ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΣΤΗ MATLAB

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΣΤΗ MATLAB"

Transcript

1 ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΣΤΗ MATLAB 1. Γενικά περί συνήθων διαφορικών εξισώσεων Μια συνήθης διαφορική εξίσωση (Σ.Δ.Ε.) 1 ης τάξης έχει τη μορφή dy dt f ( t, y( t)) όπου η συνάρτηση f(t, y) είναι γνωστή, και η άγνωστη συνάρτηση που θέλουμε να προσδιορίσουμε είναι η y(t). Η πιο πάνω εξίσωση καλείται διαφορική γιατί μας δίνει πληροφορίες για την παράγωγο μιας συνάρτησης. Καλείται συνήθης γιατί η παράγωγος είναι συνήθης (αντί για μερική), και τέλος, είναι 1 ης τάξης γιατί οι πληροφορίες αφορούν μόνο την 1 η παράγωγο της άγνωστης συνάρτησης. Αν και μπορούμε να μιλήσουμε για Σ.Δ.Ε. 2 ης, 3 ης, 4 ης, τάξης, θα περιοριστούμε μόνο σε αυτές που είναι 1 ης τάξης γιατί οι υπόλοιπες μπορούν να εκφραστούν σαν ένα σύστημα Σ.Δ.Ε. 1 ης τάξης και άρα είναι αρκετό να ξέρουμε πώς να λύνουμε συστήματα Σ.Δ.Ε. 1 ης τάξης στη MATLAB. Σημειώνουμε ότι στη ειδική περίπτωση που η συνάρτηση f εξαρτάται μόνο από το t, τότε έχουμε 1. dy f ( t) y f ( t) dt C dt, όπου C μια αυθαίρετη σταθερά, και έτσι παίρνουμε τη λύση αναλυτικά. (Για την ακρίβεια, παίρνουμε άπειρες λύσεις, μια για κάθε σταθερά C.) Αν εκτός από την διαφορική εξίσωση μας δοθεί και μια αρχική συνθήκη, π.χ. y( t0) y0, με τα t, y γνωστά, τότε η λύση της Σ.Δ.Ε. είναι μοναδική, με την προϋπόθεση ότι η συνάρτηση 0 0 f(t, y) ικανοποιεί κάποιες συνθήκες ομαλότητας. Σε αυτή την περίπτωση έχουμε ένα πρόβλημα αρχικών τιμών (Π.Α.Τ.): y( t) f ( t, y( t)). y( t0) y0 Θα ασχοληθούμε με μεθόδους (αριθμητικής) επίλυσης Π.Α.Τ. χρησιμοποιώντας την MATLAB.

2 Παράδειγμα. Η μέθοδος του Euler Η πιο παλιά μέθοδος αριθμητικής επίλυσης του Π.Α.Τ. y( t) f ( t, y( t)), y( t0) y0 είναι η λεγόμενη Μέθοδος του Euler, με την οποία βρίσκουμε (διακριτές) προσεγγίσεις y y( t ), i 0,1,2,... για κάποια t, i 0,1, 2,... που μας ενδιαφέρουν. Αν επιλέξουμε κάποιο i i i h > 0 (το λεγόμενο βήμα) και ορίσουμε t 1 t h, i 0,1,2,..., N για κάποιο Ν, τότε μια και τα i i f, t0 και y0 είναι γνωστά, μπορούμε να βρούμε τα y y( t ), i 0,1,2,..., T μέσω της λεγόμενης επανάληψης του Euler: y 1 y hf ( t, y ), i 0,1,2,..., N i i i i Το πιο κάτω m-file υλοποιεί την πιο πάνω διαδικασία, παίρνοντας σαν δεδομένα εισόδου την συνάρτηση f, τις αρχικές τιμές y0, t0, το Τ έτσι ώστε και το βήμα h, και δίνει σαν i i t [ t, T ] δεδομένα εξόδου τα διανύσματα t [ t0, t1,..., tn], y [ y0, y1,..., y ] έτσι ώστε y y( t ), i 0,1,2,..., N. i i function [y,t] = euler(fun,y0,t0,t,h) % [y,t] = euler(fun,y0,t0,t,h) - % This function computes the solution to the IVP % y'(t) = fun(y,t), y(t0)= y0, % for a given function "fun(t,y)" using Euler's method. % The function can be defined via an m-file fun.m, % or as an anonymous function, called fun. % y0 is the initial value, T is the maximum value for t, h % is the stepsize and t0 is initial value for t. % The output is a vector containing the approximate % solution y_euler (and if requested, the vector with the t_i s). % y(1) = y0; t(1) = t0; for i=1:ceil((t-t0)/h) y(i+1) = y(i) + h*feval(fun,t(i),y(i)); t(i+1) = t(i) + h; end; t=t'; y=y'; % End of m-file euler.m 0 N

3 Παράδειγμα: Ας χρησιμοποιήσουμε το πιο πάνω m-file για το εξής Π.Α.Τ.: y( t) t y, y(1) 4 όπου το t ανήκει στο διάστημα [1, 2], και ας επιλέξουμε αρχικά h = 0.1. >> f t*sqrt(y); >> [y,t]=euler(f,4,1,2,0.1) y = t = Παίρνουμε τη γραφική παράσταση της λύσης με τις εξής εντολές:

4 >> plot(t,y,'o-') >> xlabel('t') >> ylabel('y') >> title('solution to y''(t)=t sqrt(y), t in [1, 2], y(1)=4, via Eulers Method with h=0.1') Solution to y'(t)=t sqrt(y), t in [1, 2], y(1)=4, via Eulers Method with h= y t 1 2 Η ακριβής λύση του πιο πάνω Π.Α.Τ. είναι y ( ) 7 2 ex t t, και το πιο κάτω γράφημα 16 μας δείχνει ότι η λύση που πήραμε με την μέθοδο του Euler δεν είναι παρά μια προσέγγιση. >> yex=@(t) (1/16)*(t.^2+7).^2; >> plot(t,y,'o-',t,yex(t)) >> xlabel('t') >> ylabel('y') >> legend('y_{euler}(t)','y_{exact}(t)')

5 8 7.5 y Euler (t) y exact (t) y t Αν χρησιμοποιήσουμε πιο μικρό βήμα h, τότε η προσέγγιση θα είναι καλύτερη. Αυτό φαίνεται πιο κάτω, όπου χρησιμοποιούμε h = >> [y,t]=euler(f,4,1,2,0.05); >> plot(t,y,'o-',t,yex(t)) >> xlabel('t') >> ylabel('y') >> legend('y_{euler}(t)','y_{exact}(t)') y Euler (t) y exact (t) y t Παράδειγμα: Σύγκλιση της μεθόδου του Euler Ας χρησιμοποιήσουμε τη μέθοδο του Euler για το εξής Π.Α.Τ.:

6 y( x) x y, y(0) 0 for x in [0,1], του οποίου η ακριβής λύση είναι y(x) = e x + x 1. Με x0 = 0, y0 = 0, υπολογίζουμε τις προσεγγίσεις yn, n = 1, 2, 3, χρησιμοποιώντας h = 0.2 και το m-file euler.m. >> f x - y; >> [y,x] = euler(f,0,0,1,0.2) Y = x = Επαναλαμβάνουμε τα πιο πάνω για διάφορα h και δείχνουμε τα αποτελέσματα στους πιο κάτω πίνακες, όπου η τελευταία στήλη αντιστοιχεί στο σφάλμα μεταξύ της ακριβούς και της προσεγγιστικής λύσης σε κάθε σημείο xn, n = 0, 1, 2, h = 0.2: x n Προσέγγιση y n Ακριβής y(x n) Σφάλμα y n y(x n)

7 Το μέγιστο σφάλμα στο [0, 1] είναι h = 0.1: x n Προσέγγιση y n Ακριβής y(x n) Σφάλμα y n y(x n) Το μέγιστο σφάλμα στο [0, 1] είναι h = 0.05: x n Προσέγγιση y n Ακριβής y(x n) Σφάλμα y n y(x n)

8 Το μέγιστο σφάλμα στο [0, 1] είναι Από ότι φαίνεται, όταν το h 0, έχουμε max Error 0. Για να απαντήσουμε στην 0x1 ερώτηση πόσο γρήγορα, θεωρούμε τα εξής: Αν ισχύει E(h) := max 0x1 Error ~ h p, για κάποιο p > 0, τότε lim Eh ( ) 0 και λέμε ότι έχουμε αλγεβρική σύγκλιση τάξης p. (Δηλ. p = 1 h0 δίνει γραμμική σύγκλιση, p = 2 τετραγωνική σύγκλιση, κλπ.) Στόχος μας είναι να βρούμε το p για την Μέθοδο του Euler, χρησιμοποιώντας τους πιο πάνω υπολογισμούς. p p Παρατηρούμε ότι E( h) ~ h E( h) Ch για κάποια σταθερά C (όταν το h είναι επαρκώς μικρό). Παίρνοντας τον λογάριθμο έχουμε p ln( E( h)) ln( Ch ) ln( E( h)) ln( C) pln( h). Αν θέσουμε Y = ln( Eh ( )), X = ln( h ) και B = ln( C ), τότε έχουμε τη γραμμική σχέση Y = px + B, άρα η γραφική παράσταση του X έναντι του Y, θα είναι ευθεία με κλίση p. Στη MATLAB αυτό μπορεί να επιτευχθεί με την εντολή loglog ως εξής: Πρώτα ορίζουμε δύο διανύσματα, το h και το E(h), χρησιμοποιώντας τα προηγούμενα αποτελέσματα (όπως επίσης και κάποια επιπρόσθετα, των οποίων οι λεπτομέρειες παραλείπονται):

9 >> h=[0.2,0.1,0.05,0.01,0.005] h = >> E = [0.0402,0.0192,0.0094,0.0018,9.2162e-004] E = >> loglog(h,e,'o-') >> xlabel('h') >> ylabel(' Error ') >> title('convergence of Eulers Method') Η κλίση της ευθείας είναι σχεδόν 1, όπως φαίνεται και πιο κάτω: >> (log(e(end))-log(e(end-1)))/(log(h(end))-log(h(end-1))) ans = Αφού η κλίση (δηλ. το p) είναι 1, έχουμε max 0x1 Error Ch 1 που δίνει ότι η Μέθοδος του Euler συγκλίνει γραμμικά (δηλ. αλγεβρικά με ρυθμό 1) όταν το h τείνει στο 0.

10 2. Η εντολή ode45 Η MATLAB διαθέτει αρκετές συναρτήσεις/εντολές βιβλιοθήκης για την επίλυση Π.Α.Τ., όπως οι ode23, ode45, ode113, ode15s, ode23s, ode23t, ode23tb κ.α. (Γράψτε, π.χ., doc ode23, κλπ. για περισσότερες πληροφορίες.) Εμείς θα ασχοληθούμε μόνο με την ode45, η οποία λύνει το Π.Α.Τ. και έχει την εξής δομή: y( t) f ( t, y( t)) y( t0) y0 [t_out,y_out] = ode45(odefun, t_span, y0) Τα δεδομένα εισόδου και εξόδου έχουν ως εξής: οdefun: η συνάρτηση t_span: το διάνυσμα f ( t, y) [ t0, T] [0, 1] y0: η αρχική τιμή y0( y( t0)) t_out: το διάνυσμα με τα σημεία t 0, t 1, t 2... (σαν m-file ή σαν ανώνυμη συνάρτηση) όπου ανήκει το t αυτό πρέπει να δοθεί μέσα σε αγκύλες, π.χ. y_out: το διάνυσμα με τις προσεγγιστικές τιμές y0, y1, y 2... της λύσης Όπως βλέπετε, τα δεδομένα εισόδου και εξόδου είναι παρόμοια με αυτά που είχαμε στο m- file που γράψαμε για την μέθοδο του Euler. Η διαφορά έγκειται στο ότι για το m-file που γράψαμε, δίναμε και το βήμα h, ενώ στην ode45 δεν το δίνουμε. Η MATLAB διαλέγει από μόνη της το βήμα με τέτοιο τρόπο ώστε η λύση που παίρνουμε να έχει (απόλυτη) ακρίβεια Αυτό σημαίνει ότι το μέγεθος των διανυσμάτων t και y δεν εξαρτάται από εμάς αλλά από την MATLAB, αλλά επίσης και ότι το διάνυσμα t μπορεί να μην είναι ομοιόμορφα κατανεμημένο. Μπορούμε, αν θέλουμε, να αυξομειώσουμε την ακρίβεια στην εντολή ode45 με το να δώσουμε περισσότερα δεδομένα εισόδου για να δείτε πως γράψτε help ode45 στη MATLAB. Παράδειγμα: Θα βρούμε μια προσέγγιση για τη λύση του Π.Α.Τ. y( t) y(2 y), 0 t 1 y(0) 3

11 χρησιμοποιώντας την εντολή ode45: >> f y.*(2-y); >> [t,y]=ode45(f,[0,1],3); Βάλαμε ; στο τέλος της εντολής για να μην δούμε τις τιμές που παίρνουμε μια και τα διανύσματα μπορεί να είναι αρκετά μεγάλα: >> length(y) ans = 41 Παίρνουμε τη γραφική παράσταση της λύσης (με κόκκινο) ως εξής: >> plot(t,y,'-rx') >> xlabel('t') >> ylabel('y') >> title('solution to y''(t)=y(2-y), t in [0, 1], y(0)=3') 6 Η ακριβής λύση του πιο πάνω Π.Α.Τ. είναι yex() t, και πιο κάτω δείχνουμε τη 2t 3 γραφική παράσταση του σφάλματος y( t) y ( t) : >> yex=@(t) 6./(3-exp(-2*t)); >> plot(t,abs(y-yex(t)),'*r') >> plot(t,abs(y-yex(t)),'*-r') >> xlabel('t') >> ylabel(' y_{exact}-y ') >> title('absolute Error') ex e

12 Πράγματι, έχουμε ακρίβεια της τάξης του Συστήματα Σ.Δ.Ε. Εκτός από Π.Α.Τ., η εντολή ode45 μπορεί να χρησιμοποιηθεί και για συστήματα Σ.Δ.Ε., όπως για παράδειγμα το πιο κάτω 3 3 σύστημα αρχικών τιμών (Σ.Α.Τ.): x 1( t) f1( t, x1, x2, x3) x2 ( t) f2( t, x1, x2, x3) x ( t) f ( t, x, x, x ) x1 ( t0) a1, x2( t0) a2, x3( t0) a3 όπου οι συναρτήσεις fi ( t, x1, x2, x3), i 1,2,3, το σημείο t0 και οι τιμές ai, i = 1, 2, 3 είναι δεδομένα, και θέλουμε να προσδιορίσουμε τις συναρτήσεις x 1 ( t), x 2 ( t), x 3 ( t ). Αν γράψουμε το πιο πάνω σύστημα σε διανυσματική μορφή, τότε έχουμε d x ( t ) [ F ] x ( t ) dt x( t0) [ a1, a2, a3] που μοιάζει με το Π.Α.Τ. που μελετήσαμε προηγουμένως. Ας δούμε ένα συγκεκριμένο παράδειγμα:

13 8 x1 ( t) x1 ( t) x2( t) x3( t) 3 x ( t) 10 x ( t) 10 x ( t) x ( t) x ( t) x ( t) 28 x ( t) x ( t) x1 (0) 20, x2(0) 5, x3(0) 5 το οποίο γράφουμε σε διανυσματική μορφή ως εξής: x2( t) 0 x2( t) x 1( t) 3 x1( t) 3 d x 2( t) x2( t) x( t) x( t) dt x 3( t) x2( t) 28 1 x3( t) x2( t) 28 1 και x(0) [20,5, 5]. [ F ] Τώρα, για να χρησιμοποιήσουμε την εντολή ode45, θα πρέπει να ορίσουμε τον πίνακα [F], που καθορίζει τις συναρτήσεις του δεξιού μέλους του συστήματος, σε ένα m-file (μια και δεν μπορούμε να τον ορίσουμε σαν μια ανώνυμη συνάρτηση). Για το παράδειγμα μας, τον ορίζουμε στο m-file odefun.m, που φαίνεται πιο κάτω: function [xprime] = odefun(t,x) % [xprime] = odefun(t,x) - % This function corresponds to the RHS of the system of ODEs, in % which x=[x(1), x(3), x(3)] represents the (vector) of unknown % functions. xprime = [-8/3,0,x(2);0,-10,10;-x(2),28,-1]*x; % End of m-file odefun.m Η εντολή ode45 χρησιμοποιείται όπως και πριν [t, x] = ode45(@odefun, t_span, a) αλλά, τώρα, τα δεδομένα εισόδου και εξόδου έχουν ως εξής:

14 οdefun: το όνομα του m-file που ορίζει τον πίνακα [F]. Παρατηρούμε ότι μια και δίνουμε ένα m-file σαν δεδομένο εισόδου, χρειάζεται να βάλουμε πριν από το όνομα του m-file όταν καλούμε την ode45. t_span: το διάνυσμα [ t0, T] a: το διάνυσμα [a1, a2, a3] με τις αρχικές τιμές t: το διάνυσμα με τα σημεία t 0, t 1, t 2... όπου ανήκει το t αυτό πρέπει να δοθεί με αγκύλες x: ένας πίνακας του οποίου η κάθε στήλη αντιστοιχεί στις προσεγγιστικές τιμές των λύσεων [ x, x, x ] Για το παράδειγμα μας έχουμε t0 = 0, [a1, a2, a3] = [20, 5, 5], και ας υποθέσουμε ότι το t ανήκει στο διάστημα [0, 12]. Γράφουμε >> [t,x] = ode45(@odefun,[0,12],[20,5,-5]); με ; στο τέλος για να μην τυπωθούν οι απαντήσεις στην οθόνη. Για να δούμε τις γραφικές παραστάσεις όλων των λύσεων (στους ίδιους άξονες) γράφουμε: >> plot(t,x) >> xlabel('t') >> ylabel('solution functions') >> legend('x_1(t)','x_2(t)','x_3(t)') Για να πάρουμε τη γραφική παράσταση μιας από τις λύσεις, π.χ. της x2(t), γράφουμε >> plot(t,x(:,2))

15 Παράδειγμα: Θεωρούμε το εξής Σ.Α.Τ.: x( t) 2 x ( t) 2 x ( t) x ( t) x( t) 2 2 x ( t) x ( t) x t x t x t x t ( ) 1( ) 2( ) 2( ) x 2( t) x2( t) 1 x2( t) x (0) 1, x (0) 3, και με αρχικές συνθήκες 1 2 του δεξιού μέλους έχει ως εξής: t [0,20]. Το m-file που ορίζει τον πίνακα function [xprime] = odefun(t,x) % [xprime] = odefun(t,x) - % This function corresponds to the RHS of the system of ODEs, % in which x=[x(1),x(2)] represents the (vector) of unknown % functions. % The function will be passed as input into the ODE solver. xprime = [2, -2*x(1); x(2), -1]*x; % End of m-file odefun.m Γράφουμε >> [t,x] = ode45(@odefun,[0,12],[1,3]); >> plot(t,x) >> legend('x_1(t)','x_2(t)') >> xlabel('t') >> ylabel('solution functions') και παίρνουμε

16 Ασκήσεις 1. Θεωρούμε το εξής Π.Α.Τ. y( t) cos( t y), t [0,3] y(0) 0 του οποίου η ακριβής λύση είναι y( t) t 2arctan( t). Χρησιμοποιείστε το m-file euler.m που γράψαμε, με βήμα h = 0.1, για να βρείτε μια προσέγγιση της λύσης. Να κάνετε τη γραφική παράσταση της λύσης που πήρατε μαζί με την ακριβή λύση στους ίδιους άξονες οι οποίοι πρέπει να έχουν ετικέτες, τίτλο και λεζάντα. Επαναλάβετε με βήμα h = 0.05 και Για το Π.Α.Τ. της προηγούμενης άσκησης, χρησιμοποιείστε την εντολή βιβλιοθήκης ode45, για να βρείτε μια προσέγγιση της λύσης. Να κάνετε τη γραφική παράσταση της λύσης που πήρατε μαζί με την ακριβή λύση στους ίδιους άξονες οι οποίοι πρέπει να έχουν ετικέτες, τίτλο και λεζάντα. 3. Θεωρούμε το Π.Α.Τ. y( x) x y, y(0) 0, x [0,1], του οποίου η ακριβής λύση είναι y(x) = e x + x 1. Ορίστε το δεξιό μέλος της Σ.Δ.Ε. σαν μια ανώνυμη συνάρτηση f, όπως επίσης και το διάνυσμα με τα εξής βήματα >> h=[0.2,0.1,0.05,0.01,0.005]; και τρέξτε το m-file euler.m που γράψαμε, μέσω του βρόχου >> for i=1:length(h) [y,x] = euler(f,0,0,1,h(i)); yex=exp(-x)+x-1; E(i) = max(abs(yex-y)); end για να υπολογίσετε την προσέγγιση της λύσης (y), την ακριβή λύση (yex) και το μέγιστο σφάλμα (E) μεταξύ της προσέγγισης και της ακριβής λύσης στα σημεία που δίνονται από το διάνυσμα x. Στη συνέχεια, κάντε τη γραφική παράσταση του σφάλματος έναντι του βήματος, σε λογαριθμική κλίμακα: >> loglog(h,e,'o-') Τι είναι η κλίση της ευθείας που παίρνετε και τι αντιπροσωπεύει; 4. Χρησιμοποιήστε την εντολή ode45 για να λύσετε τα πιο κάτω Σ.Α.Τ.:

17 dx1 3x1 4 x2 ; x1 (0) 1 dt (α) dx2 2x1 3 x2 ; x2(0) 1 dt (β) dx1 dt dx2 dt ( 0.1) x x ; x (0) 10 x ; x (0) (γ) dx xz ; x(0) 0 dt dy xz ; y(0) 1 dt dz xy / 2 ; z(0) 1 dt

11 ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ

11 ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ 11 ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ 11.1 Γενικά περί συνήθων διαφορικών εξισώσεων Μια συνήθης διαφορική εξίσωση (ΣΔΕ) 1 ης τάξης έχει τη μορφή dy d = f (, y()) όπου f(, y) γνωστή και y() άγνωστη συνάρτηση.

Διαβάστε περισσότερα

Αριθμητική Επίλυση Συνήθων Διαφορίκών Εξισώσεων 3ο Εργαστήριο 27/03/2015 1

Αριθμητική Επίλυση Συνήθων Διαφορίκών Εξισώσεων 3ο Εργαστήριο 27/03/2015 1 Αριθμητική Επίλυση Συνήθων Διαφορίκών Εξισώσεων 3ο Εργαστήριο 7/3/5 Σκοπός αυτού του εργαστηρίου είναι να δούμε πως μπορούμε να επιλύσουμε συστήματα διαφορικών εξισώσεων, με την χρήση του Matlab. Συστήματα

Διαβάστε περισσότερα

10 ΑΡΙΘΜΗΤΙΚΗ ΟΛΟΚΛΗΡΩΣΗ

10 ΑΡΙΘΜΗΤΙΚΗ ΟΛΟΚΛΗΡΩΣΗ ΑΡΙΘΜΗΤΙΚΗ ΟΛΟΚΛΗΡΩΣΗ. Αθροίσματα Riemann Στο κεφάλαιο αυτό θα ασχοληθούμε με αριθμητικές μεθόδους υπολογισμού του ορισμένου ολοκληρώματος b a f ( d ) όπου τα a, b είναι γνωστά και η συνάρτηση f() είναι

Διαβάστε περισσότερα

Κεφ. 7: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών

Κεφ. 7: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών Κεφ. 7: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών 7. Εισαγωγή (ορισμός προβλήματος, αριθμητική ολοκλήρωση ΣΔΕ, αντικατάσταση ΣΔΕ τάξης n με n εξισώσεις ης τάξης) 7. Μέθοδος Euler 7.3

Διαβάστε περισσότερα

y 1 (x) f(x) W (y 1, y 2 )(x) dx,

y 1 (x) f(x) W (y 1, y 2 )(x) dx, Συνήθεις Διαφορικές Εξισώσεις Ι Ασκήσεις - 07/1/017 Μέρος 1ο: Μη Ομογενείς Γραμμικές Διαφορικές Εξισώσεις Δεύτερης Τάξης Θεωρούμε τη γραμμική μή-ομογενή διαφορική εξίσωση y + p(x) y + q(x) y = f(x), x

Διαβάστε περισσότερα

Κεφ. 6Β: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών

Κεφ. 6Β: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών Κεφ. 6Β: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών. Εισαγωγή (ορισμός προβλήματος, αριθμητική ολοκλήρωση ΣΔΕ, αντικατάσταση ΣΔΕ τάξης n με n εξισώσεις ης τάξης). Μέθοδος Euler 3. Μέθοδοι

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ

ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ ΙΙ ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ. ΜΗΤΣΟΤΑΚΗΣ ΑΘΗΝΑ 27 ΠΑΡΑ ΕΙΓΜΑ : ΜΕΘΟ ΟΣ NEWTON Πρόγραµµα Matlab για την προσέγγιση της ρίζας της εξίσωσης f(x)= µε την µέθοδο Newton. Συναρτήσεις f(x), f

Διαβάστε περισσότερα

Introduction Ν. Παπαδάκης 21 Οκτωβρίου 2015 Ν. Παπαδάκης Introduction 21 Οκτωβρίου / 47

Introduction Ν. Παπαδάκης 21 Οκτωβρίου 2015 Ν. Παπαδάκης Introduction 21 Οκτωβρίου / 47 Introduction Ν. Παπαδάκης 21 Οκτωβρίου 2015 Ν. Παπαδάκης Introduction 21 Οκτωβρίου 2015 1 / 47 Περιεχόμενα 1 Παρουσίαση Ποβλήματος Επίλυση διαϕορικής εξίσωσης Ορισμός Άλλες μορϕή του ίδιου προβλήματος

Διαβάστε περισσότερα

Συνήθεις Διαφορικές Εξισώσεις Ι Ασκήσεις - 19/10/2017. Ακριβείς Διαφορικές Εξισώσεις-Ολοκληρωτικοί Παράγοντες. Η πρώτης τάξης διαφορική εξίσωση

Συνήθεις Διαφορικές Εξισώσεις Ι Ασκήσεις - 19/10/2017. Ακριβείς Διαφορικές Εξισώσεις-Ολοκληρωτικοί Παράγοντες. Η πρώτης τάξης διαφορική εξίσωση Συνήθεις Διαφορικές Εξισώσεις Ι Ασκήσεις - 19/10/2017 Ακριβείς Διαφορικές Εξισώσεις-Ολοκληρωτικοί Παράγοντες Η πρώτης τάξης διαφορική εξίσωση M(x, y) + (x, y)y = 0 ή ισοδύναμα, γραμμένη στην μορφή M(x,

Διαβάστε περισσότερα

Κεφάλαιο 0: Εισαγωγή

Κεφάλαιο 0: Εισαγωγή Κεφάλαιο : Εισαγωγή Διαφορικές εξισώσεις Οι Μερικές Διαφορικές Εξισώσεις (ΜΔΕ) αλλά και οι Συνήθεις Διαφορικές Εξισώσεις (ΣΔΕ) εμφανίζονται παντού στις επιστήμες από τη μηχανική μέχρι τη βιολογία Τις περισσότερες

Διαβάστε περισσότερα

α. y = y x 2 β. x + 5x = e x γ. xy (xy + y) = 2y 2 δ. y (4) + xy + e x = 0 η. x 2 (y ) 4 + xy + y 5 = 0 θ. y + ln y + x 2 y 3 = 0 d 3 y dy + 5y

α. y = y x 2 β. x + 5x = e x γ. xy (xy + y) = 2y 2 δ. y (4) + xy + e x = 0 η. x 2 (y ) 4 + xy + y 5 = 0 θ. y + ln y + x 2 y 3 = 0 d 3 y dy + 5y Ασκήσεις στα Μαθηματικά ΙΙΙ Τμήμα Χημ. Μηχανικών ΑΠΘ Μουτάφη Ευαγγελία Θεσσαλονίκη 2018-2019 ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΕΙΣΑΓΩΓΗ 1. Στις παρακάτω Δ.Ε. να προσδιορίσετε: α) την ανεξάρτητη και την εξαρτημένη

Διαβάστε περισσότερα

Σήματα και Συστήματα. Διάλεξη 13: Μελέτη ΓΧΑ Συστημάτων με τον Μετασχηματισμό Laplace. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής

Σήματα και Συστήματα. Διάλεξη 13: Μελέτη ΓΧΑ Συστημάτων με τον Μετασχηματισμό Laplace. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής Σήματα και Συστήματα Διάλεξη 13: Μελέτη ΓΧΑ Συστημάτων με τον Μετασχηματισμό Laplace Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Μελέτη ΓΧΑ Συστημάτων με τον Μετασχηματισμό Laplace 1. Επίλυση Γραμμικών

Διαβάστε περισσότερα

Πρόλογος Εισαγωγή στη δεύτερη έκδοση Εισαγωγή... 11

Πρόλογος Εισαγωγή στη δεύτερη έκδοση Εισαγωγή... 11 Περιεχόμενα Πρόλογος... 9 Εισαγωγή στη δεύτερη έκδοση... 0 Εισαγωγή... Ε. Εισαγωγή στην έννοια της Αριθμητικής Ανάλυσης... Ε. Ταξινόμηση των θεμάτων που απασχολούν την αριθμητική ανάλυση.. Ε.3 Μορφές σφαλμάτων...

Διαβάστε περισσότερα

Συνήθεις Διαφορικές Εξισώσεις Ι Ασκήσεις - 09/11/2017. Άσκηση 1. Να βρεθεί η γενική λύση της διαφορικής εξίσωσης. dy dx = 2y + x 2 y 2 2x

Συνήθεις Διαφορικές Εξισώσεις Ι Ασκήσεις - 09/11/2017. Άσκηση 1. Να βρεθεί η γενική λύση της διαφορικής εξίσωσης. dy dx = 2y + x 2 y 2 2x Συνήθεις Διαφορικές Εξισώσεις Ι Ασκήσεις - 09/11/017 Άσκηση 1. Να βρεθεί η γενική λύση της διαφορικής εξίσωσης dx y + x y. x Παρατηρούμε ότι η δ.ε. είναι ομογενής. Πράγματι, dx y x + 1 x y x y x + 1 (

Διαβάστε περισσότερα

Πεπερασμένες Διαφορές.

Πεπερασμένες Διαφορές. Κεφάλαιο 1 Πεπερασμένες Διαφορές. 1.1 Προσέγγιση παραγώγων. 1.1.1 Πρώτη παράγωγος. Από τον ορισμό της παραγώγου για συναρτήσεις μιας μεταβλητής γνωρίζουμε ότι η παράγωγος μιας συνάρτησης f στο σημείο x

Διαβάστε περισσότερα

Διαφορικές Εξισώσεις.

Διαφορικές Εξισώσεις. Διαφορικές Εξισώσεις. Εαρινό εξάμηνο 2015-16. Λύσεις του τρίτου φυλλαδίου ασκήσεων. 1. Λύστε τις παρακάτω διαφορικές εξισώσεις. Αν προκύψει αλγεβρική σχέση ανάμεσα στις μεταβλητές x, y η οποία δεν λύνεται

Διαβάστε περισσότερα

Kεφάλαιο 4. Συστήματα διαφορικών εξισώσεων. F : : F = F r, όπου r xy

Kεφάλαιο 4. Συστήματα διαφορικών εξισώσεων. F : : F = F r, όπου r xy 4 Εισαγωγή Kεφάλαιο 4 Συστήματα διαφορικών εξισώσεων Εστω διανυσματικό πεδίο F : : F = Fr, όπου r x, και είναι η ταχύτητα στο σημείο πχ ενός ρευστού στο επίπεδο Εστω ότι ψάχνουμε τις τροχιές κίνησης των

Διαβάστε περισσότερα

Εισαγωγή στην Αριθμητική Ανάλυση

Εισαγωγή στην Αριθμητική Ανάλυση Εισαγωγή στην Αριθμητική Ανάλυση Εισαγωγή στη MATLAB ΔΙΔΑΣΚΩΝ: ΓΕΩΡΓΙΟΣ ΑΚΡΙΒΗΣ ΒΟΗΘΟΙ: ΔΗΜΗΤΡΙΑΔΗΣ ΣΩΚΡΑΤΗΣ, ΣΚΟΡΔΑ ΕΛΕΝΗ E-MAIL: SDIMITRIADIS@CS.UOI.GR, ESKORDA@CS.UOI.GR Τι είναι Matlab Είναι ένα περιβάλλον

Διαβάστε περισσότερα

MEM 253. Αριθμητική Λύση ΜΔΕ * * *

MEM 253. Αριθμητική Λύση ΜΔΕ * * * MEM 253 Αριθμητική Λύση ΜΔΕ * * * 1 Ένα πρόβλημα-μοντέλο Ροή θερμότητας σε ένα ομογενές μέσο. Ζητούμε μια συνάρτηση x [0, 1] και t 0 τέτοια ώστε u(x, t) ορισμένη για u t u(0, t) u(x, 0) = u xx, 0 < x

Διαβάστε περισσότερα

2. Η μέθοδος του Euler

2. Η μέθοδος του Euler 2. Η μέθοδος του Euler Ασκήσεις 2.5 Έστω a = t 0 < t 1 < < t N = b ένας διαμερισμός του [a, b]. Υποθέστε ότι ο διαμερισμός είναι ημιομοιόμορφος, ότι υπάρχει δηλαδή θετική σταθερά µ, ανεξάρτητη του N, τέτοια

Διαβάστε περισσότερα

ΜΕΤΑΠΤΥΧΙΑΚΗ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. Κωνσταντίνος Ξ. Τσιόκας. Αν. Καθηγήτρια Α.Π.Θ.

ΜΕΤΑΠΤΥΧΙΑΚΗ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. Κωνσταντίνος Ξ. Τσιόκας. Αν. Καθηγήτρια Α.Π.Θ. ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΘΕΩΡΗΤΙΚΗ ΠΛΗΡΟΦΟΡΙΚΗ & ΘΕΩΡΙΑ ΣΥΣΤΗΜΑΤΩΝ ΚΑΙ ΕΛΕΓΧΟΥ ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ ΕΠΙΛΥΣΗΣ ΥΨΗΛΗΣ ΤΑΞΗΣ ODE ΜΕ ΥΨΗΛΗΣ ΤΑΞΗΣ

Διαβάστε περισσότερα

( ) ( ) ( ) ( ) Παράγωγος-Κλίση-Μονοτονία ( ) ( ) β = Άσκηση 1 η : Να βρεθούν οι παράγωγοι των συναρτήσεων: log x. 2 x. ln(x, ( ) 2 x x. Έχουμε.

( ) ( ) ( ) ( ) Παράγωγος-Κλίση-Μονοτονία ( ) ( ) β = Άσκηση 1 η : Να βρεθούν οι παράγωγοι των συναρτήσεων: log x. 2 x. ln(x, ( ) 2 x x. Έχουμε. Παράγωγος-Κλίση-Μονοτονία Άσκηση η : Να βρεθούν οι παράγωγοι των συναρτήσεων:, log, ) ln(, e, Λύση: Έχουμε ln ln ( ), f = = e = e R ln ln f ( ) = ( e ) = e ( ln ) = ln = ln, R Γενικά ισχύει: ( a ) = ln

Διαβάστε περισσότερα

Κεφαλαιο 7: Η ΜΠΣ για ελλειπτικά προβλήματα με μη-ομαλές λύσεις

Κεφαλαιο 7: Η ΜΠΣ για ελλειπτικά προβλήματα με μη-ομαλές λύσεις Κεφαλαιο 7: Η ΜΠΣ για ελλειπτικά προβλήματα με μη-ομαλές λύσεις Όπως είδαμε μέχρι τώρα η ομαλότητα της ακριβούς λύσης επηρεάζει τις εκτιμήσεις σφάλματος με τέτοιο τρόπο ώστε ολα όσα αποδείξαμε ισχύουν

Διαβάστε περισσότερα

KΕΦΑΛΑΙΟ 8 ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟ ΟΙ ΕΠΙΛΥΣΗΣ ΣΥΝΗΘΩΝ. Το τυπικό πρόβληµα αρχικών τιµών που θα µας απασχολήσει, είναι το ακόλουθο:

KΕΦΑΛΑΙΟ 8 ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟ ΟΙ ΕΠΙΛΥΣΗΣ ΣΥΝΗΘΩΝ. Το τυπικό πρόβληµα αρχικών τιµών που θα µας απασχολήσει, είναι το ακόλουθο: KΕΦΑΛΑΙΟ 8 ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟ ΟΙ ΕΠΙΛΥΣΗΣ ΣΥΝΗΘΩΝ ΙΑΦΟΡΙΚΩΝ ΕΞΙΣΩΣΕΩΝ Έστω [ α, b], f :[ α, b], y. Το τυπικό πρόβληµα αρχικών τιµών που θα µας απασχολήσει, είναι το ακόλουθο: Ζητείται µια συνάρτηση y :[

Διαβάστε περισσότερα

Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών

Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών Οι παρούσες σημειώσεις αποτελούν βοήθημα στο μάθημα Αριθμητικές Μέθοδοι του 5 ου εξαμήνου του ΤΜΜ ημήτρης Βαλουγεώργης Καθηγητής Εργαστήριο Φυσικών

Διαβάστε περισσότερα

Εισαγωγή στο Πρόγραμμα Maxima

Εισαγωγή στο Πρόγραμμα Maxima Εισαγωγή στο Πρόγραμμα Maxima Το Maxima είναι ένα πρόγραμμα για την εκτέλεση μαθηματικών υπολογισμών, συμβολικών μαθηματικών χειρισμών, αριθμητικών υπολογισμών και γραφικών παραστάσεων. Το Maxima λειτουργεί

Διαβάστε περισσότερα

Μερικές Διαφορικές Εξισώσεις

Μερικές Διαφορικές Εξισώσεις Πανεπιστήμιο Πατρών, Τμήμα Μαθηματικών Μερικές Διαφορικές Εξισώσεις Χειμερινό εξάμηνο ακαδημαϊκού έτους 24-25, Διδάσκων: Α.Τόγκας ο φύλλο προβλημάτων Ονοματεπώνυμο - ΑΜ: ΜΔΕ ο φύλλο προβλημάτων Α. Τόγκας

Διαβάστε περισσότερα

ΦΥΣ 145 Μαθηµατικές Μέθοδοι στη Φυσική. 21 Μαίου Γράψτε το ονοµατεπώνυµο και αριθµό ταυτότητάς σας στο πάνω µέρος της αυτής της σελίδας.

ΦΥΣ 145 Μαθηµατικές Μέθοδοι στη Φυσική. 21 Μαίου Γράψτε το ονοµατεπώνυµο και αριθµό ταυτότητάς σας στο πάνω µέρος της αυτής της σελίδας. ΦΥΣ 145 Μαθηµατικές Μέθοδοι στη Φυσική 21 Μαίου 2009 Γράψτε το ονοµατεπώνυµο και αριθµό ταυτότητάς σας στο πάνω µέρος της αυτής της σελίδας. Επίσης γράψετε το password σας. Στο τέλος της εξέτασης θα πρέπει

Διαβάστε περισσότερα

Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον

Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον Τμήμα Μηχανικών Πληροφορικής Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον Δρ. Δημήτρης Βαρσάμης Επίκουρος Καθηγητής Οκτώβριος 2014 Δρ. Δημήτρης Βαρσάμης Οκτώβριος 2014 1 / 42 Αριθμητικές Μέθοδοι

Διαβάστε περισσότερα

Λ. Ζαχείλας. Επίκουρος Καθηγητής Εφαρμοσμένων Μαθηματικών Τμήμα Οικονομικών Επιστημών Πανεπιστήμιο Θεσσαλίας. Οικονομική Δυναμική 29/6/14

Λ. Ζαχείλας. Επίκουρος Καθηγητής Εφαρμοσμένων Μαθηματικών Τμήμα Οικονομικών Επιστημών Πανεπιστήμιο Θεσσαλίας. Οικονομική Δυναμική 29/6/14 1 Λ. Ζαχείλας Επίκουρος Καθηγητής Εφαρμοσμένων Μαθηματικών Τμήμα Οικονομικών Επιστημών Πανεπιστήμιο Θεσσαλίας Οικονομική Δυναμική 9 Συνεχή δυναμικά συστήματα Μέρος 1 ο Λουκάς Ζαχείλας Ορισμός Διαφορικής

Διαβάστε περισσότερα

Βασικά στοιχεία στο Matlab

Βασικά στοιχεία στο Matlab Αριθμητική : + - * / ^ 3ˆ2 - (5 + 4)/2 + 6*3 >> 3^2 - (5 + 4)/2 + 6*3 22.5000 Βασικά στοιχεία στο Matlab Το Matlab τυπώνει την απάντηση και την καταχωρεί σε μια μεταβλητή που την ονομάζει ans. Αν θέλουμε

Διαβάστε περισσότερα

Γραφική επίλυση γραμμικού συστήματος με δύο αγνώστους.

Γραφική επίλυση γραμμικού συστήματος με δύο αγνώστους. ΜΕΡΟΣ Α 3. Η ΕΝΝΟΙΑ ΤΟΥ ΓΡΑΜΜΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΚΑΙ Η ΓΡΑΦΙΚΗ ΕΠΙΛΥΣΗ ΤΟΥ 71 3. Η ΕΝΝΟΙΑ ΤΟΥ ΓΡΑΜΜΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΚΑΙ Η ΓΡΑΦΙΚΗ ΕΠΙΛΥΣΗ ΤΟΥ Αν έχουμε δύο γραμμικές εξισώσεις με δύο αγνώστους,, π.χ. α + β

Διαβάστε περισσότερα

1. Κατασκευάστε ένα διάνυσμα με στοιχεία τους ζυγούς αριθμούς μεταξύ του 31 και 75

1. Κατασκευάστε ένα διάνυσμα με στοιχεία τους ζυγούς αριθμούς μεταξύ του 31 και 75 1. Κατασκευάστε ένα διάνυσμα με στοιχεία τους ζυγούς αριθμούς μεταξύ του 31 και 75 2. Έστω x = [2 5 1 6] α. Προσθέστε το 16 σε κάθε στοιχείο β. Προσθέστε το 3 σε κάθε στοιχείο που βρίσκεται σε μονή θέση.

Διαβάστε περισσότερα

Διαφορικές Εξισώσεις.

Διαφορικές Εξισώσεις. Διαφορικές Εξισώσεις. Εαρινό εξάμηνο 05-6. Λύσεις δεύτερου φυλλαδίου ασκήσεων.. Βρείτε όλες τις λύσεις της εξίσωσης Bernoulli x y = xy + y 3 καθορίζοντας προσεκτικά το διάστημα στο οποίο ορίζεται καθεμιά

Διαβάστε περισσότερα

8 ΕΠΙΛΥΣΗ ΜΗ ΓΡΑΜΜΙΚΩΝ ΕΞΙΣΩΣΕΩΝ

8 ΕΠΙΛΥΣΗ ΜΗ ΓΡΑΜΜΙΚΩΝ ΕΞΙΣΩΣΕΩΝ 8 ΕΠΙΛΥΣΗ ΜΗ ΓΡΑΜΜΙΚΩΝ ΕΞΙΣΩΣΕΩΝ Στο παρόν κεφάλαιο θα ασχοληθούμε με μεθόδους επίλυσης εξισώσεων την μορφής f(x) = 0. Αναζητούμε μια ακολουθία { n} n 0 x προσεγγίσεων της λύσης, έτσι ώστε lim x = n =

Διαβάστε περισσότερα

Συνήθεις Διαφορικές Εξισώσεις Ι ΣΔΕ Bernoulli, Riccati, Ομογενείς. Διαφορικές Εξισώσεις Bernoulli, Riccati και Ομογενείς

Συνήθεις Διαφορικές Εξισώσεις Ι ΣΔΕ Bernoulli, Riccati, Ομογενείς. Διαφορικές Εξισώσεις Bernoulli, Riccati και Ομογενείς Συνήθεις Διαφορικές Εξισώσεις Ι ΣΔΕ Bernoulli, Riccati, Ομογενείς Διαφορικές Εξισώσεις Bernoulli, Riccati και Ομογενείς Οι εξισώσεις Bernoulli αποτελούν την κλάση των μη γραμμικών διαφορικών εξισώσεων

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3 Ο 3.2 Η ΕΝΝΟΙΑ ΤΟΥ ΓΡΑΜΜΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΚΑΙ Η. (Σ) όπου α, β, α, β, είναι οι

ΚΕΦΑΛΑΙΟ 3 Ο 3.2 Η ΕΝΝΟΙΑ ΤΟΥ ΓΡΑΜΜΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΚΑΙ Η. (Σ) όπου α, β, α, β, είναι οι ΚΕΦΑΛΑΙΟ 3 Ο ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΩΝ ΕΞΙΣΩΣΕΩΝ 3. Η ΕΝΝΟΙΑ ΤΟΥ ΓΡΑΜΜΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΚΑΙ Η ΓΡΑΦΙΚΗ ΕΠΙΛΥΣΗ ΤΟΥ. Ποια είναι η μορφή ενός συστήματος δύο γραμμικών εξισώσεων, δύο αγνώστων; Να δοθεί παράδειγμα.

Διαβάστε περισσότερα

Ασκήσεις Φροντιστηρίου «Υπολογιστική Νοημοσύνη Ι» 4 o Φροντιστήριο

Ασκήσεις Φροντιστηρίου «Υπολογιστική Νοημοσύνη Ι» 4 o Φροντιστήριο Ασκήσεις Φροντιστηρίου 4 o Φροντιστήριο Πρόβλημα 1 ο Ο πίνακας συσχέτισης R x του διανύσματος εισόδου x( στον LMS αλγόριθμο 1 0.5 R x = ορίζεται ως: 0.5 1. Ορίστε το διάστημα των τιμών της παραμέτρου μάθησης

Διαβάστε περισσότερα

ΠΡΟΒΛΗΜΑΤΑ ΔΥΟ ΔΙΑΣΤΑΣΕΩΝ

ΠΡΟΒΛΗΜΑΤΑ ΔΥΟ ΔΙΑΣΤΑΣΕΩΝ ΠΡΟΒΛΗΜΑΤΑ ΔΥΟ ΔΙΑΣΤΑΣΕΩΝ Η ανάλυση προβλημάτων δύο διαστάσεων με τη μέθοδο των Πεπερασμένων Στοιχείων περιλαμβάνει τα ίδια βήματα όπως και στα προβλήματα μιας διάστασης. Η ανάλυση γίνεται λίγο πιο πολύπλοκη

Διαβάστε περισσότερα

Αριθμητική εύρεση ριζών μη γραμμικών εξισώσεων

Αριθμητική εύρεση ριζών μη γραμμικών εξισώσεων Αριθμητική εύρεση ριζών μη γραμμικών εξισώσεων Με τον όρο μη γραμμικές εξισώσεις εννοούμε εξισώσεις της μορφής: f( ) 0 που προέρχονται από συναρτήσεις f () που είναι μη γραμμικές ως προς. Περιέχουν δηλαδή

Διαβάστε περισσότερα

ΕΠΙΛΥΣΗ ΤΩΝ ΔΙΑΦΟΡΙΚΩΝ ΕΞΙΣΩΣΕΩΝ με το Maple. B.1 Είσαγωγή των διαφορικών εξισώσεων στο Maple

ΕΠΙΛΥΣΗ ΤΩΝ ΔΙΑΦΟΡΙΚΩΝ ΕΞΙΣΩΣΕΩΝ με το Maple. B.1 Είσαγωγή των διαφορικών εξισώσεων στο Maple ΠΑΡΑΡΤΗΜΑ Β ΕΠΙΛΥΣΗ ΤΩΝ ΔΙΑΦΟΡΙΚΩΝ ΕΞΙΣΩΣΕΩΝ με το Maple B.1 Είσαγωγή των διαφορικών εξισώσεων στο Maple Μια διαφορική εξίσωση μπορεί να εισαχθεί στο Maple χρησιμοποιώντας οποιαδήποτε μέθοδο για την κατασκευή

Διαβάστε περισσότερα

Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον

Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον Τμήμα Μηχανικών Πληροφορικής Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον Δρ. Δημήτρης Βαρσάμης Επίκουρος Καθηγητής Οκτώβριος 2015 Δρ. Δημήτρης Βαρσάμης Οκτώβριος 2015 1 / 47 Αριθμητικές Μέθοδοι

Διαβάστε περισσότερα

( ) Κλίση και επιφάνειες στάθµης µιας συνάρτησης. x + y + z = κ ορίζει την επιφάνεια µιας σφαίρας κέντρου ( ) κ > τότε η

( ) Κλίση και επιφάνειες στάθµης µιας συνάρτησης. x + y + z = κ ορίζει την επιφάνεια µιας σφαίρας κέντρου ( ) κ > τότε η Έστω Κλίση και επιφάνειες στάθµης µιας συνάρτησης ανοικτό και σταθερά ( µε κ f ( ) ορίζει µια επιφάνεια S στον f : ) τότε η εξίσωση, ονοµάζεται συνήθως επιφάνεια στάθµης της f. εξίσωση, C συνάρτηση. Αν

Διαβάστε περισσότερα

Μαθηματικά ΜΕΡΟΣ 3 ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ

Μαθηματικά ΜΕΡΟΣ 3 ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ Μαθηματικά ΜΕΡΟΣ 3 ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ Ι. Δημοτίκαλης, Επίκουρος Καθηγητής 1 ΤΕΙ ΚΡΗΤΗΣ-ΤΜΗΜΑ Λ&Χ: jdim@staff.teicrete.gr ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ Αν έχουμε m εξισώσεις (ισότητες) που περιγράφουν μαθηματικά

Διαβάστε περισσότερα

Παραμετρικές εξισώσεις καμπύλων. ΗΥ111 Απειροστικός Λογισμός ΙΙ

Παραμετρικές εξισώσεις καμπύλων. ΗΥ111 Απειροστικός Λογισμός ΙΙ ΗΥ-111 Απειροστικός Λογισμός ΙΙ Παραμετρικές εξισώσεις καμπύλων Παραδείγματα ct (): U t ( x ( t), x ( t)) 1 ct (): U t ( x ( t), x ( t), x ( t)) 3 1 3 Θέσης χρόνου ταχύτητας χρόνου Χαρακτηριστικού-χρόνου

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 1: ΟΡΙΣΜΟΣ ΠΕΔΙΟ ΟΡΙΣΜΟΥ ΠΡΑΞΕΙΣ ΣΥΝΑΡΤΗΣΕΩΝ ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΘΕΜΑ Α

ΕΝΟΤΗΤΑ 1: ΟΡΙΣΜΟΣ ΠΕΔΙΟ ΟΡΙΣΜΟΥ ΠΡΑΞΕΙΣ ΣΥΝΑΡΤΗΣΕΩΝ ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΘΕΜΑ Α ΚΕΦΑΛΑΙΟ 1 ο : ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 1: ΟΡΙΣΜΟΣ ΠΕΔΙΟ ΟΡΙΣΜΟΥ ΠΡΑΞΕΙΣ ΣΥΝΑΡΤΗΣΕΩΝ ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ ΛΥΜΕΝΑ ΘΕΜΑΤΑ Ερώτηση θεωρίας 1 ΘΕΜΑ Α Τι ονομάζουμε πραγματική συνάρτηση

Διαβάστε περισσότερα

Σύντομες εισαγωγικές σημειώσεις για την. Matlab

Σύντομες εισαγωγικές σημειώσεις για την. Matlab Σύντομες εισαγωγικές σημειώσεις για την Matlab Δήλωση Μεταβλητών Για να εισάγει κανείς δεδομένα στη Matlab υπάρχουν πολλοί τρόποι. Ο πιο απλός είναι στη γραμμή εντολών να εισάγουμε αυτό που θέλουμε και

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ. 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις)

ΣΥΣΤΗΜΑΤΑ. 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις) 6 ΣΥΣΤΗΜΑΤΑ 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις) Η εξίσωση αx βy γ Στο Γυμνάσιο διαπιστώσαμε με την βοήθεια παραδειγμάτων ότι η εξίσωση αx βy γ, με α 0 ή β 0, που λέγεται γραμμική εξίσωση,

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΙΙ

ΜΑΘΗΜΑΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΙΙ ΜΑΘΗΜΑΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΙΙ Ακρότατα Δρ. Ιωάννης Ε. Λιβιέρης Τμήμα Μηχανικών Πληροφορικής Τ.Ε. TEI Δυτικής Ελλάδας 2 Ακρότατα συνάρτησης Έστω συνάρτηση f A R 2 R και ένα σημείο P(x, y ) A. Η τιμή f(x, y )

Διαβάστε περισσότερα

1.1 Βασικές Έννοιες των Διαφορικών Εξισώσεων

1.1 Βασικές Έννοιες των Διαφορικών Εξισώσεων Κεφάλαιο 1 Εισαγωγικά Στο κεφάλαιο αυτό θα παρουσιάσουμε τις βασικές έννοιες και ορισμούς των Διαφορικών Εξισώσεων. Στο εδάφιο 1.1 παρουσιάζονται οι βασικές έννοιες και ορισμοί των διαφορικών εξισώσεων

Διαβάστε περισσότερα

Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον (Εργαστήριο 5)

Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον (Εργαστήριο 5) Τμήμα Μηχανικών Πληροφορικής Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον (Εργαστήριο 5) Δρ Δημήτρης Βαρσάμης Επίκουρος Καθηγητής Δρ Δημήτρης Βαρσάμης Αριθμητικές Μέθοδοι (E 5) Σεπτέμβριος 2015 1

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι

ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι κ ΠΕΤΑΛΙΔΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται

Διαβάστε περισσότερα

Αριθμητικές Μέθοδοι για την επίλυση ΠΑΤ Δ.Ε.

Αριθμητικές Μέθοδοι για την επίλυση ΠΑΤ Δ.Ε. Κεφάλαιο 4 Αριθμητικές Μέθοδοι για την επίλυση ΠΑΤ Δ.Ε. 4.1 Προβλήματα αρχικών τιμών Στο κεφάλαο αυτό θα ασχοληθούμε με μεθόδους αριθμητικής επίλυσης προβλημάτων αρχικών τιμών για Συνήθεις Διαφορικές Εξισώσεις

Διαβάστε περισσότερα

Κεφάλαιο 11. Πολυώνυμα Taylor Ορισμός

Κεφάλαιο 11. Πολυώνυμα Taylor Ορισμός Κεφάλαιο Πολυώνυμα Taylor Στο κεφάλαιο αυτό θα κάνουμε μια σύντομη εισαγωγή στα πολυώνυμα Taylor. Τα πολυώνυμα αυτά μπορούν να χρησιμοποιηθούν ως προσεγγίσεις μιας συνάρτησης γύρω από ένα σημείο, και έχουν

Διαβάστε περισσότερα

ΜΑΣ 473/673: Μέθοδοι Πεπερασμένων Στοιχείων

ΜΑΣ 473/673: Μέθοδοι Πεπερασμένων Στοιχείων ΜΑΣ 473/673: Μέθοδοι Πεπερασμένων Στοιχείων Ένα δυσδιάστατο παράδειγμα με το λογισμικό MATLAB Θεωρούμε το εξής Π.Σ.Τ.: Να βρεθεί η u(x, y) έτσι ώστε όπου f (x, y) = 1. u u f ( x, y), x ( 1,1) ( 1,1) x

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ Τελική Εξέταση Ι. Λυχναρόπουλος

Εφαρμοσμένα Μαθηματικά ΙΙ Τελική Εξέταση Ι. Λυχναρόπουλος 9/6/5 Εφαρμοσμένα Μαθηματικά ΙΙ Τελική Εξέταση Ι. Λυχναρόπουλος Άσκηση (Μονάδες ) 5 Δίνεται ο πίνακας A 5. Αν διαγωνοποιείται να τον διαγωνοποιήσετε και στη συνέχεια να k υπολογίσετε το A όπου k θετικός

Διαβάστε περισσότερα

Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα

Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα Ενότητα: Πραγματικές Συναρτήσεις Πολλών Μεταβλητών (μέρος 1) Ανδριανός Ε Τσεκρέκος Τμήμα Λογιστικής & Χρηματοοικονομικής

Διαβάστε περισσότερα

1.1. Διαφορική Εξίσωση και λύση αυτής

1.1. Διαφορική Εξίσωση και λύση αυτής Εισαγωγή στις συνήθεις διαφορικές εξισώσεις 9 Διαφορική Εξίσωση και λύση αυτής Σε ότι ακολουθεί με τον όρο συνάρτηση θα εννοούμε μια πραγματική συνάρτηση μιας πραγματικής μεταβλητής, ορισμένη σε ένα διάστημα

Διαβάστε περισσότερα

ΜΑΣ 371: Αριθμητική Ανάλυση ΙI ΑΣΚΗΣΕΙΣ. 1. Να βρεθεί το πολυώνυμο Lagrange για τα σημεία (0, 1), (1, 2) και (4, 2).

ΜΑΣ 371: Αριθμητική Ανάλυση ΙI ΑΣΚΗΣΕΙΣ. 1. Να βρεθεί το πολυώνυμο Lagrange για τα σημεία (0, 1), (1, 2) και (4, 2). ΜΑΣ 37: Αριθμητική Ανάλυση ΙI ΑΣΚΗΣΕΙΣ Να βρεθεί το πολυώνυμο Lagrage για τα σημεία (, ), (, ) και (4, ) Να βρεθεί το πολυώνυμο παρεμβολής Lagrage που προσεγγίζει τη συνάρτηση 3 f ( x) si x στους κόμβους

Διαβάστε περισσότερα

f f 2 0 B f f 0 1 B 10.3 Ακρότατα υπό συνθήκες Πολλαπλασιαστές του Lagrange

f f 2 0 B f f 0 1 B 10.3 Ακρότατα υπό συνθήκες Πολλαπλασιαστές του Lagrange Μέγιστα και ελάχιστα 39 f f B f f yx y x xy Οι ιδιοτιμές του πίνακα Β είναι λ =-, λ =- και οι δυο αρνητικές, άρα το κρίσιμο σημείο (,) είναι σημείο τοπικού μεγίστου. Εφαρμογή 6: Στο παράδειγμα 3 ο αντίστοιχος

Διαβάστε περισσότερα

Προγραμματισμός και Χρήση Ηλεκτρονικών Υπολογιστών - Βασικά Εργαλεία Λογισμικού

Προγραμματισμός και Χρήση Ηλεκτρονικών Υπολογιστών - Βασικά Εργαλεία Λογισμικού ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΙΚΟ ΚΕΝΤΡΟ Προγραμματισμός και Χρήση Ηλεκτρονικών Υπολογιστών - Βασικά Εργαλεία Λογισμικού Μάθημα 5ο Aντώνης Σπυρόπουλος Πράξεις μεταξύ των

Διαβάστε περισσότερα

(ii) x[y (x)] 4 + 2y(x) = 2x. (vi) y (x) = x 2 sin x

(ii) x[y (x)] 4 + 2y(x) = 2x. (vi) y (x) = x 2 sin x ΕΥΓΕΝΙΑ Ν. ΠΕΤΡΟΠΟΥΛΟΥ ΕΠΙΚ. ΚΑΘΗΓΗΤΡΙΑ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ «ΕΦΑΡΜΟΣΜΕΝΑ ΜΑΘΗΜΑΤΙΚΑ ΙΙΙ» ΠΑΤΡΑ 2015 1 Ασκήσεις 1η ομάδα ασκήσεων 1. Να χαρακτηρισθούν πλήρως

Διαβάστε περισσότερα

Επιστηµονικός Υπολογισµός Ι - Πρώτη εργαστηριακή άσκηση

Επιστηµονικός Υπολογισµός Ι - Πρώτη εργαστηριακή άσκηση Επιστηµονικός Υπολογισµός Ι - Πρώτη εργαστηριακή άσκηση Ηµεροµηνία επιστροφής : Τετάρτη 4/11/2010 18 Οκτωβρίου 2010 1 Γραµµική άλγεβρα (20 µονάδες) Η παράγωγος ενός µητρώου H ορίζεται ως η παράγωγος κάθε

Διαβάστε περισσότερα

lnx ln x ln l x 1. = (0,1) (1,7].

lnx ln x ln l x 1. = (0,1) (1,7]. ΚΕΦΑΛΑΙΟ ο: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 1: ΕΝΝΟΙΑ ΠΡΑΓΜΑΤΙΚΗΣ ΣΥΝΑΡΤΗΣΗΣ - ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ. IΣΟΤΗΤΑ ΣΥΝΑΡΤΗΣΕΩΝ - ΠΡΑΞΕΙΣ ΜΕ ΣΥΝΑΡΤΗΣΕΙΣ - ΣΥΝΘΕΣΗ ΣΥΝΑΡΤΗΣΕΩΝ [Ενότητα

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι

ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι κ. ΠΕΤΑΛΙΔΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ

ΑΛΓΕΒΡΑ Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΑΛΓΕΒΡΑ Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΣΤΟΙΧΕΙΑ ΑΡΧΙΚΗΣ ΕΚ ΟΣΗΣ Συγγραφική ομάδα: Ανδρεαδάκης Στυλιανός Κατσαργύρης Βασίλειος Παπασταυρίδης Σταύρος Πολύζος Γεώργιος Σβέρκος Ανδρέας Καθηγητής Πανεπιστημίου Αθηνών Καθηγητής

Διαβάστε περισσότερα

Θέματα Εξετάσεων Σεπτεμβρίου 2012:

Θέματα Εξετάσεων Σεπτεμβρίου 2012: ο ΕΞΑΜΗΝΟ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΜΠ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ: ΣΕΠΤΕΜΒΡΙΟΣ Θέματα Εξετάσεων Σεπτεμβρίου : ΘΕΜΑ (μονάδες ) Καμπύλη Bezier δημιουργείται από σημεία ελέγχου, που κατά σειρά είναι τα: (,), (?,?),

Διαβάστε περισσότερα

Β Γραφικές παραστάσεις - Πρώτο γράφημα Σχεδιάζοντας το μήκος της σανίδας συναρτήσει των φάσεων της σελήνης μπορείτε να δείτε αν υπάρχει κάποιος συσχετισμός μεταξύ των μεγεθών. Ο συνήθης τρόπος γραφικής

Διαβάστε περισσότερα

Πρόβλημα δύο σημείων. Κεφάλαιο Διακριτοποίηση

Πρόβλημα δύο σημείων. Κεφάλαιο Διακριτοποίηση Κεφάλαιο 3 Πρόβλημα δύο σημείων Σε αυτό το κεφάλαιο θα μελετήσουμε τη μεθόδο πεπερασμένων διαφορών για προβλήματα Σ.Δ.Ε. δεύτερης τάξεως, τα οποία καλούνται και προβλήματα δύο σημείων. Ο λόγος που θα ασχοληθούμε

Διαβάστε περισσότερα

Κεφάλαιο 3 ΠΑΡΑΓΩΓΟΣ. 3.1 Η έννοια της παραγώγου. y = f(x) f(x 0 ), = f(x 0 + x) f(x 0 )

Κεφάλαιο 3 ΠΑΡΑΓΩΓΟΣ. 3.1 Η έννοια της παραγώγου. y = f(x) f(x 0 ), = f(x 0 + x) f(x 0 ) Κεφάλαιο 3 ΠΑΡΑΓΩΓΟΣ 3.1 Η έννοια της παραγώγου Εστω y = f(x) µία συνάρτηση, που συνδέει τις µεταβλητές ποσότητες x και y. Ενα ερώτηµα που µπορεί να προκύψει καθώς µελετούµε τις δύο αυτές ποσοτήτες είναι

Διαβάστε περισσότερα

Λύσεις Εξετάσεων Φεβρουαρίου Ακ. Έτους

Λύσεις Εξετάσεων Φεβρουαρίου Ακ. Έτους ΜΑΘΗΜΑΤΙΚΑ, 6-7 ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΕΠΙΚ. ΚΑΘ. ΣΤΑΥΡΟΣ ΤΟΥΜΠΗΣ Λύσεις Εξετάσεων Φεβρουαρίου Ακ. Έτους 6-7. Περιοδικές Συναρτήσεις) Έστω συνεχής συνάρτηση f : R R περιοδική

Διαβάστε περισσότερα

ΜΕΜ251 Αριθμητική Ανάλυση

ΜΕΜ251 Αριθμητική Ανάλυση ΜΕΜ251 Αριθμητική Ανάλυση Διάλεξη 10, 12 Μαρτίου 2018 Μιχάλης Πλεξουσάκης Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών Περιεχόμενα 1. Παρεμβολή 2. Παράσταση και υπολογισμός του πολυωνύμου παρεμβολής

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ. ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ. ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ 1. Τι καλείται μεταβλητή; ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΑ Β ΓΥΜΝΑΣΙΟΥ ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ Μεταβλητή είναι ένα γράμμα (π.χ., y, t, ) που το χρησιμοποιούμε για να παραστήσουμε ένα οποιοδήποτε στοιχείο ενός συνόλου..

Διαβάστε περισσότερα

1 Επανάληψη εννοιών από τον Απειροστικό Λογισμό

1 Επανάληψη εννοιών από τον Απειροστικό Λογισμό 1 Επανάληψη εννοιών από τον Απειροστικό Λογισμό 1.1 Όρια ακολουθιών Λέμε ότι η ακολουθία { n } συγκλίνει με όριο R αν για κάθε ϵ > 0 υπάρχει ακέραιος N = N(ϵ) τέτοιος ώστε (1.1) n < ϵ για κάθε n > N, και

Διαβάστε περισσότερα

A Τελική Εξέταση του μαθήματος «Αριθμητική Ανάλυση» Σχολή Θετικών Επιστημών, Τμήμα Μαθηματικών, Πανεπιστήμιο Αιγαίου

A Τελική Εξέταση του μαθήματος «Αριθμητική Ανάλυση» Σχολή Θετικών Επιστημών, Τμήμα Μαθηματικών, Πανεπιστήμιο Αιγαίου A Τελική Εξέταση του μαθήματος «Αριθμητική Ανάλυση» Εξεταστική περίοδος Ιουνίου 6, Διδάσκων: Κώστας Χουσιάδας Διάρκεια εξέτασης: ώρες (Σε παρένθεση δίνεται η βαθμολογική αξία κάθε υπο-ερωτήματος. Σύνολο

Διαβάστε περισσότερα

Δυναμική Μηχανών I. Διάλεξη 10. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ

Δυναμική Μηχανών I. Διάλεξη 10. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ Δυναμική Μηχανών I Διάλεξη 10 Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ 1 Περιεχόμενα Προσομοίωση απόκρισης συστήματος στο MATLAB μέσω της συνάρτησης ode45 (Runge-Kutta) Προσομοίωση απόκρισης

Διαβάστε περισσότερα

Είναι γνωστό ότι η δύναμη που ασκείται σε ένα ελατήριο και ονομάζεται δύναμη επαναφοράς δίνεται από τη σχέση : F = kx (3.1)

Είναι γνωστό ότι η δύναμη που ασκείται σε ένα ελατήριο και ονομάζεται δύναμη επαναφοράς δίνεται από τη σχέση : F = kx (3.1) 3.1. Εισαγωγή Είναι γνωστό ότι η δύναμη που ασκείται σε ένα ελατήριο και ονομάζεται δύναμη επαναφοράς δίνεται από τη σχέση : F = kx (3.1) Αν ϑελήσουμε να υπολογίσουμε το έργο της δύναμης αυτής μεταξύ δύο

Διαβάστε περισσότερα

Δυναμική Μηχανών I. Αριθμητική Επίλυση Δυναμικών Συστημάτων στο Περιβάλλον MATLAB και Simulink

Δυναμική Μηχανών I. Αριθμητική Επίλυση Δυναμικών Συστημάτων στο Περιβάλλον MATLAB και Simulink Δυναμική Μηχανών I 5 6 Αριθμητική Επίλυση Δυναμικών Συστημάτων στο Περιβάλλον MATLAB και Simulink 2015 Δημήτριος Τζεράνης, Ph.D Τμήμα Μηχανολόγων Μηχανικών Ε.Μ.Π. tzeranis@gmail.com Απαγορεύεται οποιαδήποτε

Διαβάστε περισσότερα

Κεφάλαιο 5. Το Συμπτωτικό Πολυώνυμο

Κεφάλαιο 5. Το Συμπτωτικό Πολυώνυμο Κεφάλαιο 5. Το Συμπτωτικό Πολυώνυμο Σύνοψη Στο κεφάλαιο αυτό παρουσιάζεται η ιδέα του συμπτωτικού πολυωνύμου, του πολυωνύμου, δηλαδή, που είναι του μικρότερου δυνατού βαθμού και που, για συγκεκριμένες,

Διαβάστε περισσότερα

Παραδείγματα (1 ο σετ) Διανυσματικοί Χώροι

Παραδείγματα (1 ο σετ) Διανυσματικοί Χώροι Παραδείγματα ( ο σετ) Διανυσματικοί Χώροι Παράδειγμα Έστω το σύνολο V το σύνολο όλων των θετικών πραγματικών αριθμών εφοδιασμένο με την ακόλουθη πράξη της πρόσθεσης: y y με y, V και του πολλαπλασιασμού:

Διαβάστε περισσότερα

Παραδείγματα (2) Διανυσματικοί Χώροι

Παραδείγματα (2) Διανυσματικοί Χώροι Παραδείγματα () Διανυσματικοί Χώροι Παράδειγμα 7 Ελέγξτε αν τα ακόλουθα σύνολα διανυσμάτων είναι γραμμικά ανεξάρτητα ή όχι: α) v=(,4,6), v=(,,), v=(7,,) b) v=(,4), v=(,), v=(4,) ) v=(,,), v=(5,,), v=(5,,)

Διαβάστε περισσότερα

Κεφάλαιο 4: Στοιχεία της εκδοχής hp της ΜΠΣ στις 2- διαστάσεις

Κεφάλαιο 4: Στοιχεία της εκδοχής hp της ΜΠΣ στις 2- διαστάσεις Κεφάλαιο 4: Στοιχεία της εκδοχής hp της ΜΠΣ στις - διαστάσεις Στις -διαστάσεις, η περιγραφή της εκδοχής hp της ΜΠΣ είναι αρκετά πολύπλοκη. Στο παρόν κεφάλαιο θα δούμε κάποια στοιχεία της, ξεκινώντας με

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 3: ΕΦΑΠΤΟΜΕΝΗ [Κεφάλαιο 2.1: Πρόβλημα εφαπτομένης του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β

ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 3: ΕΦΑΠΤΟΜΕΝΗ [Κεφάλαιο 2.1: Πρόβλημα εφαπτομένης του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β ΚΕΦΑΛΑΙΟ ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ : ΕΦΑΠΤΟΜΕΝΗ [Κεφάλαιο.: Πρόβλημα εφαπτομένης του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ Παράδειγμα. ΘΕΜΑ Β Έστω μια παραγωγίσιμη στο συνάρτηση, τέτοια ώστε για κάθε x

Διαβάστε περισσότερα

Ευκλείδειοι Χώροι. Ορίζουµε ως R n, όπου n N, το σύνολο όλων διατεταµένων n -άδων πραγµατικών αριθµών ( x

Ευκλείδειοι Χώροι. Ορίζουµε ως R n, όπου n N, το σύνολο όλων διατεταµένων n -άδων πραγµατικών αριθµών ( x Ευκλείδειοι Χώροι Ορίζουµε ως R, όπου N, το σύνολο όλων διατεταµένων -άδων πραγµατικών αριθµών x, x,, x ) Tο R λέγεται ευκλείδειος -χώρος και τα στοιχεία του λέγονται διανύσµατα ή σηµεία Το x i λέγεται

Διαβάστε περισσότερα

Κεφάλαιο 2. Διανύσματα και Συστήματα Συντεταγμένων

Κεφάλαιο 2. Διανύσματα και Συστήματα Συντεταγμένων Κεφάλαιο 2 Διανύσματα και Συστήματα Συντεταγμένων Διανύσματα Διανυσματικά μεγέθη Φυσικά μεγέθη που έχουν τόσο αριθμητικές ιδιότητες όσο και ιδιότητες κατεύθυνσης. Σε αυτό το κεφάλαιο, θα ασχοληθούμε με

Διαβάστε περισσότερα

Κεφ. 6Α: Συνήθεις διαφορικές εξισώσεις - προβλήματα δύο οριακών τιμών

Κεφ. 6Α: Συνήθεις διαφορικές εξισώσεις - προβλήματα δύο οριακών τιμών Κεφ. 6Α: Συνήθεις διαφορικές εξισώσεις - προβλήματα δύο οριακών τιμών 1. Εισαγωγή. Προβλήματα δύο οριακών τιμών 3. Η μέθοδος των πεπερασμένων διαφορών 4. Οριακές συνθήκες με παραγώγους 5. Παραδείγματα

Διαβάστε περισσότερα

για κάθε x 0. , τότε f x στο Απάντηση είναι εσωτερικό σημείο του Δ και η f παρουσιάζει σ αυτό τοπικό μέγιστο, υπάρχει 0 τέτοιο, ώστε (x , ισχύει

για κάθε x 0. , τότε f x στο Απάντηση είναι εσωτερικό σημείο του Δ και η f παρουσιάζει σ αυτό τοπικό μέγιστο, υπάρχει 0 τέτοιο, ώστε (x , ισχύει ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΠΕΜΠΤΗ 9 ΙΟΥΝΙΟΥ 6 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (ΝΕΟ ΣΥΣΤΗΜΑ) & ΚΑΤΕΥΘΥΝΣΗΣ (ΠΑΛΑΙΟ ΣΥΣΤΗΜΑ) ΘΕΜΑ Α Α Έστω

Διαβάστε περισσότερα

4.1 Πράξεις με Πολυωνυμικές Εκφράσεις... 66

4.1 Πράξεις με Πολυωνυμικές Εκφράσεις... 66 Περιεχόμενα Ευρετήριο Πινάκων... 7 Ευρετήριο Εικόνων... 8 Εισαγωγή... 9 Κεφάλαιο 1-Περιβάλλον Εργασίας - Στοιχεία Εντολών... 13 1.1 Το Πρόγραμμα... 14 1.2.1 Εισαγωγή Εντολών... 22 1.2.2 Εισαγωγή Εντολών

Διαβάστε περισσότερα

Η διατήρηση μάζας σε ένα σύστημα τριών αντιδραστήρων περιγράφεται από το παρακάτω σύστημα συνήθων διαφορικών εξισώσεων:

Η διατήρηση μάζας σε ένα σύστημα τριών αντιδραστήρων περιγράφεται από το παρακάτω σύστημα συνήθων διαφορικών εξισώσεων: ΠΑΡΑΔΕΙΓΜΑ 6 ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ, 0-0, 5 Ο ΕΞΑΜΗΝΟ ΕΠΙΛΥΣΗ ΕΡΓΑΣΙΑΣ #: ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣ - ΠΡΟΒΛΗΜΑΤΑ ΑΡΧΙΚΩΝ ΤΙΜΩΝ ΕΠΙΜΕΛΕΙΑ: Ιωάννης Λυχναρόπουλος ΑΣΚΗΣΗ Η διατήρηση μάζας σε ένα σύστημα τριών

Διαβάστε περισσότερα

17. Εισαγωγή σε αριθμητικές μεθόδους για μηχανικούς και αλγορίθμους

17. Εισαγωγή σε αριθμητικές μεθόδους για μηχανικούς και αλγορίθμους ΠΠΜ 500: Εφαρμογές Μηχανικής με Ανάπτυξη Λογισμικού 17. Εισαγωγή σε αριθμητικές μεθόδους για μηχανικούς και αλγορίθμους Εαρινό εξάμηνο 2012 Πέτρος Κωμοδρόμος komodromos@ucy.ac.cy http://www.eng.ucy.ac.cy/petros

Διαβάστε περισσότερα

ΜΑΣ 371: Αριθμητική Ανάλυση ΙI ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ. 1. Να βρεθεί το πολυώνυμο παρεμβολής Lagrange για τα σημεία (0, 1), (1, 2) και (4, 2).

ΜΑΣ 371: Αριθμητική Ανάλυση ΙI ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ. 1. Να βρεθεί το πολυώνυμο παρεμβολής Lagrange για τα σημεία (0, 1), (1, 2) και (4, 2). ΜΑΣ 7: Αριθμητική Ανάλυση ΙI ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ Να βρεθεί το πολυώνυμο παρεμβολής Lagrage για τα σημεία (, ), (, ) και (4, ) Λύση: Για τα σημεία x, x, x 4, y, y, y υπολογίζουμε x x x x () x x x x x x 4 L

Διαβάστε περισσότερα

Εργασία 2. Παράδοση 20/1/08 Οι ασκήσεις είναι βαθμολογικά ισοδύναμες

Εργασία 2. Παράδοση 20/1/08 Οι ασκήσεις είναι βαθμολογικά ισοδύναμες Εργασία Παράδοση 0/1/08 Οι ασκήσεις είναι βαθμολογικά ισοδύναμες 1. Υπολογίστε τα παρακάτω όρια: Α. Β. Γ. όπου x> 0, y > 0 Δ. όπου Κάνετε απευθείας τις πράξεις χωρίς να χρησιμοποιήσετε παραγώγους. Επιβεβαιώστε

Διαβάστε περισσότερα

Μαθηματική Ανάλυση ΙI

Μαθηματική Ανάλυση ΙI Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Μαθηματική Ανάλυση ΙI Ενότητα 6: Παράγωγος κατά κατεύθυνση, κλίση, εφαπτόμενα επίπεδα Επίκουρος Καθηγητής Θ. Ζυγκιρίδης e-mail: tzygiridis@uowm.gr Τμήμα Μηχανικών

Διαβάστε περισσότερα

z=± Η εξίσωση αυτή μας λέει αμέσως ότι η συνάρτηση Green σε δύο διαστάσεις είναι

z=± Η εξίσωση αυτή μας λέει αμέσως ότι η συνάρτηση Green σε δύο διαστάσεις είναι στο άπειρο το αποτέλεσμα απειρίζεται λογαριθμικά. Αυτή η συμπεριφορά του δυναμικού Coulomb σε δύο διαστάσεις δεν μπορεί να εξαλειφθεί με τον ίδιο τρόπο όπως η απόκλιση (86 διότι έχει φυσική αφετηρία :

Διαβάστε περισσότερα

Αριθμητική Ανάλυση και Εφαρμογές

Αριθμητική Ανάλυση και Εφαρμογές Αριθμητική Ανάλυση και Εφαρμογές Διδάσκων: Δημήτριος Ι. Φωτιάδης Τμήμα Μηχανικών Επιστήμης Υλικών Ιωάννινα 07-08 Αριθμητική Παραγώγιση Εισαγωγή Ορισμός 7. Αν y f x είναι μια συνάρτηση ορισμένη σε ένα διάστημα

Διαβάστε περισσότερα

ΑΕΝ / ΑΣΠΡΟΠΥΡΓΟΥ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΑΥΤΟΜΑΤΙΣΜΟΥ. Σημειώσεις για τη χρήση του MATLAB στα Συστήματα Αυτομάτου Ελέγχου

ΑΕΝ / ΑΣΠΡΟΠΥΡΓΟΥ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΑΥΤΟΜΑΤΙΣΜΟΥ. Σημειώσεις για τη χρήση του MATLAB στα Συστήματα Αυτομάτου Ελέγχου ΑΕΝ / ΑΣΠΡΟΠΥΡΓΟΥ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΑΥΤΟΜΑΤΙΣΜΟΥ Σημειώσεις για τη χρήση του MATLAB στα Συστήματα Αυτομάτου Ελέγχου Κ. ΝΑΣΟΠΟΥΛΟΣ - Α. ΧΡΗΣΤΙ ΟΥ Κ. ΝΑΣΟΠΟΥΛΟΣ - Α. ΧΡΗΣΤΙ ΟΥ Οκτώβριος 011 MATLAB

Διαβάστε περισσότερα

x (t) = f(t, x(t)), t > t 0 (1.1)

x (t) = f(t, x(t)), t > t 0 (1.1) ΑΡΙΘΜΗΤΙΚΗ ΕΠΙΛΥΣΗ ΣΥΝΗΘΩΝ ΔΙΑΦΟΡΙΚΩΝ ΕΞΙΣΩΣΕΩΝ Μεταπτυχιακή Διπλωματική Εργασία Ελευθερία Καβάλου Επιβλέπων καθηγητής: Νικόλαος Χαλιδιάς Μεταπτυχιακό Πρόγραμμα : Σπουδές στα Μαθηματικά Τμήμα Μαθηματικών,

Διαβάστε περισσότερα

Αριθμητική Ανάλυση και Εφαρμογές

Αριθμητική Ανάλυση και Εφαρμογές Αριθμητική Ανάλυση και Εφαρμογές Διδάσκων: Δημήτριος Ι. Φωτιάδης Τμήμα Μηχανικών Επιστήμης Υλικών Ιωάννινα 07-08 Πεπερασμένες και Διαιρεμένες Διαφορές Εισαγωγή Θα εισάγουμε την έννοια των διαφορών με ένα

Διαβάστε περισσότερα

Αριθµητική Ολοκλήρωση

Αριθµητική Ολοκλήρωση Κεφάλαιο 5 Αριθµητική Ολοκλήρωση 5. Εισαγωγή Για τη συντριπτική πλειοψηφία των συναρτήσεων f (x) δεν υπάρχουν ή είναι πολύ δύσχρηστοι οι τύποι της αντιπαραγώγου της f (x), δηλαδή της F(x) η οποία ικανοποιεί

Διαβάστε περισσότερα

(a) = lim. f y (a, b) = lim. (b) = lim. f y (x, y) = lim. g g(a + h) g(a) h g(b + h) g(b)

(a) = lim. f y (a, b) = lim. (b) = lim. f y (x, y) = lim. g g(a + h) g(a) h g(b + h) g(b) 1 ΑΝΑΛΥΣΗ ΙΙ Μερική Παράγωγος Μερικές Παράγωγοι Ορισμός 1: a) Εστω f(x y) : U R R μία συνάρτηση δύο μεταβλητών και (a b) ένα σημείο του U. Θεωρούμε ότι μεταβάλλεται μόνο το x ένω το y παραμένει σταθερό

Διαβάστε περισσότερα