Περιγραφική Στατιστική

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Περιγραφική Στατιστική"

Transcript

1 Περιγραφική Στατιστική Παναγιώτα Λάλου. Βασικές έννοιες Ορισμός: Στατιστικός πληθυσμός ονομάζεται το σύνολο των πειραματικών μονάδων π.χ άνθρωποι, ζώα, επιχειρήσεις κ.λπ, οι οποίες συμμετέχουν στην έρευνα που πραγματοποιείται. Τα στοιχεία του πληθυσμού, εξετάζονται ως προς ένα ή περισσότερα χαρακτηριστικά. Το χαρακτηριστικό ως προς το οποίο εξετάζουμε έναν πληθυσμό, ονομάζεται στατιστική μεταβλητή. Οι δυνατές τιμές που μπορεί να πάρει μια μεταβλητή λέγονται τιμές της μεταβλητής. Τις μεταβλητές τις διακρίνουμε στις εξής κατηγορίες: α) Σε ποιοτικές ή κατηγορικές: των οποίων οι τιμές δεν είναι αριθμοί. Τέτοιες είναι για παράδειγμα: το φύλο (αγόρι-κορίτσι) και η ποδοσφαιρική ομάδα προτίμησης. Διακρίνουμε δύο είδη ανάλογα με το αν υπάρχει η έννοια της διάταξης στις τιμές των μεταβλητών ή όχι. Αν οι τιμές μπορούν να διαταχθούν μιλάμε για διατάξιμες ποιοτικές μεταβλητές, π.χ. κατάσταση ασθενή (με τιμές κρίσιμη, κακή, μέτρια καλή), επίπεδο εκπαίδευσης (με τιμές δημοτικό, γυμνάσιο, λύκειο, πανεπιστήμιο). Διαφορετικά, μιλάμε για μη διατάξιμες π.χ. χρώμα αυτοκινήτου. β) Σε ποσοτικές: τον οποίων οι τιμές είναι αριθμοί. Παράδειγμα: το ύψος του μαθητή, ο αριθμός υπαλλήλων μιας επιχείρησης. Οι ποσοτικές μεταβλητές διακρίνονται σε διακριτές μεταβλητές και σε συνεχείς. Διακριτές μεταβλητές λέγονται αυτές που παίρνουν μόνο μεμονωμένες τιμές, συνήθως ακέραιες.

2 Π.χ το αποτέλεσμα ρίψης ενός ζαριού, ο αριθμός αδερφών. Συνεχείς λέγονται οι μεταβλητές που μπορούν να πάρουν οποιαδήποτε τιμή ενός διαστήματος πραγματικών αριθμών (α,β). Τέτοια είναι για παράδειγμα το ύψος των μαθητών ενός τμήματος. ΕΙΔΗ ΜΕΤΑΒΛΗΤΩΝ Σε πολλές περιπτώσεις η εξέταση όλων των μονάδων του πληθυσμού είναι δύσκολη ή ακόμα και αδύνατη. Δύσκολη, κυρίως για οικονομικούς λόγους, αφού ο χρόνος και το κόστος της έρευνας αυξάνεται καθώς αυξάνονται οι μονάδες του πληθυσμού. Επίσης, αν για παράδειγμα κάποια προϊόντα πρέπει να εξεταστούν για την αντοχή τους που συνίσταται στην εκτίμηση σημείου κάμψης ή του σημείου πέραν του οποίου σπάνε, μελέτη όλου του πληθυσμού θα σήμαινε καταστροφή του συνόλου της παραγωγής. Στις παραπάνω περιπτώσεις είναι προτιμότερο να μελετήσουμε ένα μέρος υποσύνολο του πληθυσμού, τα συμπεράσματα από το οποίο μπορούν να γενικευτούν για το σύνολο του πληθυσμού. Το υποσύνολο αυτό του πληθυσμού, ονομάζεται δείγμα. Τα συμπεράσματα όμως που θα προκύψουν από την μελέτη του δείγματος θα είναι αξιόπιστα, θα ισχύουν δηλαδή με ικανοποιητική ακρίβεια για το σύνολο του πληθυσμού, αν η επιλογή του δείγματος γίνει με σωστό τρόπο. Τότε λέμε ότι το δείγμα είναι «αντιπροσωπευτικό». Οι αρχές και οι μέθοδοι επιλογής του κατάλληλου δείγματος είναι αντικείμενο του κλάδου της Στατιστικής που ονομάζεται Δειγματοληψία.

3 . Παρουσίαση Στατιστικών Δεδομένων Η παρουσίαση των στατιστικών δεδομένων γίνεται με στατιστικούς πίνακες και γραφικές παραστάσεις. Η παρουσίαση των στατιστικών δεδομένων σε πίνακες γίνεται με την κατάλληλη τοποθέτηση των πληροφοριών σε γραμμές και στήλες, με τρόπο που να διευκολύνεται η σύγκριση των στοιχείων και η καλύτερη ενημέρωση του αναγνώστη. Ορισμοί: Το πλήθος όλων των παρατηρήσεων του δείγματος ονομάζεται μέγεθος του δείγματος. Αν x, x,, x είναι οι τιμές μιας μεταβλητής Χ, δείγματος μεγέθους, ο φυσικός αριθμός ν που δείχνει πόσες φορές εμφανίζεται η τιμή x στο δείγμα ονομάζεται συχνότητα της x. Προφανώς ισχύει: ν + ν + + ν = Αν διαιρέσουμε τη συχνότητα ν με το μέγεθος του δείγματος, προκύπτει η σχετική συχνότητα f της τιμής x. Δηλαδή: f = ν =,, Για την σχετική συχνότητα ισχύουν: ) 0 f ) f + f + + f = Οι ποσότητες x, ν, f μπορούν να συγκεντρωθούν σε έναν πίνακα ο οποίος ονομάζεται πίνακας κατανομής συχνοτήτων. Το πλήθος των παρατηρήσεων που είναι μικρότερες ή ίσες της συγκεκριμένης τιμής x της μεταβλητής, ονομάζεται αθροιστική συχνότητα Ν της x. Προφανώς ισχύει: N = ν + ν + + ν

4 Το ποσοστό των παρατηρήσεων που είναι μικρότερες ή ίσες της συγκεκριμένης τιμής x της μεταβλητής, ονομάζεται σχετική αθροιστική συχνότητα F της x. F = f + f + + f Η αθροιστική συχνότητα και η σχετική αθροιστική συχνότητα ορίζονται μόνο για ποσοτικές μεταβλητές. Παράδειγμα : Δίνεται ο αριθμός των ημερών απουσίας 0 εργαζομένων λόγω ασθενείας. Εργαζόμενος Ημέρες ασθεν ) Να γίνει ο πίνακας κατανομής συχνοτήτων και αθροιστικών συχνοτήτων. ) Ποιό είναι το ποσοστό των εργαζομένων που ασθένησαν 5 ημέρες και ποιο αυτών που ασθένησαν το πολύ 3 ημέρες. Λύση: x ν f = ν f % N F F % 0, 0 0, 0 0, 0 4 0, , 0 6 0, , 0 7 0, , Σύνολο 0 00

5 ) 30%, 60%. Ομαδοποίηση Δεδομένων Όταν το πλήθος των παρατηρήσεων είναι μεγάλο δημιουργούνται δυσχέρειες στη συλλογή πληροφοριών. Αυτό συμβαίνει κυρίως στην περίπτωση μιας συνεχούς μεταβλητής, όπου αυτή μπορεί να πάρει οποιαδήποτε τιμή στο διάστημα ορισμού της αλλά συμβαίνει και στην περίπτωση διακριτών μεταβλητών. Τότε θα πρέπει να ομαδοποιηθούν τα δεδομένα σε μικρό πλήθος ομάδων (διαστημάτων), που ονομάζονται και κλάσεις (class tervals), έτσι ώστε κάθε τιμή να ανήκει μόνο σε μία κλάση. Τα άκρα των κλάσεων καλούνται όρια των κλάσεων (class boudares). Είναι φανερό ότι μικρό πλήθος κλάσεων σημαίνει και μεγάλη απώλεια πληροφορίας από τα αρχικά (πρωτογενή) δεδομένα. Μεγάλο πλήθος (άνω των είκοσι) κλάσεων δεν συνηθίζεται γιατί έχει δυσκολία στους υπολογισμούς. Όσον αφορά στο πλάτος των κλάσεων θα πρέπει να γνωρίζουμε ότι δεν είναι απαραίτητο να είναι το ίδιο σε όλες τις κλάσεις. Τις περισσότερες φορές όμως είναι πιο χρήσιμο να έχουμε ίδιο πλάτος, αφού έτσι διαβάζουμε υπολογίζονται μέτρα θέσεως και διασποράς με μεγαλύτερη ευκολία. Σε κάθε κλάση διακρίνουμε το κάτω και το άνω άκρο της το ημιάθροισμα των δυο άκρων μας δίνει την κεντρική τιμή η οποία χρησιμοποιείται για τον υπολογισμό των μέτρων θέσεως και διασποράς που θα δούμε πιο κάτω. Οι κλάσεις που θα ασχοληθούμε θα έχουν τη μορφή [, ). Η διαδικασία της ομαδοποίησης δεδομένων ακολουθεί τα εξής βήματα: α) Κατατάσσουμε τις παρατηρήσεις κατά σειρά. Από τη μικρότερη προς τη μεγαλύτερη. β) Βρίσκουμε το εύρος (τη διαφορά μεταξύ μεγαλύτερης x max και μικρότερης x m παρατήρησης)

6 R = x max x m γ) Διαιρούμε το R με το πλήθος των κλάσεων που επιθυμούμε να έχουμε και βρίσκουμε το πλάτος c κάθε κλάσης. δ) Εντάσσουμε κάθε παρατήρηση στην κλάση που ανήκει (συχνότητες των κλάσεων). Παράδειγμα : Στον πίνακα που ακολουθεί δίνονται οι θερμοκρασίες σε μία Μεσογειακή πόλη. Να κατασκευαστεί πίνακας με 6 κλάσεις-διαστήματα Το Εύρος των παρατηρήσεων είναι: 40-=9. Το πλάτος των κλάσεων θα είναι: 9/6=4, (στρογγυλοποιούμε προς τα επάνω). Ο πίνακας κατανομής συχνοτήτων, σχετικών συχνοτήτων, σχετικών αθροιστικών συχνοτήτων που θα προκύψει είναι:

7 Κλάσεις [ - ) Κεντρικ ές τιμές Συχν. Σχετική Συχνότ ητα Σχετική συχνότητ α ποσοστό Αθρ. Συχν. Αθρ. Σχετ. συχν Αθρ. Σχετ. συχν. [, ) x f = f % N F F % [, 6) 3,5 3 0,075 7,5 3 0,075 7,5 [6, ) 8,5 7 0,75 7,5 0 0,5 5 [, 6) 3,5 9 0,5,5 9 0,475 47,5 [6, 3) 8,5 0 0, ,75 7,5 [3, 36) 33,5 6 0, ,875 87,5 [36, 4) 38,5 5 0,5, Γραφικές Παραστάσεις Σε πολλές περιπτώσεις η γραφική παρουσίαση της κατανομής συχνοτήτων παρέχει περιεκτικά αλλά με σαφήνεια όλες τις δυνατές πληροφορίες σχετικά με την κατανομή. Υπάρχουν πολλοί τύποι γραφικής παρουσίασης των δεδομένων κάποιοι από τους οποίους είναι τα διαγράμματα που θα εξετάσουμε παρακάτω: α) ιστόγραμμα (hstogram), β) πολύγωνο συχνοτήτων (frequecy polygo) γ) πίτα συχνοτήτων ή κυκλικό διάγραμμα (pe chart) δ) ραβδόγραμμα (bar chart), 3. Ιστόγραμμα Η γραφική παράσταση ενός πίνακα συχνοτήτων με ομαδοποιημένα δεδομένα γίνεται με το λεγόμενο ιστόγραμμα (hstogram) συχνοτήτων. Στον κάθετο άξονα αναγράφονται οι συχνότητες ή οι σχετικές συχνότητες και στον

8 οριζόντιο άξονα η μεταβλητή καθώς και τα όρια των κλάσεων. Η ονομασία του διαγράμματος προέρχεται από τη λέξη ιστός δηλαδή ορθογώνιο. Αποτελείται από διαδοχικά ορθογώνια καθένα από τα οποία έχει βάση ίση με το πλάτος της κλάσης και ύψος ίσο με τη συχνότητα της κλάσης. Το ιστόγραμμα που ακολουθεί είναι για τα δεδομένα του παραδείγματος με τις θερμοκρασίες της μεσογειακής πόλης Πολύγωνο συχνοτήτων Το πολύγωνο συχνοτήτων προκύπτει με την ένωση των σημείων που αντιστοιχούν στην κεντρική τιμή κάθε κλάσης στο ιστόγραμμα. Στο παρακάτω σχήμα εμφανίζεται το πολύγωνο συχνοτήτων για τα δεδομένα του παραδείγματος με τις θερμοκρασίες.

9 3.3 Πίτα συχνοτήτων ή Κυκλικό διάγραμμα H πίτα συχνοτήτων (pe chart) χρησιμοποιείται και για ποσοτικές (συνεχείς ομαδοποιημένες) και για ποιοτικές μεταβλητές. Το διάγραμμα είναι μία πίτα και κάθε κομάτι της είναι ανάλογο με τη συχνότητας της κλάσης (αν πρόκειται για συνεχή ομαδοποιημένη μεταβλητή) ή της συχνότητας της τιμή της μεταβλητής (αν πρόκειται για ποσοτική κατηγορική η ποιοτική μεταβλητή) Αν συμβολίσουμε με α το αντίστοιχο τόξο ενός κυκλικού τμήματος στο κυκλικό διάγραμμα συχνοτήτων, τότε a 360 = 0 = f Έστω ότι έχουμε την κατανομή συχνοτήτων:

10 Κλάσεις [ - ) Κεντρικές τιμές [, ) x Συχν. Σχετική Συχνότη τα f = Σχετική συχνότητα ποσοστό α = 360 ν = 360 f [, 6) 3,5 3 0,075 0, = 7 0 [6, ) 8,5 7 0,75 0, = 63 0 [, 6) 3,5 9 0,5 0, = 8 0 [6, 3) 8,5 0 0,5 0, = 90 0 [3, 36) 33,5 6 0,5 0, = 54 0 [36, 4) 38,5 5 0,5 0, = 45 0 Το κυκλικό διάγραμμα που προκύπτει από τα δεδομένα του πίνακα, είναι:

11 3.4 Ραβδόγραμμα Το ραβδόγραμμα (bar chart) μοιάζει πολύ με το ιστόγραμμα. Οι συχνότητες των τιμών της μεταβλητής παρουσιάζονται και εδώ με ορθογώνια. Η διαφορά είναι ότι χρησιμοποιείται για ποιοτικές μεταβλητές. Για ποιοτικές μεταβλητές (οι τιμές αναγράφονται στον οριζόντιο άξονα) δεν παίζει ρόλο η σειρά των τιμών ούτε το πλάτος των ράβδων. Παράδειγμα 3: Ο παρακάτω πίνακας δίνει τον αριθμό των εργατών μιας βιομηχανικής επιχείρησης, σύμφωνα με το επίπεδο ειδικεύσεώς τους. Επίπεδο ειδικεύσεως Αριθμός εργαζομένων Ειδικευμένοι 50 Ημιειδικευμένοι 5 Ανειδίκευτοι 5 Να απεικονισθούν τα παραπάνω δεδομένα: α. Με κυκλικό διάγραμμα β. Με ραβδόγραμμα Λύση:

12 (Για να βρούμε τις μοίρες του κάθε τόξου: α = ν = = 80, α = ν = = 90, α 3 = 90) β) 4. Μέτρα θέσης και Διασποράς 4. Μέτρα θέσης Τα μέτρα θέσης, είναι κάποια αριθμητικά μεγέθη τα οποία χρησιμοποιούνται για την περιγραφή της θέσης των παρατηρήσεων στον οριζόντιο άξονα. Τα κυριότερα μέτρα θέσης είναι: η μέση τιμή, η διάμεσος, η επικρατούσα τιμή και τα τεταρτημόρια

13 α) η μέση τιμή, x αποτελεί το χρησιμότερο μέτρο της Στατιστικής και ορίζεται ως το άθροισμα των παρατηρήσεων δια του πλήθους των παρατηρήσεων. Δηλαδή: x = x + x +... x = = x Περιπτώσεις ταξινομημένων ή ομαδοποιημένων δεδομένων: Αν οι τιμές (κεντρικές τιμές των κλάσεων) x, x,, x μιας μεταβλητής Χ αντιστοιχούν στις συχνότητες ν, ν,, ν, ο αριθμητικός μέσος υπολογίζεται από τη σχέση: x + x +.. x = x = x = = β) η διάμεσος δ, ενός δείγματος παρατηρήσεων οι οποίες έχουν διαταχθεί σε αύξουσα σειρά ορίζεται ως η μεσαία παρατήρηση, όταν το είναι περιττός αριθμός, ή το ημιάθροισμα των δύο μεσαίων παρατηρήσεων όταν το είναι άρτιος αριθμός. Παρατήρηση: Η διάμεσος δεν επηρεάζεται από παρατηρήσεις οι οποίες βρίσκονται πολύ μακριά από τον κύριο όγκο των δεδομένων. Το αντίθετο συμβαίνει με τον αριθμητικό μέσο του οποίου η τιμή είναι ευαίσθητη σε τέτοιες παρατηρήσεις. Περίπτωση ομαδοποιημένων δεδομένων Η διάμεσος ομαδοποιημένων δεδομένων προκύπτει από τον πίνακα συχνοτήτων από τον τύπο: δ = α + c ν ( N ) όπου: α είναι κατώτερο όριο της κλάσης που ανήκει η διάμεσος, c είναι το πλάτος της κλάσης ν είναι η συχνότητα της κλάσης N είναι η αθροιστική συχνότητα της προηγούμενης από την κλάσης και

14 είναι το πλήθος των παρατηρήσεων (μέγεθος του δείγματος). γ) η επικρατούσα τιμή ή κορυφή Μ ο, ορίζεται ως η παρατήρηση με την μεγαλύτερη συχνότητα. Περίπτωση ομαδοποιημένων δεδομένων: Η επικρατούσα τιμή ομαδοποιημένων δεδομένων προκύπτει από τον πίνακα συχνοτήτων από τον τύπο: c = + + M 0 a όπου α είναι το κατώτερο όριο της κλάσης που αντιστοιχεί στη μεγαλύτερη συχνότητα c είναι το πλάτος της κλάσης, το Δ υπολογίζεται αν από τη μεγαλύτερη συχνότητα αφαιρέσουμε την συχνότητα της προηγούμενης κλάσης, δηλαδή: Δ = ν ν και το Δ υπολογίζεται αν από τη μεγαλύτερη συχνότητα αφαιρέσουμε την συχνότητα της επόμενης κλάσης: Δ = ν ν +. δ) Το πρώτο τεταρτημόριο Q διαιρεί τα δείγμα σε δύο μέρη, έτσι ώστε, όταν οι παρατηρήσεις είναι διατεταγμένες σε αύξουσα σειρά, το μέρος με τις μικρότερες παρατηρήσεις να αντιστοιχεί στο 5% των παρατηρήσεων. Περίπτωση ομαδοποιημένων δεδομένων To πρώτο τεταρτημόριο σε ομαδοποιημένα δεδομένα προκύπτει από τον πίνακα συχνοτήτων από τον τύπο: όπου Q = α + c ν ( 4 N ) α είναι κατώτερο όριο της κλάσης που ανήκει η διάμεσος, c είναι το πλάτος της κλάσης ν είναι η συχνότητα της κλάσης N είναι η αθροιστική συχνότητα της προηγούμενης από την κλάσης και είναι το πλήθος των παρατηρήσεων (μέγεθος του δείγματος).

15 ε) Το τρίτο τεταρτημόριο Q 3 διαιρεί τα δείγμα σε δύο μέρη, έτσι ώστε, όταν οι παρατηρήσεις είναι διατεταγμένες σε αύξουσα σειρά, το μέρος με τις μικρότερες παρατηρήσεις να αντιστοιχεί στο 75% των παρατηρήσεων. Περίπτωση ομαδοποιημένων δεδομένων To τρίτο τεταρτημόριο σε ομαδοποιημένα δεδομένα προκύπτει από τον πίνακα συχνοτήτων από τον τύπο: Q 3 = α + c ν ( 3 4 N ) 4. Μέτρα Διασποράς Μέτρα διασποράς ονομάζονται τα μέτρα που εκφράζουν τις αποκλίσεις των τιμών μιας μεταβλητής γύρω από τα μέτρα κεντρικής τάσης. Τα κυριότερα μέτρα διασποράς είναι: α) Εύρος: β)ενδοτεταρτημοριακό εύρος: R=Μεγαλύτερη τιμή Μικρότερη τιμή Q = Q 3 Q όπου Q 3, Q το 3 ο και ο τεταρτημόριο αντίστοιχα. γ) Διακύμανση: Διακρίνουμε και εδώ περιπτώσεις: Μη ομαδοποιημένων και ομαδοποιημένων δεδομένων. Αν οι τιμές της μεταβλητής Χ είναι x, x,, x, η διακύμανση (Varace) υπολογίζεται από τη σχέση: s = = ( x x)

16 Περίπτωση ομαδοποιημένων δεδομένων Αν οι τιμές (κεντρικές τιμές των κλάσεων) x, x,, x μιας μεταβλητής Χ αντιστοιχούν στις συχνότητες ν, ν,, ν, για τη διακύμανση ισχύουν οι παρακάτω τύποι: s = = ( x x) s = ( = x = x ) δ) Τυπική απόκλιση: Η διακύμανση εκφράζεται σε μονάδες που αντιστοιχούν στα τετράγωνο των αρχικών μονάδων. Η ανάγκη να για ένα μέτρο διασποράς που να εκφράζεται στις ίδιες μονάδες με τις αρχικές (ούτως ώστε να μπορεί να συνεκτιμάται σε συνδυασμό και με τη μέση τιμή) οδήγησε στην χρησιμοποίηση της τετραγωνικής ρίζας της διακύμανσης η οποία ονομάζεται τυπική απόκλιση: s = s 4.3 Συντελεστής Μεταβλητότητας Ας θεωρήσουμε τους μηνιαίους μισθούς, σε ευρώ, πέντε υπαλλήλων δύο εταιριών Α και Β. Για την Α έχουμε τους μισθούς 000, 0050, 000, 0000, 000 και για την Β έχουμε τους μισθούς 00, 050, 00, 000, 00. Παρατηρούμε ότι και οι δύο εταιρίες έχουν ίδια μέτρα διασποράς (π.χ τυπική απόκλιση, εύρος κ.λπ). Παρόλα αυτά αν κάποιος υπάλληλος της πρώτης εταιρίας υποστεί μείωση μισθού 000 ευρώ τότε αυτό θα έχει για αυτόν πολύ

17 μικρότερες συνέπειες από ότι μια αντίστοιχη μείωση στο μισθό ενός υπαλλήλου της εταιρίας Β. Από το παραπάνω παράδειγμα φαίνεται η ανάγκη να οριστεί ένα καινούργιο μέτρο το οποίο δεν θα αντικατοπτρίζει μόνο τη διασπορά των δεδομένων, αλλά και τις επιπτώσεις που έχει αυτή η διασπορά στην πειραματική μονάδα. Το μέτρο αυτό συμβολίζεται με CV, ονομάζεται Συντελεστής Μεταβλητότητας και δίνεται από τον λόγο της τυπικής απόκλισης (s) προς την μέση τιμή. Δηλαδή έχουμε τον τύπο: CV = s x Εάν η μέση τιμή είναι κοντά στο μηδέν ή πολύ μεγάλη, τότε ο συντελεστής μεταβλητότητας καθίσταται αναξιόπιστος. Ο συντελεστής μεταβλητότητας είναι ανεξάρτητος από τις μονάδες μέτρησης, εκφράζεται επί τοις εκατό και εκφράζει τη μεταβλητότητα των δεδομένων απαλλαγμένη από την επίδραση της μέσης τιμής. Όσο μικρότερη είναι η τιμή του CV, τόσο μεγαλύτερη ομοιογένεια θεωρείται ότι έχει το δείγμα. Γενικά, δεχόμαστε ότι ένα δείγμα τιμών μιας μεταβλητής είναι «ομοιογενές», εάν ο συντελεστής μεταβλητότητας δεν ξεπερνά το 0%. Παράδειγμα 4: Στο παρακάτω δείγμα να βρεθούν όλα τα μέτρα θέσης και διασποράς: Λύση: x = 5 3 = = = x 4 3, 4, 0, 6, 5, 8,,, 6,,, 7, 8 Διατάσουμε τις παρατηρήσεις σε αύξουσα σειρά: 0,,,,, 3, 4, 5, 6, 6, 7, 8, 8

18 δ = x 7 = 4 Mo= Q = x 3 + x 4 Q 3 = x 9 + x 0 R = 8 0 = 8 = + = s = 3 = (x x ) = = 6 = ( 4) 3 + ( 4) + (3 4) + (5 4) + (6 4) + (7 4) + (8 4) =6,84 Παράδειγμα 5: Στο παράδειγμα (αριθμός απουσιών εργαζομένων) να υπολογιστούν: ) μέση τιμή x ) διάμεσος δ ) κορυφή M o v) τυπική απόκλιση s v) CV Λύση: Για την μέση τιμή κ διακύμανση είναι χρήσιμος ο πίνακας: x ν x ν x x ν

19 ) x = x = = = 3 0 ) είναι =0 άρα δ = x 5+x 6 ) M o = 5 v) s = { x = ν ( = x ν ) άρα s =,54 =,594 v) CV =,594 3, = 0,54 = 3+3 = 3 } = 9 {9 (3) 0 } =,54 Παράδειγμα 6: Να βρεθούν τα κυριότερα μέτρα θέσεως και διασποράς για τα δεδομένα των θερμοκρασιών της μεσογειακής πόλης του παραδείγματος. Λύση: Κλάσεις [, ) x x x x [, 6) 3,5 8,5 3 40,5 546,75 [6, ) 8,5 34,5 7 9,5 395,75 [, 6) 3,5 55,5 9,5 4970,5 [6, 3) 8,5 8, ,5 [3, 36) 33,5, ,5 [36, 4) 38,5 48,5 5 9,5 74, ,

20 ) ) Μέτρα θέσεως: Εφαρμόζοντας τον τύπο της μέσης τιμής έχουμε x = = x =6,5 Η διάμεσος θα βρεθεί από τον τύπο δ = α + c ν ( N ) Παρατηρούμε ότι η διάμεσος ανήκει στην κλάση [6, 3) άρα α =6 (το κατώτερο όριο της κλάσης που ανήκει η διάμεσος). Ακόμα το πλάτος της κλάσης, όπως και όλων των κλάσεων είναι 5, η συχνότητα της κλάσης ν είναι ίση με 0, το πλήθος των παρατηρήσεων είναι =40 και η αθροιστική συχνότητα της προηγούμενης από την κλάσης είναι ίση με 9. Επομένως έχουμε: 5 40 = 6 + ( 9) = 6,5 0 Η επικρατούσα τιμή θα βρεθεί από τον τύπο c = + + M 0 a όπου α είναι το κατώτερο όριο της κλάσης που αντιστοιχεί στη μεγαλύτερη συχνότητα δηλαδή στην [6, 3). Επομένως α =6 και όπως και πριν c=5. Ακόμα Δ= 0-9= και Δ=0-6=4. Επομένως c 5 = a + M 0 = 6 + M M 0 = 7 Το ο τεταρτημόριο θα είναι η 0 η τιμή. Επομένως η κλάση που περιέχει το Q είναι η 3 η. Άρα: Q = α + c ν ( 4 N ) = (40 4 3) = Το 3 ο τεταρτημόριο βρίσκεται στην 5 η κλάση (η 30 η παρατήρηση) άρα:

21 Q 3 = α + c ( 3 ν 4 N ) = (0 9) = 3,83 4 ) Μέτρα διασποράς: Η μεγαλύτερη κεντρική τιμή είναι το 38,5 και η μικρότερη το 3,5 οπότε το εύρος είναι 5. Για ευκολία ο υπολογισμός της διακύμανσης γίνεται με τη χρήση του παραπάνω πίνακα. Εφαρμόζοντας τον τύπο παίρνουμε: s = x = x s s = Ενώ για την τυπική απόκλιση: (060) = = 53,59 s = 53, 59 = 7, 3 ΑΣΚΗΣΕΙΣ ) Η βαθμολογία 0 φοιτητών στις εξετάσεις ενός μαθήματος είναι Να βρεθούν η μέση τιμή, η διασπορά, και η διάμεσος του δείγματος των βαθμολογιών. ) Η βαθμολογία 0 φοιτητών στις εξετάσεις ενός μαθήματος είναι

22 ) Να γίνει ο πίνανακας κατανομής συχνοτητων. ) Να σχεδιαστεί το κυκλικό διάγραμμα. ) Να βρεθούν η μέση τιμή, η διάμεσος, το ο και 3 τεταρτημόριο του δείγματος των βαθμολογιών. v) Να εξεταστεί αν το δείγμα είναι ομοιογενές. 3) Στον πίνακα έχουμε το βάρος από 60 ροδάκινα σε γραμμάρια. Να υπολογιστούν: ) Η επικρατούσα τιμή, η διάμεσος ) Ο συντελεστης μεταβλητότητας. Βάρος(γρ) Ροδάκινα Ροδάκινων [00,0) 6 [0,40) [40,60) 8 [60,80) 6 [80,00) 8 4) Ο αριθμός απουσιών 60 φοιτητών, φαίνονται στον πίνακα. α) Να βρεθούν: ) Ο μέσος αριθμός απουσιών. ) Η τυπική απόκλιση του δείγματος. β) Να εξετάσετε αν το δείγμα είναι ομοιογενές. Απουσίες Άτομα [7,) 4 [,5) 40 [5,9) 48 [9,3) 3 [3,7) 6 5) Η μηνιαία χρήση ενός συγκεκριμένου δρομολογίου πλοίου από 0 επιβάτες ήταν: ) Να κατασκευαστεί ο πίνακας κατανομής συχνοτήτων. ) Να βρεθεί η διάμεσος, η επικρατούσα τιμή και η τυπική απόκλιση.

23 ) Να γίνει το κυκλικό διάγραμμα 6) Να συμπληρωθεί ο παρακάτω πίνακας κατανομών. x ν f N F 3 0, , ΣΥΝΟΛΟ ΒΙΒΛΙΟΓΡΑΦΙΑ ) Βιοστατιστική και Εφαρμογές, Έφη Παπαγεωργίου, Εκδοσεις Νέων Τεχνολογιών. ) Επαγωγική Στατιστική, Μιλτιάδης Χαλικιάς, Συγχρονη Εκδοτική. 3) Στατιστική Επιχειρήσεων με Εφαρμογές σε SPSS και LISRER, Ευστάθιος Δημητριάδης, Εκδόσεις Κριτική.

ΠΑΡΟΥΣΙΑΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΔΕΔΟΜΕΝΩΝ

ΠΑΡΟΥΣΙΑΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΔΕΔΟΜΕΝΩΝ ο Κεφάλαιο: Στατιστική ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΑΙ ΟΡΙΣΜΟΙ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ Πληθυσμός: Λέγεται ένα σύνολο στοιχείων που θέλουμε να εξετάσουμε με ένα ή περισσότερα χαρακτηριστικά. Μεταβλητές X: Ονομάζονται

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΟΙ ΠΙΝΑΚΕΣ. ΓΕΝΙΚΟΙ (περιέχουν όλες τις πληροφορίες που προκύπτουν από μια στατιστική έρευνα) ΕΙΔΙΚΟΙ ( είναι συνοπτικοί και σαφείς )

ΣΤΑΤΙΣΤΙΚΟΙ ΠΙΝΑΚΕΣ. ΓΕΝΙΚΟΙ (περιέχουν όλες τις πληροφορίες που προκύπτουν από μια στατιστική έρευνα) ΕΙΔΙΚΟΙ ( είναι συνοπτικοί και σαφείς ) Πληθυσμός (populaton) ονομάζεται ένα σύνολο, τα στοιχεία του οποίου εξετάζουμε ως προς τα χαρακτηριστικά τους. Μεταβλητές (varables ) ονομάζονται τα χαρακτηριστικά ως προς τα οποία εξετάζουμε έναν πληθυσμό.

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ. για τα οποία ισχύει y f (x) , δηλαδή το σύνολο, x A, λέγεται γραφική παράσταση της f και συμβολίζεται συνήθως με C

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ. για τα οποία ισχύει y f (x) , δηλαδή το σύνολο, x A, λέγεται γραφική παράσταση της f και συμβολίζεται συνήθως με C Επιμέλεια: Κ Μυλωνάκης ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΕΡΩΤΗΣΗ Τι ονομάζεται πραγματική συνάρτηση με πεδίο ορισμού το Α; Έστω Α ένα υποσύνολο του R Ονομάζουμε πραγματική συνάρτηση με πεδίο ορισμού το Α μια διαδικασία

Διαβάστε περισσότερα

Α. ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ. Πληθυσμός: Το συνόλου του οποίου τα στοιχεία εξετάζουμε ως προς ένα ή περισσότερα χαρακτηριστικά τους.

Α. ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ. Πληθυσμός: Το συνόλου του οποίου τα στοιχεία εξετάζουμε ως προς ένα ή περισσότερα χαρακτηριστικά τους. 1 Κεφάλαιο. ΣΤΑΤΙΣΤΙΚΗ Α. ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ Στατιστική: ένα σύνολο αρχών και μεθοδολογιών για: το σχεδιασμό της διαδικασίας συλλογής δεδομένων τη συνοπτική και αποτελεσματική παρουσίασή τους την ανάλυση

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ

ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ 9/10/009 ΤΕΙ ΥΤΙΚΗΣ ΜΑΚΕ ΟΝΙΑΣ ΠΑΡΑΡΤΗΜΑ ΚΑΣΤΟΡΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ Η/Υ ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ 3o ΜΑΘΗΜΑ Ι ΑΣΚΩΝ ΒΑΣΙΛΕΙΑ ΗΣ ΓΕΩΡΓΙΟΣ Emal: gasl@math.auth.gr Ιστοσελίδα Μαθήματος: users.auth.gr/gasl

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ. ν 1 + ν ν κ = v (1) Για τη σχετική συχνότητα ισχύουν οι ιδιότητες:

ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ. ν 1 + ν ν κ = v (1) Για τη σχετική συχνότητα ισχύουν οι ιδιότητες: Συχνότητα v i O φυσικός αριθμός που δείχνει πόσες φορές εμφανίζεται η τιμή x i της εξεταζόμενης μεταβλητής Χ στο σύνολο των παρατηρήσεων. Είναι φανερό ότι το άθροισμα όλων των συχνοτήτων είναι ίσο με το

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ. Ερωτήσεις του τύπου «Σωστό - Λάθος» 1. Το χρώμα κάθε αυτοκινήτου είναι ποιοτική μεταβλητή. Σ Λ

ΣΤΑΤΙΣΤΙΚΗ. Ερωτήσεις του τύπου «Σωστό - Λάθος» 1. Το χρώμα κάθε αυτοκινήτου είναι ποιοτική μεταβλητή. Σ Λ ΣΤΑΤΙΣΤΙΚΗ Ερωτήσεις του τύπου «Σωστό - Λάθος» 1. Το χρώμα κάθε αυτοκινήτου είναι ποιοτική μεταβλητή. Σ Λ 2. Ο αριθμός των ανθρώπων που παρακολουθούν μια συγκεκριμένη τηλεοπτική εκπομπή είναι διακριτή

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ( ΜΕΤΡΑ ΘΕΣΗΣ ΚΑΙ ΔΙΑΣΠΟΡΑΣ)

ΣΤΑΤΙΣΤΙΚΗ ( ΜΕΤΡΑ ΘΕΣΗΣ ΚΑΙ ΔΙΑΣΠΟΡΑΣ) ΣΤΑΤΙΣΤΙΚΗ ( ΜΕΤΡΑ ΘΕΣΗΣ ΚΑΙ ΔΙΑΣΠΟΡΑΣ) ΠΕΡΙΕΧΟΜΕΝΑ Μέτρα θέσης και διασποράς (Εισαγωγή) Μέση τιμή Διάμεσος Σταθμικός μέσος Επικρατούσα τιμή Εύρος Διακύμανση Τυπική απόκλιση Συντελεστής μεταβολής Κοζαλάκης

Διαβάστε περισσότερα

Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Μάθημα: Στατιστική II Διάλεξη 1 η : Εισαγωγή-Επανάληψη βασικών εννοιών Εβδομάδα 1 η : ,

Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Μάθημα: Στατιστική II Διάλεξη 1 η : Εισαγωγή-Επανάληψη βασικών εννοιών Εβδομάδα 1 η : , Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Μάθημα: Στατιστική II Διάλεξη 1 η : Εισαγωγή-Επανάληψη βασικών εννοιών Εβδομάδα 1 η :1-0-017, 3-0-017 Διδάσκουσα: Κοντογιάννη Αριστούλα Σκοπός του μαθήματος Η παρουσίαση

Διαβάστε περισσότερα

ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Ι Κ.Μ. 436

ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Ι Κ.Μ. 436 ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Ι Κ.Μ. 436 Χειμερινό εξάμηνο 2009-2010 Περιγραφική Στατιστική Ι users.att.sch.gr/abouras abouras@sch.gr sch.gr abouras@uth.gr ΑΝΤΩΝΙΟΣ ΧΡ. ΜΠΟΥΡΑΣ Χειμερινό Εξάμηνο 2009-2010 Μέτρα

Διαβάστε περισσότερα

Βιοστατιστική ΒΙΟ-309

Βιοστατιστική ΒΙΟ-309 Βιοστατιστική ΒΙΟ-309 Χειμερινό Εξάμηνο Ακαδ. Έτος 2013-2014 Ντίνα Λύκα lika@biology.uoc.gr 1. Εισαγωγή Εισαγωγικές έννοιες Μεταβλητή: ένα χαρακτηριστικό ή ιδιότητα που μπορεί να πάρει διαφορετικές τιμές

Διαβάστε περισσότερα

Βιοστατιστική ΒΙΟ-309

Βιοστατιστική ΒΙΟ-309 Βιοστατιστική ΒΙΟ-309 Χειμερινό Εξάμηνο Ακαδ. Έτος 2015-2016 Ντίνα Λύκα lika@biology.uoc.gr 1. Εισαγωγή Εισαγωγικές έννοιες Μεταβλητότητα : ύπαρξη διαφορών μεταξύ ομοειδών μετρήσεων Μεταβλητή: ένα χαρακτηριστικό

Διαβάστε περισσότερα

Δρ. Χάϊδω Δριτσάκη. MSc Τραπεζική & Χρηματοοικονομική

Δρ. Χάϊδω Δριτσάκη. MSc Τραπεζική & Χρηματοοικονομική Ποσοτικές Μέθοδοι Δρ. Χάϊδω Δριτσάκη MSc Τραπεζική & Χρηματοοικονομική Τεχνολογικό Εκπαιδευτικό Ίδρυμα Δυτικής Μακεδονίας Western Macedonia University of Applied Sciences Κοίλα Κοζάνης 50100 Kozani GR

Διαβάστε περισσότερα

ν ν = 6. όταν είναι πραγµατικός αριθµός.

ν ν = 6. όταν είναι πραγµατικός αριθµός. Συνάρτηση: ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ λέγεται µια διαδικασία µε την οποία κάθε στοιχείο ενός συνόλου Α αντιστοιχίζεται σε ένα ακριβώς στοιχείο κάποιου άλλου συνόλου Β. Γνησίως αύξουσα: σε ένα διάστηµα του πεδίου

Διαβάστε περισσότερα

Βιοστατιστική ΒΙΟ-309

Βιοστατιστική ΒΙΟ-309 Βιοστατιστική ΒΙΟ-309 Χειμερινό Εξάμηνο Ακαδ. Έτος 2017-2018 Ντίνα Λύκα lika@biology.uoc.gr 1. Εισαγωγή Εισαγωγικές έννοιες Μεταβλητότητα : ύπαρξη διαφορών μεταξύ ομοειδών μετρήσεων Μεταβλητή: ένα χαρακτηριστικό

Διαβάστε περισσότερα

Σκοπός του κεφαλαίου είναι η κατανόηση των βασικών στοιχείων μιας στατιστικής έρευνας.

Σκοπός του κεφαλαίου είναι η κατανόηση των βασικών στοιχείων μιας στατιστικής έρευνας. 7 ο ΜΑΘΗΜΑ ΚΕΦΑΛΑΙΟ 2 ΣΤΑΤΙΣΤΙΚΗ Σκοπός Σκοπός του κεφαλαίου είναι η κατανόηση των βασικών στοιχείων μιας στατιστικής έρευνας. Προσδοκώμενα αποτελέσματα Όταν θα έχετε ολοκληρώσει τη μελέτη αυτού του κεφαλαίου

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ 1 Τί λέγεται πληθυσμός τι άτομα και τι μεταβλητή ενός πληθυσμού 2. Ποιες μεταβλητές λέγονται ποιοτικές ή κατηγορικές; 3.

ΣΤΑΤΙΣΤΙΚΗ 1 Τί λέγεται πληθυσμός τι άτομα και τι μεταβλητή ενός πληθυσμού 2. Ποιες μεταβλητές λέγονται ποιοτικές ή κατηγορικές; 3. .. ΣΤΑΤΙΣΤΙΚΗ 1 Τί λέγεται πληθυσμός τι άτομα και τι μεταβλητή ενός πληθυσμού 2. Ποιες μεταβλητές λέγονται ποιοτικές ή κατηγορικές; 3. Ποιες μεταβλητές λέγονται ποσοτικές; 4. Πότε μια ποσοτική μεταβλητή

Διαβάστε περισσότερα

Για το Θέμα 1 στα Μαθηματικά Γενικής Παιδείας Γ Λυκείου

Για το Θέμα 1 στα Μαθηματικά Γενικής Παιδείας Γ Λυκείου Για το Θέμα 1 στα Μαθηματικά Γενικής Παιδείας Γ Λυκείου Διαφορικός Λογισμός 1. Ισχύει f (g())) ) f ( = f (g())g () όπου f,g παραγωγίσιµες συναρτήσεις 2. Αν µια συνάρτηση f είναι παραγωγίσιµη σε ένα διάστηµα

Διαβάστε περισσότερα

i μιας μεταβλητής Χ είναι αρνητικός αριθμός

i μιας μεταβλητής Χ είναι αρνητικός αριθμός ΕΡΩΤΗΣΕΙΣ Σ Λ ΠΑΝΕΛΛΑΔΙΚΩΝ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ Nα χαρακτηρίσετε τις προτάσεις που ακoλουθούν γράφοντας στο τετράδιο σας την ένδειξη Σωστό ή Λάθος δίπλα στο γράμμα που αντιστοιχεί σε κάθε

Διαβάστε περισσότερα

ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ Γ ΕΠΑΛ ΚΕΦΑΛΑΙΟ 1 Ο «ΣΤΑΤΙΣΤΙΚΗ»

ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ Γ ΕΠΑΛ ΚΕΦΑΛΑΙΟ 1 Ο «ΣΤΑΤΙΣΤΙΚΗ» ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ Γ ΕΠΑΛ ΚΕΦΑΛΑΙΟ Ο «ΣΤΑΤΙΣΤΙΚΗ» Επιμέλεια : Παλαιολόγου Παύλος ΚΕΦΑΛΑΙΟ ο ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ Στατιστική είναι ο κλάδος των μαθηματικών ο οποίος ως έργο έχει την συγκέντρωση

Διαβάστε περισσότερα

ΜΕΘΟΔΟΛΟΓΙΑ & ΑΣΚΗΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΕΦΑΛΑΙΟ 2 Ο «ΣΤΑΤΙΣΤΙΚΗ»

ΜΕΘΟΔΟΛΟΓΙΑ & ΑΣΚΗΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΕΦΑΛΑΙΟ 2 Ο «ΣΤΑΤΙΣΤΙΚΗ» ΜΕΘΟΔΟΛΟΓΙΑ & ΑΣΚΗΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΕΦΑΛΑΙΟ Ο «ΣΤΑΤΙΣΤΙΚΗ» Επιμέλεια : Παλαιολόγου Παύλος Μαθηματικός ΚΕΦΑΛΑΙΟ. ΣΤΑΤΙΣΤΙΚΗ. ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ Στατιστική είναι ο κλάδος των εφαρμοσμένων

Διαβάστε περισσότερα

15, 11, 10, 10, 14, 16, 19, 18, 13, 17

15, 11, 10, 10, 14, 16, 19, 18, 13, 17 ΜΕΡΟΣ 1 0 Α Σ Κ Η Σ Ε Ι Σ Σ Τ Α Τ Ι Σ Τ Ι Κ Η Σ 1. Σε ένα Λύκειο θέλουµε να εξετάσουµε την επίδοση 10 µαθητών στο µάθηµα της Στατιστικής στο τέλος του β τετραµήνου. Πήραµε τις ακόλουθες βαθµολογίες: 15,

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ 2ο: ΣΤΑΤΙΣΤΙΚΗ ΘΕΜΑ Α

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ 2ο: ΣΤΑΤΙΣΤΙΚΗ ΘΕΜΑ Α ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ ο: ΣΤΑΤΙΣΤΙΚΗ ΘΕΜΑ Α Ερώτηση θεωρίας Τι λέγεται ιστόγραμμα αθροιστικών απολύτων σχετικών συχνοτήτων; Ιστόγραμμα αθροιστικών απολύτων ή σχετικών συχνοτήτων είναι μια σειρά από

Διαβάστε περισσότερα

Ε π ι μ έ λ ε ι α Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ

Ε π ι μ έ λ ε ι α Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ Ε π ι μ έ λ ε ι α Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ Θέμα εξετάσεων 2000 Εξετάσαμε 50 μαθητές ως προς τα βιβλία που έχουν διαβάσει και διαπιστώσαμε ότι: 5 μαθητές δεν έχουν διαβάσει κανένα βιβλίο, 15 μαθητές έχουν

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟ ΛΑΘΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ

ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟ ΛΑΘΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟ ΛΑΘΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ Nα χαρακτηρίσετε τις προτάσεις που ακλουθούν γράφοντας στο τετράδιο σας την ένδειξη Σωστό ή Λάθος δίπλα στο γράμμα που αντιστοιχεί σε κάθε

Διαβάστε περισσότερα

ν ν = 6. όταν είναι πραγµατικός αριθµός.

ν ν = 6. όταν είναι πραγµατικός αριθµός. Συνάρτηση: ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ λέγεται µια διαδικασία µε την οποία κάθε στοιχείο ενός συνόλου Α αντιστοιχίζεται σε ένα ακριβώς στοιχείο κάποιου άλλου συνόλου Β. Γνησίως αύξουσα: σε ένα διάστηµα του πεδίου

Διαβάστε περισσότερα

ΠΙΘΑΝΟΤΗΤΕΣ - ΣΤΑΤΙΣΤΙΚΗ

ΠΙΘΑΝΟΤΗΤΕΣ - ΣΤΑΤΙΣΤΙΚΗ ΤΕΙ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΡΑΡΤΗΜΑ ΚΑΣΤΟΡΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ Η/Υ ΠΙΘΑΝΟΤΗΤΕΣ - ΣΤΑΤΙΣΤΙΚΗ 2o ΜΑΘΗΜΑ Ι ΑΣΚΩΝ: ΒΑΣΙΛΕΙΑ ΗΣ ΓΕΩΡΓΙΟΣ Email: gvasil@math.auth.gr Ιστοσελίδες Μαθήματος: users.auth.gr/gvasil

Διαβάστε περισσότερα

Στατιστική Επιχειρήσεων Ι

Στατιστική Επιχειρήσεων Ι ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Τεχνολογικό Εκπαιδευτικό Ίδρυμα Πειραιά Στατιστική Επιχειρήσεων Ι Ενότητα 7: Παρουσίαση δεδομένων-περιγραφική στατιστική Μιλτιάδης Χαλικιάς, Επίκουρος Καθηγητής Τμήμα Διοίκησης Επιχειρήσεων

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2 ο : ΣΤΑΤΙΣΤΙΚΗ

ΚΕΦΑΛΑΙΟ 2 ο : ΣΤΑΤΙΣΤΙΚΗ ΚΕΦΑΛΑΙΟ 2 ο : ΣΤΑΤΙΣΤΙΚΗ 1 ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ 1. Ποιες μεταβλητές λέγονται ποσοτικές; (ΓΕΛ 2005) 2. Πότε μια ποσοτική μεταβλητή ονομάζεται διακριτή και πότε συνεχής; (ΓΕΛ 2005,2014) 3. Τι ονοµάζεται απόλυτη

Διαβάστε περισσότερα

Α. Έστω δύο σύνολα Α και Β. Ποιά διαδικασία ονομάζεται συνάρτηση με πεδίο ορισμού το Α και πεδίο τιμών το Β;

Α. Έστω δύο σύνολα Α και Β. Ποιά διαδικασία ονομάζεται συνάρτηση με πεδίο ορισμού το Α και πεδίο τιμών το Β; σελ 1 από 5 ΚΕΦΑΛΑΙΟ 1 Ο Α. Έστω δύο σύνολα Α και Β. Ποιά διαδικασία ονομάζεται συνάρτηση με πεδίο ορισμού το Α και πεδίο τιμών το Β; 1. Σ-Λ Η σχέση με:, είναι συνάρτηση. 2. Σ-Λ Η σχέση είναι συνάρτηση.

Διαβάστε περισσότερα

Έτος : Διάλεξη 2 η Διδάσκουσα: Κοντογιάννη Αριστούλα Τμήμα Τεχνολόγων Γεωπόνων-Κατεύθυνση Αγροτικής Οικονομίας Εφαρμοσμένη Στατιστική

Έτος : Διάλεξη 2 η Διδάσκουσα: Κοντογιάννη Αριστούλα Τμήμα Τεχνολόγων Γεωπόνων-Κατεύθυνση Αγροτικής Οικονομίας Εφαρμοσμένη Στατιστική Έτος 2017-2018: Διάλεξη 2 η Διδάσκουσα: Κοντογιάννη Αριστούλα Τμήμα Τεχνολόγων Γεωπόνων-Κατεύθυνση Αγροτικής Οικονομίας Εφαρμοσμένη Στατιστική Επανάληψη βασικών εννοιών Στατιστικής- Χρήση gretl/excel 1

Διαβάστε περισσότερα

Στατιστική Επιχειρήσεων Ι. Περιγραφική Στατιστική 1

Στατιστική Επιχειρήσεων Ι. Περιγραφική Στατιστική 1 Στατιστική Επιχειρήσεων Ι Περιγραφική Στατιστική 1 2 Πληθυσμός ή στατιστικός πληθυσμός Ονομάζεται η κατανομή των τιμών μιας τ.μ., δηλαδή η κατανομή των τιμών που παίρνει ένα χαρακτηριστικό μιας ομάδας

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ ΛΑΘΟΥΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Γ ΓΕΝΙΚΗΣ ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ

ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ ΛΑΘΟΥΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Γ ΓΕΝΙΚΗΣ ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ ΛΑΘΟΥΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Γ ΓΕΝΙΚΗΣ 1 ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ 1. Ένα σηµείο Α(χ, ψ) ανήκει στη γραφική παράσταση της f αν f(ψ)=χ. 2. Αν µια συνάρτηση είναι γνησίως αύξουσα σε ένα διάστηµα A,

Διαβάστε περισσότερα

Α) Αν η διάμεσος δ του δείγματος Α είναι αρνητική, να βρεθεί το εύρος R του δείγματος.

Α) Αν η διάμεσος δ του δείγματος Α είναι αρνητική, να βρεθεί το εύρος R του δείγματος. ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΣΥΛΛΟΓΗ ΑΣΚΗΣΕΩΝ ου ΚΕΦΑΛΑΙΟΥ Άσκηση 1 (Προτάθηκε από Χρήστο Κανάβη) Έστω CV 0.4 όπου CV ο συντελεστής μεταβολής, και η τυπική απόκλιση s = 0. ενός δείγματος που έχει την ίδια

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. B. Πώς ορίζεται ο συντελεστής μεταβολής ή συντελεστής. μεταβλητότητας μιας μεταβλητής X, αν x > 0 και πώς, αν

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. B. Πώς ορίζεται ο συντελεστής μεταβολής ή συντελεστής. μεταβλητότητας μιας μεταβλητής X, αν x > 0 και πώς, αν ΘΕΜΑ 1o ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 22 ΜΑΪΟΥ 2008 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΠΕΝΤΕ (5)

Διαβάστε περισσότερα

Η ΘΕΩΡΙΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΣΥΝΑΡΤΗΣΕΙΣ ΓΝΗΣΙΩΣ ΑΥΞΟΥΣΑ ΣΥΝΑΡΤΗΣΗ ΓΝΗΣΙΩΣ ΦΘΙΝΟΥΣΑΣΥΝΑΡΤΗΣΗ ΤΟΠΙΚΟ ΜΕΓΙΣΤΟ ΤΟΠΙΚΟ ΕΛΑΧΙΣΤΟ

Η ΘΕΩΡΙΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΣΥΝΑΡΤΗΣΕΙΣ ΓΝΗΣΙΩΣ ΑΥΞΟΥΣΑ ΣΥΝΑΡΤΗΣΗ ΓΝΗΣΙΩΣ ΦΘΙΝΟΥΣΑΣΥΝΑΡΤΗΣΗ ΤΟΠΙΚΟ ΜΕΓΙΣΤΟ ΤΟΠΙΚΟ ΕΛΑΧΙΣΤΟ 1 Η ΘΕΩΡΙΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΣΥΝΑΡΤΗΣΕΙΣ ΓΝΗΣΙΩΣ ΑΥΞΟΥΣΑ ΣΥΝΑΡΤΗΣΗ ά ( ύ ) έ ί ύ σ ύ ό ά, ύ ό ά 1 1 1 ΓΝΗΣΙΩΣ ΦΘΙΝΟΥΣΑΣΥΝΑΡΤΗΣΗ ά ( ύ ) έ ί ύ σ ύ ό ά, ύ ό ά 1 1 1 ΤΟΠΙΚΟ ΜΕΓΙΣΤΟ ά ( ύ ) έ

Διαβάστε περισσότερα

ΟΜΑΔΟΠΟΙΗΣΗ ΤΩΝ ΠΑΡΑΤΗΡΗΣΕΩΝ

ΟΜΑΔΟΠΟΙΗΣΗ ΤΩΝ ΠΑΡΑΤΗΡΗΣΕΩΝ 9 ο ΜΑΘΗΜΑ ΟΜΑΔΟΠΟΙΗΣΗ ΤΩΝ ΠΑΡΑΤΗΡΗΣΕΩΝ Πότε κάνουμε ομαδοποίηση των παρατηρήσεων; Όταν το πλήθος των τιμών μιας μεταβλητής είναι αρκετά μεγάλο κάνουμε ομαδοποίηση των παρατηρήσεων. Αυτό συμβαίνει είτε

Διαβάστε περισσότερα

Στατιστική. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Γενικής κεφάλαιο ασκήσεις. Kglykos.gr. εκδόσεις. Καλό πήξιμο. Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α

Στατιστική. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Γενικής κεφάλαιο ασκήσεις. Kglykos.gr. εκδόσεις. Καλό πήξιμο. Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α Στατιστική Κώστας Γλυκός Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α 6 9 7. 3 0 0. 8 8. 8 8 Kglykos.gr 1 7 / 5 / 2 0 1 6 Γενικής κεφάλαιο 2 154 ασκήσεις και τεχνικές σε 24 σελίδες εκδόσεις Καλό πήξιμο Τα πάντα για

Διαβάστε περισσότερα

Θέμα 1 ο (ΜΑΪΟΣ 2004, ΜΑΪΟΣ 2008) Να δείξετε ότι η παράγωγος της σταθερής συνάρτησης f (x) = c είναι (c) = 0. Απόδειξη

Θέμα 1 ο (ΜΑΪΟΣ 2004, ΜΑΪΟΣ 2008) Να δείξετε ότι η παράγωγος της σταθερής συνάρτησης f (x) = c είναι (c) = 0. Απόδειξη ΕΚΔΟΣΕΙΣ ΚΕΛΑΦΑ 59 Θέμα 1 ο (ΜΑΪΟΣ 004, ΜΑΪΟΣ 008) Να δείξετε ότι η παράγωγος της σταθερής συνάρτησης f (x) = c είναι (c) = 0. Έχουμε f (x+h) - f (x) = c - c = 0 και για h 0 είναι f (x + h) - f (x) 0 m

Διαβάστε περισσότερα

Ελλιπή δεδομένα. Εδώ έχουμε 1275. Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 1275 ατόμων

Ελλιπή δεδομένα. Εδώ έχουμε 1275. Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 1275 ατόμων Ελλιπή δεδομένα Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 75 ατόμων Εδώ έχουμε δ 75,0 75 5 Ηλικία Συχνότητες f 5-4 70 5-34 50 35-44 30 45-54 465 55-64 335 Δεν δήλωσαν 5 Σύνολο 75 Μπορεί

Διαβάστε περισσότερα

28/11/2016. Στατιστική Ι. 9 η Διάλεξη (Περιγραφική Στατιστική)

28/11/2016. Στατιστική Ι. 9 η Διάλεξη (Περιγραφική Στατιστική) Στατιστική Ι 9 η Διάλεξη (Περιγραφική Στατιστική) 1 2 Πληθυσμός ή στατιστικός πληθυσμός Ονομάζεται η κατανομή των τιμών μιας τ.μ., δηλαδή η κατανομή των τιμών που παίρνει ένα χαρακτηριστικό μιας ομάδας

Διαβάστε περισσότερα

Μαθηματικά & Στοιχεία Στατιστικής Γενικής Παιδείας για την Γ Λυκείου. Αν έχετε κάνει σωστά τους υπολογισμούς σας, μεταφοράς ενός

Μαθηματικά & Στοιχεία Στατιστικής Γενικής Παιδείας για την Γ Λυκείου. Αν έχετε κάνει σωστά τους υπολογισμούς σας, μεταφοράς ενός Γ ΛΥΚΕΙΟΥ ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΠΑΡΟΥΣΙΑΣΗ ΤΩΝ ΣΤΑΤΙΣΤΙΚΩΝ ΔΕΔΟΜΕΝΩΝ Τουρναβίτης Στέργιος Σκοπός της εργασίας αυτής, είναι να παρουσιάσει κάποιες ασκήσεις που λύνονται με την βοήθεια στατιστικών πινάκων, διαγραμμάτων

Διαβάστε περισσότερα

Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις

Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις 2 ΕΡΩΤΗΣΕΙΙΣ ΘΕΩΡΙΙΑΣ ΑΠΟ ΤΗΝ ΥΛΗ ΤΗΣ Β ΤΑΞΗΣ ΜΕΡΟΣ Α -- ΑΛΓΕΒΡΑ Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις Α. 1 1 1. Τι ονομάζεται Αριθμητική και τι Αλγεβρική παράσταση; Ονομάζεται Αριθμητική παράσταση μια παράσταση

Διαβάστε περισσότερα

Δύο κύριοι τρόποι παρουσίασης δεδομένων. Παράδειγμα

Δύο κύριοι τρόποι παρουσίασης δεδομένων. Παράδειγμα Δύο κύριοι τρόποι παρουσίασης δεδομένων Παράδειγμα Με πίνακες Με διαγράμματα Ονομαστικά δεδομένα Εδώ τα περιγραφικά μέτρα (μέσος, διάμεσος κλπ ) δεν έχουν νόημα Πήραμε ένα δείγμα από 25 άτομα και τα ρωτήσαμε

Διαβάστε περισσότερα

ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Ι Κ. Μ. 436

ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Ι Κ. Μ. 436 ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Ι Κ. Μ. 436 A εξάμηνο 2009-2010 Περιγραφική Στατιστική Ι users.att.sch.gr/abouras abouras@sch.gr sch.gr abouras@uth.gr Μέτρα θέσης Η θέση αντιπροσωπεύει τη θέση της κατανομής κατά

Διαβάστε περισσότερα

ΜΕΘΟΔΟΛΟΓΙΑ & ΑΣΚΗΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΕΦΑΛΑΙΟ 2 Ο «ΣΤΑΤΙΣΤΙΚΗ»

ΜΕΘΟΔΟΛΟΓΙΑ & ΑΣΚΗΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΕΦΑΛΑΙΟ 2 Ο «ΣΤΑΤΙΣΤΙΚΗ» ΜΕΘΟΔΟΛΟΓΙΑ & ΑΣΚΗΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΕΦΑΛΑΙΟ Ο «ΣΤΑΤΙΣΤΙΚΗ» Επιμέλεια : Παλαιολόγου Παύλος Μαθηματικός ΚΕΦΑΛΑΙΟ. ΣΤΑΤΙΣΤΙΚΗ. ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ Στατιστική είναι ο κλάδος των εφαρμοσμένων

Διαβάστε περισσότερα

Ασκήσεις Άλγεβρας. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. B ΓΥΜΝΑΣΙΟΥ Άλγεβρα 265 ασκήσεις και τεχνικές σε 24 σελίδες. εκδόσεις. Καλό πήξιμο

Ασκήσεις Άλγεβρας. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. B ΓΥΜΝΑΣΙΟΥ Άλγεβρα 265 ασκήσεις και τεχνικές σε 24 σελίδες. εκδόσεις. Καλό πήξιμο Ασκήσεις Άλγεβρας Κώστας Γλυκός B ΓΥΜΝΑΣΙΟΥ Άλγεβρα 65 ασκήσεις και τεχνικές σε 4 σελίδες ΙΙ Ι δδ ιι ι αα ίί ί ττ εε ρρ αα μμ αα θθ ήή μμ αα ττ αα 6 9 7. 3 0 0. 8 8. 8 8 Kgllykos..gr 1 3 / 1 0 / 0 1 6

Διαβάστε περισσότερα

ΣΥΝΔΥΑΣΤΙΚΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΣΥΝΔΥΑΣΤΙΚΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΣΥΝΔΥΑΣΤΙΚΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ 1.Έστω ο δειγματικός χώρος Ω = { 1,,, K,10} με ισοπίθανα απλά ενδεχόμενα. Να 4 βρείτε την πιθανότητα ώστε η συνάρτηση f ( x ) = x 4x + λ να

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 207-208 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Επικ. Καθηγητής v.koutras@fme.aegea.gr Τηλ: 227035468 ΣΤΑΤΙΣΤΙΚΗ

Διαβάστε περισσότερα

03 _ Παράμετροι θέσης και διασποράς. Γούργουλης Βασίλειος Καθηγητής Τ.Ε.Φ.Α.Α. Σ.Ε.Φ.Α.Α. Δ.Π.Θ.

03 _ Παράμετροι θέσης και διασποράς. Γούργουλης Βασίλειος Καθηγητής Τ.Ε.Φ.Α.Α. Σ.Ε.Φ.Α.Α. Δ.Π.Θ. 6_Στατιστική στη Φυσική Αγωγή 03 _ Παράμετροι θέσης και διασποράς Γούργουλης Βασίλειος Καθηγητής Τ.Ε.Φ.Α.Α. Σ.Ε.Φ.Α.Α. Δ.Π.Θ. Παράμετροι θέσης όταν θέλουμε να εκφράσουμε μια μεταβλητή με έναν αριθμό π.χ.

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΚΕΦΑΛΑΙΟ 2 Ο

ΣΤΑΤΙΣΤΙΚΗ ΚΕΦΑΛΑΙΟ 2 Ο ΣΤΑΤΙΣΤΙΚΗ ΚΕΦΑΛΑΙΟ 2 Ο ΘΕΜΑ 1 Ο : Aς υποθέσουμε ότι x 1,x 2,,x k είναι οι τιμές μιας μεταβλητής Χ, που αφορά τα άτομα ενός δείγματος μεγέθους ν, όπου k,ν μη μηδενικοί φυσικοί αριθμοί με k ν, ν i η απόλυτη

Διαβάστε περισσότερα

Α. α) ίνεται η συνάρτηση F(x)=f(x)+g(x). Αν οι συναρτήσεις f, g είναι παραγωγίσιµες, να αποδείξετε ότι: F (x)=f (x)+g (x).

Α. α) ίνεται η συνάρτηση F(x)=f(x)+g(x). Αν οι συναρτήσεις f, g είναι παραγωγίσιµες, να αποδείξετε ότι: F (x)=f (x)+g (x). Νίκος Σούρµπης - - Γιώργος Βαρβαδούκας ΘΕΜΑ ο Α. α) ίνεται η συνάρτηση F()=f()+g(). Αν οι συναρτήσεις f, g είναι παραγωγίσιµες, να αποδείξετε ότι: F ()=f ()+g (). β)να γράψετε στο τετράδιό σας τις παραγώγους

Διαβάστε περισσότερα

ΜΕΘΟΔΟΛΟΓΙΑ ΕΡΕΥΝΑΣ ΓΙΑ ΔΙΟΙΚΗΤΙΚΑ ΣΤΕΛΕΧΗ

ΜΕΘΟΔΟΛΟΓΙΑ ΕΡΕΥΝΑΣ ΓΙΑ ΔΙΟΙΚΗΤΙΚΑ ΣΤΕΛΕΧΗ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΜΕΘΟΔΟΛΟΓΙΑ ΕΡΕΥΝΑΣ ΓΙΑ ΔΙΟΙΚΗΤΙΚΑ ΣΤΕΛΕΧΗ Ενότητα # 7: Δειγματοληψία Μιλτιάδης Χαλικιάς Τμήμα Διοίκησης Επιχειρήσεων Άδειες Χρήσης

Διαβάστε περισσότερα

Θέμα Α. Θέμα Β. ~ 1/9 ~ Πέτρος Μάρκου. % σχεδιάζουμε το πολύγωνο αθροιστικών σχετικών συχνοτήτων τοις

Θέμα Α. Θέμα Β. ~ 1/9 ~ Πέτρος Μάρκου. % σχεδιάζουμε το πολύγωνο αθροιστικών σχετικών συχνοτήτων τοις 01 Θέμα Α Α1. Θεωρία (απόδειξη), σελίδα 31 σχολικού βιβλίου Α. Θεωρία (ορισμός), σελίδα 18-19 σχολικού βιβλίου Α3. Θεωρία, (ορισμός), σελίδα 96 σχολικού βιβλίου Α. α) Λάθος β) Σωστό γ) Λάθος δ) Σωστό ε)

Διαβάστε περισσότερα

Παρατηρήσεις για τη χρήση ενός κυκλικού διαγράμματος

Παρατηρήσεις για τη χρήση ενός κυκλικού διαγράμματος Παρατηρήσεις για τη χρήση ενός κυκλικού διαγράμματος Χρησιμοποιείται μόνο όταν οι τιμές της μεταβλητής έχουν ένα σταθερό άθροισμα (συνήθως 100%, όταν μιλάμε για σχετικές συχνότητες) Είναι χρήσιμο μόνο

Διαβάστε περισσότερα

Συναρτήσεις. Ορισμός Συνάρτησης

Συναρτήσεις. Ορισμός Συνάρτησης Συναρτήσεις Ορισμός Συνάρτησης Συνάρτηση είναι μια διαδικασία με την οποία κάθε στοιχείο ενός συνόλου Α αντιστοιχίζεται σε ένα ακριβώς στοιχείο κάποιου άλλου συνόλου Β. Σχόλιο : Τα σύνολα Α και Β είναι

Διαβάστε περισσότερα

i Σύνολα w = = = i v v i=

i Σύνολα w = = = i v v i= ΜΕΤΡΑ ΘΕΣΗΣ ΆΣΚΗΣΗ Η βαθμολογία στα 0 μαθήματα ενός μαθητή είναι: 3, 9, 6, 0, 5,,, 0, 0, 4. Να υπολογίσετε: α) Τη μέση τιμή. β) Τη διάμεσο. Απάντηση t t + t + t 0 = = = = 3 + 9 + 6 + 0 + 5 + + + 0 + 0

Διαβάστε περισσότερα

ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ. Μια παράσταση που περιέχει πράξεις με μεταβλητές (γράμματα) και αριθμούς καλείται αλγεβρική, όπως για παράδειγμα η : 2x+3y-8

ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ. Μια παράσταση που περιέχει πράξεις με μεταβλητές (γράμματα) και αριθμούς καλείται αλγεβρική, όπως για παράδειγμα η : 2x+3y-8 ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ Άλγεβρα 1 ο Κεφάλαιο 1. Τι ονομάζουμε αριθμητική και τι αλγεβρική παράσταση; Να δώσετε από ένα παράδειγμα. Μια παράσταση που περιέχει πράξεις με αριθμούς, καλείται αριθμητική παράσταση,

Διαβάστε περισσότερα

Ασκήσεις. Μη ομαδοποιημένες παρατηρήσεις

Ασκήσεις. Μη ομαδοποιημένες παρατηρήσεις Ασκήσεις Μη ομαδοποιημένες παρατηρήσεις 1. Η χαμηλότερη ημερήσια θερμοκρασία που είχε η Αθήνα το μήνα Μάρτιο ήταν η εξής: 15 14 15 18 17 19 10 16 18 17 16 14 19 15 10 17 18 19 16 15 10 17 18 18 15 14 16

Διαβάστε περισσότερα

ΟΜΑΔΟΠΟΙΗΣΗ ΠΑΡΑΤΗΡΗΣΕΩΝ

ΟΜΑΔΟΠΟΙΗΣΗ ΠΑΡΑΤΗΡΗΣΕΩΝ ΠΑΡΑΤΗΡΗΣΕΩΝ Όταν το πλήθος των παρατηρήσεων είναι μεγάλο, είναι απαραίτητο οι παρατηρήσεις να ταξινομηθούν σε μικρό πλήθος ομάδων που ονομάζονται κλάσεις (class intervals). Η ομαδοποίηση αυτή γίνεται

Διαβάστε περισσότερα

ΗΜΟΣΘΕΝΕΙΟ ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΠΑΙΑΝΙΑΣ Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

ΗΜΟΣΘΕΝΕΙΟ ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΠΑΙΑΝΙΑΣ Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ () Χρησιµοποιώντας τον παρακάτω πίνακα συχνοτήτων που δίνει την κατανοµή συχνοτήτων 0 οικογενειών ως προς τον αριθµό των παιδιών τους, να βρεθεί ο αριθµός

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΟΥ ΕΠΑ.Λ. Δ. Ε. ΚΟΝΤΟΚΩΣΤΑΣ ΜΑΘΗΜΑΤΙΚΟΣ

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΟΥ ΕΠΑ.Λ. Δ. Ε. ΚΟΝΤΟΚΩΣΤΑΣ ΜΑΘΗΜΑΤΙΚΟΣ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΟΥ ΕΠΑ.Λ. 2013-2014 ΣΤΑΤΙΣΤΙΚΗ 1. Τι ονομάζουμε: i. πληθυσμό και μέγεθος πληθυσμού; (σελ. 59) ii. μεταβλητή; (σελ.59-60) 2. Ποιες μεταβλητές ονομάζονται ποσοτικές; (σελ.60)

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ. 1. α. Tι ονοµάζεται συνάρτηση από το σύνολο Α στο σύνολο Β; β. Tι ονοµάζεται πραγµατική συνάρτηση πραγµατικής µεταβλητής;

ΚΕΦΑΛΑΙΟ. 1. α. Tι ονοµάζεται συνάρτηση από το σύνολο Α στο σύνολο Β; β. Tι ονοµάζεται πραγµατική συνάρτηση πραγµατικής µεταβλητής; Μαθηµατικά και Στοιχεία Στατιστικής ΚΕΦΑΛΑΙΟ ο 1 : ιαφορικός Λογισµός 1. α. Tι ονοµάζεται συνάρτηση από το σύνολο Α στο σύνολο Β; β. Tι ονοµάζεται πραγµατική συνάρτηση πραγµατικής µεταβλητής; 2. Έστω µια

Διαβάστε περισσότερα

Πίνακας κατανοµής συχνοτήτων και αθροιστικών συχνοτήτων. Σχετ.

Πίνακας κατανοµής συχνοτήτων και αθροιστικών συχνοτήτων. Σχετ. Λυµένη Άσκηση στην οµαδοποιηµένη κατανοµή Στην Γ τάξη του Ενιαίου Λυκείου µιας περιοχής φοιτούν 4 µαθητές των οποίων τα ύψη τους σε εκατοστά φαίνονται στον ακόλουθο πίνακα. 7 4 76 7 6 7 3 77 77 7 6 7 6

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ-ΣΤΑΤΙΣΤΙΚΗΣ. Να γράψετε στο τετράδιο σας τον πίνακα των τιμών της μεταβλητής Χ σωστά συμπληρωμένο.

ΘΕΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ-ΣΤΑΤΙΣΤΙΚΗΣ. Να γράψετε στο τετράδιο σας τον πίνακα των τιμών της μεταβλητής Χ σωστά συμπληρωμένο. ΘΕΜΑ (ΙΟΥΝΙΟΣ 000) ΘΕΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ-ΣΤΑΤΙΣΤΙΚΗΣ Να γράψετε στο τετράδιο σας τον πίνακα των τιμών της μεταβλητής Χ σωστά συμπληρωμένο. Τιμές Μεταβλητής Συχνότητα σχετική Σχετική Αθροιστική f % f N 0

Διαβάστε περισσότερα

Εισαγωγή στη Στατιστική

Εισαγωγή στη Στατιστική Εισαγωγή στη Στατιστική Μετεκπαιδευτικό Σεμινάριο στην ΨΥΧΟΚΟΙΝΩΝΙΚΗ ΑΠΟΚΑΤΑΣΤΑΣΗ ΨΥΧΟΚΟΙΝΩΝΙΚΕΣ ΘΕΡΑΠΕΥΤΙΚΕΣ ΠΡΟΣΕΓΓΙΣΕΙΣ Δημήτρης Φουσκάκης, Επίκουρος Καθηγητής, Τομέας Μαθηματικών, Σχολή Εφαρμοσμένων

Διαβάστε περισσότερα

ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Ι

ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Ι Χειμερινό εξάμηνο 2010-2011 ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Ι Κ.Μ. 436 Περιγραφική Στατιστική Ι users.sch.gr/abouras abouras@sch.gr sch.gr abouras@uth.gr Μέτρα θέσης Η θέση αντιπροσωπεύει τη θέση της κατανομής

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝ. ΠΑΙΔΕΙΑΣ - Γ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝ. ΠΑΙΔΕΙΑΣ - Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝ. ΠΑΙΔΕΙΑΣ - Γ ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΘΕΜΑ A A. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, να αποδείξετε ότι f g f g,. Μονάδες 7 Α. Σε ένα πείραμα με ισοπίθανα αποτελέσματα

Διαβάστε περισσότερα

Σ Τ Α Τ Ι Σ Τ Ι Κ Η 2. 1. Β Α Σ Ι Κ Ε Σ Ε Ν Ν Ο Ι Ε Σ.

Σ Τ Α Τ Ι Σ Τ Ι Κ Η 2. 1. Β Α Σ Ι Κ Ε Σ Ε Ν Ν Ο Ι Ε Σ. Σ Τ Α Τ Ι Σ Τ Ι Κ Η Στατιστική έρευνα : Πρόκειται για ένα σύνολο αρχών και μεθοδολογιών με αντικείμενο : 1) το σχεδιασμό της διαδικασίας συλλογής δεδομένων. Κλάδος της στατιστικής που ασχολείται : Σχεδιασμός

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ Μ.Ν. Ντυκέν, Πανεπιστήμιο Θεσσαλίας Τ.Μ.Χ.Π.Π.Α. Ε. Αναστασίου, Πανεπιστήμιο Θεσσαλίας Τ.Μ.Χ.Π.Π.Α. ΔΙΑΛΕΞΗ 03 ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Βόλος, 2016-2017 1 1. Περιγραφική Ανάλυση Παρουσίαση

Διαβάστε περισσότερα

f , Σύνολο 40 4) Να συμπληρώστε τον παρακάτω πίνακα f , , Σύνολο 5) Να συμπληρώστε τον παρακάτω πίνακα

f , Σύνολο 40 4) Να συμπληρώστε τον παρακάτω πίνακα f , , Σύνολο 5) Να συμπληρώστε τον παρακάτω πίνακα 1 ΣΤΑΤΙΣΤΙΚΗ 1) Οι παρακάτω αριθμοί παρουσιάζουν τα ύψη σε cm, των φυτών ενός θερμοκηπίου 4 3 6 5 3 1 4 5 4 6 6 3 3 1 4 3 α) Να κάνετε τον πίνακα όλων των συχνοτήτων β) Από τον προηγούμενο πίνακα να βρείτε,

Διαβάστε περισσότερα

Σ Υ Λ Λ Ο Γ Ι Σ Μ Ο Ι Π Ρ Ο Β Λ Η Μ Α Τ Ι Σ Μ Ο Ι. της απαντήσεις τους κατασκευάστηκε το παρακάτω ραβδόγραμμα. κανάλι α i. συχνότητα ν i.

Σ Υ Λ Λ Ο Γ Ι Σ Μ Ο Ι Π Ρ Ο Β Λ Η Μ Α Τ Ι Σ Μ Ο Ι. της απαντήσεις τους κατασκευάστηκε το παρακάτω ραβδόγραμμα. κανάλι α i. συχνότητα ν i. Γ. ΛΥΚ. ΘΡΑΚΟΜΑΚΕΔΟΝΩΝ (2014-15) Λ. Γρίλλιας Σ Υ Λ Λ Ο Γ Ι Σ Μ Ο Ι Π Ρ Ο Β Λ Η Μ Α Τ Ι Σ Μ Ο Ι 1) Σε ένα σχολείο ρωτήθηκαν 70 μαθητές για την προτίμησή τους σε ποδοσφαιρικές ομάδες. Από της απαντήσεις

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΕΤΡΙΑ. Παπάνα Αγγελική

ΟΙΚΟΝΟΜΕΤΡΙΑ. Παπάνα Αγγελική ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 2: Ανασκόπηση βασικών εννοιών Στατιστικής και Πιθανοτήτων Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ E-mail: angeliki.papana@gmail.com, agpapana@auth.gr Webpage: http://users.auth.gr/agpapana

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ TECHNOLOGICAL EDUCATIONAL INSTITUTE OF WESTERN GREECE

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ TECHNOLOGICAL EDUCATIONAL INSTITUTE OF WESTERN GREECE ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ: ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ (Πάτρας) Διεύθυνση: Μεγάλου Αλεξάνδρου, 63 34 ΠΑΤΡΑ Τηλ.: 60 36905, Φαξ: 60 39684, email: mitro@teipat.gr Καθηγητής Ι. Μητρόπουλος

Διαβάστε περισσότερα

Μάθηµα 3 ο. Περιγραφική Στατιστική

Μάθηµα 3 ο. Περιγραφική Στατιστική Μάθηµα 3 ο Περιγραφική Στατιστική ΗΣτατιστικήείναι Μια τυποποιηµένη σειρά αναλυτικών µεθόδων, οι οποίες χρησιµοποιούνται από τον εκάστοτε ερευνητή για την ανάλυση των διαθέσιµων δεδοµένων. Υπάρχουν δύο

Διαβάστε περισσότερα

Ποιο από τα δύο τµήµατα είχε καλύτερη επίδοση; επ. Κωνσταντίνος Π. Χρήστου

Ποιο από τα δύο τµήµατα είχε καλύτερη επίδοση; επ. Κωνσταντίνος Π. Χρήστου Ένας καθηγητής µαθηµατικών έδωσε σε δύο τµήµατα µιας τάξης του σχολείου του το ίδιο τεστ. Η επίδοση των µαθητών του κάθε τµήµατος (όπως µετρήθηκε µε τη χρήση µιας εικοσαβάθµιας κλίµακας) παρουσιάζεται

Διαβάστε περισσότερα

Ενότητα 3: Περιγραφική Στατιστική (Πίνακες & Αριθμητικά μέτρα)

Ενότητα 3: Περιγραφική Στατιστική (Πίνακες & Αριθμητικά μέτρα) ΤΕΙ Στερεάς Ελλάδας Τμήμα Φυσικοθεραπείας Προπτυχιακό Πρόγραμμα Μάθημα: Βιοστατιστική-Οικονομία της υγείας Εξάμηνο: Ε (5 ο ) Ενότητα 3: Περιγραφική Στατιστική (Πίνακες & Αριθμητικά μέτρα) Δρ. Χρήστος Γενιτσαρόπουλος

Διαβάστε περισσότερα

Ιωάννης Σ. Μιχέλης Μαθηματικός

Ιωάννης Σ. Μιχέλης Μαθηματικός 1 Άλγεβρα 1 ο Κεφάλαιο Ερώτηση 1 : Τι ονομάζεται αριθμητική και τι αλγεβρική παράσταση; Μία παράσταση, που περιέχει πράξεις με αριθμούς ονομάζεται αριθμητική παράσταση. Μία παράσταση, που περιέχει πράξεις

Διαβάστε περισσότερα

ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ ΔΙΑΓΩΝΙΣΜΑΤΟΣ ΜΑΪΟΣ 2018 ΜΑΘΗΜΑΤΙΚΑ (ΑΛΓΕΒΡΑ) Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΕΠΑΛ

ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ ΔΙΑΓΩΝΙΣΜΑΤΟΣ ΜΑΪΟΣ 2018 ΜΑΘΗΜΑΤΙΚΑ (ΑΛΓΕΒΡΑ) Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΕΠΑΛ ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ ΔΙΑΓΩΝΙΣΜΑΤΟΣ ΜΑΪΟΣ 018 ΜΑΘΗΜΑΤΙΚΑ (ΑΛΓΕΒΡΑ) Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΕΠΑΛ ΘΕΜΑ Α Α1.Έστω F()() x c x με h 0 έχουμε F()()()()()() x h F x c x h c x x h x c h h h άρα F()()()()()() x h F x x

Διαβάστε περισσότερα

Μ Ε Τ Ρ Α Δ Ι Α Σ Π Ο Ρ Α Σ.

Μ Ε Τ Ρ Α Δ Ι Α Σ Π Ο Ρ Α Σ. Μ Ε Τ Ρ Α Δ Ι Α Σ Π Ο Ρ Α Σ. π.χ. Βαθμολογία διαγωνίσματος σε τμήματα: Α : 7, 11,16, 16,,. Β : 11, 13, 16, 16, 17, 17. Παρατήρηση : Για τέτοιους λόγους χρειάζεται και η εξέταση κάποιων μέτρων διασποράς

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ. 1 ο ΔΙΑΓΩΝΙΣΜΑ. ΘΕΜΑ 1 ο Δίνεται η συνάρτηση f x. Ι. Το πεδίο ορισμού της f είναι:., 1 υ -1, B. 1, Γ. -1,., 1.

ΜΑΘΗΜΑΤΙΚΑ. 1 ο ΔΙΑΓΩΝΙΣΜΑ. ΘΕΜΑ 1 ο Δίνεται η συνάρτηση f x. Ι. Το πεδίο ορισμού της f είναι:., 1 υ -1, B. 1, Γ. -1,., 1. Γ ΛΥΚΕΙΟΥ-ΓΕΝΙΚΗ ΠΑΙΔΕΙΑ ΜΑΘΗΜΑΤΙΚΑ ο ΔΙΑΓΩΝΙΣΜΑ ΘΕΜΑ ο Δίνεται η συνάρτηση f Ι. Το πεδίο ορισμού της f είναι:., υ -, B., Γ. -,.,., ΙΙ. Το όριο f lm 0 είναι ίσο με: Α. 0 Β. Γ. Δ. Ε. Τίποτε από τα προηγούμενα

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΑ ΜΕΤΡΑ ΑΝΑΛΥΣΗΣ ΔΕΔΟΜΕΝΩΝ

ΣΤΑΤΙΣΤΙΚΑ ΜΕΤΡΑ ΑΝΑΛΥΣΗΣ ΔΕΔΟΜΕΝΩΝ ΣΤΑΤΙΣΤΙΚΑ ΜΕΤΡΑ ΑΝΑΛΥΣΗΣ ΔΕΔΟΜΕΝΩΝ Στατιστικά περιγραφικά μέτρα Τα στατιστικά περιγραφικά μέτρα είναι αντιπροσωπευτικές τιμές οι οποίες περιγράφουν με τρόπο ποσοτικό την κατανομή μιας μεταβλητής. Λειτουργούν

Διαβάστε περισσότερα

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 25 ΜΑΪΟΥ 2004 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 25 ΜΑΪΟΥ 2004 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 25 ΜΑΪΟΥ 2004 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΘΕΜΑ 1ο Α. Να αποδείξετε ότι

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ. ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΨΗΣ - ΘΕΜΑ Ο Έστω η συνάρτηση f( ) =, 0 ) Να αποδείξετε ότι f ( ). f( ) =. ) Να υπολογίσετε το όριο lm f ( )+ 4. ) Να βρείτε την εξίσωση της εφαπτομένης

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ. Ερωτήσεις πολλαπλής επιλογής. Συντάκτης: Δημήτριος Κρέτσης

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ. Ερωτήσεις πολλαπλής επιλογής. Συντάκτης: Δημήτριος Κρέτσης ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ Ερωτήσεις πολλαπλής επιλογής Συντάκτης: Δημήτριος Κρέτσης 1. Ο κλάδος της περιγραφικής Στατιστικής: α. Ασχολείται με την επεξεργασία των δεδομένων και την ανάλυση

Διαβάστε περισσότερα

Δείκτες Κεντρικής Τάσης και Διασποράς. Παιδαγωγικό Τμήμα Δημοτικής Εκπαίδευσης Δημοκρίτειο Πανεπιστήμιο Θράκης Αλεξανδρούπολη

Δείκτες Κεντρικής Τάσης και Διασποράς. Παιδαγωγικό Τμήμα Δημοτικής Εκπαίδευσης Δημοκρίτειο Πανεπιστήμιο Θράκης Αλεξανδρούπολη Δείκτες Κεντρικής Τάσης και Διασποράς Παιδαγωγικό Τμήμα Δημοτικής Εκπαίδευσης Δημοκρίτειο Πανεπιστήμιο Θράκης Αλεξανδρούπολη Εμπειρικές Στατιστικές Κατανομές Τα προβλήματα που γεννιούνται κατά την σύγκριση

Διαβάστε περισσότερα

Ποιοτική & Ποσοτική Ανάλυση εδομένων Εβδομάδα 5 η 6 η

Ποιοτική & Ποσοτική Ανάλυση εδομένων Εβδομάδα 5 η 6 η Ποιοτική & Ποσοτική Ανάλυση εδομένων Εβδομάδα 5 η 6 η Παιδαγωγικό Τμήμα ημοτικής Εκπαίδευσης ημοκρίτειο Πανεπιστήμιο Θράκης Αλεξανδρούπολη, 2013-2014 Εμπειρικές Στατιστικές Κατανομές Τα προβλήματα που

Διαβάστε περισσότερα

1) ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ - ΑΤΑΞΙΝΟΜΗΤΑ ΔΕΔΟΜΕΝΑ

1) ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ - ΑΤΑΞΙΝΟΜΗΤΑ ΔΕΔΟΜΕΝΑ ΕΡΓΑΣΤΗΡΙΟ ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΧΕΙΜΕΡΙΝΟ ΕΞΑΜΗΝΟ 205-206 ΔΙΔΑΣΚΟΝΤΕΣ ΔΗΜΗΤΡΗΣ ΚΑΛΛΙΒΩΚΑΣ, ΘΑΝΑΣΗΣ ΚΑΖΑΝΑΣ ) ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ - ΑΤΑΞΙΝΟΜΗΤΑ ΔΕΔΟΜΕΝΑ ΑΣΚΗΣΗ Τα παρακάτω δεδομένα αναφέρονται στη

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΙΝΣΤΙΤΟΥΤΟ ΕΚΠΑΙΔΕΥΙΚΗΣ ΠΟΛΙΤΙΚΗΣ Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΦΑΚΕΛΟΣ ΜΑΘΗΤΗ/ΤΡΙΑΣ ΣΤΑΤΙΣΤΙΚΗ ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΙΝΣΤΙΤΟΥΤΟ ΕΚΠΑΙΔΕΥΙΚΗΣ ΠΟΛΙΤΙΚΗΣ Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΦΑΚΕΛΟΣ ΜΑΘΗΤΗ/ΤΡΙΑΣ ΣΤΑΤΙΣΤΙΚΗ ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΙΝΣΤΙΤΟΥΤΟ ΕΚΠΑΙΔΕΥΙΚΗΣ ΠΟΛΙΤΙΚΗΣ Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΦΑΚΕΛΟΣ ΜΑΘΗΤΗ/ΤΡΙΑΣ ΣΤΑΤΙΣΤΙΚΗ ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ 2019 ΕΚΠΟΝΗΣΗ Εξωτερικοί εμπειρογνώμονες Διαμαντίδης Δημήτριος, Εκπαιδευτικός

Διαβάστε περισσότερα

Βασικές έννοιες. Παραδείγµατα: Το σύνολο των φοιτητών που είναι εγγεγραµµένοι

Βασικές έννοιες. Παραδείγµατα: Το σύνολο των φοιτητών που είναι εγγεγραµµένοι Τι είναι η Στατιστική? Η ΣΤΑΤΙΣΤΙΚΗ ορίζεται σήµερα ως η επιστήµη που σχετίζεται µε τις επιστηµονικές µεθόδους συλλογής, παρουσίασης, αξιολόγησης και γενίκευσης (: εξαγωγής συµπερασµάτων) της πληροφορίας.

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ. Βασικές έννοιες

ΕΙΣΑΓΩΓΗ. Βασικές έννοιες ΕΙΣΑΓΩΓΗ Βασικές έννοιες Σε ένα ερωτηματολόγιο έχουμε ένα σύνολο ερωτήσεων. Μπορούμε να πούμε ότι σε κάθε ερώτηση αντιστοιχεί μία μεταβλητή. Αν θεωρήσουμε μια ερώτηση, τα άτομα δίνουν κάποιες απαντήσεις

Διαβάστε περισσότερα

Οµάδα (I): Οµάδα (II): Οµάδα (III):

Οµάδα (I): Οµάδα (II): Οµάδα (III): I Α) Να χαρακτηρίσετε τις προτάσεις που ακολουθούν γράφοντας στο τετράδιο σας την ένδειξη Σωστό (Σ) ή Λάθος (Λ), δίπλα στο γράµµα που αντιστοιχεί σε κάθε πρόταση ίνονται τρείς οµάδες τιµών Οµάδα (I): 0

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. x 100% = s. lim. x x. γ) Αν οι συναρτήσεις f, g: A είναι παραγωγίσιμες στο πεδίο ορισμού τους Α, τότε ισχύει:

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. x 100% = s. lim. x x. γ) Αν οι συναρτήσεις f, g: A είναι παραγωγίσιμες στο πεδίο ορισμού τους Α, τότε ισχύει: ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΠΑΝΕΛΛΑ ΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΗΜΕΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑ Α Α ) ΚΑΙ ΜΑΘΗΜΑΤΩΝ ΕΙ ΙΚΟΤΗΤΑΣ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑ Α Β ) ΠΕΜΠΤΗ 7 ΜΑΪΟΥ 010 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ

Διαβάστε περισσότερα

Ποσοτική & Ποιοτική Ανάλυση εδομένων Βασικές Έννοιες. Παιδαγωγικό Τμήμα ημοτικής Εκπαίδευσης ημοκρίτειο Πανεπιστήμιο Θράκης Αλεξανδρούπολη 2013-2014

Ποσοτική & Ποιοτική Ανάλυση εδομένων Βασικές Έννοιες. Παιδαγωγικό Τμήμα ημοτικής Εκπαίδευσης ημοκρίτειο Πανεπιστήμιο Θράκης Αλεξανδρούπολη 2013-2014 Ποσοτική & Ποιοτική Ανάλυση εδομένων Βασικές Έννοιες Παιδαγωγικό Τμήμα ημοτικής Εκπαίδευσης ημοκρίτειο Πανεπιστήμιο Θράκης Αλεξανδρούπολη 2013-2014 Περιγραφική και Επαγωγική Στατιστική Η περιγραφική στατιστική

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ σε μια σελίδα Α4 ανά έτος προσαρμοσμένα στις επιταγές του ΔΝΤ (IMF: 4o μεσοπρόθεσμο.) ( WWF:.εξοικονόμηση πόρων.

ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ σε μια σελίδα Α4 ανά έτος προσαρμοσμένα στις επιταγές του ΔΝΤ (IMF: 4o μεσοπρόθεσμο.) ( WWF:.εξοικονόμηση πόρων. ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ σε μια σελίδα Α4 ανά έτος προσαρμοσμένα στις επιταγές του ΔΝΤ (IMF: 4o μεσοπρόθεσμο.) ( WWF:.εξοικονόμηση πόρων.) ΠΕΡΙΕΧΟΜΕΝΑ ΜΑΘΗΜΑΤΙΚΑ / ΣΤΑΤΙΣΤΙΚΗ 03 06 000... ΜΑΘΗΜΑΤΙΚΑ

Διαβάστε περισσότερα

Στατιστική Ι. Ενότητα 2: Στατιστικά Μέτρα Διασποράς Ασυμμετρίας - Κυρτώσεως. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών

Στατιστική Ι. Ενότητα 2: Στατιστικά Μέτρα Διασποράς Ασυμμετρίας - Κυρτώσεως. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών Στατιστική Ι Ενότητα 2: Στατιστικά Μέτρα Διασποράς Ασυμμετρίας - Κυρτώσεως Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

Δρ. Ευστρατία Μούρτου

Δρ. Ευστρατία Μούρτου ΑΝΩΤΑΤΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΠΑΤΡΩΝ ΣΧΟΛΗ ΕΠΑΓΓΕΛΜΑΤΩΝ ΥΓΕΙΑΣ ΚΑΙ ΠΡΟΝΟΙΑΣ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ ΕΞΑΜΗΝΟ : Ε ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ : 2009-2010 ΜΑΘΗΜΑ «ΒΙΟΣΤΑΤΙΣΤΙΚΗ» ΑΣΚΗΣΕΙΣ Δρ. Ευστρατία Μούρτου Δρ.

Διαβάστε περισσότερα

ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ. Γενικής Παιδείας Μαθηματικά Γ Λυκείου Στατιστική ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ

ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ. Γενικής Παιδείας Μαθηματικά Γ Λυκείου Στατιστική ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ Γενικής Παιδείας Μαθηματικά Γ Λυκείου Στατιστική Επιμέλεια: ΑΝΔΡΕΑΣ ΓΚΟΥΡΤΖΟΥΝΗΣ ΣΤΕΦΑΝΟΣ ΗΛΙΑΣΚΟΣ e-mail: info@iliaskos.gr www.iliaskos.gr 1) Να

Διαβάστε περισσότερα

ΖΗΤΗΜ Α 1 Ο. Α1. Τι είναι το ραβδόγραµµα και πότε χρησιµοποιείται; 5) Α2. Σε τι διακρίνονται οι µεταβλητές και τι είναι οι τιµές τους;

ΖΗΤΗΜ Α 1 Ο. Α1. Τι είναι το ραβδόγραµµα και πότε χρησιµοποιείται; 5) Α2. Σε τι διακρίνονται οι µεταβλητές και τι είναι οι τιµές τους; ΔΙΑΓΩΝΙΣΜΑ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΥΡΙΑΚΗ 1 ΦΕΒΡΟΥΑΡΙΟΥ 2015 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΠΕΝΤΕ (5) ΖΗΤΗΜ Α 1 Ο Α1. Τι είναι το ραβδόγραµµα

Διαβάστε περισσότερα

ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ

ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΠΛΗΘΥΣΜΟΙ ΔΕΙΓΜΑΤΑ ΠΑΡΟΥΣΙΑΣΗ ΔΕΔΟΜΕΝΩΝ Περιγραφική Στατιστική Με τις στατιστικές μεθόδους επιδιώκεται: - η συνοπτική αλλά πλήρης και κατατοπιστική παρουσίαση των ευρημάτων μιας

Διαβάστε περισσότερα