ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ, ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ HY340 : ΓΛΩΣΣΕΣ ΚΑΙ ΜΕΤΑΦΡΑΣΤΕΣ Φροντιστήριο 3 ο Symbol Table & Scopes Ι ΑΣΚΩΝ Αντώνιος Σαββίδης

Διαβάστε περισσότερα

Για τη δημιουργία ενός διανύσματος με στοιχεία από το 0 μέχρι το 20 με βήμα το 2 (χρησιμοποιείται συνήθως για διανύσματα χρόνου) δίνουμε

Για τη δημιουργία ενός διανύσματος με στοιχεία από το 0 μέχρι το 20 με βήμα το 2 (χρησιμοποιείται συνήθως για διανύσματα χρόνου) δίνουμε Εργαστήριο Συστημάτων Αυτομάτου Ελέγχου Άσκηση 1 η Εισαγωγή στο Matlab 1 Άσκηση 1 η : Εισαγωγή στο Matlab Αντικείμενο Εξοικείωση με τις βασικές λειτουργίες του Matlab (πρόγραμμα αριθμητικής ανάλυσης και

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι

ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι κ. ΠΕΤΑΛΙΔΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται

Διαβάστε περισσότερα

Κεφάλαιο 3.5-3.6, 3.2: Συναρτήσεις II. ( ιάλεξη 12) ιδάσκων: ηµήτρης Ζεϊναλιπούρ

Κεφάλαιο 3.5-3.6, 3.2: Συναρτήσεις II. ( ιάλεξη 12) ιδάσκων: ηµήτρης Ζεϊναλιπούρ Κεφάλαιο 3.5-3.6, 3.2: Συναρτήσεις II ( ιάλεξη 12) ιδάσκων: ηµήτρης Ζεϊναλιπούρ 12-1 Ανασκόπηση οµής Προγράµµατος µε Συναρτήσεις #include 1 void PrintMessage (); Πρότυπο ( ήλωση) Συνάρτησης (

Διαβάστε περισσότερα

ΛΧ1004 Μαθηματικά για Οικονομολόγους

ΛΧ1004 Μαθηματικά για Οικονομολόγους ΛΧ1004 Μαθηματικά για Οικονομολόγους Μάθημα 1 ου Εξαμήνου 2Θ+2Φ(ΑΠ) Ι. Δημοτίκαλης, Επίκουρος Καθηγητής 1 ΤΕΙ ΚΡΗΤΗΣ-ΤΜΗΜΑ Λ&Χ: jdim@staff.teicrete.gr ΠΡΟΤΕΙΝΟΜΕΝΟ ΒΙΒΛΙΟ ΕΦΑΡΜΟΓΕΣ ΜΑΘΗΜΑΤΙΚΟΥ ΛΟΓΙΣΜΟΥ

Διαβάστε περισσότερα

Βασικά στοιχεία του MATLAB

Βασικά στοιχεία του MATLAB ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΗΣ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ ΕΡΓΑΣΤΗΡΙΟ Εξοικείωση µε το περιβάλλον του MATLAB και χρήση βασικών εντολών και τεχνικών δηµιουργίας προγραµµάτων, συναρτήσεων

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ ΥΠΟΠΡΟΓΡΑΜΜΑΤΑ. Δρ. Ιωάννης Λυχναρόπουλος 2014-2015. Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας

ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ ΥΠΟΠΡΟΓΡΑΜΜΑΤΑ. Δρ. Ιωάννης Λυχναρόπουλος 2014-2015. Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ ΥΠΟΠΡΟΓΡΑΜΜΑΤΑ Δρ. Ιωάννης Λυχναρόπουλος 2014-2015 Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Τι είναι τα υποπρογράμματα Αυτόνομες μονάδες κώδικα Γραμμένα από τον χρήστη Η δομή

Διαβάστε περισσότερα

Σημειώσεις Matlab. ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ Μάθημα: Αριθμητική Ανάλυση Διδάσκων: Καθηγητής Θ.Η. Σίμος.

Σημειώσεις Matlab. ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ Μάθημα: Αριθμητική Ανάλυση Διδάσκων: Καθηγητής Θ.Η. Σίμος. ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ Μάθημα: Αριθμητική Ανάλυση Διδάσκων: Καθηγητής Θ.Η. Σίμος Σημειώσεις Matlab Γενικά a = 2 Εκχώρηση της τιμής 2 στη μεταβλητή a. b = 3; Εκχώρηση της τιμής

Διαβάστε περισσότερα

Προγραμματισμός σε Matlab για προβλήματα βελτιστοποίησης

Προγραμματισμός σε Matlab για προβλήματα βελτιστοποίησης Σημειώσεις στα πλαίσια του μαθήματος: Βελτιστοποίηση συστημάτων υδατικών πόρων Υδροπληροφορική Προγραμματισμός σε Matlab για προβλήματα βελτιστοποίησης Ευάγγελος Ρόζος και Χρήστος Μακρόπουλος Τομέας Υδατικών

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 2: Πραγματικοί Αριθμοί

ΕΝΟΤΗΤΑ 2: Πραγματικοί Αριθμοί Ενδεικτικός Προγραμματισμός ΕΝΟΤΗΤΑ 2: Πραγματικοί Αριθμοί 12 περίοδοι Δείκτες επιτυχίας: Ορίζουν την έννοια της νιοστής ρίζας ενός αριθμού α και αποδεικνύουν τις ιδιότητες ριζών, όταν ν N, ν 0, 1, α R

Διαβάστε περισσότερα

1 Πίνακες 1.1 Συνοπτική θεωρία

1 Πίνακες 1.1 Συνοπτική θεωρία 1 Πίνακες Σε αυτήν την ενότητα θα εξοικειωθείτε με την έννοια των πινάκων στον προγραμματισμό (χωρίς τον ιδιαίτερο τρόπο χειρισμού των πινάκων στο MATLAB), και συγκεκριμένα θα δείτε: πώς ορίζεται ένας

Διαβάστε περισσότερα

Κεφάλαιο Πέµπτο: Η Εξάσκηση

Κεφάλαιο Πέµπτο: Η Εξάσκηση Κεφάλαιο Πέµπτο: Η Εξάσκηση 1. Γενικά Η εξάσκηση στο Εργαστήριο προϋποθέτει τη γνώση των εντολών (τουλάχιστον) τις οποίες καλείται ο σπουδαστής κάθε φορά να εφαρµόσει. Αυτές παρέχονται µέσω της Θεωρίας

Διαβάστε περισσότερα

Εισαγωγή στους Ηλεκτρονικούς Υπολογιστές

Εισαγωγή στους Ηλεκτρονικούς Υπολογιστές Εισαγωγή στους Ηλεκτρονικούς Υπολογιστές Εισαγωγή στον επιστημονικό προγραμματισμό 1 ο Μάθημα Λεωνίδας Αλεξόπουλος Λέκτορας ΕΜΠ E-mail: leo@mail.ntua.gr URL: http://users.ntua.gr/leo 1 Εισαγωγή στo MatLab

Διαβάστε περισσότερα

Δημιουργία και εκτέλεση προγραμμάτων. Εντολές εισόδου από το πληκτρολόγιο και εξόδου στην οθόνη.

Δημιουργία και εκτέλεση προγραμμάτων. Εντολές εισόδου από το πληκτρολόγιο και εξόδου στην οθόνη. Δημιουργία και εκτέλεση προγραμμάτων. Εντολές εισόδου από το πληκτρολόγιο και εξόδου στην οθόνη. Σε αυτήν την ενότητα θα δημιουργήσετε και θα εκτελέσετε τα πρώτα σας απλά προγράμματα. Επίσης, θα δείτε

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 2: ΔΟΜΗ ΠΡΟΓΡΑΜΜΑΤΟΣ C, ΧΕΙΡΙΣΜΟΣ ΜΕΤΑΒΛΗΤΩΝ ΚΑΙ ΣΥΝΑΡΤΗΣΕΙΣ ΕΙΣΟΔΟΥ ΚΑΙ ΕΞΟΔΟΥ

ΑΣΚΗΣΗ 2: ΔΟΜΗ ΠΡΟΓΡΑΜΜΑΤΟΣ C, ΧΕΙΡΙΣΜΟΣ ΜΕΤΑΒΛΗΤΩΝ ΚΑΙ ΣΥΝΑΡΤΗΣΕΙΣ ΕΙΣΟΔΟΥ ΚΑΙ ΕΞΟΔΟΥ ΑΣΚΗΣΗ 2: ΔΟΜΗ ΠΡΟΓΡΑΜΜΑΤΟΣ C, ΧΕΙΡΙΣΜΟΣ ΜΕΤΑΒΛΗΤΩΝ ΚΑΙ ΣΥΝΑΡΤΗΣΕΙΣ ΕΙΣΟΔΟΥ ΚΑΙ ΕΞΟΔΟΥ Σκοπός της Άσκησης Ο σκοπός αυτής της εργαστηριακής άσκησης είναι η ανάλυση των βασικών χαρακτηριστικών της Γλώσσας

Διαβάστε περισσότερα

SPSS Statistical Package for the Social Sciences

SPSS Statistical Package for the Social Sciences SPSS Statistical Package for the Social Sciences Ξεκινώντας την εφαρμογή Εισαγωγή εδομένων Ορισμός Μεταβλητών Εισαγωγή περίπτωσης και μεταβλητής ιαγραφή περιπτώσεων ή και μεταβλητών ΣΤΑΤΙΣΤΙΚΗ Αθανάσιος

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ 6: Συναρτήσεις και Αναδρομή

ΕΡΓΑΣΤΗΡΙΟ 6: Συναρτήσεις και Αναδρομή ΕΡΓΑΣΤΗΡΙΟ 6: Συναρτήσεις και Αναδρομή Στο εργαστήριο αυτό θα μάθουμε για τη χρήση συναρτήσεων με σκοπό την κατασκευή αυτόνομων τμημάτων προγραμμάτων που υλοποιούν μία συγκεκριμένη διαδικασία, τα οποία

Διαβάστε περισσότερα

ΕΓΧΕΙΡΙΔΙΟ ΧΡΗΣΗΣ ΤΟΥ ΠΡΟΓΡΑΜΜΑΤΟΣ MATLAB / FUZZY LOGIC TOOLBOX

ΕΓΧΕΙΡΙΔΙΟ ΧΡΗΣΗΣ ΤΟΥ ΠΡΟΓΡΑΜΜΑΤΟΣ MATLAB / FUZZY LOGIC TOOLBOX ΕΓΧΕΙΡΙΔΙΟ ΧΡΗΣΗΣ ΤΟΥ ΠΡΟΓΡΑΜΜΑΤΟΣ MATLAB / FUZZY LOGIC TOOLBOX Σε αυτό το εγχειρίδιο θα περιγράψουμε αναλυτικά τη χρήση του προγράμματος MATLAB στη λύση ασαφών συστημάτων (FIS: FUZZY INFERENCE SYSTEM

Διαβάστε περισσότερα

Εργαστήριο Δομημένος Προγραμματισμός (C#) Τμήμα Μηχανολογίας Νικόλαος Ζ. Ζάχαρης Καθηγητής Εφαρμογών

Εργαστήριο Δομημένος Προγραμματισμός (C#) Τμήμα Μηχανολογίας Νικόλαος Ζ. Ζάχαρης Καθηγητής Εφαρμογών Εργαστήριο Δομημένος Προγραμματισμός (C#) Τμήμα Μηχανολογίας Νικόλαος Ζ. Ζάχαρης Καθηγητής Εφαρμογών Σκοπός Nα κατασκευάσουν πίνακες από δεδομένα. Να κατασκευάσουν συναρτήσεις με πίνακες. Να κάνουν χρήση

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3 ο ΣΥΝΑΡΤΗΣΕΙΣ, ΤΡΙΓΩΝΟΜΕΤΡΙΑ( FUNCTIONS,TRIGONOMETRY)

ΚΕΦΑΛΑΙΟ 3 ο ΣΥΝΑΡΤΗΣΕΙΣ, ΤΡΙΓΩΝΟΜΕΤΡΙΑ( FUNCTIONS,TRIGONOMETRY) ΚΕΦΑΛΑΙΟ 3 ο ΣΥΝΑΡΤΗΣΕΙΣ, ΤΡΙΓΩΝΟΜΕΤΡΙΑ( FUNCTIONS,TRIGONOMETRY) 3.1 ΘΕΩΡΙΑ-ΤΥΠΟΛΟΓΙΟ-ΠΑΡΑΔΕΙΓΜΑΤΑ ΣΥΝΑΡΤΗΣΕΙΣ Συνάρτηση, ή απεικόνιση όπως ονομάζεται διαφορετικά, είναι μια αντιστοίχιση μεταξύ δύο συνόλων,

Διαβάστε περισσότερα

Η-Υ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ. Εργαστήριο 1 Εισαγωγή στη C. Σοφία Μπαλτζή s.mpaltzi@di.uoa.gr

Η-Υ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ. Εργαστήριο 1 Εισαγωγή στη C. Σοφία Μπαλτζή s.mpaltzi@di.uoa.gr Η-Υ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Εργαστήριο 1 Εισαγωγή στη C Σοφία Μπαλτζή s.mpaltzi@di.uoa.gr Διαδικαστικά Ιστοσελίδα μαθήματος: http://eclass.uoa.gr/courses/f30/ Υποχρεωτική παρακολούθηση: Παρασκευή 14:00 16:00 στην

Διαβάστε περισσότερα

Η γλώσσα προγραμματισμού C

Η γλώσσα προγραμματισμού C Η γλώσσα προγραμματισμού C Εισαγωγή στη C Λίγα λόγια για την C Γλώσσα προγραμματισμού υψηλού επιπέδου. Σχεδιάστηκε και υλοποιήθηκε από τον Dennis Richie στις αρχές της δεκαετίας του 1970 (Bell Labs). Η

Διαβάστε περισσότερα

Πληρουορική Γ Γσμμασίοσ

Πληρουορική Γ Γσμμασίοσ Πληρουορική Γ Γσμμασίοσ Προγραμματισμός και Αλγόριθμοι Από το και τημ Χελώμα στημ Ευριπίδης Βραχνός http://evripides.mysch.gr/ 2014 2015 1 Προγραμματισμός Ζάννειο Πρότυπο Πειραματικό Γυμνάσιο Πειραιά Ενότητα:

Διαβάστε περισσότερα

ΣΥΝΤΟΜΟ ΕΓΧΕΙΡΙΔΙΟ MATLAB

ΣΥΝΤΟΜΟ ΕΓΧΕΙΡΙΔΙΟ MATLAB ΣΥΝΤΟΜΟ ΕΓΧΕΙΡΙΔΙΟ MATLAB ΚΩΝΣΤΑΝΤΙΝΟΣ ΔΙΑΜΑΝΤΑΡΑΣ Καθηγητής ΚΩΝΣΤΑΝΤΙΝΟΣ ΓΟΥΛΙΑΝΑΣ Επίκουρος Καθηγητής ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΑΛΕΞΑΝΔΡΕΙΟ Τ.Ε.Ι. ΘΕΣΣΑΛΟΝΙΚΗΣ Θεσσαλονίκη 2013 Σύντομο Εγχειρίδιο Matlab Διαμαντάρας

Διαβάστε περισσότερα

Ομάδα Γ. Ο υπολογιστής ως επιστημονικό εργαλείο

Ομάδα Γ. Ο υπολογιστής ως επιστημονικό εργαλείο Ομάδα Γ. Ο υπολογιστής ως επιστημονικό εργαλείο Η Mathematica είναι ένα ολοκληρωμένο μαθηματικό πακέτο με πάρα πολλές δυνατότητες σε σχεδόν όλους τους τομείς των μαθηματικών (Άλγεβρα, Θεωρία συνόλων, Ανάλυση,

Διαβάστε περισσότερα

Διάλεξη 2. Μεταβλητές - Δομές Δεδομένων - Eίσοδος δεδομένων - Έξοδος: Μορφοποίηση - Συναρτήσεις. Διοργάνωση : ΚΕΛ ΣΑΤΜ

Διάλεξη 2. Μεταβλητές - Δομές Δεδομένων - Eίσοδος δεδομένων - Έξοδος: Μορφοποίηση - Συναρτήσεις. Διοργάνωση : ΚΕΛ ΣΑΤΜ Διάλεξη 2 Μεταβλητές - Δομές Δεδομένων - Eίσοδος δεδομένων - Έξοδος: Μορφοποίηση - Συναρτήσεις Διοργάνωση : ΚΕΛ ΣΑΤΜ Διαφάνειες: Skaros, MadAGu Παρουσίαση: MadAGu Άδεια: Creative Commons 3.0 2 Internal

Διαβάστε περισσότερα

Προτεινόμενες εργασίες Προγραμματισμού Διαδικτύου

Προτεινόμενες εργασίες Προγραμματισμού Διαδικτύου Προτεινόμενες εργασίες Προγραμματισμού Διαδικτύου Ιωάννης Γ. Τσούλος Εργασία Πρώτη - Αριθμομηχανή Με την χρήση του περιβάλλοντος AWT ή του SWING θα πρέπει να δημιουργηθεί αριθμομηχανή για την εκτέλεση

Διαβάστε περισσότερα

Εισαγωγή στο Πρόγραμμα Maxima

Εισαγωγή στο Πρόγραμμα Maxima Εισαγωγή στο Πρόγραμμα Maxima Το Maxima είναι ένα πρόγραμμα για την εκτέλεση μαθηματικών υπολογισμών, συμβολικών μαθηματικών χειρισμών, αριθμητικών υπολογισμών και γραφικών παραστάσεων. Το Maxima λειτουργεί

Διαβάστε περισσότερα

Βιομηχανικοί Ελεγκτές

Βιομηχανικοί Ελεγκτές Βιομηχανικοί Ελεγκτές Σημειώσεις Εργαστηρίου Έλεγχος Στάθμης Δοχείου με P.I.D. Ελεγκτή Περιεχόμενα 1. Τρόπος Εισαγωγής στο πρόγραμμα εξομοίωσης. 2. Τρόπος λειτουργίας εξομοιωτή. 3. Αναγνώριση ιδιοτήτων

Διαβάστε περισσότερα

ΧΑΡΟΚΟΠΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΧΑΡΟΚΟΠΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΧΑΡΟΚΟΠΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Τμημα Πληροφορικης και Τηλεματικης Τσάμη Παναγιώτα ΑΜ: 20833 ΚΑΤΑΝΕΜΗΜΕΝΑ ΣΥΣΤΗΜΑΤΑ Άσκηση 1 Αθήνα 13-12-2011 Αναφορά Ενότητα 1 A Δημιουργήστε στο φλοιό 3 εντολές (alias) που η

Διαβάστε περισσότερα

MATLAB. Λογισµικό υλοποίησης αλγορίθµων και διεξαγωγής υπολογισµών.

MATLAB. Λογισµικό υλοποίησης αλγορίθµων και διεξαγωγής υπολογισµών. MATLAB Tι είναι το λογισµικό MATLAB? Λογισµικό υλοποίησης αλγορίθµων και διεξαγωγής υπολογισµών. Σύστηµα αλληλεπίδρασης µε τοχρήστηγια πραγµατοποίηση επιστηµονικών υπολογισµών (πράξεις µε πίνακες επίλυση

Διαβάστε περισσότερα

ΜΑΗΣ 2007 - ΕΞΕΤΑΣΤΙΚΟ ΔΟΚΙΜΙΟ

ΜΑΗΣ 2007 - ΕΞΕΤΑΣΤΙΚΟ ΔΟΚΙΜΙΟ ΜΑΗΣ 2007 - ΕΞΕΤΑΣΤΙΚΟ ΔΟΚΙΜΙΟ ΟΔΗΓΙΕΣ: ΝΑ ΑΠΑΝΤΗΣΕΤΕ ΣΕ ΟΛΕΣ ΤΙΣ ΕΡΩΤΗΣΕΙΣ. Το εξεταστικό δοκίμιο αποτελείται από δύο Ενότητες Α και Β. ΕΝΟΤΗΤΑ Α - Αποτελείται από δέκα (10) ερωτήσεις. Κάθε ορθή απάντηση

Διαβάστε περισσότερα

Α' Εξάμηνο ΕΙΣΑΓΩΓΗ ΣΤΟ ΔΟΜΗΜΕΝΟ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ

Α' Εξάμηνο ΕΙΣΑΓΩΓΗ ΣΤΟ ΔΟΜΗΜΕΝΟ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ Α' Εξάμηνο ΕΙΣΑΓΩΓΗ ΣΤΟ ΔΟΜΗΜΕΝΟ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ Εργαστήριο 9η εβδομάδα. Κοζάνη, 2 Δεκεμβρίου 2008. Δίνονται παραδείγματα που αποσαφηνίζουν και συμπληρώνουν όσα αναφέρθηκαν στο μάθημα σχετικά με τις δομές

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-119)

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-119) ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ ΙΩΑΝΝΗΣ Α. ΤΣΑΓΡΑΚΗΣ ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-119) ΜΕΡΟΣ 5: ΔΙΑΝΥΣΜΑΤΙΚΟΙ ΥΠΟΧΩΡΟΙ ΓΡΑΜΜΙΚΗ ΑΝΕΞΑΡΤΗΣΙΑ ΒΑΣΕΙΣ & ΔΙΑΣΤΑΣΗ Δ.Χ. ΣΗΜΕΙΩΣΕΙΣ

Διαβάστε περισσότερα

ηµιουργία αρχείου στον matlab editor Πληκτρολόγηση ακολουθίας εντολών

ηµιουργία αρχείου στον matlab editor Πληκτρολόγηση ακολουθίας εντολών Προγραµµατισµός Αρχεία εντολών (script files) Τυπικό hello world πρόγραµµα σε script ηµιουργία αρχείου στον matlab editor Πληκτρολόγηση ακολουθίας εντολών disp( ( 'HELLO WORLD!'); % τυπική εντολή εξόδου

Διαβάστε περισσότερα

Παιχνιδάκια με τη LOGO

Παιχνιδάκια με τη LOGO Όταν σβήνει ο υπολογιστής ξεχνάω τα πάντα. Κάτι πρέπει να γίνει Κάθε φορά που δημιουργώ ένα πρόγραμμα στη Logo αυτό αποθηκεύεται προσωρινά στη μνήμη του υπολογιστή. Αν θέλω να διατηρηθούν τα προγράμματά

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΟ MATLAB- SIMULINK

ΕΙΣΑΓΩΓΗ ΣΤΟ MATLAB- SIMULINK ΕΙΣΑΓΩΓΗ ΣΤΟ MATLAB- SIMULINK ρ. Γεώργιος Φ. Φραγκούλης Καθηγητής Ver. 0.2 9/2012 ιανύσµατα & ισδιάστατοι πίνακες Ένα διάνυσµα u = (u1, u2,, u ) εισάγεται στη MATLAB ως εξής : u=[ u1, u2,, un ] ή u=[ u1

Διαβάστε περισσότερα

Εισαγωγή στη Γεώργιος Γεωργίου & Χρίστος Ξενοφώντος

Εισαγωγή στη Γεώργιος Γεωργίου & Χρίστος Ξενοφώντος Εισαγωγή στη Γεώργιος Γεωργίου & Χρίστος Ξενοφώντος Τμήμα Μαθηματικών και Στατιστικής Πανεπιστήμιο Κύπρου Μάϊος 7 . ΕΙΣΑΓΩΓΗ Το MATLAB είναι ένα σύγχρονο ολοκληρωμένο μαθηματικό λογισμικό πακέτο που χρησιμοποιείται

Διαβάστε περισσότερα

Κεφάλαιο 4 Διανυσματικοί Χώροι

Κεφάλαιο 4 Διανυσματικοί Χώροι Κεφάλαιο Διανυσματικοί Χώροι Διανυσματικοί χώροι - Βασικοί ορισμοί και ιδιότητες Θεωρούμε τρία διαφορετικά σύνολα: Διανυσματικοί Χώροι α) Το σύνολο διανυσμάτων (πινάκων με μία στήλη) με στοιχεία το οποίο

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ Ακαδημαϊκό έτος 2001-2002 ΤΕΤΡΑΔΙΟ ΕΡΓΑΣΤΗΡΙΟΥ #4

ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ Ακαδημαϊκό έτος 2001-2002 ΤΕΤΡΑΔΙΟ ΕΡΓΑΣΤΗΡΙΟΥ #4 ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ Ακαδημαϊκό έτος 2001-2002 ΤΕΤΡΑΔΙΟ ΕΡΓΑΣΤΗΡΙΟΥ #4 «Προγραμματισμός Η/Υ» - Τετράδιο Εργαστηρίου #4 2 Γενικά Στο Τετράδιο #4 του Εργαστηρίου θα αναφερθούμε σε θέματα διαχείρισης πινάκων

Διαβάστε περισσότερα

2 ΟΥ και 8 ΟΥ ΚΕΦΑΛΑΙΟΥ

2 ΟΥ και 8 ΟΥ ΚΕΦΑΛΑΙΟΥ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΙΜΕΛΕΙΑ: ΜΑΡΙΑ Σ. ΖΙΩΓΑ ΚΑΘΗΓΗΤΡΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ 2 ΟΥ και 8 ΟΥ ΚΕΦΑΛΑΙΟΥ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΔΟΜΗ ΕΠΑΝΑΛΗΨΗΣ 1) Πότε χρησιμοποιείται η δομή επανάληψης

Διαβάστε περισσότερα

Εισαγωγή στην γλώσσα προγραμματισμού C

Εισαγωγή στην γλώσσα προγραμματισμού C Εισαγωγή στην γλώσσα προγραμματισμού C Χαρακτηριστικά της C Ιδιαίτερα δημοφιλής Έχει χρησιμοποιηθεί για τον προγραμματισμό ευρέος φάσματος συστημάτων και εφαρμογών Γλώσσα μετρίου επιπέδου Φιλοσοφία: Ο

Διαβάστε περισσότερα

FSM Toolkit Exercises

FSM Toolkit Exercises ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ Τμήμα Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστών Τομέας Τηλεπικοινωνιών Αναπληρωτής Καθηγητής: Αλέξανδρος Ποταμιάνος Ονοματεπώνυμο: Α Μ : ΗΜΕΡΟΜΗΝΙΑ: ΤΗΛ 413 : Συστήματα Επικοινωνίας

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1 ο : ΔΙΑΝΥΣΜΑΤΑ 1 ΜΑΘΗΜΑ 1 ο +2 ο ΕΝΝΟΙΑ ΔΙΑΝΥΣΜΑΤΟΣ Διάνυσμα ορίζεται ένα προσανατολισμένο ευθύγραμμο τμήμα, δηλαδή ένα ευθύγραμμο τμήμα

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2. Περιγραφή της Κίνησης. 2.1 Κίνηση στο Επίπεδο

ΚΕΦΑΛΑΙΟ 2. Περιγραφή της Κίνησης. 2.1 Κίνηση στο Επίπεδο ΚΕΦΑΛΑΙΟ 2 Περιγραφή της Κίνησης Στο κεφάλαιο αυτό θα δείξουμε πώς να προγραμματίσουμε απλές εξισώσεις τροχιάς ενός σωματιδίου και πώς να κάνουμε βασική ανάλυση των αριθμητικών αποτελεσμάτων. Χρησιμοποιούμε

Διαβάστε περισσότερα

1 η ΕΝΟΤΗΤΑ ΕΙΣΑΓΩΓΗ (Προγραμματισμός & MATLAB)

1 η ΕΝΟΤΗΤΑ ΕΙΣΑΓΩΓΗ (Προγραμματισμός & MATLAB) ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΜΠ ΜΕΘΟΔΟΙ ΕΠΙΛΥΣΗΣ ΜΕ Η/Υ 1 η ΕΝΟΤΗΤΑ ΕΙΣΑΓΩΓΗ (Προγραμματισμός & MATLAB) Ν.Δ. Λαγαρός Μ. Φραγκιαδάκης Α. Στάμος Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

Τι είναι βαθμωτό μέγεθος? Ένα μέγεθος που περιγράφεται μόνο με έναν αριθμό (π.χ. πίεση)

Τι είναι βαθμωτό μέγεθος? Ένα μέγεθος που περιγράφεται μόνο με έναν αριθμό (π.χ. πίεση) TETY Εφαρμοσμένα Μαθηματικά Ενότητα ΙΙ: Γραμμική Άλγεβρα Ύλη: Διανυσματικοί χώροι και διανύσματα, μετασχηματισμοί διανυσμάτων, τελεστές και πίνακες, ιδιοδιανύσματα και ιδιοτιμές πινάκων, επίλυση γραμμικών

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ

ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ ii ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ 1. Εντολές εκχώρησης (αντικατάστασης)....1 1.1 Εισαγωγή...4 1.1.1 Χρήση ΛΣ και IDE της Turbo Pascal....4 1.1.2 Αίνιγμα...6 1.2 Με REAL...7 1.2.1 Ερώτηση...9 1.2.2 Επίλυση δευτεροβάθμιας

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ

ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΘΕΜΑ 1 (Α) Σημειώστε δίπλα σε κάθε πρόταση «Σ» ή «Λ» εφόσον είναι σωστή ή λανθασμένη αντίστοιχα. 1. Τα συντακτικά λάθη ενός προγράμματος

Διαβάστε περισσότερα

f x και τέσσερα ζευγάρια σημείων

f x και τέσσερα ζευγάρια σημείων ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ, 014 015, 5 Ο ΕΞΑΜΗΝΟ ΕΡΓΑΣΙΑ #: ΑΡΙΘΜΗΤΙΚΗ ΠΑΡΕΜΒΟΛΗ Ημερομηνία ανάρτησης εργασίας στην ιστοσελίδα του μαθήματος: 1 11 014 Ημερομηνία παράδοσης εργασίας: 18 11 014 Επιμέλεια απαντήσεων:

Διαβάστε περισσότερα

Λειτουργικά Συστήματα

Λειτουργικά Συστήματα Λειτουργικά Συστήματα Ενότητα: ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ No:01 Δρ. Μηνάς Δασυγένης mdasyg@ieee.org Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών Εργαστήριο Ψηφιακών Συστημάτων και Αρχιτεκτονικής Υπολογιστών

Διαβάστε περισσότερα

Open Office Calc. Ακαδημαϊκό έτος 2013-2014 εαρινό εξάμηνο ΟΝΟΜΑΤΕΠΩΝΥΜΟ : ΑΡΙΘΜΟΣ ΜΗΤΡΩΟΥ:

Open Office Calc. Ακαδημαϊκό έτος 2013-2014 εαρινό εξάμηνο ΟΝΟΜΑΤΕΠΩΝΥΜΟ : ΑΡΙΘΜΟΣ ΜΗΤΡΩΟΥ: Σχολή Διοίκησης και Οικονομίας (ΣΔΟ) Τμήμα Λογιστικής και Χρηματοοικονομικής Διδάσκων: Δρ. Γκόγκος Χρήστος Μάθημα: Πληροφορική ΙI (εργαστήριο) Ακαδημαϊκό έτος 2013-2014 εαρινό εξάμηνο ΟΝΟΜΑΤΕΠΩΝΥΜΟ : ΑΡΙΘΜΟΣ

Διαβάστε περισσότερα

Σχολή Τεχνολογικών Εφαρμογών. Τμήμα Αυτοματισμού. Σημειώσεις Εργαστηρίου Ψηφιακού Ελέγχου. Σχεδίαση Συστημάτων Ελέγχου με χρήση MATLAB

Σχολή Τεχνολογικών Εφαρμογών. Τμήμα Αυτοματισμού. Σημειώσεις Εργαστηρίου Ψηφιακού Ελέγχου. Σχεδίαση Συστημάτων Ελέγχου με χρήση MATLAB Σχολή Τεχνολογικών Εφαρμογών Τμήμα Αυτοματισμού Σημειώσεις Εργαστηρίου Ψηφιακού Ελέγχου Σχεδίαση Συστημάτων Ελέγχου με χρήση MATLAB Επιμέλεια: Ξανθή Παπαγεωργίου E-mail: xanthi.papageorgiou@gmail.com Τμήματα:

Διαβάστε περισσότερα

Ε π ι μ έ λ ε ι α Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ

Ε π ι μ έ λ ε ι α Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ Ε π ι μ έ λ ε ι α Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ 1 Συναρτήσεις Όταν αναφερόμαστε σε μια συνάρτηση, ουσιαστικά αναφερόμαστε σε μια σχέση ή εξάρτηση. Στα μαθηματικά που θα μας απασχολήσουν, με απλά λόγια, η σχέση

Διαβάστε περισσότερα

ΒΑΣΙΚΟΙ ΤΥΠΟΙ ΔΕΔΟΜΕΝΩΝ

ΒΑΣΙΚΟΙ ΤΥΠΟΙ ΔΕΔΟΜΕΝΩΝ Η ΓΛΩΣΣΑ PASCAL ΒΑΣΙΚΟΙ ΤΥΠΟΙ ΔΕΔΟΜΕΝΩΝ Απλοί ή στοιχειώδης Τ.Δ. Ακέραιος τύπος Πραγματικός τύπος Λογικός τύπος Χαρακτήρας Σύνθετοι Τ.Δ. Αλφαριθμητικός 1. Ακέραιος (integer) Εύρος: -32768 έως 32767 Δήλωση

Διαβάστε περισσότερα

Εντολή Δεδομένα Περιεχόμενα μετά την εκτέλεση 1 read(x) 122 x= 2 read(a,b,c) 133 244 355 a= b= c= 3 read(d,e) 166 277 3888

Εντολή Δεδομένα Περιεχόμενα μετά την εκτέλεση 1 read(x) 122 x= 2 read(a,b,c) 133 244 355 a= b= c= 3 read(d,e) 166 277 3888 ΕΡΩΤΗΣΕΙΣ 1. Να αναφέρετε μερικά από τα ιδιαίτερα χαρακτηριστικά της Pascal. 2. Ποιο είναι το αλφάβητο της Pascal; 3. Ποια είναι τα ονόματα-ταυτότητες και σε τι χρησιμεύουν; 4. Σε τι χρησιμεύει το συντακτικό

Διαβάστε περισσότερα

To SIMULINK του Matlab

To SIMULINK του Matlab ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ Β ΧΗΜΙΚΗΣ ΜΗΧΑΝΙΚΗΣ ΚΑΘ. Κ. ΚΥΠΑΡΙΣΣΙΔΗΣ, ΛΕΚΤΟΡΑΣ Χ. ΧΑΤΖΗΔΟΥΚΑΣ Τ.Θ. 472 54 124 ΘΕΣΣΑΛΟΝΙΚΗ Μάθημα: ΡΥΘΜΙΣΗ ΣΥΣΤΗΜΑΤΩΝ Ακαδ.

Διαβάστε περισσότερα

Πίνακες >>A = [ 1,6; 7, 11]; Ή τον πίνακα >> B = [2,0,1; 1,7,4; 3,0,1]; Πράξεις πινάκων

Πίνακες >>A = [ 1,6; 7, 11]; Ή τον πίνακα >> B = [2,0,1; 1,7,4; 3,0,1]; Πράξεις πινάκων Πίνακες Ένας πίνακας είναι μια δισδιάστατη λίστα από αριθμούς. Για να δημιουργήσουμε ένα πίνακα στο Matlab εισάγουμε κάθε γραμμή σαν μια ακολουθία αριθμών που ξεχωρίζουν με κόμμα (,) ή κενό (space) και

Διαβάστε περισσότερα

Εισαγωγή στον Προγραμματισμό

Εισαγωγή στον Προγραμματισμό Εισαγωγή στον Προγραμματισμό Αριθμητική Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ακ. Έτος 2012-2013 Δεύτερο Πρόγραμμα 1 / * Second Simple Program : add 2 numbers * / 2

Διαβάστε περισσότερα

1 ης εργασίας ΕΟ13 2013-2014. Υποδειγματική λύση

1 ης εργασίας ΕΟ13 2013-2014. Υποδειγματική λύση ης εργασίας ΕΟ3 03-04 Υποδειγματική λύση (όπως θα παρατηρήσετε η εργασία περιέχει και κάποια επιπλέον σχόλια, για την καλύτερη κατανόηση της μεθοδολογίας, τα οποία φυσικά μπορούν να παραλειφθούν) Άσκηση.

Διαβάστε περισσότερα

Μιγαδική ανάλυση Μέρος Α Πρόχειρες σημειώσεις 1. Μιγαδικοί αριθμοί. ΤΕΤΥ Εφαρμοσμένα Μαθηματικά Μιγαδική Ανάλυση Α 1

Μιγαδική ανάλυση Μέρος Α Πρόχειρες σημειώσεις 1. Μιγαδικοί αριθμοί. ΤΕΤΥ Εφαρμοσμένα Μαθηματικά Μιγαδική Ανάλυση Α 1 ΤΕΤΥ Εφαρμοσμένα Μαθηματικά Μιγαδική Ανάλυση Α 1 Μιγαδική ανάλυση Μέρος Α Πρόχειρες σημειώσεις 1 Μιγαδικοί αριθμοί Τι είναι και πώς τους αναπαριστούμε Οι μιγαδικοί αριθμοί είναι μια επέκταση του συνόλου

Διαβάστε περισσότερα

Εργαστήριο 2ο. Περίγραμμα Εργαστηριακής Άσκησης

Εργαστήριο 2ο. Περίγραμμα Εργαστηριακής Άσκησης Γλώσσες Προγραμματισμού Εργαστήριο 2ο Τύποι Δεδομένων - Είσοδος / Έξοδος Εργαστήριο 2ο Περίγραμμα Εργαστηριακής Άσκησης Εργαστήριο 2ο...1 Θεωρία εργαστηρίου...2 Τύποι δεδομένων...2 Η συνάρτηση printf()...3

Διαβάστε περισσότερα

Λίστα. Το διάνυζμα (vector) στο Mathematica είναι μια λίστα που έχει τα στοιχεία. Ο πίνακας ( matrix ) είναι λίστα απο τις λίστες.

Λίστα. Το διάνυζμα (vector) στο Mathematica είναι μια λίστα που έχει τα στοιχεία. Ο πίνακας ( matrix ) είναι λίστα απο τις λίστες. Λίστα Το διάνυζμα (vector) στο Mathematica είναι μια λίστα που έχει τα στοιχεία. Ο πίνακας ( matrix ) είναι λίστα απο τις λίστες. Η λίστα είναι ένα σύνολο αντικειμένων των οποίων τα σύμβολα περιέχονται

Διαβάστε περισσότερα

Συναρτήσεις - Όρια- Παράγωγοι- Ολοκληρώματα Ακολουθίες-Σειρές

Συναρτήσεις - Όρια- Παράγωγοι- Ολοκληρώματα Ακολουθίες-Σειρές Πανεπιστήμιο Θεσσαλίας Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής με εφαρμογές στη Βιοϊατρική Συναρτήσεις - Όρια- Παράγωγοι- Ολοκληρώματα Ακολουθίες-Σειρές Μαθηματική Ανάλυση Ι Συνάρτηση μίας Μεταβλητής

Διαβάστε περισσότερα

Εντολές της LOGO (MicroWorlds Pro)

Εντολές της LOGO (MicroWorlds Pro) Εντολές της LOGO (MicroWorlds Pro) Εντολές εμφάνισης (εξόδου) και αριθμητικές πράξεις δείξε Εμφανίζει στην οθόνη έναν αριθμό, το αποτέλεσμα πράξεων, μια λέξη ή μια λίστα (ομάδα) λέξεων. δείξε 200 200 δείξε

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΟΣ ΣΥΝΔΕΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY 21 ος ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Δεύτερος Γύρος - 30 Μαρτίου 2011

ΚΥΠΡΙΑΚΟΣ ΣΥΝΔΕΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY 21 ος ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Δεύτερος Γύρος - 30 Μαρτίου 2011 Διάρκεια Διαγωνισμού: 3 ώρες Απαντήστε όλες τις ερωτήσεις Μέγιστο Βάρος (20 Μονάδες) Δίνεται ένα σύνολο από N σφαιρίδια τα οποία δεν έχουν όλα το ίδιο βάρος μεταξύ τους και ένα κουτί που αντέχει μέχρι

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΟ ΔΟΜΗΜΕΝΟ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ

ΕΙΣΑΓΩΓΗ ΣΤΟ ΔΟΜΗΜΕΝΟ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ ΕΙΣΑΓΩΓΗ ΣΤΟ ΔΟΜΗΜΕΝΟ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ Τρίτη Διάλεξη Εντολές Επιλογής και Επανάληψης Εντολές επιλογής Εντολή if Η πιο απλή μορφή της if συντάσσεται ως εξής: if ( συνθήκη ) Οι εντολές μέσα στα άγκιστρα αποτελούν

Διαβάστε περισσότερα

Εξοικείωση με το πρόγραμμα DEV C++ Επικοινωνία Χρήστη - Υπολογιστή

Εξοικείωση με το πρόγραμμα DEV C++ Επικοινωνία Χρήστη - Υπολογιστή Εξοικείωση με το πρόγραμμα DEV C++ Επικοινωνία Χρήστη - Υπολογιστή Δημιουργία Νέου αρχείου Από το μενού προγραμμάτων ανοίγετε το DEV C++ Επιλέγετε File-> New-> Source File (συντόμευση πληκτρολογίου Ctrl+N)

Διαβάστε περισσότερα

Αντικειμενοστραφής Προγραμματισμός I (5 ο εξ) Εργαστήριο #2 ο : Ανατομία προγραμμάτων εφαρμογών, η

Αντικειμενοστραφής Προγραμματισμός I (5 ο εξ) Εργαστήριο #2 ο : Ανατομία προγραμμάτων εφαρμογών, η Αντικειμενοστραφής Προγραμματισμός I (5 ο εξ) Εργαστήριο #2 ο : Ανατομία προγραμμάτων εφαρμογών, η μέθοδος main(), εμφάνιση μηνυμάτων, Java προγράμματα που εκτελούν αριθμητικές πράξεις Γαβαλάς Δαμιανός

Διαβάστε περισσότερα

Κεφάλαιο 1. Τι θα μάθουμε σήμερα: -AND, OR, NOT. -Ενσωματωμένες συναρτήσεις. -Μαθηματικοί τελεστές -ΤΕΛΕΣΤΕΣ DIV ΚΑΙ MOD. -Προτεραιότητα πράξεων

Κεφάλαιο 1. Τι θα μάθουμε σήμερα: -AND, OR, NOT. -Ενσωματωμένες συναρτήσεις. -Μαθηματικοί τελεστές -ΤΕΛΕΣΤΕΣ DIV ΚΑΙ MOD. -Προτεραιότητα πράξεων Κεφάλαιο 1 Αρχή ήμισυ παντός. Πλάτων, 427-347 π.χ., Φιλόσοφος Τι θα μάθουμε σήμερα: -AND, OR, NOT -Ενσωματωμένες συναρτήσεις -Μαθηματικοί τελεστές -ΤΕΛΕΣΤΕΣ DIV ΚΑΙ MOD -Προτεραιότητα πράξεων 1 Λογικές

Διαβάστε περισσότερα

Διακριτά Μαθηματικά. Απαρίθμηση: Διωνυμικοί συντελεστές

Διακριτά Μαθηματικά. Απαρίθμηση: Διωνυμικοί συντελεστές Διακριτά Μαθηματικά Απαρίθμηση: Διωνυμικοί συντελεστές Συνδυασμοί Το πλήθος των συνδυασμών r από n στοιχεία, C(n,r) συμβολίζεται και ως Ο αριθμός αυτός λέγεται και διωνυμικός συντελεστής Οι αριθμοί αυτοί

Διαβάστε περισσότερα

ΠΛΗΡΟΦΟΡΙΚΗ Ι JAVA Τμήμα θεωρίας με Α.Μ. σε 3, 7, 8 & 9 22/11/07

ΠΛΗΡΟΦΟΡΙΚΗ Ι JAVA Τμήμα θεωρίας με Α.Μ. σε 3, 7, 8 & 9 22/11/07 Ακαδ έτος 2007-2008 ΠΛΗΡΟΦΟΡΙΚΗ Ι Φερεντίνος 22/11/07 ΠΛΗΡΟΦΟΡΙΚΗ Ι JAVA Τμήμα θεωρίας με ΑΜ σε 3, 7, 8 & 9 22/11/07 Παράδειγμα με if/else if και user input: import javautil*; public class Grades public

Διαβάστε περισσότερα

Ενδεικτική περιγραφή μαθήματος

Ενδεικτική περιγραφή μαθήματος ΜΑΘΗΜΑ: ΔΙΔΑΣΚΩΝ: ΤΜΗΜΑ: Προγραμματισμός Η/Υ Συνδουκάς Δημήτριος Διοίκησης Επιχειρήσεων (Γρεβενά) Ενδεικτική περιγραφή μαθήματος 1. Εισαγωγή: Εισαγωγή στον προγραμματισμό, γλώσσες προγραμματισμού, μεταγλωτιστές.

Διαβάστε περισσότερα

Παντελής Μπουμπούλης, M.Sc., Ph.D. σελ. 2 math-gr.blogspot.com, bouboulis.mysch.gr

Παντελής Μπουμπούλης, M.Sc., Ph.D. σελ. 2 math-gr.blogspot.com, bouboulis.mysch.gr VI Ολοκληρώματα Παντελής Μπουμπούλης, MSc, PhD σελ mth-grlogspotcom, ououlismyschgr ΜΕΡΟΣ Αρχική Συνάρτηση Ορισμός Έστω f μια συνάρτηση ορισμένη σε ένα διάστημα Δ Αρχική συνάρτηση ή παράγουσα της στο Δ

Διαβάστε περισσότερα

Using Custom Python Expression Functions

Using Custom Python Expression Functions Using Custom Python Expression Functions QGIS Tutorials and Tips Author Ujaval Gandhi http://google.com/+ujavalgandhi Translations by Christina Dimitriadou Paliogiannis Konstantinos Tom Karagkounis Despoina

Διαβάστε περισσότερα

Εισαγωγή στην C. Μορφή Προγράµµατος σε γλώσσα C

Εισαγωγή στην C. Μορφή Προγράµµατος σε γλώσσα C Εισαγωγή στην C Μορφή Προγράµµατος σε γλώσσα C Τµήµα Α Με την εντολή include συµπεριλαµβάνω στο πρόγραµµα τα πρότυπα των συναρτήσεων εισόδου/εξόδου της C.Το αρχείο κεφαλίδας stdio.h είναι ένας κατάλογος

Διαβάστε περισσότερα

ΑΕΝ / ΑΣΠΡΟΠΥΡΓΟΥ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΑΥΤΟΜΑΤΙΣΜΟΥ. Σημειώσεις για τη χρήση του MATLAB στα Συστήματα Αυτομάτου Ελέγχου

ΑΕΝ / ΑΣΠΡΟΠΥΡΓΟΥ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΑΥΤΟΜΑΤΙΣΜΟΥ. Σημειώσεις για τη χρήση του MATLAB στα Συστήματα Αυτομάτου Ελέγχου ΑΕΝ / ΑΣΠΡΟΠΥΡΓΟΥ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΑΥΤΟΜΑΤΙΣΜΟΥ Σημειώσεις για τη χρήση του MATLAB στα Συστήματα Αυτομάτου Ελέγχου Κ. ΝΑΣΟΠΟΥΛΟΣ - Α. ΧΡΗΣΤΙ ΟΥ Κ. ΝΑΣΟΠΟΥΛΟΣ - Α. ΧΡΗΣΤΙ ΟΥ Οκτώβριος 011 MATLAB

Διαβάστε περισσότερα

Βήματα: μνήμη 2. Αλγόριθμος βήματα που περιγράφουν την επεξεργασία των δεδομένων. Δομές Δεδομένων + Αλγόριθμοι = Προγράμματα

Βήματα: μνήμη 2. Αλγόριθμος βήματα που περιγράφουν την επεξεργασία των δεδομένων. Δομές Δεδομένων + Αλγόριθμοι = Προγράμματα Απλά Προγράμματα Βήματα: 1. Καθορισμός παράστασης δεδομένων στη μνήμη 2. Αλγόριθμος βήματα που περιγράφουν την επεξεργασία των δεδομένων Δομές Δεδομένων + Αλγόριθμοι = Προγράμματα Οι Βασικοί κανόνες Κατανόηση

Διαβάστε περισσότερα